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Abstract

In this paper we introduce new birth-and-death processes with partial catastrophe and
study some of their properties. In particular, we obtain some estimates for the mean
catastrophe time, and the first and second moments of the distribution of the process at
a fixed time t. This is completed by some asymptotic results.
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1. Introduction

The aim of this work is to propose a model for the evolution of the size of a population
subjected to exceptional conditions, such as a genocide; see [13]. To this end, we introduce a
new birth-and-death type process with partial catastrophe. Indeed, birth-and-death processes
(BD processes for short) are the more standard stochastic models for the description of the
evolution of a population’s size.

A BD process assigns arbitrary non-negative birth-and-death rate pairs to a birth or a
death of an individual in the population. Hence, whenever the population size changes, it
grows or decreases by exactly one individual. The BD process is under suitable assumptions
a continuous-time Markov chain (CTMC) on the discrete state space N and jump size ±1.
For a more in-depth discussion of continuous-time Markov chains and BD processes, see the
textbooks [1] or [12].

BD processes have a long history and were first discussed, amongst others, for arbitrary
birth-and-death rate by Feller [6] and Kendall [10]. Note that BD processes can also model
immigration and emigration of individuals. Nonetheless, changes in population size which
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Catastrophe dynamics 963

concern not only individuals but groups cannot be considered. In [2], [3], and [4], Brockwell
and his coauthors pioneered an extension of the BD process including the possibility of a
catastrophe captured by a sudden and exceptionally large decrease in population size. They
were particularly concerned with the probability of extinction as well as the time to extinction
in such population models.

Mathematically one can capture catastrophes by allowing the process to make larger jumps
downwards, rather than the jump size of 1 in both directions, in the classical framework of a
BD process. The classic birth-and-death rate pair is denoted by (λi, μi) for a population of size
i ∈N. These are complemented by catastrophe rates (γi)i∈N as well as the corresponding law of
the catastrophe sizes (di(j))j≤i, where di(j) is the probability that a catastrophe in a population
of size i leads to j deaths. The infinitesimal generator of the process is described by Brockwell
in [2] under classical assumptions on the coefficients as follows.

Definition 1.1. (BD process with catastrophes [2].) A BD process X = (Xt)t≥0 with gen-
eral catastrophes is a continuous-time Markov chain with values in N associated with an
infinitesimal generator Q̃ = (q̃ij)i,j∈N, of the form⎧⎨

⎩
q̃ij = γi di(i − j)1[0,i)(j) +μi1i−1(j) + λi1i+1(j), j �= i,

q̃ii = −(λi +μi + γi) + γidi(0),

with, for any i ∈N, λi, μi, γi, di(k) ∈R+ and
∑i

k=0 di(k) = 1. Moreover, λ0 =μ0 = γ0 = 0 and∑∞
i=1 λ

−1
i = +∞.

An important class of BD processes with general catastrophes considers exclusively total
catastrophes by setting di(j) = 1{j=i}, that is, in the case of a catastrophe, the process jumps
from its current state i to the state 0. Note that in Definition 1.1, since q̃00 = 0, the state
0 is absorbing. Therefore a total catastrophe may happen at most once before the popula-
tion dies out. Moreover, without immigration (λ0 = 0), a catastrophe leads to the extinction
of the population. Note that the infinitesimal generator Q retains a tridiagonal form, if one
only considers the states i ≥ 1. Van Doorn and Zeifmann [15, 16] use this fact to investigate
the transition probabilities at any time t and to extend the classical representation result of
the transition probabilities of a BD process in terms of associated orthogonal polynomials
by Karlin and McGregor [9]. Assuming constant catastrophe rates γi ≡ γ , Swift [14] obtains
explicit expressions for the transition probabilities in terms of their generating function.

Brockwell, Gani, and Resnick [4] introduce BD processes with different types of catastro-
phes: geometric catastrophes, uniform catastrophes, and binomial catastrophes; see also [5].
The binomial model, later studied in [8], considers a binomial redistribution of the popula-
tion on the set of integers up to the current one. This induces a new expected population size
concentrated around a fixed proportion p ∈ [0, 1] of the previous one, which does not seem
to correspond to the data we want to fit. The practical and statistical aspects of the problem,
however, will not be discussed here.

In the present paper we extend the study of populations under total catastrophes by consid-
ering populations that are subject to partial catastrophes. This means that, with positive rate
γi, the population size i can be drastically reduced to a distinguished state n≥ 1, as soon as
i exceeds n. Note that, in contrast to a total catastrophe, the population cannot die out as a
consequence of a partial catastrophe. Of course this model is the simplest one in this spirit, and
instead of only one catastrophic new state n, we could consider a new distribution concentrated
around n. Nevertheless, the study of this simple mathematical model is the first necessary step.
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964 P. CATTIAUX ET AL.

In Section 2 we define the exact class of processes we will study, and present our main
results. We are interested in the first hitting time T (n)

X of the (catastrophic) population size n.
Under the assumption of linear birth, death, and catastrophe rates, we will use the tools intro-
duced by Brockwell [3], in order to obtain explicit expressions for the expected catastrophe
time E

[
T (n)

X | X0 = n0
]
, n0 ≥ n. We also identify its limiting behavior for a large initial popula-

tion, i.e. when n0 → ∞. Proofs are presented in Section 3. We then study the first two moments
of the population size at a fixed time t. After establishing positive recurrence of the BD process
with partial catastrophe in Section 4, we compute and discuss explicit upper bounds for the first
and second moments of the process in Section 5.

2. Birth-and-death process with partial catastrophe: our main results

We fix a catastrophic state n ∈N
∗ and set di(j) = 1{j=i−n}, i ≥ n. We introduce a positive

rate ν to model a (minimal) immigration phenomenon when the population vanishes, ensuring
the irreducibility of the process. Here (γi)i∈N, (λi)i∈N, (μi)i∈N are respectively the catastrophe,
the birth, and the death rates, where the index i represents the size of the population. All rates
are assumed to be linear in the population size with proportionality coefficients respectively
γ, λ, μ> 0; see (2.1). Finally, throughout this paper we assume that λ>μ, that is, the individ-
ual birth rate exceeds the individual death rate. Hence, in the absence of a catastrophic event,
the basic birth-and-death process with immigration would model a growing population.

