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In Girard (2001), J.-Y. Girard presents a new theory, The Ludics, which is a model of

realisibility of logic that associates proofs with designs, and formulas with behaviours. In this

article we study the interpretation in this semantics of formulas with first-order

quantifications and their proofs. We extend to the first-order quantifiers the full

completeness theorem obtained in Girard (2001) for MALL2. A significant part of this

article is devoted to the study of a uniformity property for the families of designs that

represent proofs of formulas depending on a first-order free variable.

1. Introduction

In Girard (2001), J.-Y. Girard presents a new theory – The Ludics. This theory can be

classified as amongst the semantics games theories (Abramsky et al. 2000; Hyland and

Hong 2000), which have been greatly developed in recent years. It is a model of realisibility

of logic that associates the proofs with designs, and formulas with behaviours. However,

one of the motivations for Ludics was to take into account the real symmetry of logic

and to go beyond the artificial syntax/semantics duality. The proofs are in fact strategies,

but strategies of proof search; the designs are very close to formal proofs seen in the

bottom to top direction. Moreover, having given a syntactic status to failure (in the proof

search), one gains symmetry by introducing the concept of counter-proof (which is also

represented by a design). The interaction between objects of the model (designs) is exactly

the elimination of cuts.

Another innovation of Ludics is the importance given to the location (locus). Building

on the ‘linear logic’ stage, which made it possible to take the use of resources into account,

a new step is taken in the direction of the ‘proofs vs. programs’ paradigm, which makes

it possible to take into account also the location where these resources are stored; in

data processing the address of a resource is almost as significant as the resource itself.

In the same way, in Ludics the objects cannot be defined independently of their location

(locus). The links between Ludics and data-processing were clarified by P.-L. Curien in

Curien (2001).

The objects in logic have until now been considered independently of their physical

location, up to identity. It is possible to find this delocalised approach in Ludics, provided

we place ourselves in the spiritual framework, that is, where all the occurrences of formulas

and subformulas are placed in distinct locations (locus). In the context of ‘spiritual logic’,

one can see Ludics as a model of realisibility that checks a completeness theorem for a

https://doi.org/10.1017/S0960129503004134 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129503004134


M-R. Fleury and M. Quatrini 190

linear second-order sequent calculus MALL2, following the theorem of full completeness

proved in Abramsky et al. (2000) and Hyland and Hong (2000). We can summarise this

result by saying that if F is a closed Π1-formula of MALL2 and if D is a design with

‘good’ properties (winning design) in the behaviour associated with this formula then there

is a proof of F which is interpreted by D.

The main part of the work presented in this paper extends this completeness result for

a linear predicate calculus. In Girard (2001), Girard presents a locative treatment of the

first-order quantifiers for which one obtains surprising commutation results for prenex

formulas with respect to the connectors. There is no hope of completeness for such an

interpretation. However, a spiritual treatment is possible; it is within this framework that

we have placed ourselves. Some specificities of a first-order language led us to modify

slightly the basic definitions of the ludical objects (the locus, designs, behaviours. . . ): the

objects will be dependent on the elements of a countable set �. In order to interpret

the formula F(x) depending on a first-order free variable x, we consider a family of

behaviours indexed by �; we associate the infinite additive conjunction of the delocalised

behaviours of this family with the universal quantification of this formula. Finally,

with the proof of such a quantified formula, we will associate a design, which can

be seen as a ‘union’ of designs, each of which is in one of the components of the

conjunction.

From a completeness point of view, the crucial point is to find the properties char-

acterising the designs that are interpretations of proofs. In this context of first-order

logic, we have concentrated on the study of the proofs of quantified formulas. Also,

to take into account the correlation existing between the designs composing the design

representing the proof of a universally quantified formula, we have described a property

of uniformity, which expresses the fact that a uniform design must allow us to pass the

universal quantification by representing the same proof for each possible assignment of

the universally quantified variable. In other words, a uniform design must make it possible

to find the same design in each behaviour Fd of the family associated with the formula

F(x). The uniformity of a design or a family of designs is defined using any functions

of �.

We then have the tools to study the completeness theorem for MALL1
2 (the system

obtained by adding the usual predicative rules to MALL2). The concept of a ‘winning

design’ representing a proof of a formula of MALL2 is then replaced by the concept of a

uniform family of winning designs. The result of completeness is stated mutatis-mutandis;

one then shows it in two steps. First, one represents the linear predicate calculus MALL1
2

in an infinite propositional calculus MALL∞
2 (MALL2 with infinite additive propositional

rules); the result of completeness shown in Girard (2001) transfers without problems. The

second step consists of establishing the lemmas specific to the families of uniform designs

representing the first-order quantified formulas.

The article is structured as follows. In Section 2 we outline the concepts and definitions

of Ludics, extracted from Girard (2001), on which our definitions rest. Then we propose

in Section 3 a definition of �-uniformity. We compare �-uniformity with uniformity of

the second order (introduced in Girard (2001)), through some examples. In Section 4 we

establish the ‘full completeness theorem’ for the system MALL1
2.
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2. Ludics

It is beyond the scope of this paper to sum up the very new and extensive concepts that

form the core of Ludics. Nevertheless, we shall give here a very brief survey of some of

the ingredients of Ludics that we shall constantly use in this paper. You are, of course,

strongly advised to refer to Girard’s monograph (Girard 2001).

2.1. Locus

A very crucial notion in Ludics is the notion of locus. Considerable attention is paid to the

relative places of objects: sub-formulas with respect to formulas, formulas with respect to

sequents, different occurences with respect to each other, and so on. This consideration is

taken into account and dealt with by the notions of bias and address:

— A bias is a natural number: we use i, j, k, . . . as notation for biases. A ramification is

a finite set of biases.

— A locus, or address, is a sequence < i1, . . . , in > of biases: we use σ, τ, ξ, . . . as notation

for addresses. The parity of an address is defined as the parity of its length.

— A pitchfork or base is an expression Θ � Λ where Θ and Λ are pairwise disjoint finite

sets of loci. Θ contains at most one locus (this locus is the handle; the loci in Λ have

the same parity, which may be opposite to the parity of Θ. The polarity of Θ � Λ is

positive when Θ is empty and negative when it is non-empty.

2.2. Designs

Designs are the central objects in Ludics. They are the ‘concrete objects logic is made of’

(Girard 2001). We can understand a design to be a proof seen from multiple points of

view: a syntactical proof, a function, a clique, a λ-term. . .

A design is determined by the set of its successive actions (moves in the sense of both

plays and changes of place). The plain definition of such objects is given by means of the

notion of design as ‘dessein’. The notion of design as ‘dessin’ is an alternative, simpler

and more intuitive representation, but one that is less complete and general. Indeed, to

one ‘dessein’ there are several corresponding ‘dessins’.

Definition 2.1 (designs as dessins). A dessin is a proof-tree made of pitchforks. The last

pitchfork (the root of the tree) of a ‘dessin’ is called the conclusion or base. Each pitchfork

occurring in the ‘dessin’ is the conclusion of one of the rules given below. A branch cannot

end with a negative rule.

Daemon:

†
� Λ

Positive rule: I is a ramification, the Λi are pairwise disjoint and included in Λ: one can

apply the rule (which is finite, with one premise for each i ∈ I)

· · · ξ ∗ i � Λi · · ·
(ξ, I)

� ξ,Λ
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Negative rule: N is a set of ramifications; for all I ∈ N, ΛI ⊂ Λ. One can apply the rule

(which may be infinite, with one premise for each I ∈ N)

· · · � ΛI , ξ ∗ I · · ·
(ξ,N)

ξ � Λ

Some examples: Let � Λ and ξ � Λ be two bases. We have the following designs:

Dai+=
†

� Λ Dai−=
· · ·

†
� ξ ∗ I,Λ · · ·

(ξ,P∗
f(�))

ξ � Λ

Faxξ�ξ′ =
· · ·

· · ·
Faxξ′∗i�ξ∗i

ξ′ ∗ i � ξ ∗ i, · · ·
(ξ′, I)

� ξ ∗ I, ξ′ · · ·
(ξ,P∗

f(�))

ξ � ξ′

Definition 2.2 (designs as desseins). We recall here some notions needed for the definition

of a design as ‘dessein’.

