
 

A chess-playing robot control system based on Windows
NT+RTX
Jilin He, Ruqing Yang, Qunfei Zhao and Chunxiang Wang
Robots Research Institute, Shanghai Jiaotong University, Shanghai 200030, China

(Received in Final Form: September 3, 2003)

SUMMARY
This paper presents the control system of a chess-playing
robot developed by the Research Institute of Robots at the
Shanghai Jiaotong University. Thanks to the Windows NT
operation system and the RTX (Real-Time eXtension), the
whole system can achieve good real-time performance. The
control system, which is supported by a standard PC
hardware platform and a modularized structure of system
software, is open-ended and easily expansible.

KEYWORDS: Robot controller; Real-time control; Chess-playing
robot.

1. INTRODUCTION
The chess-playing robot is a combination of computing,
artificial intelligence, automatic control, and optic-mecha-
tronics that is composed of optical, mechanical and
electrical technology. Our chess-playing robot is a service
robot with a wide-range of functions and capacity changes
of adaptation. It was designed from the general robot by
means of external, hardware design and development of
various entertainment software. In order to combine this
robot with the Chinese traditional chess-playing art, all
kinds of effective technologies available, such as the
calculating and memorizing capability of a computer, logic
reasoning and judging ability of artificial intelligence, and
reliable optic-mechatronic technology, were applied, and an
authentic chessboard and chessmen were employed. Our
hardware design endowed the chess-playing robot with
human characteristics and the ability to interact with people
in an audio-visual way at a higher level. The development of
various chess-playing software enabled the robot to play
chess with people intelligently. Here, the word chess is used
in a broad sense and different software can be designed to
improve the adaptation of this chess-playing robot to

different situations. Figure 1 is the flow chart of the chess-
playing robot.

The study focuses on Chinese chess, and therefore this
paper, confines all the discussions to Chinese chess. Its
open-endedness, however, enables us to easily further
develop the robot for other games. Of course, to achieve this
purpose, the information extraction, target identification and
especially the real-time motion control become the key
points to realize high-level interaction between the machine
and the player, and improve the self-learning ability of the
machine.

2. SYSTEM ARCHITECTURE
It is well known that a robot control system is a real-time
system dealing with multiple tasks executed simultaneously.
In addition, the requirements on the motion control system
are very strict in terms of real-time control, security,
robustness, and so on.1,2

In order to meet our demands, the real-time environment
of Windows NT plus RTX (see Figure 2) was applied in this
research. The WIN32 subsystem takes charge of the
processes and threads manager to make the control program
run smoothly and efficiently.1 The Real-Time subsystem, at
the same time, is responsible for the real-time property of
the motion control).3 The manager layer and the execution
layer are illustrated in Figure 2. The former consists mainly
of WIN NT, its kernel and so on. The latter consists-of RTX-
RTSS (Real-Time eXtension-Real Time SubSystem), its
HAL (hardware abstract layer), etc. Of course, there is a
communication layer between them to integrate the whole
application.4,5 The motor, its actuator, arm, grip, sensor and
so on can also be seen on the chart. They are the hardware
components and relevant tools to constitute this chess-
playing robot.

Fig. 1. Flow chart of the chess-playing robot.

Robotica (2004) volume 22, pp. 339–343. © 2004 Cambridge University Press
DOI: 10.1017/S0263574703005575 Printed in the United Kingdom

https://doi.org/10.1017/S0263574703005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005575


3. HARDWARE ARCHITECTURE
The hardware architecture of the whole system adopts a
modular structure (see Figure 3). The general IPC (Indus-
trial Personal Computer) was chosen as the system
hardware platform, with a high-quality I/O card controlling
the motion of all joints.6 The body of the chess-playing
robot is a dual-arm humanoid robot with 6 degrees of
freedom. With the expansibility of the IPC platform, the
hardware module can be expanded if necessary. For
example, an A/D converter and network card can be added
to process external sensor information and deal with remote
communication, respectively.

3.1. Controller structure
It is well known that a high-performance controller is the
safeguard of an effector achievement for all control
purposes.7 The controller of our chess-playing robot
includes a manager layer and a motion execution layer.
Network devices, an IPC and a teaching box comprise the
manager layer. With the network devices, the chess-playing
robot can be controlled remotely and can be made into a
network robot to some extent. The CPU and some other
characteristics in the IPC make the whole robot system
reliable in relatively bad environments. The teaching box is
necessary for self-learning, specified point teaching, track
teaching, etc.

The motion execution layer mainly consists of motors
(AC servo or stepping) and their actuators that make the
chess-playing robot’s movement accurate and efficient.
There are two groups of motor drivers, one of which is for
the motors in the left arm, and the other for the motors in the
right arm. In each group, different motors actuate the upper
arm, the forearm and the grip to make them move
independently.