We consider the CTMC on the state space N denoted by X = (Xt)t≥0, whose infinitesimal
generator Q = (qij)i,j∈N is given by

qij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ0 = ν,

λi = λ · i, j = i + 1,

μi =μ · i, j = i − 1, i ≥ 1, i �= n+ 1,

γi = γ · i, j = n, i> n+ 1,

μi + γi, j = n, i = n+ 1,

−∑
j �=i qij, j = i.

(2.1)

The choice of linear dependence with respect to the size of the population for the birth and
death rates is very natural. On the other hand, the linear rate of the partial catastrophes means
that the risk grows with the number of individuals. This situation appears in a population where
any individual carries a risk of γ which might lead to a catastrophe, e.g. transmitting a deadly
disease which, once it happens, kills a huge part of the population on a very fast time scale. The
cardinality n may be seen as that of the population of possible transmitters, so they contribute
to the rate γi, but at the same time individuals immune to the effects of the catastrophe, e.g. by
vaccination or natural resistance, such that they do not vanish when the catastrophe sets in.

Mathematically, these assumptions lead to explicitly derivable and particularly nice results,
which were the main goal for our first analysis of this kind of population model to emphasize
their qualitative behavior.

Its transition graph is depicted in Figure 1.

Definition 2.1. A birth-and-death process with partial catastrophe (BD+Cn process) X is a
CTMC with infinitesimal generator Q defined by the equations (2.1) and X0 = n0 > n.
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FIGURE 1. Transition graph of X.

Its so-called catastrophe time T (n)
X is defined as its hitting time of the catastrophic state n:

T (n)
X := inf{t ≥ 0 | Xt = n}.

Our results on the catastrophe time T (n)
X are presented in the next three theorems. In

Theorem 2.1 we state its almost sure finiteness, and in Theorems 2.2 and 2.1 we go on to
study its expectation and its asymptotic behavior as the initial size of the population tends
to ∞.

Theorem 2.1. (Finiteness of catastrophe time.) Let X be a BD+Cn process whose infinitesimal
generator Q is given by (2.1). Then its catastrophe time T(n)

X is almost surely finite.

Better, we can compute the first moment of T (n)
X . Using the notation

Ei
[
T (n)

X

]
:= E

[
T (n)

X | X0 = i + n
]
, (2.2)

we find an explicit expression for Ei
[
T (n)

X

]
and infer its asymptotic behavior for i → ∞.

Theorem 2.2. (Explicit computation of the mean catastrophe time.) Let X be a BD+Cn process
whose infinitesimal generator Q is given by (2.1). Let a¯ < 1< ā denote the distinct real zeros

of the polynomial x 
→μx2 − (λ+μ+ γ )x + λ. The mean catastrophe time – defined in (2.2)
– is given by

Ei
[
T (n)

X

]= c

(
1

a¯
i
− 1

āi

) ∞∑
k=1

a¯
k

k + n
+ c

i−1∑
k=1

1

k + n

(
1

āi−k
− 1

a¯
i−k

)
, i ≥ 1,

with c = (√
(λ+μ+ γ )2 − 4λμ

)−1
.

Moreover, we obtain an explicit decreasing rate of the mean catastrophe time for large initial
populations, which is in some sense counterintuitive.

Corollary 2.1. Let X be the above BD+Cn process. The asymptotic behavior of its mean
catastrophe time for large initial populations is

Ei
[
T (n)

X

]= O(i−1).

Proofs of Theorems 2.1–2.2 and Corollary 2.1 are postponed to Section 3.
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After establishing positive recurrence of the BD+Cn process in Section 4, we will present
in Section 5 the proofs of the following properties of – upper bounds for – the first and second
moments of the process.

Theorem 2.3. (Upper bound for the mean.) Consider (Xt)t≥0, the BD+Cn process whose
infinitesimal generator Q is given by (2.1). Then the following upper bound holds:

E[Xt] ≤ m̄(t), t ≥ 0,

where the function m̄ is the solution to the differential equation⎧⎨
⎩

m̄(0) = n0,

m̄′(t) = −γ m̄(t)2 + (λ−μ+ γ n) m̄(t) + ν, t> 0.
(2.3)

We also obtain a similar result for the second moment.

Theorem 2.4. (Upper bound for the second moment.) Let (Xt)t≥0 be the BD+Cn process
whose infinitesimal generator Q is given by (2.1). Consider the function m̄ solution to (2.3)
and assume that the initial size of the population is larger than a constant m̄e computed in
(5.4). Then the second moment admits the upper bound

E
[
X2

t

]≤ v̄(t), t ≥ 0,

the function v̄(t) being the solution to the differential equation⎧⎨
⎩

v̄(0) = n2
0,

v̄′(t) = 2(λ−μ)v̄(t) + (λ+μ+ γ n2)m̄(t) − γ v̄(t)3/2 + ν, t> 0.

Such a v̄ is bounded uniformly in time, and thus so is E
[
X2

t

]
.

We close Section 5 with a discussion of the quality of the bounds m̄ and v̄ as defined in the
previous theorems, with a focus on their long-time behavior.

3. Expected catastrophe time

This section consists of three subsections which lead through the proofs of Theorem 2.1,
Theorem 2.2, and Corollary 2.1.

The proofs are based on various lemmas and propositions which shed light on recurrence
relations of order 2. In particular, we examine the limit behavior of their solutions in Lemma
3.2, the speed of divergence in Lemma 3.3, the dependence on the initial values in Lemmas
3.4 and 3.5, and possible explicit expressions for the minimal solution in Lemmas 3.6 and 3.8.
A road map for the whole proof structure can be seen in Figure 2.

3.1. Finiteness of time of catastrophe

We analyze the catastrophe time T(n)
X using the auxiliary process Y = (Yt)t≥0 defined by

shifting the process X by n and stopping it at catastrophe time T (n)
X :

Yt := X
t∧T(n)

X
− n, t ≥ 0.
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FIGURE 2. Dependences and implications of results in Section 3.

We discuss its properties and their implications for T (n)
X in the following straightforward

lemma.

Lemma 3.1. Let X be the BD+Cn process whose generator Q satisfies (2.1) with initial con-
dition X0 = n0 > n. Then Y is a BD process with total catastrophe whose birth, death, and
catastrophe rates are affine and given respectively by

λ̃i := λ(i + n), μ̃i := μ(i + n) and γ̃i := γ (i + n), i ∈N. (3.1)

The catastrophe time of X corresponds to the extinction time for the process Y.