An action is either a triple (ε, ξ, I) (where ε is the polarity + or − of the action, ξ is

a locus and an I is a ramification) or the positive action (+, †) which is said to be the

daemon.

The locus of a proper action (that is, one that is not the daemon) κ = (ε, ξ, I) is said

to be the focus of the action κ. (We shall use ξ ∗ I to denote the set of addresses ξ ∗ i for

i ∈ I .)

A chronicle of base Θ � Λ is a non-empty sequence of actions κ0, . . . , κn such that:

— The sequence alternates: two successive actions are of opposite polarity.

— If Θ is non-empty, the first action of the chronicle is necessarily focused on the locus

of Θ.

— Only the last action can be the daemon.

— A focus ξp of a negative action must be chosen either in θ or in ξp−1 ∗ Ip−1.

— A focus ξp of a positive action must be chosen either in Λ or in one of the ξq ∗ Iq
where (−, ξq, Iq) is one of the previous negative actions.

Two chronicles c, c′ are coherent when:

— Either one extends the other, or they first differ on negative actions.

— When c, c′ first differ on κ, κ′ with distinct focuses, all ulterior focuses are distinct.

We use c, d, e. . . as notation for a chronicle.

A design as dessein D of base Θ � Λ is a set of pairwise coherent chronicles of base Θ � Λ

such that:

— D is closed under restriction.

— If c ∈ D has no extension in D, its last action is positive.

— If the base is positive, D is non-empty.
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Examples of desseins: We write the base as a subscript.

— Dai
+
�Λ = {(+, †)}

— Dai
−
ξ�Λ = {(−, ξ, I) ; (−, ξ, I) ∗ (+, †); ∀I ∈ Pf(�)}

— Faxξ�ξ′ = {(−, ξ, I); (−, ξ, I) ∗ (+, ξ′, I) ; (−, ξ, I) ∗ (+, ξ′, I) ∗ (−, ξ′ ∗ i, J) ; (−, ξ, I) ∗
(+, ξ′, I) ∗ (−, ξ′ ∗ i, J) ∗ (+, ξ ∗ i, J) , . . . for all I, J, . . . ∈ P∗

f(�), for all i ∈ I, . . .}.
Remark: There is associated with a dessin D based on Θ � ∆ a unique dessein D. The

converse is not true because it is not always possible to find and share the contexts ∆ in

a one to one way.

2.3. Normalisation

It is of course necessary to recover a notion equivalent to the notion of cut. Indeed,

‘the designs have been constructed by imitation of cut-free proofs’ (Girard 2001), but,

nevertheless, the composition between the objects is the dynamic of logic. Ludics was

born with the aim of fitting with both the dynamical and interactive aspect of logic.

A cut net is a set of designs that are linked to each other with cuts. More precisely, a

cut-net is a non-empty finite set R = {D1, . . . ,Dn} of designs of respective bases Θp � Λp

such that:

— The loci occurring in the bases are pairwise disjoint or equal.

— Every locus occurs at most in two bases, one in a Θp and the other in a Λq . Such a

shared locus is called a cut.

— The graph whose vertices are the Θp � Λp and whose edges are the cuts is connected

and acyclic.

For example <Dδ�ξ,Eξ�η,Fη�δ> is not a cut-net but <D�ξ,Eξ�η,Fη�δ> is.

There is at most one handle that is not a cut, and we can form a pitchfork with the

uncut loci, the conclusion or base of the cut-net.

The cut elimination procedure, which is called normalisation, is a strictly deterministic

procedure that replaces a cut-net R with a design of the same base, its normal form [[R]].

Here we shall just describe the normalisation procedure for the closed case.

Closed normalisation procedure: Let R be a closed cut-net, D be the unique positive

design, κ be the main rule and ξ be the cut locus. Then three cases occur:

— Daemon: κ is the daemon. In this case the net normalises into a unique design with an

empty base – the daemon.

R =

{
†

� ξ ,
(ξ,N)

ξ �

}
; [[R]] =

†
�

This case is the only case of termination for a closed net.

— Immediate feature: Let κ be (ξ, I). Hence ξ is a cut, and it occurs as the handle of

another design E, the adjoint design of the net, whose first rule is necessarily of the

form (ξ,N). There are two cases:

– I /∈ N: The normalisation fails.

– I ∈ N: For i ∈ I , let Di be the sub-design of D whose conclusion is the premise of

index i and let E′
I be the sub-design of E induced by the premise of index I . Define
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F by replacing D by the Di and E by E′
I . Since F is not necessarily connected,

define F′ to be the connected component of F. Then [[R]] = [[F′]].

R =




Di

ξ ∗ i � . . .

Di′

ξ ∗ i′ �
(ξ, I)

� ξ
;

E′
I

� ξ ∗ I . . .

...
� ξ ∗ J

(ξ,N)
ξ �




[[R]] = [[F′]] =

[[
E′
I

� ξ ∗ I
;

Di

ξ ∗ i � ;. . . ;
Di′

ξ ∗ i′ �

]]

Orthogonality: The designs D and E respectively based on ξ � and � ξ are said to be

orthogonal when [[D, E]] = Dai.

Order on designs: The set of designs of base Θ � Λ is equipped with a partial order

defined as follows:

D 	 D′ iff D′ ∈ D⊥⊥

This can be expressed in the tree representation: D′ 	 D iff for every negative rule (ξ,N′)

of D′ there is a corresponding negative rule (ξ,N) in D such that N′ ⊂ N and for every

positive rule (ξ, I) of D′ there is either the same positive rule in D or the †-rule.

2.4. Behaviours

We have just recalled that a design can be understood as a proof seen from both syntactical

and semantical points of view. In the same way, the concept of behaviour brings together

the notions of logical formulas, types, Scott domains and coherent spaces.

A behaviour: This is a set of designs on a given base closed by bi-orthogonality. A

behaviour is said to be positive or negative according to the polarity of its base.

Material (or incarnated) designs: The existence of a smallest subdesign in a given design

D relative to a given behaviour G is the counterpart to the normal form theorem in

coherent semantics. This design is called the incarnation of D and denoted |D|G. A design

D ∈ G is incarnated or material when D = |D|. We define |G| to be the set of material

designs in G.

Here are some examples of behaviours and their incarnations:

0 = {Dai}⊥⊥, |0| = {Dai}.

T =

{ ... (<>,N)
<>�

; N ⊂ P∗
f(�)

}
, |T| =

{
Skunk =

(<>,�)
<>�

}
Let D be a design. The behaviour {D}⊥⊥ is said to be the principal behaviour generated

by D. For example, if

D =

... (1,N1)
1 �

... (2,N2)
2 � (<>, {1, 2})

�<>

,
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its principal behaviour is

{D}⊥⊥ =


D,

†
�<> ,

... (1,N′
1)

1 �

... (2,N′
2)

2 � (<>, {1, 2})
�<>

, N1 ⊂ N′
1, N2 ⊂ N′

2


.

2.5. The ‘spiritual’ connectives

We can still find the usual logic within the ludic setting, provided we choose the ‘spiritual’

point of view, as opposed to the ‘locative’ point of view. Some general connectives are

defined on behaviours; provided that these behaviours are in completely disjoint locations

(by means of delocations) we recover the usual logical formulas.

Delocation:

— A delocation from locus ξ to locus ξ′ is a partial injective map θ from the subloci of

ξ to the subloci of ξ′ such that θ(ξ) = ξ′ and such that for all σ there is a function θσ
satisfying θ(σ ∗ i) = θ(σ) ∗ θσ(i).

— It is straightforward to extend the delocation θ to chronicles and to designs.

— If G is a behaviour of base � ξ (respectively, ξ �) and θ is a total delocation

from ξ to ξ′, we define the behaviour θ(G) of base � ξ′ (respectively, ξ′ �) by:

θ(G) = {θ(D) ; D ∈ G}⊥⊥.