3.2. Peripheral hardware
Two chessboards were made. Thus, the chess-playing robot
can play Chinese chess with two different players. The
working and measuring components monitor the operating
status of the robot by means of various sensors, A/D and
D/A, and provide feedback to guarantee the robot’s security
and reliability.

It is proved by practice that such hardware architecture
takes advantage of every component’s strong points and
integrates all components excellently.

4. SOFTWARE ARCHITECTURE
The high-quality Windows NT plus RTX is chosen to
safeguard the real-time property and so on.1,3

Fig. 2. Framework of the system.

Fig. 3. Hardware architecture.

Chess playing340

https://doi.org/10.1017/S0263574703005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005575


4.1. Characteristics of WIN NT and RTX
Windows NT is one of the most popular operating systems.
It is better in graphic user interfaces than in other systems
and is supported by a wide-range of software and hardware.
RTX further extends the real-time function of the NT
system. Therefore, the abundant resources of NT and the
real-time function of RTX are used in our research.
Furthermore, the widely used debugging tools, such as
VC++, WinDbg, etc, no doubt bring the powerful real-time
system under our control.

The RTX real-time environment can fully achieve the
process priorities of 0-127 and control the priority of the
process to be executed.3 It possesses an accurate clock with
l �s resolution and a 100 �s accurate timer. What’s more,
the RTX system control is very efficient with a time delay of
45 �s in communication between RTSS process and WIN
32 process and of only 8 �s for inter-RTSS process
communication (the outcome was obtained from an indus-
trial PC of PIII700 and is listed in Table I). It is shown that
RTX is better than NT in real-time situations and therefore
guarantees higher quality pulses.

It is well known that in the NT system the execution
programs can’t operate the hardware directly. Fortunately,
RTX gives us access to the hardware and provides us with
a lot of real-time API (Application Program Interface), such
as delay function with 0.1 �s resolution, port read/write

function with high priority. RTX can, therefore, ensure the
real-time property and accuracy of the entire control
system.

4.2. Manager layer
The software architecture is divided into the manager layer,
the task execution layer and the motion control layer (see
Figure 4).

The operating and controlling console, the instructing and
teaching module, an interface program between people and
machine, the chess-playing program and remote network
communication module are all in the managing layer.

The operating and controlling console is mainly for the
interaction between players and the robot controller. The
users can choose the diffculty level and the precedence
relationship of playing so that they can improve their chess-
playing skills step by step and gain a sense of achievement
by choosing the right difficulty level and winning the game.
In order to achieve a more vivid effect of chess-playing and
better interaction between the robot and player, a real-time
and on-line display of the whole playing process is
provided. The display makes the game livelier and the robot
self-learning. What’s more, it can be converted into files if
necessary.

The main function of the instructing and teaching module
is off-line path planning, teaching and instructing. Several

Table I. Differences in real-time properties between Windows NT and RTX.

Timer Resolution Interrupt Switch Time Process Communication
accuracy delay between delay time/64 bits

threads

WIN NT 10 ms/1 ms 0.84 us 25–7590 us 3–2885 us 45–100 us 50 us

RTX 100 us 0.1 us/1 us 8–14 us 10–20 us 8–20 us 5 us

Note: (Measuring condition: AdvanTech IPC PIII700).

Fig. 4. Software architecture.

Chess playing 341

https://doi.org/10.1017/S0263574703005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005575


key points of the specified path were fed in the instruction
box that can help modify the track interpolation of the robot
arm. For example, the instruction box simulates the planned
path by means of the stepping mode and modifies the
position and pose whenever there is a difference. At the
same time, the instruction box can be used as a monitor
since it has a LCD (Liquid Crystal Display).

The interface program between people and machine
facilitates interaction between the robot and the player,
receives and processes the detailed information of the chess-
playing tools based on data fusion and then impacts the
responding tools.

The chess-playing software and the intelligent library
running background in the IPC provide necessary condi-
tions for the image-processing module to analyze and
extract the information of the chess-playing tools. With the
chess-playing program, the intelligent library and the
relevant application program of image processing, the robot
can make exact decisions and reach its goal.

As to the remote network communication module, the
chess-playing robot is based on a standard IPC and therefore
it is convenient to add other network devices. In addition,
the rich net resources make it possible to control the robot
from remote areas. And also many users can play the game
at different places.

The traditional robot language is basically for a specific
purpose and is consequently hard to be applied widely. The
VC language is chosen for our purpose because it can
provide a programmable interface for users to call. The
position obtained by the instruction box is saved as position
variable and then can be referred to in the chess-playing
program. Furthermore, the chess-playing software was
designed in VC by ourselves, so it is not only compatible but
also enhances the real-time property of the whole system.