While the proof of this lemma is evident, it yields a helpful tool for further analysis. In
this way we switch from characterizing the first hitting time of the state n for the process X
to the more classical study of the extinction time of the process Y . In particular, the state 0 is
absorbing for Y and is a boundary state. This gives us an advantage compared to analyzing T(n)

X
directly, since X may leave the state n again both to n+ 1 or n− 1. We may thus directly use the
tools developed by Brockwell to analyze extinction times for birth-and-death processes with
general catastrophes: see [3, Lemma 3.1]. We recall this result in the following proposition.

Proposition 3.1. ([3, Lemma 3.1]) For fixed u ≥ 0, consider the sequence (αi(u))i∈N defined
per iteration by

α0(u) = 0, α1(u) = 1,
i+1∑
j=1

q̃ij αj(u) = u αi(u), i ∈N
∗.

Let α∞(0) := limi→∞ αi(0). Let (Zt)t≥0 be a BD process with general catastrophes as defined
in Definition 1.1. Its time to extinction T0

Z := inf{t ≥ 0 | Zt = 0} verifies

(i) P
[
T0

Z <∞ | Z0 = i
]= 1 − αi(0)/α∞(0), i ∈N,

(ii) P
[
T0

Z <∞ | Z0 = i
]= 1 for all i ∈N

∗ ⇔ P
[
T0

Z <∞ | Z0 = 1
]= 1 ⇔ α∞(0) = ∞.
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It is worth noticing that while Brockwell [2] studied the linear case λ̃i = λ i in detail, we
have to consider the shifted (affine) case λ̃i = λi + λn, so we have to perform all calculations
when applying Proposition 3.1 to the process Y .

Using Proposition 3.1 to study T0
Y , we only have to analyze the behavior of the associated

sequence (ai(0))i∈N. It is the aim of the following lemma.

Lemma 3.2. Using the notations (3.1), consider for u ≥ 0 and a> 0 the sequence (ai(u))i∈N
defined by the recurrence relation⎧⎨

⎩
(a0(u), a1(u)) = (0, a),

λ̃iai+1(u) = (u + λ̃i + μ̃i + γ̃i) ai(u) − μ̃i ai−1(u), i ≥ 1.
(3.2)

Then (ai(u))i∈N is non-decreasing and a∞(0) = ∞.

Proof. Fix u ≥ 0 and set ai := ai(u) to improve readability. Note that (3.2) is equivalent to

λ̃i(ai+1 − ai) = uai + μ̃i(ai − ai−1) + γ̃i(ai − a0).

First a1 − a0 = a> 0 by assumption. Fix i ≥ 1 and suppose that for j ≤ i − 1 the inequality
aj+1 − aj ≥ 0 holds. Hence, in particular, ai ≥ 0. Moreover

λ̃i(ai+1 − ai) = uai + μ̃i(ai − ai−1) + γ̃i

i∑
j=1

(aj − aj−1) ≥ uai ≥ 0.

By induction (ai)i∈N is non-decreasing, and thus ai ≥ 0 for all i ∈N. Moreover, we obtain
λ̃iai+1 ≥ (λ̃i + γ̃i)ai. Hence, for all i ∈N,

ai+1 ≥ λ̃i + γ̃i

λ̃i
ai =

(
1 + γ

λ

)
ai ≥ . . .≥

(
1 + γ

λ

)i

a,

and thus a∞(0) = limi→∞ ai = ∞ with at least a geometric rate. �

Indeed, in the following lemma, we quantify the exact speed of divergence for the sequence
(ai(0))i∈N.

Lemma 3.3. Take u = 0 in (3.2). Then the sequence (ai(0)/ai+1(0))i∈N converges to the smaller
real zero a¯ ∈ (0, 1) of the polynomial

x 
→μx2 − (λ+μ+ γ )x + λ.

Proof. Set ai := ai(0) to improve readability. For i ≥ 2,

ai−1a−1
i = λ̃i−1ai−1

(λ̃i−1 + γ̃i−1 + μ̃i−1)ai−1 − μ̃i−1ai−2

= λai−1

(λ+ γ +μ)ai−1 −μ ai−2
.

Setting zi = aia
−1
i+1 for i ≥ 1, we therefore have

z1 = λ

λ+ γ +μ
, zi = λ

λ+ γ +μ−μzi−1
.
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Consider the map φ : [0, 1] → [0, 1] defined by φ(x) = λ/(λ+ γ +μ−μx). Since 0<φ(0)<
φ(1)< 1 and φ is strictly increasing, φ has a unique fixed point a¯ ∈ (0, 1) given by

a¯ = λ+μ+ γ −√
(λ+μ+ γ )2 − 4λμ

2μ
.

Moreover, limi→∞ zi = a¯ . �

Applying Proposition 3.1 and Lemma 3.2 to the shifted process Y defined in Lemma 3.1,
we obtain that the extinction time T0

Y is almost surely finite. Hence the catastrophe time T (n)
X

associated with (Xt)t≥0 is almost surely finite. This completes the proof of Theorem 2.1.

3.2. Explicit computation of mean catastrophe time

In this subsection we prove Theorem 2.2. To this end we first recall a well-known result
about the mean of hitting times; see e.g. [12]. If Y is an irreducible CTMC with infinitesimal
generator Q = (qij)ij, the sequence

(
E
[
T0

Y | Y0 = i
])

i is the minimal positive solution of the
linear system ⎧⎨

⎩
xi = 0, i = 0,

−∑
j∈N qijxj = 1, i �= 0.

Hence, since T0
Y = T (n)

X a.s. the sequence
(
Ei
[
T (n)

X

])
i≥0 satisfies the recurrence relation

λ̃ixi+1 = −1 + (γ̃i + λ̃i + μ̃i)xi − μ̃ixi−1, i ≥ 1, (3.3)

where x0 = 0 and the value of x1 has to be determined.
In what follows, we use Lemma 3.2 extensively, always fixing u = 0 and abbreviating ai :=

ai(0). We focus first on the dependence of the solution of (3.3) with respect to the value of
x1 ∈R.

Lemma 3.4. Let (xi)i∈N be a solution sequence to the recurrence relation (3.3), where the
coefficients are given by (3.1). Then there is at most one possible value for x1 such that the
sequence (xi)i∈N is bounded.