In order to handle polarity and focalisation properties of formulas in the ludic frame-

work, we need to introduce the notion of shift. The shift could be understood as a

change of polarity: a step (a stop) between successive connectives rules that could not be

performed simultaneously.

Shift:

— Let c be a chronicle of base � ξ ∗ i (respectively, ξ ∗ i �); the shift ↓ c is the chronicle

(ξ, {i}) ∗ c) of base ξ � (respectively, ↓ c is the chronicle based on � ξ).
— For D a positive (respectively, negative) design based on � ξ ∗ i (respectively, ξ ∗ i �)

we define ↓ D as {↓ c ; c ∈ D} ∪ {< (ξ, {i}) >} of base ξ � (respectively, � ξ).
— If G is a positive (respectively, negative) behaviour of base � ξ ∗ i (respectively, ξ ∗ i �),

then ↓ G is defined by {↓ D ; D ∈ G}⊥⊥ (respectively, {↓ D ; D ∈ G}⊥ ) of base ξ �
(respectively, � ξ).

Linear spiritual connectives: Here we only give the definition of the linear connectives in

the strict case that we are interested in here: those of the spiritual logic, that is, between

some explicitly disconnected behaviours.

Let G and H be two disconnected behaviours of the same base � ξ (respectively, ξ �),

that is, the first actions of a design in G and of a design in H are disjoint.

— G ⊕ H = (G ∪ H)⊥⊥ provided G and H are positive disconnected behaviours.

— G&H = (G ∩ H) provided G and H are negative disconnected behaviours.
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— G ⊗ H = {D ⊗ D′ ; D ∈ G and D′ ∈ H}⊥⊥ where D ⊗ D′ = {(ξ, I ∪ J) ∗ c′ ; (ξ,I) ∗ c′ ∈
D or (ξ, J) ∗ c′ ∈ D′} provided D ∈ G and D′ ∈ H are disconnected positive designs

distinct from the Dai.

— G℘H is defined by duality.

— One extends these definitions to behaviours of opposite polarities by adding shifts

when necessary.

Sequent of behaviours: Let Θ � Λ be a base and let Gσ be some positive behaviours of

respective bases � σ for σ ∈ Θ ∪ Λ. We then define the sequent of behaviours Θ � Λ of

base Θ � Λ to be the orthogonal of the set of families (Dσ) of designs Dσ where Dσ ∈ Gσ

for σ ∈ Θ and Dσ ∈ G⊥
σ for σ ∈ Λ.

2.6. Bihaviours

We know by means of the internal completeness (see the next subsection) how to

decompose a connective, but what happens when we reach an atom?

In fact, atoms are propositional variables and can be interpreted by any positive

behaviour. A design able to deal with this implicit second order quantification has to be

uniform to be a good candidate to interpret a proof.

In order to express the notion of uniformity interactively, Girard in Girard (2001)

added a PER (partial equivalence relation) structure to the behaviours. The key point of

this equivalence is to separate the designs with respect to normalisation. The base of the

equivalence is to identify the closed nets normalising into Dai and those normalising into

Fid.

We now briefly outline the main definitions relevant for the notion of bihaviours and

uniformity:

Fid is the empty set of chronicle represented by

Ω� Λ .

Fid is not a design, but a partial design that here represents the failure of a normalisation.

A partial design of a design D ∈ G is Fid or a subdesign of D. Gp is the set of all

partial designs in a design of G.

The PER ∼=⊥: Suppose that ∼= is a PER (partial equivalence relation) on a behaviour, G,
∼=⊥ is the PER on (G⊥)p such that: ∀D,D′ ∈ (G⊥)p D ∼=⊥ D′ iff ∀E,E′ ∈ Gp if E ∼= E′

then [[D,E]] = [[D′,E′]].

Bihaviours: (G,∼=G) is a bihaviour provided ∼=G is a PER on G such that:

Dai ∼=G Dai; Fid ∼=G Fid and ∼=G is equal to its biorthogonal.

PER on behaviours built by the ludic constructors ⊗, ⊕, &: The definitions are only given

on behaviours with disjoint loci. In each of the following cases, we obtain a bihaviour

by considering the partial equivalence defined below. Let (G1, ∼=1) and (G2, ∼=2) be two
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bihaviours with the same base.

(a) ∼=G1⊕G2
is defined as the biorthogonal of the following relation:

For all D, D′ ∈ (G1 ⊕ G2)
p,

D ∼=G1⊕G2
D′ iff ∃i ∈ {1, 2} such that D and D′ ∈ Gi and D ∼=Gi

D′.

(b) ∼=G1⊗G2
is defined as the biorthogonal of the following relation:

For all D1 ⊗ D2, D′
1 ⊗ D′

2 ∈ (G1 ⊗ G2)
p,

D1 ⊗ D2
∼=D1⊕D2

D′
1 ⊗ D′

2 iff D1
∼=G1

D′
1 and D2

∼=G2
D′

2.

(c) ∼=G1&G2
is defined by:

For all D, D′ ∈ (G1 ∩ G2)
p D ∼=G1&G2

D′ iff ∀i ∈ {1, 2} D ∼=Gi
D′.

PER on sequents of bihaviours: Consider the sequent G0 � G1, . . . ,Gn. We obtain a

bihaviour by considering the following partial equivalence:

E ∼=G0�G1 ,...,Gn
E′ iff ∀D0

∼= D′
0 ∈ Gp

0 ∀Di
∼= D′

i ∈ G⊥p
i ,

[[E,D0,D1, . . . ,Dn]] = [[E′,D′
0,D

′
1, . . . ,D

′
n]].

2.7. The completeness results in MALL2

There are two levels of completeness. The first level is the internal completeness.

Girard means by this the fact that behaviours built by means of connectives are easily

decomposable. This is in some sense a ludic counterpart of the subformula property: no

biorthogonal is needed in such a behaviour, so we have a complete description of the

designs. For example, if D is in A ⊗ B where A and B are disconnected behaviours, we

are able to decompose it into a design in A and a design in B (projection commutes with

the biorthogonal).

Moreover, Girard states a full completeness theorem in Girard (2001) by setting a

correspondence between Ludics and a second-order propositional linear calculus MALL2;

MALL2 is a linear sequent calculus that is only built on positive formulas, without

exponential and with a stoup (which enables one to make the focalisation property

explicit). Intuitively speaking, this correspondence consists of discriminating the ‘good’

designs, which are the candidates for representing the proofs of this calculus. Let us recall

the properties that are needed for a ‘winning’ design.

Stubborn design: A design D ∈ G is stubborn when it does not use the daimon rule.

Exact design:

— A positive rule is exact when Λ = ∪iΛi and a negative rule is exact when ΛI = Λ for

all I ∈ N.

— A design is exact when it only contains exact rules.

Uniform design: The design D is uniform in the bihaviour G if and only if D ∼=G D.

Some examples of uniform designs and non-uniform designs will be given in Sec-

tion 3.2.3.
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Winning design: A design D is winning when it is stubborn, uniform and exact†.

The full completeness result is stated in Girard (2001) in two cases: the affine and the

non-affine version of the second-order linear calculus. We recall here the result in the

non-affine case.

Soundness: With every proof π of a closed sequent Γ � ∆; Σ in MALL2 one associates

a design π∗ ∈ Γ � ∆; Σ. The design π∗ is winning and material when the sequent is Π1.

Moreover, the interpretation is invariant under cut-elimination.

Completeness: Let Γ � ∆; be a closed Π1 MALL2-sequent and let D ∈ Γ � ∆ be a material

winning design. Then there is a MALL2-proof π of Γ � ∆ such that D = π∗.