4.3. Task execution layer
The task execution layer gets instructions from the manager
layer and forms the control instruction. There are command
processing, task controlling, path generating and motion
control interfaces in this layer. In order to make the whole
chess-playing process more smooth, an information collec-
tion module and feedback module for the robot arm, body
and chess-playing tools are also provided.

The command-processing module receives instructions
from the manager layer, processes the instructions and then
executes accordingly. Such commands as controller parame-
ter configuration, status specification of the robot and
chess-playing tools, system initialization, system exit,
external output, etc. are executed directly by the command-
processing module after the commands are checked and
proved to be effective. The commands of motion control are
checked, however, for their effectiveness and then the
relevant data are put into the task buffer to wait for
execution, while the command-processing module con-
tinues to process other commands.

After necessary processing, the task-controlling module
activates the path-generating task according to task data.

The information collection module of the robot processes
the status information of the robot’s arm, body and chess-
playing tools, and the external analog information from the

A/D converter module every 8ms. The information
described above is put into the global database for the other
modules to call. In order to feedback the signal to the
manager layer, the information collection module of the
robot transfers collected data at specified intervals to the
user control console through shared memory. Therefore,
users can obtain the current status of the robot and tools.
Again, the status can be saved as files.

The manager layer and task-executing layer are run in
WIN32 and RTSS, respectively. It is the RTX’s inter-
process communication object that transfers data between
the two totally different platforms. In order to realize
independence and the substitutability property of each
module, we designed the same interface for all modules to
communicate. The communications details are packaged by
the communication interface that allocates each module its
exclusive ID number for sending and receiving operation.

4.4. Motion control layer
The motion control layer integrates servo driving, status
checking and mechanical execution. The servo system
controls the motor and then the mechanical parts according
to the data and commands. The status-checking module
mainly performs mechanical status checks by means of all
kinds of sensors. The RTX technology applied in the robot
system improves the whole performance in both real-time
property and robustness. Thanks to the compliance of RTX
technology with international standards and the abundant
API resources offered with the mternational standards, the
system is simple in structure and easy to program, debug
and maintain. The program can also be easily transplanted.
In particular, the RTX’s API can be set at different priorities
according to different characteristics of data transferring,
task execution, etc. In other words, tasks with different real-
time demands are assigned with relevant functions, which
are favorable to making the system configurable and
modular, and the motion control as effective as possible.

5. CONCLUSION
The chess-playing robot is based on a general operating
system – Windows NT and RTX from the VenturCom
Corporation. High-capability RTX, which transfers various
real-time data and commands, can realize real-time position
and motion control with high accuracy. The whole system is
friendly in graphic user interface, excellent in management
and can perform controlling algorithms with high real time
property. Modularization in the software design of the
control system makes it convenient to modify and append
controlling algorithms. Its better expansibility and agility
guarantees the real-time property and high-intelligence of
the interaction between robot and player. Also, the efficient
controller takes full advantage of all kinds of hardware and
software resources. The system’s clear division, excellent
communication, seamless integration and so on are very
distinctive and effective; and are the innovation and the
characteristics of the whole system. In order to check its
practicality, many postgraduates played this new kind of
Chinese chess with the robot, and all felt the game was very
vivid and the robot very intelligent. In other words, this
chess-playing robot and its control system are proved to be

Chess playing342

https://doi.org/10.1017/S0263574703005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005575


reliable, high quality and intelligent. Figure 5 is an
illustration of a game between the chess-playing robot and
a player.

References
1. Zhang Guangli, Tan Shizhe and Yang Ruqing, “Robot Con-

troller with Open Architecture Based on Windows NT”, Robot
24, 443–446 (2002).

2. Fan Yong and Tan Ming, “The Status and Prospect of Robot
Controller”, Robot 21, 75–80 (1999).

3. VenturCom Inc. RTX 4.3 Users’ Guide (VenturCom Inc.,
Cambridge, MA, 1999).

4. International Standard – Electric Equipment of Industrial
Machines – Serial Data Link for Real Time Communication
between Controls and Drivers (IEC, 1997).

5. E. Bassi, F. Benzi, L. Lusetti and G. S. Buja, “Communication
Protocols for electrical drives”, Industrial Electronics, Control,
and Instrumentation, Proceedings of the 1995 IEEE IECON
21st International Conference in Orlando (6–10 Nov., 1995)
Vol. 1, pp. 706–711.

6. N. Costescu, D. Dawson and M. Loffler, “Qmotor 2.0 – A real-
time PC based control environmemt”, IEEE Control System 3,
68–76 (1999).

7. R. Campa and R. Kelly, “An application of real-time control
systems to robotics”, Robotica 19, Part 3, 323–329 (2001).

Fig. 5. Illustration of a game between the robot and a player.

Chess playing 343

https://doi.org/10.1017/S0263574703005575 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574703005575