Proof. Consider two solutions (xi)i∈N and (x′
i)i∈N of the recurrence relation (3.3) satisfying

x1 = x resp. x′
1 = x′ < x. The sequence (�i := xi − x′

i, i ∈N) satisfies (3.2) with �1 = x − x′
and u = 0. By Lemma 3.2, (�i)i∈N is a non-decreasing sequence tending to ∞ as i → ∞.

If there were two bounded sequences with different values x and x′ for i = 1, their difference
would also be bounded, which is a contradiction. �

The following lemmas yield, step by step, the value of x1 for which the solution sequence
of (3.3) is uniformly bounded. As a first step we show in Lemma 3.5 a dichotomy of the
divergence behavior around a certain initial value x̂. This is going to provide a direct argument
for the convergence radius of an associate generating function in Lemma 3.7.

Lemma 3.5. There exists a unique value x̂> 0 such that:

(i) if x1 < x̂, limi→∞ xi = −∞,

(ii) if x1 > x̂, limi→∞ xi = +∞.
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Proof. Consider unbounded solutions (xi)i∈N to (3.3). As in the proof of Lemma 3.4, take
two solutions (xi)i∈N and (x′

i)i∈N of (3.3) with x′
1 = x′ < x = x1. Since the sequence (�i = xi −

x′
i, i ∈N) is non-decreasing by Lemma 3.2, we obtain xi > x′

i for all i ≥ 1. Therefore solutions
preserve, for any i, the order of their values for i = 1.

Consider the case where there is an i0 ∈N such that xi0−1 ≥ 0 and xi0 < 0. Note that if there
is a k ∈N such that xk < 0, such a pair (xi0−1, xi0 ) may always be found since x0 = 0. Then,
because γ̃i > 0 for all i ∈N, we have

λ̃i0 (xi0+1 − xi0 ) = −1 + γ̃i0xi0 + μ̃i0 (xi0 − xi0−1)< 0. (3.4)

Thus xi0+1 < xi0 < 0 and

0> γ̃i0xi0 > γ̃i0 xi0+1 > γ̃i0+1xi0+1.

Hence inductively we see that starting from i0 the sequence (xi)i≥i0 is decreasing and negative.
In particular, multiplying the recurrence relation (3.4) with −1 and using Lemma 3.2 with
u = 1, we obtain that (xi)i≥i0 diverges to −∞ as i → ∞. In particular, once the sequence (xi)i∈N
becomes negative, it stays negative.

Secondly, consider a positive unbounded solution (x′
i)i≥0 of (3.3). Then, for any level

C> 0, there is an index I ∈N such that x′
i <C for all i< I and x′

I ≥ C. Let C> 0 be suffi-
ciently large that Cγ̃I > 1 with I = inf{i : x′

I ≥ C}. Then, by the recurrence relation (3.3), we
obtain

λ̃I(x′
I+1 − x′

I) = μ̃I(x′
I − x′

I−1) + γ̃Ix′
I − 1>Cγ̃I − 1> 0.

Hence x′
I+1 > x′

I and thus γ̃I+1x′
I+1 > γ̃Ix′

I > 1. Furthermore, there is an ε > 0 such that x′
I+1 ≥

C + ε and x′
I <C + ε. Applying the same arguments to x′

I+1 with a new constant C′ set to C + ε

yields inductively that (x′
i)i≥N is strictly increasing, by assumption unbounded, and therefore

divergent to +∞.
Therefore, since two solution sequences of (3.3) preserve the order of their initial values,

using Lemma 3.4, there exists a critical value x̂> 0 such that for x1 > x̂ the solution to (3.3)
tends to ∞, while for x1 < x̂ it tends to −∞. �

In fact we will be able to compute the critical value x̂ employing generating functions as a
tool.

Lemma 3.6. Let (xi)i∈N denote the solution sequence to the recurrence relation (3.3) with
x1 := x. Its generating function E(z) := ∑∞

i=0 xizi satisfies

E(z) = z
λx −∑∞

k=1 zk/(k + n)

μz2 − qz + λ
(3.5)

within its radius of convergence R ∈ [0,∞), where q := λ+μ+ γ .

Proof. Set q̃i := q(i + n) such that (3.3) becomes

q̃ixi = λ̃ixi+1 + μ̃ixi−1 + 1.
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By exploiting this formulation, we obtain

E(z) =
∞∑

i=1

xiz
i

=
∞∑

i=1

(λ̃ixi+1 + μ̃ixi−1 + 1)
zi

q̃i

= λ

q

∞∑
i=1

xi+1zi + μ

q

∞∑
i=1

xi−1zi +
∞∑

i=1

zi

q̃i

= λ

qz

∞∑
i=1

xi+1zi+1 + μ

q
z

∞∑
i=1

xiz
i +

∞∑
i=1

zi

q̃i

= λ

qz
(E(z) − xz) + μ

q
zE(z) +

∞∑
i=1

zi

q̃i
,

which leads to the result (3.5). �

Based on the explicit generating function, we derive an expression of the coefficients by
differentiating in 0. To justify this approach we have to establish that E converges within a
positive radius of convergence.

Lemma 3.7. The generating function E given by (3.6) has a positive radius of convergence.

Proof. Let x̂ be as in Lemma 3.5. Consider solutions (xi)i∈N and (x′
i)i∈N to (3.3) with x′

1 =
x′ < x̂< x = x1. Since there is an i0 ∈N such that x′

i < 0 for all i ≥ i0, it follows for�i := xi − x′
i

that
�i ∈ [max{xi, |x′

i|}, 2 max{xi, |x′
i|}], i ≥ i0.

Further, (�i)i∈N satisfies (3.2) with u = 0, so according to Lemma 3.3 it grows like a¯
−i as

i → ∞. By the upper and lower bound of �i for i ≥ i0 we obtain that both (xi)i∈N and (x′
i)i∈N

grow asymptotically at most like a¯
−i. Note that the solution (x̂i)i∈N of (3.3) with x̂1 = x̂ cannot

grow faster than a¯
−i, as i → ∞ by positivity of �i for all i ≥ 1. Thus the series

E(z) =
∞∑

i=1

xiz
i

converges for any initial value at least within the radius of convergence R := a¯ > 0. �

We proceed with a direct calculation of the coefficients. Recall that a¯ < ā are the distinct
real zeros of the polynomial x 
→μx2 − (λ+μ+ γ )x + λ.