2.8. The quantifications

Girard has stressed the fact that the ludic framework enables one to distinguish between

two different approaches to the quantifiers and then to distinguish more radically between

the first- and second-order quantifiers (Girard 2001). This distinction is relative to the

duality spiritual/locative approach. In his monograph, Girard has given a full presentation

of the second-order quantification as a locative intersection of a family of behaviours. He

proposed a similar locative treatment of the first-order (but not the usual) quantification

by using the intersection operation. The distinction between first and second order is

then taken into account by the difference in cardinality of the index domains (which

is countable for the first order, and 2ℵ0 for the second). There are some interesting

and surprising results of such a treatment. However, this does not enable us to deal

with the usual first-order quantification in spiritual logic. Moreover, it is emphasised in

Girard (2001) that no completeness result could be expected for a first-order universal

quantification seen as a locative intersection of a family of behaviours indexed on a

domain, even when it is countable.

3. Spiritual first-order quantification

Our purpose in this paper is to study the usual spiritual first-order quantifiers in the ludic

framework. Our aim is to propose a ludic interpretation for predicate linear formulas and

to obtain some completeness results in the spiritual case.

We begin this section by using examples to explain the expected properties of a

design that is the representation of a proof in a predicate calculus. We propose the

ludic objects convenient to the predicative formulas and the property that will assure

the full completeness result: �-uniformity. We then compare this �-uniformity and the

uniformity relative to the second order.

† The definition of winning design given in Girard (2001) uses parsimony instead of exactness. However,

exactness is sufficient in our restricted framework (the non-affine case).
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3.1. Expected properties

We consider a given countable domain � for interpreting first-order terms (here these

terms are variables), and then we associate with a first-order free variables formula P (x)

a family of behaviours indexed on �: (Cd)d∈�. As suggested in Girard (2001), we assume

that a quantified formula ∀x P (x) will be interpreted by &d∈�Cd, which is an infinite &

of delocalised behaviours.

Let D be a material design in &d∈�Cd; we are interested in the material part Dd of D

in each Cd.

So we represent a design D ∈ &d∈�Cd by

· · · Dd · · · {d/ d ∈ �} ,
<>�

which is an abbreviation for

· · · Dd · · ·
(<>,∪d∈�Nd)

<>�
where for each d ∈ � (<>,Nd) is the first rule of Dd.

The idea that we want to develop in this section is that a design D ∈ &d∈�Cd that is a

candidate for representing a proof of ∀x P (x) must verify the property

∀d1, d2 ∈ � Dd1
≡ Dd2

.

To make the meaning of this informal ‘≡’ more precise, we are going to look at some

examples and extract the necessary properties of such a design.

Notation: The examples we give here are set in a non-polarised linear sequent calculus.

— Our first example is based on the sequent � A(x) ⊗ A(x) −◦ A(x) ⊗ A(x).

It is well known that this sequent has two distinct proofs: the first is just the η-proof,

and will be denoted by Id, the second uses the exchange rule, and will be denoted by

Tr.

We consider the two designs Id and Tr associated with these proofs. We can then

build two designs in the behaviour &d∈�Cd. The first one, M, is such that Dd1
is a

delocation of Id and Dd2
is a delocation of Tr:

M =
Dd1

= Id · · · Dd2
= Tr

{d/ d ∈ �}
<>�

In the second design, N, we set for every d ∈ �, Ed = ϕd(Id) where the ϕd’s are

delocations mapping Id on delocalised designs:

N =
Ed1

· · · Ed2 {d; d ∈ �}.
�<>

It is clear that the design M must be disqualified as a representation of a proof of the

formula ∀x (A(x) ⊗A(x) −◦ A(x) ⊗A(x)), while N is a good candidate for representing

such a proof.

If we consider a design D associated with a proof of � ∀xP (x), every Dd within it must

be distinct delocations of the ‘same’ design. The delocations depend on the indexes
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d, so we shall consider that the biases must be �-dependent in order to handle such

delocations ϕd. Moreover, we have to build on this technical material the ‘equivalence’

relation previously mentioned, which we shall call �-uniformity.

— In our second example we will focus on the sequent � ∃y (R(x) −◦ R(y)) where R is a

predicate variable. This sequent can be proved in linear logic as follows:

π =

R(x) � R(x)

� R(x)⊥, R(x)

� R(x) −◦ R(x)

� ∃y (R(x) −◦ R(y))

A family (Dd)d associated with the proof π is such that for all d ∈ �, Dd ∈
⊕

e Cd,e

where (Cd,e)d,e is a family of disconnected behaviours interpreting the formula R(x) −◦
R(y). Our intuition is that the ‘good’ choice will be to take for all d ∈ �, Dd ∈ Cd,d.

This must be taken into account by the uniformity property.

Our proposition: In order to define a �-uniform family (Dd)d, we work with maps φ

from � to �, which can be extended on dependent biases and also to designs; we then

compare φ(Dd) and Dφ(d). We shall say that a �-uniform family is obtained when for

every map φ, we have φ(Dd) and Dφ(d) are almost the same.

3.2. �-uniformity

3.2.1. Preliminary definitions

Definition 3.1 (Domain and domain morphism).

— A domain is a countable set �.

— A �-morphism φ is a function from � into �.

In the following definitions and theorems, we assume a domain � is given.

Definition 3.2 (Dependent bias). Consider a countable set of injective functions (fkn )n,k ,

from �k in � such that if (k, n) �= (k′, n′), then Im(fkn) ∩ Im(fk
′

n′ ) = �. For all integers k, n

and all �d ∈ �k ,

— the integer fkn (
�d) is said to be a dependent bias;

— the functions fkn are said to be the bias functions.

Remark: The dependent biases set is a countable subset of � and will be denoted by

��. We should emphasise that for every integer r ∈ �� there is a unique bias function

(saying fkn) and a unique k-uple �d ∈ �k such that r = fkn (
�d). The bias functions give an

explicit embedding of �� inside �.

Definition 3.3 (The �-designs). The notions of address, ramification, chronicle, base and

design are extended in the obvious way in order to get the notions of �-address, �-

ramification, �-chronicle, �-base and �-design.
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Notation and terminology:

— By a constant bias b we mean a bias that is the image of a 0-ary function f0
r (which

is said to be ‘constant function’) and, as usual, we confuse b and f0
r .

— An address ξ = b1. . . . .bn where the bj ’s are constant biases is said to be a constant

address. In the same way, any �-base ξ � γ containing only constant addresses is said

to be a constant base.

Definition 3.4. Let φ be a �-morphism.

— We define a function φ (which we shall still write φ) from �� to �� by setting

φ
(
fkp(d1 . . . , dk)

)
= fkp (φ(d1), . . . , φ(dk)).

— We extend this function to �-addresses, �-bases and �-chronicles.

— If D is a �-design, we set φ(D) = {φ(c); c ∈ D}.

Remark: The set of chronicles φ(D) is not always a design. Consider the following

example:

Let � be a domain and {a, b, c, d} be four pairwise distincts elements; let f be a unary-

function f1
n; let φ be a non-injective �-morphism such that φ(a) = φ(c) = a, φ(b) = b,

φ(d) = d; and let D be the following �-design based on <>�:

f(a).f(b) �
(f(a), {f(b)})

� f(a)
f(c).f(d) �

(f(c), {f(d)})
� f(c) {{f(a)}; {f(c)}}

<>�
The set of chronicles φ(D) contains the chronicles

(<>, {f(a)}).(< f(a) >, {f(b)})

and

(<>, {f(a)}).(< f(a) >, {f(d)}),
which are not coherent, since they differ on a positive action.

Remark: When the function φ is injective, the φ-image of a �-design is a �-design.

Terminology: Let (C�d
)�d∈�n be a family of behaviours of the same base. We shall say

that the family of �-designs (D�d
)�d is in the family of behaviours (C�d

)�d∈�n when for every
�d ∈ �n we have D�d

∈ C�d
.

3.2.2. �-uniformity

Definition 3.5 (�-uniform designs family). Let (Dd1 ,...,dn)d1 ,...,dn be a family of �-designs of

the same base. Such a family is said to be �-uniform when for every �-morphism φ, and

for every d1, . . . , dn ∈ �n, we have φ(Dd1 ,...,dn ) is a subdesign of Dφ(d1),...φ(dn).

Remark: The �-uniformity forces φ(Dd1 ,...,dn) to be a design.
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Definition 3.6 (�-uniform design). A �-design D in a behaviour C is said to be �-uniform

when for every �-morphism φ, we have φ(D) is a subdesign of D.

Example 1: Let f, g, h and k be bias functions, and i be a dependent bias. For every

(d1, d2) ∈ �2 we consider the following �-design where ξ = f(d1, d2).g(d1), ξ
′ = h(d1, d2):

Fd1 ,d2
=

Faxξ.i,ξ′ .i

. . . ξ.i � ξ′.i . . .
(ξ′, I)

� ξ.I, ξ′
(ξ,P∗

f(�D))

ξ � ξ′

Note that this definition of the design Faxξ,ξ′ is very slightly different from the one given

in Girard (2001). We have only replaced P∗
f(�) by P∗

f(��).

To check that the family (Fd1 ,d2
)d1 ,d2

is �-uniform, we just need to note that:

— For any �-morphism φ, the designs φ(Fd1 ,d2
) and Fφ(d1),φ(d2) are both based on φ(ξ) �

φ(ξ′), where φ(ξ) = f(φ(d1), φ(d2)).g(φ(d1)) and φ(ξ′) = h(φ(d1), φ(d2)).

— Moreover, let c = (ξ, I)(ξ′, I)(ξ′.k(�e), J)(ξ.k(�e), J) . . . be a chronicle in Fd1 ,d2
. Then in

φ(Fd1 ,d2
) it becomes

φ(c) = (φ(ξ), φ(I)), (φ(ξ′), φ(I))(φ(ξ′).k(φ(�e)), φ(J))(φ(ξ).k(φ(�e)), φ(J)).

Since φ(I) and φ(J) are in P∗
f(�D), and fkn (φ(�e)) ∈ φ(I), the chronicle φ(c) is in

Faxφ(ξ),φ(ξ′).

Note that the non-injectivity of φ is no longer the problem it was in the previous

counter-example. If �d and�e are identified in some negative action, they are also identified

in the following positive actions.

Example 2: Let (Dd)d be the family such that for all d ∈ � the design Dd is defined by

Dd =
†

� f0
1

.

The family (Dd)d is, of course, �-uniform.

Example 3: Let d and ed be elements of �, and Dd be the design defined for each d ∈ �
by

Dd =

Faxξ,ξ′

f(d).h(ed) � g(d)
� f(d), g(d)
<>�

The family (Dd)d is �-uniform only if for all d ∈ �, we have ed = d. It suffices to apply

a �-morphism φ such that φ(ed) �= ed and φ(d) = d to discriminate the other cases.
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3.2.3. Second-order uniformity vs �-uniformity

What are the common properties between a uniform design as defined in Ludics (Girard

2001) for the propositional second-order sequent calculus and a �-uniform design as

defined above? Why are these properties needed? Do they interfere? Is one of them a

consequence of the other, or are they totally independent?

Let us first recall that uniform properties appear as soon as we deal with the full

completeness theorem when we are searching to extract a proof from a design with ‘good’

properties (Faggian et al. 2003). We meet the problem of uniformity in a MALL2 sequent

A � Γ containing atom(s) in the left part. Let us consider, for example, a design in⋂
A A � B ⊕ C. It must have the shape

D = · · ·

...
� 1 ∗ I, γ · · ·

(1,P∗
f(�)).

1 � γ
Let us write

DI =

...
� 1 ∗ I, γ

I
1 � γ

for every I .

It is necessary that for every I the subdesigns DI of D are ‘equivalent’ in the

sense that we would be able to extract the same proof from any of the others. In

particular, the choice between a proof of B and a proof of C has to be the same. The

family (DI )I∈P∗
f
(�) is said to be uniform or, equivalently, the design D is said to be

uniform.

Now let us consider a design D in the interpretation of a quantified formula ∀x Φ(x),

so D ∈
⋂
d∈� Φd. Let us consider the subdesigns Dd that are the material part of

each D in Φd. Since we want to extract a proof of ∀x Φ(x) from D, the same

proof must be extracted from Dd. We then consider that the designs Dd are pairwise

‘equivalent’; we shall say that the family Dd is uniform or, equivalently, that D is

uniform.

These remarks fully justify our using �-uniformity as the name for the property

we require for a design to be a candidate for representing a proof of a quantified

formula.

We will now use some examples to show that these uniformity properties are indepen-

dent.

All our previous examples are variants of the two designs D1 and D2, which represent

two proofs of A � A ⊕ A†. The first proof is the copy of a proof π of A in a proof of

A⊕A obtained by a left ⊕-rule applied to π. Similarly, the second proof is obtained by a

right ⊕-rule applied to π.

† If we were being precise, we would write A �↑↓ A⊕ ↑↓ A.
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Consider the sequent of behaviours A � A ⊕ A‡ based on 3 � ξ and its designs D1 and

D2 below:

D1 =

Fax

· · · ξ ∗ 1 ∗ 4 ∗ i � 3 ∗ i · · ·
(ξ ∗ 1 ∗ 4, I)

� 3 ∗ I, ξ ∗ 1 ∗ 4

ξ ∗ 1 � 3 ∗ I
� 3 ∗ I, ξ I ∈ P∗

f(�)

3 � ξ

D2 =

Fax

· · · ξ ∗ 2 ∗ 4 ∗ i � 3 ∗ i · · ·
(ξ ∗ 2 ∗ 4, I)

� 3 ∗ I, ξ ∗ 2 ∗ 4

ξ ∗ 2 � 3 ∗ I
� 3 ∗ I, ξ I ∈ P∗

f(�)

3 � ξ
Note that D2 is obtained by replacing 1 with 2 in D1.

The foregoing examples of a designs family are built on a domain � with a given

element d1; the integers that appear as biases in D1 and D2 are assimilated with constant

D-biases.

Example 1: A family of uniform designs that is not �-uniform. Let (Dd)d be the family

defined by Dd1
= D1 and Dd = D2 for all d �= d1. Without any doubt we could conclude

that all the Dd are uniform in MALL2. (Informally, we find the same ‘subdesign’ above

every I) but the family is not �-uniform because, by applying the map φ defined by

φ(d) = d1, we do not obtain for a d �= d1, φ(Dd) as a subdesign of Dφ(d).

Example 2: A �-uniform family of uniform designs. Let (Ed)d be the family defined by

Ed = D1 for all d ∈ �. Then the condition of �-uniformity is trivially verified. Moreover,

D1 is a uniform design.

Example 3: A �-uniform family of non uniform designs. Let I and J be two distinct

subsets of P∗
f(�), and let D′ be the following design:

Fax

· · · 0 ∗ 1 ∗ 4 ∗ i � 3 ∗ i · · ·
I� 3 ∗ I, 0 ∗ 1 ∗ 4

0 ∗ 1 � 3 ∗ I
� 3 ∗ I, 0 · · ·

Fax

· · · 0 ∗ 2 ∗ 4 ∗ j � 3 ∗ j · · ·
J� 3 ∗ J, 0 ∗ 2 ∗ 4

0 ∗ 2 � 3 ∗ J
� 3 ∗ J, 0 P∗

f(�)
3 � 0

.

Then consider the family Gd = D′ for all d ∈ �. We can check without difficulty that

every Gd is not uniform, but the family (Gd)d is �-uniform since for every φ we get

φ(Gd) = Gφ(d) = D′.

‡ Similarly, we would write A �↑1↓4 A⊕ ↑2↓4 A. The indices are the biases used by the shifts.
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3.3. Ludic representations of formulas and proofs

3.3.1. Some tools As before, � is a given domain and all the notions are related to �
(�-behaviours, �-designs, and so on . . . ).

According to the idea that quantifiers are dealt with by infinite additive spiritual

connectives, we define for all �d ∈ � a delocation ϕ�d, which can act on every design D of

constant base.

Definition 3.7 (The delocations ϕ�d).

— Let ξ be an address and �d be a sequence d1, . . . , dn of elements in �. The delocation

ϕ
ξ
�d

is defined by

ϕ
ξ
�d

(
ξ ∗ ikp(�e) ∗ σ

)
= ξ ∗ ik+np (�d,�e) ∗ σ.