Lemma 3.8. Any solution (xi)i∈N to equation (3.3) with x1 = x> 0 has the form

xi = λ c x

(
1

a¯
i
− 1

āi

)
− c

i−1∑
k=1

1

k + n

(
1

a¯
i−k

− 1

āi−k

)
, (3.6)

with c = (√
(λ+μ+ γ )2 − 4λμ

)−1
.
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Proof. According to Lemmas 3.6 and 3.7, the introduced generating function E has a
positive radius of convergence and the particular form

E(z) = z
f (z)

g(z)
with f (z) := λx −

∞∑
k=1

zk

k + n
and g(z) := μz2 − qz + λ.

Note first that, given that form, we have

∂ i
zE(z)|z=0 = i ∂ i−1

z

(
f (z)

g(z)

)∣∣∣∣
z=0

= i
i−1∑
k=0

(
i − 1

k

)(
∂k

z f (z)∂ i−1−k
z

(
1

g

)
(z)

)∣∣∣∣
z=0

.

Due to the form of g we have
1

g(z)
= c

z − ā
− c

z − a¯
,

and therefore any derivative of order n, namely,

∂ i
z

1

g(z)

∣∣∣∣
z=0

= i! c

(
1

a¯
i+1

− 1

āi+1

)
.

Considering the numerator f (z), we have

∂ i
z f (z)|z=0 = −

∞∑
k=i

zk−i

k + n
k · (k − 1) · . . . · (k − i + 1)

∣∣∣∣
z=0

= − i!
i + n

.

Hence

∂ i
zE(z)|z=0 = i ∂ i−1

z

(
f (z)

g(z)

)∣∣∣∣
z=0

= i

(
λ x (i − 1)!c

(
1

a¯
i
− 1

āi

)

−
i−1∑
k=1

(
i − 1

k

)
k!

k + n
c(i − 1 − k)!

(
− 1

āi−k
+ 1

a¯
i−k

))

= i!
(
λ x c

(
1

a¯
i
− 1

āi

)
−

i−1∑
k=1

c

k + n

(
1

a¯
i−k

− 1

āi−k

))

Since xi = i!−1∂ i
zE(z)|z=0, we find that for any i ≥ 1

xi = λ c x

(
1

a¯
i
− 1

āi

)
− c

i−1∑
k=1

1

k + n

(
− 1

āi−k
+ 1

a¯
i−k

)
. �
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We can now proceed with the proof of Theorem 2.2 by combining the previously presented
results as follows. The sequence of expected hitting times

(
Ei
[
T (n)

X

])
i∈N is a solution to (3.3).

Lemma 3.8 shows that the expected value for i ≥ 0 is in fact given by

Ei
[
T (n)

X

]= λE1
[
T (n)

X

]
c

(
1

a¯
i
− 1

āi

)
− c

i−1∑
k=1

1

k + n

(
1

a¯
i−k

− 1

āi−k

)
,

with c = (√
(λ+μ+ γ )2 − 4λμ

)−1, where we followed the usual convention that an empty

sum equals 0. It remains to derive the value of E1
[
T (n)

X

]
to complete the proof of Theorem 2.2.

To improve the readability in what follows, we introduce the following notation:


n(z) :=
∞∑

k=0

zk

k + n
, |z|< 1, n ∈N

∗.

Therefore

E(z) = z
λx1 −
n(z) + n−1

μz2 − qz + λ

In fact, it turns out that the value x1 = λ−1(
n(a¯ ) − n−1) yields the minimal positive solution
of (3.3) which does not tend to +∞, as proved in the following lemma.

Lemma 3.9. The sequence (xi)i∈N satisfying (3.3) with x1 = λ−1(
n(a¯ ) − n−1) is the minimal
positive solution to (3.3). Moreover, xi = O(i−1) as i → ∞. Therefore

x̂ = 1

λ

(

n(a¯ ) − n−1).

Proof. By Lemma 3.8,

xi = λ c x1

(
1

a¯
i
− 1

āi

)
− c

i−1∑
k=1

1

k + n

(
1

a¯
i−k

− 1

āi−k

)

= c
∞∑

k=1

a¯
k

k + n

(
1

a¯
i
− 1

āi

)
− c

i−1∑
k=1

1

k + n

(
1

a¯
i−k

− 1

āi−k

)

= c

a¯
i

∞∑
k=i

a¯
k

k + n
− c

āi

∞∑
k=1

a¯
k

k + n
+ c

i−1∑
k=1

1

k + n

1

āi−k
.

Using the notation

bi :=
i−1∑
k=1

āk

k + n
,

then
i−1∑
k=1

1

k + n

1

āi−k
= bi

āi
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and
bi+1 − bi

āi+1 − āi
= 1

(ā − 1)(i + n)
→ 0, i → ∞.

Using the fact that ā> 1 and applying the Stolz–Césaro theorem, we obtain

bi

āi
= 1

āi

i−1∑
k=1

āk

k + n
→ 0, as i → ∞.

Thus the asymptotic behavior of (xi)i≥0 is the same as that of

c

a¯
i

∞∑
k=i

a¯
k

k + n
≥ c

i + n
. (3.7)

Let us check an upper bound. Using the integral comparison,

∞∑
k=i

a¯
k

k + n
≤

a¯
i

i + n
+
∫ ∞

i

a¯
s

s + n
ds

≤
a¯

i

i + n
+

a¯
−n

i + n

∫ ∞

i+n
exp(log a¯ s) ds

=
a¯

i

i + n
+

a¯
i

(i + n)(−log a¯ )
,

which implies that

1

a¯
i

∞∑
k=i

a¯
k

k + n

vanishes as i → ∞. Hence xi → 0 as i → ∞, which implies in particular that the sequence is
bounded.

Furthermore, the sequence (xi)i∈N is positive since otherwise it would diverge to −∞ by
the same arguments used in the proof of Lemma 3.5. Moreover, the lower bound (3.7) and the
upper bound of order O(i−1) implies the convergence rate xi = O(i−1) as i → ∞.