— Let Cξ be a behaviour,

ϕ
ξ
�d
(C) =

{
ϕ
ξ
�d
(D) ; D ∈ C

}⊥⊥
.

Remark: The delocations ϕξ�d
only act on biases with an occurrence in a ramification I of

an action of D focusing on ξ, so a constant base remains constant.

Proposition 3.8. Let (D
�e,�d

)
�e,�d

be a �-uniform family of designs. Then (ϕ�e(D�e,�d
))
�e,�d

is a

�-uniform family of designs.

Proof. The proof is straightforward from the definitions.

Proposition 3.9. Let C be a behaviour based on a constant base ξ.

— ϕ
ξ
�d
(|C|) = |ϕξ�d(C)|.

— |ϕξ�d(C
⊥)| = |(ϕξ�d(C))⊥| .

Proof. The proof follows the same scheme as in Girard (2001) since the delocations ϕξ�d
are total and injective. Moreover, we use the properties of bias functions: injectivity and

disconnected images.

Definition 3.10 (Quantifiers on behaviours).

— Assume that (Ad,�e)d,�e is a family of negative behaviours based on <>�.

(∀d ∈ � Ad,�e)�e is the bihaviours family based on <>� defined by

∀d ∈ � Ad,�e =
⋂
d∈�

ϕd(Ad,�e).

— Assume that (Ad,�e)d,�e is a family of positive behaviours based on �<>.

(∃d ∈ � Ad,�e)�e is the behaviours family based on �<> defined by

∃d ∈ � Ad,�e =

( ⋃
d∈�

ϕd(Ad,�e)

)⊥⊥

.
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Proposition 3.11. ( ⋂
d∈�

ϕd(Ad,�e)

)⊥

=

( ⋃
d∈�

ϕd
(
A⊥
d,�e

))
.

Proof. We can apply the equivalent result proved in Girard (2001). Indeed, the

delocations ϕd separate all the behaviours occurring in the intersection.

Remark: The above proposition directly implies the internal completeness:( ⋃
d∈�

ϕd(Ad,�e)

)⊥⊥

=
⋃
d∈�

ϕd(Ad,�e).

The next definition is only set for families of disconnected bihaviours. For the definition

of the PER on an infinite additive conjunction of behaviours we only need to generalise

the finite case.

Definition 3.12 (PER on the behaviours Q = ∀d ∈ � Ad and E = ∃d ∈ � Ad). We obtain

a bihaviour on Q and E by considering the relations ∼=Q and ∼=E defined by: ∀D, D′ ∈ Qp

(respectively, ∀E, E′ ∈ Ep)

D ∼=Q D′ iff ∀d ∈ � D ∼=Ad
D′ and E ∼=E E′ iff ∃d ∈ � E ∼=Ad

E′.

3.3.2. Definitions of ludic representations of MALL1
2 formulae, sequents and proofs In

this section we extend the second-order propositional calculus defined in Girard (2001) in

order to obtain a second-order predicate calculus, which we call MALL1
2. Like MALL2,

it is a two-sided linear sequent calculus with stoup, built on positive formulas only.

We add the following two first-order rules to MALL2:

—
Γ(�u) � ∆(�u);P [z/x,�u]

∃r
Γ(�u) � ∆(�u); ∃xP (x,�u)

where z belongs to {�u}.

—
Γ(�u), P (x,�u) � ∆(�u) ; ∃l

Γ(�u), ∃xP (x,�u) � ∆(�u) ;
where x �∈ {�u}.

The interpretations of formulas and sequents will be families of bihaviours indexed by
�d (families of designs for proofs). In the following definitions, α is given data associated

with the predicate symbols: for every k-ary predicate symbol A we consider a given family

(C�d
)�d of positive bihaviours based on �<>. We give the interpretations relative to the

data α, then the interpretations of formulas and sequents are obtained by generalisation

on α (G = (
⋂
α Gα

�d
)�d∈�k ).

Ludic representation of a formula (with free variables among �x): As in Girard (2001), we

suppose that formulas are labelled with given delocations in every propositional step. The

delocations we use are totally independent of all the possible bihaviours. For example,

in propositional calculus if we consider the positive bihaviours A and B (based on �<>)

associated with the formulas A and B, respectively, then with the formula A ⊕ B is
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associated the bihaviour ϕ(A)⊕ψ(B) where ϕ and ψ are delocations mapping the address

i ∗ σ on 2i ∗ σ and i ∗ σ on (2i+ 1) ∗ σ, respectively. In the same way, in predicate calculus

with the formula A(x) ⊕ B(x) is associated the family of bihaviours (ϕ(Ad) ⊕ ψ(Bd))d∈�

where the delocations ϕ and ψ maps the addresses fki (
�d) ∗ σ on fk2i(

�d) ∗ σ and fki (
�d) ∗ σ on

fk2i+1(
�d) ∗ σ, respectively.

Let P (x1, . . . , xk) be a positive MALL1
2-formula. We shall denote the bihaviour (or the

family of bihaviours) associated with the formula P by Pα. The inductive definition of Pα

follows (Girard 2001) for the propositional steps. We only describe the atomic case and

the definitions that are relative to first-order quantifiers.

— Let A(t1, . . . , tn) be an atomic formula where the terms ti’s are built over variables

x1, . . . , xk . We set A(t1, . . . , tn)
α = (Cc1 ,...,cn)d1 ,...,dk where the ci’s are the interpretation of

the ti’s in �.

— A formula P = ∃x Q(x,�y) is associated with a family (Pα�d)�d of bihaviours as follows:

Pα�d =
⋃
e∈�

ϕe
[
Qα

e,�d

]
with its PER defined as in Definition 3.12.

The ludic representation Σ of a MALL1
2-sequent Σ (with free variables among �x): This is

a family of sequents of bihaviours defined as follows. For each �d ∈ �k , Σα�d is based on the

same constant base. It is built in the usual way from some convenient delocalisations of

the bihaviours associated with the formulas occurring in the sequent. The left part of the

sequent, localised in 1, is the tensor of the bihaviours associated with the left formulas.

The associated partial relation is defined in the usual way for a sequent of bihaviours.

The ludic representation of a MALL1
2-proof: This is given by the following proposition.

Proposition 3.13. Let π be a MALL1
2-proof with conclusion Σ. Suppose that the free

variables of Σ are among �x = x1, . . . , xk ( pairwise distinct). We associate with π a �-

uniform family of material and winning designs (π∗
�d
)�d∈�k , denoted π∗ ∈ Σ. The interpretation

is invariant under cut elimination.

Proof. The inductive definition given in Girard (2001) enables us to build each π∗
�d

with the expected properties in every step where a propositional rule is performed. The

�-uniformity of the family (π∗
�d
)�d is trivially preserved at each step. We just focus on the

axiom and on the first-order rules.

— If π is an axiom A(�x) � ;A(�x), we associate with π the family (D�d
)�d of base 1 � ξ

where for each �d ∈ �k D�d
= Fax1,ξ , which is a family of material and winning

designs. The �-uniformity of such a family is verified in Example 1 of Section 3.2.2.

— If π is obtained from the proof λ by the ∃r-rule,

λ
...

Σ = Γ(�u) � ∆(�u);P [z/x,�u]
∃r

Σ′ = Γ(�u) � ∆(�u); ∃xP (x,�u)
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The free variables of P are among {x,�u}, and z belongs to {�u} (let us say z = ui). We

set π∗
�d

= ϕ
ξ
di
(λ∗
�d
), where ξ is the address of P[z/x,�u] in Σ. The result π∗

�d
∈ Σ′

�d
is an

immediate consequence of (∃xP(x,�u)α�d) =
⋃
e∈� ϕ

ξ
e (P

α
�d
) and

⋃
e∈� ϕ

ξ
e (P

α
�d
) ⊃ ϕ

ξ
di
(Pα�d).

— If π is obtained from the proof λ by the ∃l-rule,

λ
...