Finally, by Lemma 3.5, the sequence (xi)i≥0 with x1 = λ−1(
n(a¯ ) − n−1) is indeed the
minimal positive solution to (3.3), which uniquely determines the value of x̂. �

Note that the Lemma 3.9 completes the proof of Theorem 2.2 and we can proceed to the
proof of Corollary 2.1. The sequence of expected hitting times

(
Ei
[
T (n)

X

])
i∈N is the solution of⎧⎨

⎩
x0 = 0, x1 = x̂,

λixi+1 = −1 + (γi + λi +μi)xi −μixi−1, i ≥ 1,

with

x̂ = 1

λ

∞∑
k=1

a¯
k

k + n
,

where, from Lemma 3.9, it exhibits the same rate of convergence of Ei
[
T (n)

X

]
to 0 as i → ∞.
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4. Recurrence property and stationary distribution

Based on the information we obtained on the expected hitting times of the catastrophe state,
we now prove the following theorem.

Theorem 4.1. (Positive recurrence.) Let X = (Xt)t≥0 be the BD+Cn process whose infinites-
imal generator Q is given by (2.1). Then X is positive recurrent; it exhibits a unique
non-degenerated stationary distribution π and, for any initial distribution and for large time,
Xt converges in distribution to π .

Note that this is radically different from the behavior of a BD process with immigration
satisfying λ>μ. In that case the population grows in expectation over time and no stationary
distribution exists; see e.g. [1]. Hence, by introducing a partial catastrophe into the model its
behavior changes drastically, ensuring, for any catastrophe rate γ > 0, the existence of a unique
stationary distribution.

To prove the theorem, we apply the existence of Lyapunov functions.

Proof of Theorem 4.1. Recall that a function V : N→R
+ ∪ {+∞} is a Lyapunov function

associated with the CTMC X if V satisfies

QV(n) ≤ −1 + 1A(n),

where Q is the generator of X and A is some petite set; see e.g. [11]. Take A = {0, . . . , n}. By
the previous section, supi∈N E

[
TA

X | X0 = i
]
<∞, where TA

X is the first time the process X hits
the set A. Hence i 
→ 1 +E

[
TA | X0 = i

]
yields a Lyapunov function. It follows directly by irre-

ducibility of X that the process X admits a stationary distribution π and that it is positive recur-
rent. The uniqueness of π follows from the irreducibility of X and the limiting behavior follows
from classical results on non-explosive continuous-time Markov chains; see e.g. [12]. �

5. Expected population size at fixed times

In this last section we analyze the first two moments of the BD+Cn process at a fixed time
t ≥ 0 and prove Theorems 2.3 and 2.4. Due to the asymmetric form of the generator (2.1), we
focus on upper bounds of the first and second moments of (Xt)t≥0.

In contrast to the last section, the parameter ν representing the immigration rate in the case
of extinction of the population now plays an important role, making the state 0 non-absorbing.

5.1. Associated Kolmogorov equations

Let us consider the Kolmogorov equations associated with the BD+Cn process (Xt)t≥0 to
analyze its behavior at fixed times. With Pn(t) := P[Xt = n | X0 = n0], n0 > n, the following
identities hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
P0(t) =μP1(t) − νP0(t),

d

dt
Pn(t) = λn−1Pn−1(t) − n(μ+ λ)Pn(t) + (n + 1)μPn+1(t), 0< n< n,

d

dt
Pn(t) = (n− 1)λPn−1(t) − n(μ+ λ)Pn(t) + (n+ 1)μPn+1(t) + γ

∑∞
i=n+1 iPi(t),

d

dt
Pn(t) = (n − 1)λPn−1(t) − n(γ +μ+ λ)Pn(t) + (n + 1)μPn+1(t), n> n,

(5.1)

with initial condition Pn(0) = δn0,n. Recall that λn = n λ if n ≥ 1 but λ0 = ν.
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5.2. Upper bounds for first and second moments

We approach the first and second moments by analyzing their corresponding ODEs.

Proof of Theorem 2.3. Using (5.1), we obtain

d

dt
E[Xt] = λ

∞∑
n=1

n(n − 1)Pn−1(t) − (μ+ λ)
∞∑

n=1

n2Pn(t)

+μ

∞∑
n=1

n(n + 1)Pn+1(t) − γ

∞∑
n=n+1

(n − n)nPn(t) + νP0(t)

= (λ−μ)E[Xt] + γ

∞∑
n=n+1

(n− n)nPn(t) + νP0(t).

If we denote the first moment by m(t) := E[Xt], then it solves the ODE

m′(t) = (λ−μ) m(t) − γ

∞∑
n=n+1

(n − n)nPn(t) + νP0(t), m(0) = n0. (5.2)

In particular, by Jensen’s inequality,

m′(t) ≤ (λ−μ) m(t) + γ

∞∑
n=0

(n− n)nPn(t) + νP0(t)

≤ (λ−μ) m(t) + γ (n− m(t)) m(t) + ν.

The solution m̄ to the ODE

m̄′(t) = (λ−μ)m̄(t) + γ (n− m̄(t)) m̄(t) + ν, m̄(0) = n0, (5.3)

is therefore a candidate for an upper bound of m. To this end, we will show that the difference
m̄ − m is a non-negative function on [0,∞).

We first prove that m̄ − m has a strict local minimum at t = 0. Note that solutions of both
ODEs (5.2) and (5.3) exist globally on (0,∞). Since both right-hand sides are continuous in
t for t ≥ 0, we can extend the definition of the derivative to the set [0,∞). Note that if n0 > n
then

lim
t→0+ m′(t) = (λ−μ)n0 + γ (n− n0)n0 = lim

t→0+ m̄′(t) − ν < lim
t→0+ m̄′(t)

and m̄(0) = m(0). Thus, at some time, m̄ dominates m:

there exists t0 > 0 such that m(t) ≤ m̄(t) for all t ∈ [0, t0).

Assume that this domination only holds locally, or equivalently, that there is a t2 > t0 such that
m̄(t2)<m(t2). By continuity there exists an interval Iδ := (t2 − δ, t2 + δ) such that m̄(t)<m(t)
for all t ∈ Iδ . Without loss of generality we may assume that m̄(t) ≥ m(t) for all t ∈ [0, t2 − δ).
Set t1 := t2 − δ. By continuity of m̄ and m, m̄(t1) = m(t1). Additionally, since m̄ and m are
C1-functions, m̄′(t1)<m′(t1). But on the other hand,

m̄′(t1) = g(m̄(t1)) = g(m(t1)) ≥ m′(t1),
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where g(x) := (λ−μ)x + γ (n− x)x + ν, which leads to a contradiction. Thus m̄ dominates m
globally. �

Note that the ODE (5.3) is the same as (2.3), whose solution is a logistic growth function.
In particular, m̄(t) converges for large t to its equilibrium value m̄e given by the largest zero of
the polynomial x 
→ γ x2 − (λ−μ+ γ n)x − ν,

m̄e := (λ−μ+ γ n) +√
(λ−μ+ γ n)2 + 4γ ν

2γ
. (5.4)

Moreover t 
→ m̄(t) is decreasing whenever it is larger than its equilibrium m̄e.

Proof of Theorem 2.4. The dynamics of the process’s second moment v(t) := E
[
X2

t

]
can be

derived in the same way as that of the first moment, and it is given by

v′(t) = 2(λ−μ)v(t) + (λ+μ)m(t) − γ

∞∑
n=n+1

(n3 − n2n)Pn(t)

≤ 2(λ−μ)v(t) + (λ+μ)m(t) − γ

∞∑
n=0

(n3 − n2n)Pn(t) + νP0(t)

≤ 2(λ−μ)v(t) + (λ+μ+ γ n2)m̄(t) − γ v(t)3/2 + ν.

The last inequality, due to Jensen’s inequality, is actually strict for t> 0:

v′(t)< 2(λ−μ)v(t) + (λ+μ+ γ n2)m̄(t) − γ v(t)3/2 + ν, t> 0.

Now consider the function v̄, the solution of the ODE

v̄′(t) = 2(λ−μ) v̄(t) + (λ+μ+ γ n2) m̄(t) − γ v̄(t)3/2 + ν, v̄(0) = n2
0. (5.5)

It is a candidate for an upper bound of v. Compare the right limits in 0 of the first derivatives:

lim
t→0+ v′(t)< 2(λ−μ)n2

0 + (λ+μ+ γ n2)n0 − γ n3
0 + ν = lim

t→0+ v̄′(t).

By the same argument as for m, we obtain the domination of v by the function v̄.
The positive function v̄ is indeed bounded, as we will now prove.
Assume conversely that any large value can be taken by v̄. In particular, choose any c0

sufficiently large that

2(λ−μ)c0 + (λ+μ+ γ n2)n0 − γ c3/2
0 + ν < 0,

and suppose that there exists a time t0 such that v̄(t0) = c0. Since by assumption n0 > m̄e, the
function m̄ decreases from m̄(0) = n0. It follows that

v̄′(t0) = 2(λ−μ)v̄(t0) + (λ+μ+ γ n2)m̄(t0) − γ v̄(t0)3/2 + ν

≤ 2(λ−μ)c0 + (λ+μ+ γ n2)n0 − γ c3/2
0 + ν

< 0.
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Hence, whenever v̄ takes the value c0, it has a negative derivative. Thus, for t> t0, v̄(t) is
uniformly bounded by c0, which is a contradiction. �

We also compare v̄ and m̄2 and obtain information on the long-time behavior of v̄.

Proposition 5.1. Let v̄ be solution of the ODE (5.5) with n0 > m̄e and λ+μ≥ 2ν. Then v̄(t) ≥
m̄2(t) for all t ≥ 0, where m̄ is the solution of the ODE (5.3). Moreover, as t → ∞, v̄(t) tends to
the solution v̄∞ of the following equation:

0 = 2(λ−μ)v̄∞ + (λ+μ+ γ n2)m̄e − γ v̄3/2∞ + ν. (5.6)

To prove these properties, we analyze the nullcline, i.e. the function v(t) solution of the limit
equation obtained from (5.5) with vanishing left-hand side:

0 = 2(λ−μ)v(t) + (λ+μ+ γ n2)m̄(t) − γ (v(t))3/2 + ν. (5.7)

To prove the uniqueness of the solution of the equation (5.6), we use Descartes’ rule of signs,
which we now recall (see [7]).

Lemma 5.1. The number of positive roots counted with multiplicities of a polynomial with real
coefficients is equal to the number of changes of sign in the list of coefficients, or is less than
this number by a multiple of 2.

We also obtain the C1-regularity of the function v by the following lemma.

Lemma 5.2. Let t ≥ 0 and Pt : x 
→ a0(t) +∑n
k=1 akxk be a real polynomial with a0 ∈

C1([0,∞),R) and a0
′(t)< 0 for all t> 0. If for all t ≥ 0 the polynomial Pt has a unique

positive simple zero denoted by xt
0, then t 
→ xt

0 ∈ C1((0,∞),R).

Proof of Lemma 5.2. For any t> 0 and sufficiently small h> 0,

0 =
n∑

k=1

ak
((

xt+h
0

)k − (
xt

0

)k)+ a0(t + h) − a0(t)

= (
xt+h

0 − xt
0

) n∑
k=1

ak

k−1∑
l=1

(
xt+h

0

)l(
xt

0

)k−1−l + a0(t + h) − a0(t).

Note that
n∑

k=1

ak

k−1∑
l=1

(
xt+h

0

)l(
xt

0

)k−1−l �= 0 and xt+h
0 − xt

0 �= 0,

because a0 is decreasing by assumption. Thus

xt+h
0 − xt

0

h
= a0(t) − a0(t + h)

h

(
n∑

k=1

ak

k−1∑
l=1

(
xt+h

0

)l(
xt

0

)k−1−l

)−1

and hence t 
→ xt
0 ∈ C1((0,∞),R). �

Proof of Proposition 5.1. Define a positive function ψ by ψ(t)2 := v(t), where v(t) solves
the equation (5.7). Then ψ(t) is a positive zero of the polynomial

x 
→ −γ x3 + 2(λ−μ)x2 + (λ+μ+ γ n2)m̄(t) + ν.
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By Lemma 5.1, for fixed t it exists, is simple and unique. Therefore the nullcline is defined
pointwise by v(t) := √

ψ(t), t ≥ 0. Since t 
→ m̄(t) is continuous, v is also continuous. The
function v is even continuously differentiable by the positivity of ψ , smoothness of m̄, and
Lemma 5.2. Moreover, since m̄ converges to me as t → ∞, v converges as t → ∞ to the
solution of the equation (5.6). Furthermore, differentiating (5.7), we obtain

0 = 2(λ−μ)v′(t) + (λ+μ+ γ n2)m̄′(t) − 3

2
γ v′(t)v(t)1/2.