Σ = Γ(�u), P (x,�u) � ∆(�u) ∃l
Σ′ = Γ(�u), ∃xP (x,�u) � ∆(�u)

where x is not free in Γ,∆

Let us set π∗
�d

=
⋃
e∈� ϕ

ξ
e (λ

∗
e,�d

). It is easy to verify that π∗
�d

∈ Σ′
�d
, as it follows immediately

from the definition of (∀x P⊥,α)�d =
⋂
e∈� ϕ

ξ
e (P

⊥,α
e,�d

). As previously, the uniformity of

(π∗
�d
)�d is straightforward due to the uniformity of (λ∗

e�d
) and Proposition 3.8.

4. Full completeness theorem

We have seen that ‘internal completeness’ is still true for the behaviours associated with

the first-order quantified formulas. Indeed, we have (∃xP(x))⊥⊥ = ∃xP(x).

We are here interested in the full correspondence between designs and proofs in the

case of the predicate calculus MALL1
2. We are going to set a ‘full completeness theorem’

that is a generalisation of the theorem recalled in Section 2.7.

Theorem 4.1 (The full completeness theorem). Let Σ be a Π1 MALL1
2-sequent whose free

variables are among x1 . . . , xk . Let (D�d
)�d∈Dk be a �-uniform family of designs in (Σ�d)�d.

If for every �d ∈ �k the design D�d
is material and winning in Σ�d, then there exists a

MALL1
2-proof π of Σ such that for all �d ∈ �k , π∗

�d
= D�d

.

Proof overview. We do not intend to fill pages reproducing the proof provided by Girard

in Girard (2001), but we base our proof on it. As in the propositional case, the proof of

the theorem is by induction on an obvious definition of sequent-complexity. The point is

‘to find the last rule’ in the current design that is performed by finding the premises and

checking that the designs in premises still have good properties.

The new point here is that we deal with �-uniform families of winning designs indexed

on �d ∈ �k . We therefore have to make sure that for each �d it is possible to find the last

rule. Then, we have to verify that this last rule is the same for every term of the family.

Moreover, we have to check that the premises are still �-uniform families.

In order to obtain these results, we use two arguments:

— First we use a transposition of the MALL2-results by way of a translation between

MALL1
2 and an infinitary propositional second-order system, which we denoteMALL∞

2 .

This system is obtained by adding a countable positive disjunction (⊕d∈�) to MALL2

(this is performed in Section 4.1); it is easy to check that in this extended system the

full completeness theorem of MALL2 remains available. This translation enables one

to say that the result is true for each element of the family.

— We then continue by checking that �-uniformity is preserved in the premises of the

last rule. This is done in the propositional cases in Lemmas 4.4, 4.5 and 4.6. Finally, in
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Lemmas 4.7 and 4.8 we focus on the specific issues arising when the first-order rules

are applied.

4.1. ⊕d∈� disjunction

We begin by briefly describing MALL∞
2 and outlining the translation we use. In this

section, we assume we are given a countable set � = {d1, d2, . . . , dn, . . .}.

The sequent calculus MALL∞
2 : The formulas are built as previously in MALL2, with the

addition of the new possibility of considering formulas built by an infinite constructor

⊕d∈� from a family of formulas indexed by d ∈ �.

The rules of MALL∞
2 are derived from those of MALL2 by generalising the ⊕-rules

(where (Fd)d is a family of formulas indexed by d):

Γ � ∆;Fd ⊕∞
r

Γ � ∆; ⊕dFd

Γ, Fd1
� ∆; · · · Γ, Fd2

� ∆; ⊕∞
l

Γ,⊕dFd � ∆;

No extra conditions are required for the first rule; in the second one, Γ and ∆ do not

depend on di.

Theorem 4.2 (Completeness for MALL∞
2 ). Let Γ � ∆; be a Π1 MALL∞

2 -sequent and let

D ∈ Γ � ∆ be a material winning design. Then there is a MALL∞
2 -proof π of Γ � ∆ such

that D = π∗.

Girard’s proof in Girard (2001) does not depend on whether the disjunctions ⊕ are finite

or not. Therefore, we conclude that the theorem in MALL∞
2 is an easy generalisation of

the result in MALL2.

Translation between MALL1
2 and MALL∞

2 : First, let us make our notation precise.

Suppose that a countable set of variables {x1, x2, . . . , xn, . . .} is given. The atomic formula

R(xi1 , xi2 , . . . , xin ) and the quantified formulas are built on it.

The translation of a formula of MALL1
2 into a formula of MALL∞

2 is performed as

follows:

— The atomic formula R(xi1 , xi2 , . . . , xin ) is associated with a propositional atom A =

Rdi1 ,di2 ,...,din .

— The translation of composed formulas is done as usual:

(F ⊕ G)∗ = F∗ ⊕ G∗; (↓ F)∗ =↓ F∗; (∃x F)∗ = ⊕d∈�F
∗.

— The translation of a sequent of formulas is naturally the sequent of the translated

formulas.
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4.2. Some lemmas

The following lemma emphasises the fact that all the elements of a �-uniform family of

positive designs have the same last rule.

Lemma 4.3. Let (D�d
)�d be a �-uniform family of winning positive designs of constant

base ��δ.
All the D�d

’s have the same first focus (saying δi). Moreover, if we denote the ramification

such that (δi, I�d) is the first rule of D�d
by I�d, then, for every �d, the ramifications I�d contain

the same bias functions and the arguments of these functions are only among {�d}.

Proof. Let �d be a given element of �k and suppose that there is a dependant bias

f(d1, �d2) in I�d such that d1 /∈ {�d}. It is then possible to consider a �-morphism φ such

that for all e �= d1, φ(e) = e and φ(d1) ∈ �d. The �-uniformity implies that φ(I�d) = I
φ(�d)

(indeed (λi, I�d) is a first positive action). So we obtain a contradiction.

Let �d and �d′ be two distinct elements of �k . Suppose �d is such that f(di1 , . . . , din ) ∈ I�d and
�d′ is such that no bias in I�d′ is in the image of the bias function f. Then it is always possible

to choose an element�e in �k and a domain morphism φ such that φ(�d) = φ(�d′) =�e. By

the �-uniformity and by the fact that the image of the bias functions are disjoint, we

have f(ei1 , . . . , ein ) ∈ I�e and f(ei1 , . . . , ein ) /∈ I�e simutaneously. This is a contradiction.

4.2.1. About the generalisation of propositional steps

Lemma 4.4. Let Σ = A(�x) �; A(�x) be a sequent where A is a predicate variable. The only

designs family in which the designs are winning and material in (A�d � A�d)d is the family

(D�d
= Fax 1,ξ)�d. This family is obviously �-uniform.

Proof. One can show without major difficulties that this result is an extension of the

propositional case obtained without supplementary requirements (even the �-uniformity

is unnecessary).

The following lemma is the key to the generalisation of propositional steps when

exploring a negative sequent for ‘finding the last rule’; it shows how the properties of the

families are preserved during the operation, in particular, the �-uniformity property.

Lemma 4.5. Let R � ∆; be a Π1 MALL2-sequent such that its free variables belong

to {x1, . . . xk}, and such that R is a propositionally composed formula. Let (D�d
)�d be a

�-uniform family of material and winning designs in the bihaviours sequent (R � ∆)�d
based on the constant base 1 � γ. We then have:

— If R = P ⊗ Q, then for every �d ∈ �k the bihaviours sequent (P ⊗ Q � ∆)�d is equal to

the bihaviour sequent (P,Q � ∆)�d.

— If R = P ⊕ Q, then there exist two �-uniform families of material and winning

designs (D′
�d
)�d and (D′′

�d
)�d such that the first belongs to the bihaviours sequent P � ∆

and the second belongs to the bihaviours sequent Q � ∆ and such that for all �d,

D�d
= ϕ(D′

�d
)
⋃
ψ(D′′

�d
).
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Proof. The first assertion immediately follows from the definition of the interpretation

of a bihaviours sequent. The �-uniformity of the family is obviously preserved.

Before checking the second assertion, let us recall the situation in propositional calculus.

Let ϕ, ψ and�θ be some delocations for the formulas of the sequent such that P ⊕ Q � ∆ is

based on 1 ��δ. Assuming that D is a material and winning design in ϕ(P) ⊕ ψ(Q) ��θ(∆),

we have

D =
... N = {ϕ(I)/ I ∈ N′} ∪ {ψ(J)/ J ∈ N′′}.

1 ��δ

We can decompose D into two designs D′ and D′′ such that

D′ =
... N′

1 ��δ
∈ (P � ∆) and D′′ =

... N′′
1 ��δ

∈ (Q � ∆).

This situation can be generalised to the predicate case:

— First we apply the foregoing propositional result to each D�d
. For this we use the

translation previously defined: we consider that D�d
is a winning and material design in

the ludical interpretation of the MALL∞
2 -translation of the sequent (R � ∆; )∗

�d
. We built

the decomposition of D�d
into D′

�d
and D′′

�d
from N�d

= {ϕ(I)/I ∈ N′
�d
}∪{ψ(J)/J ∈ N′′

�d
}.

Note that the delocations ϕ and ψ do not depend on �d, as explained in Section 3.3.2.

— Then we use the �-uniformity of (D�d
)�d to conclude to the �-uniformity of the families

(D′
�d
)�d and (D′′

�d
)�d.

Lemma 4.6. Let � ∆;P be a Π1 MALL2-sequent that has its free variables among

�x = {x1, . . . , xn} and where P is a propositionally composed formula.

Let � ∆,P based on � �δ, ξ be the interpretation of the sequent � ∆;P . Let (D�d
)�d be a

�-uniform-family of material and winning designs in � ∆,P such that their first focus is

ξ. We then have:

— If P = P1 ⊕ P2, then either for every �d the design D�d
is in � ∆,P1 or for every �d the

design D�d
is in � ∆,P2 (according to some implicit delocations).

— If P = P1 ⊗P2, then there are two �-uniform families of material and winning designs

(D′
�d
)�d and (D′′

�d
)�d such that the first belongs to the bihaviours sequent [� ∆′,P1] and the

second belongs to the bihaviours sequent [� ∆′′,P2], where ∆′ ∪ ∆′′ = ∆ independently

of �d.

Moreover, ∀E1 ∈ ∆⊥
1,�d

∀E2 ∈ ∆⊥
2,�d

[[D�d,E1 ⊗ E2]] = [[D′
�d
,E1]] ⊗ [[D′′

�d
,E2]] (according

to some implicit delocations).

Proof. If P = P1 ⊕ P2, the propositional results (Girard 2001) generalised by means of

our translation show that for all �d ∈ �k the designs D�d
are in [� ∆,P1]�d or in [� ∆,P2]�d.

Because of the �-uniformity of the family (D�d
)�d and to the delocations implicitly applied

to P1 and P2, this splitting is independent of �d.

If P = P1 ⊗ P2, then, as in the propositional case (Girard 2001), for each �d we can

decompose D�d
in D′

�d

⊙
D′′
�d

and ∆ in ∆′ and ∆′′ in such a way that for every Eδ′ ∈ ∆′⊥
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and Eδ′′ ∈ ∆′′⊥ we have [[D′
�d
,Eδ′ ]] ∈ (� P1)�d and [[D′′

�d
,Eδ′′ )]] ∈ (� P2)�d. By the same remark

as in the previous case, the splitting of D�d
into D′

�d
and D′′

�d
is independent of �d, as is also

the splitting of ∆�d between ∆′
�d

and ∆′′
�d
. Moreover, (D′

�d
)�d is a �-uniform family of winning

and material designs in � ∆′,P1, and (D′′
�d
)�d is a �-uniform family of winning and material

designs in � ∆′′,P2.

The last property of the splitting is a direct consequence of the construction.

4.2.2. The first-order quantifier steps

Lemma 4.7. Let ∃yP (y, x) � ∆(x); be a Π1 MALL2-sequent where P (y, x) is a positive

formula with free variables among {x, y} with y �= x. Let (Dd)d∈� be a �-uniform designs

family of material and winning designs in (∃yP(y, x) � ∆)d based on 1 � δ.
Then, for every d ∈ �, Dd =

⋃
e∈� ϕe(Ee,d) and for every e, d, the design Ee,d is material

and winning in [P(y, x) � ∆(x)]e,d. Moreover, the designs family (Ee,d)e,d is �-uniform.

Proof. Without loss of generality, we deal with a sequent where ∆(x) only contains a

formula R(x).

In a first step, let d be a given element in �. Let Fd be a design in R⊥
d . The design

[[Dd,Fd]] contains a material design of [∃yP(y, x)]⊥
d that looks like the following:

· · ·

...
� 1 ∗ ϕe(Ie,d) · · ·

∪eϕe(Ne,d).
1 �

So we can build for every d ∈ � and every e ∈ � the design Ee,d as the set of chronicles

(ξ, Ie,d) ∗ c provided (ξ, ϕe(Ie,d) ∗ c) is in Dd.

Ee,d = · · ·

...
� 1 ∗ Ie,d, δ · · ·

{Ne,d}
1 � δ

.

The design Ee,d is in [P(y, x) � ∆(x)]e,d. Indeed, for some Me,d ∈ Pe,d, the design ϕe(Me,d)

is in [∃yP(y, x)]d. Moreover, [[Ee,d,Me,d]] = [[Dd, ϕe(Me,d)]], and this is in [� ∆(x)]d.

From the fact that every Dd is material and winning, we also deduce that Dd =⋃
e∈� ϕe(Ee,d) and that for every d ∈ �, e ∈ � the design Ee,d is material and winning in

[P(y, x) � ∆(x)]e,d.

The �-uniformity of the family (Ee,d)e,d directly follows from that of (Dd)d.

Lemma 4.8. Let � ∆(�x); ∃yP (y,�x) be a Π1 MALL2-sequent where P (y,�x) is a positive

formula with free variables among {y} ∪ {x1, . . . , xk} (∀i y �= xi). Let (D�d
)�d∈�k be a

�-uniform designs family of material and winning designs in � ∆(�x); ∃yP(y,�x) of base

� δ, ξ.
For every �d ∈ �k there is an element e�d of � and a winning and material design F�d in

(� ∆(�x); P(y,�x))
e�d,
�d

such that D�d
= ϕe�d(F�d), where ed is one of the di’s. Furthermore, the

family (F�d)�d is �-uniform.
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Proof. As before, we deal with a sequent ∆(x) containing only one formula R(x). For

all �d ∈ �k , let (ξ, I�d) be the first action of D�d
.

1 By definition, for every �d ∈ �k , the normalisation between D�d
and a material design

of ∀yP⊥(y,�x) converges. This implies that there exists e�d ∈ � such that I�d = ϕe�d (Ie�d,�d
)

where (ξ, I
e�d,
�d
) is a first action of a design of P⊥(y,�x)

e�d,
�d
.

2 By Lemma 4.3, we know that all the first actions I�d’s contain the same bias functions.

Moreover, for each �d these bias functions are only applied to some d ∈ �d, so there is a

j such that e�d = dj .

3 Let E
e�d,
�d

be the design obtained from D�d
by exchanging the first action (ξ, I�d) with

(ξ, I
e�d,
�d
). From the above result, we can rewrite the family E

e�d,
�d
as a family (F�d)�d indexed

by �d only, and we see without difficulty that for every �d we have D�d
= ϕe�d (F�d) and

F�d ∈ (� P(y,�x),R(�x))�d where y is instantiated by ed.

4 We then check the �-uniformity of the family (F�d)�d, all the designs of which are

winning and material in (� P(y,�x),R(�x))�d.

5. Work in progress

In order to give an interactive definition of uniformity, Girard extends the notion of

behaviours by putting on them a partial equivalence relation (PER). Two PER-equivalent

partial designs react in the same manner during the process of normalisation against all

PER-equivalent partial designs. In this paper, the �-uniformity is not presented in such

an interactive way. Our definition could be said to be external. Our aim now is to combine

the two notions of uniformity to give a global and interactive definition.
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