Since m̄′ tends to 0 as t → ∞, therefore v′ converges to some value denoted by v′(∞), which
solves the equation

0 = 2(λ−μ)v′(∞) − 3

2
γ v′(∞)v̄1/2∞ .

Thus, either v′(∞) = 0 or

v̄∞ =
(

4(λ−μ)

3γ

)2

.

The latter value cannot solve (5.6). Hence v′(∞) = 0. Note that if x> xt
0, then

−γ x3 + 2(λ−μ)x2 + (λ+μ+ γ n2)m̄(t) + ν < 0

and vice versa. Thus, v̄ always tends towards the nullcline v. Since v̄ always tends towards the
nullcline v and v′ tends to 0, v̄ also converges to v̄∞, which proves the claim. �

Note, by the way, that one deduces from equation (5.6) that v̄∞ ∼ O(n2) as n→ ∞.
On the comparison between v̄(t) and m̄2(t): by assumption, v̄(0) = n2

0 = m̄(0)2. Note that

m̄(t) ≥ m̄e > n⇒ (n− m̄(t))2 > 0 ⇒ 2m̄(t)(n− m̄(t))< n2 − m̄2(t).

Therefore

(
m̄2)′(t) = 2m̄(t)m̄′(t) = −2γ m̄(t)3 + 2(λ−μ+ γ n)m̄2(t) + 2νm̄(t) (5.8)

< γ
(
n2 − m̄2(t)

)
m̄(t) + 2(λ−μ)m̄2(t) + 2νm̄(t)

= −γ (m̄2(t)
)3/2 + 2(λ−μ)m̄2(t) + (

2ν + γ n2)m̄(t)

≤ −γ (m̄2(t)
)3/2 + 2(λ−μ)m̄2(t) + (

λ+μ+ γ n2)m̄(t), (5.9)

where the assumption 2ν ≤ λ+μ is used for the last inequality. Now by (5.5) and (5.8),

v̄′(0) − (
m̄2)′(0) = 2(λ−μ) v̄(0) + (

λ+μ+ γ n2) m̄(0) − γ v̄(0)3/2 + ν

− (−2γ m̄(0)3 + 2(λ−μ+ γ n)m̄2(0) + 2νm̄(0)
)

= (λ+μ− 2ν)n0 + γ n0(n0 − n)2 + ν > 0.

This inequality propagates for all t ≥ 0. This can be proved by the same argument as in the
proof of Theorem 2.3, using (5.9).
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5.3. Accuracy of these upper bounds

Previously, we found an upper bound m̄ to the first moment m. We would like to quantify
the sharpness of this bound by estimating the non-negative difference function D defined by

D(t) := m̄(t) − m(t) ≥ 0, D(0) = 0. (5.10)

Moreover, lim supt→∞ D(t) ≤ m̄e, which implies that D is a bounded function.

Proposition 5.2. (Upper bound for the difference function D.) Let m, m̄, v, and v̄ be defined as
above under the same assumptions. Then the difference function D defined in equation (5.10)
is pointwise bounded from above by the solution D̄ of the non-linear ODE⎧⎨
⎩D̄′(t) = −γ D̄(t)2 + (λ−μ+ γ (n+ 2m̄(t)))D̄(t) + γ

(
v̄(t) − m̄(t)2

)+ γ
n2

4
+ ν, t> 0,

D̄(0) = 0.
(5.11)

Moreover, the function D̄ tends for large time to the positive solution D̄∞ of the equation

0 = −γ D̄2∞ + (λ−μ+ γ (n+ 2m̄e))D̄∞ + γ
(
v̄∞ − m̄2

e

)+ γ
n2

4
+ ν. (5.12)

Proof. By differentiating the function D defined in (5.10), we obtain

D′(t) ≤ (λ−μ)D(t) + nγ m̄(t) − γ m̄2(t) + γ
∑

n≥n+1

(n − n)nPn(t) + ν

≤ −γD(t)2 + (λ−μ+ γ n)D(t) − 2γD(t)m(t) + 2γD(t)m̄(t)

+ γ
(
v̄(t) − m̄2(t)

)+ γ

n∑
n=0

(n− n)nPn(t) + ν

≤ −γD(t)2 + (λ−μ+ γ (n+ 2m̄(t)))D(t) + γ
(
v̄(t) − m̄2(t)

)+ γ
n2

4
+ ν.

The function D̄, solving the ODE (5.11), is an upper bound for D since D(0) = D̄(0) and

lim
t→0+ D′(t) = 0, lim

t→0+ D̄′(t) = γ
n2

4
+ ν > 0.

Thus, by similar arguments as for m̄ and v̄, it follows that D̄ is a global upper bound of D.
To investigate the asymptotic behavior of D̄(t) we use techniques similar to those we applied

in the proof of Proposition 5.1. This time the equation (5.11) induces the positive nullcline D
satisfying

0 = −γD(t)2 + (λ−μ+ γ (n+ 2m̄(t)))D(t) + γ
(
v̄(t) − m̄2(t)

)+ γ
n2

4
+ ν.

Again applying Lemma 5.1, one proves its existence and also the convergence of D̄ towards
this nullcline. As in Proposition 5.1, since v̄ and m̄ converges for large t, D(t) converges to D̄∞,
which is the unique positive solution to

0 = −γ D̄2∞ + (λ−μ+ γ (n+ 2m̄e))D̄∞ + γ
(
v̄∞ − m̄2

e

)+ γ
n2

4
+ ν.
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Therefore, analogously as before, the function D̄ converges to D̄∞ thanks to the positivity of
λ−μ+ γ (n+ 2m̄(t)) and the C1-regularity of D.

Solving (5.12) explicitly, we obtain

D̄∞ = (λ−μ+ γ (n+ 2m̄e)) +√
(λ−μ+ γ (n+ 2m̄e))2 + γ 2(4(v̄∞ − m̄2

e) + n2) + 4γ ν

2γ
,

and consequently D̄∞ ∼ O(n) as n→ ∞. Hence, for small n, the small size of D̄ leads to suf-
ficiently good estimates by considering m̄ instead of m. Instead, for large n, the large values of
D̄ do not allow us to conclude whether m̄ and m are close. Finer estimates would be needed to
paint a clearer picture of the sharpness of the upper bounds, but they seem to be currently out
of reach. �
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