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The possibility of controlling the electrostatic field distribution in plasma has yielded
wide prospects for modern technologies. As a magnetic field primarily allows for creating
electric fields in plasma, it serves as an additional obstacle for the current flow through
a medium. In the present paper, an axially symmetric system is considered in which the
magnetic field is directed along the axis and concentric electrodes are located at the ends.
The electrodes are negatively biased. A model which solves the problem of the radial
distribution of the plasma potential inside the cylindrical plasma column supported by
the end electrodes is proposed. The most commonly encountered configurations of the
electrical connection for the end electrodes are considered, and the particular solutions to
the problem of the radial distribution are presented. The contribution of ions and electrons
to the transverse conductivity is evaluated in detail. The influence of a thermionic element
on the radial profile of the plasma potential is considered. To verify the proposed model,
an experimental study of the reflex discharge is carried out with both cold electrodes and
a thermionic element on the axis. A comparison of the computational model results with
experimental data is given. The presented model makes it possible to solve the problem
concerning the plasma potential distribution in the case of an arbitrary number of end
electrodes, and also to take into account the inhomogeneity of the distribution of plasma
density, neutral gas pressure and electron temperature along the radius.

Key words: electric discharges, plasma applications

1. Introduction

The possibility to control the electrostatic field distribution in plasma has yielded wide
prospects for modern technologies. In particular, due to the creation of a radial electric
field in mirror traps, it is possible to suppress the magnetohydrodynamic instability and
significantly increase the plasma confinement time (Soldatkina et al. 2008). In tokamaks,
the appearance of a radial electric field in the H-mode has made it possible to significantly
reduce transverse losses (Jain 1993; Burrell 1997), whereas the electric field realized in
the Hall thrusters plasma allows for accelerating ions and thereby creates thrust (Boeuf
2017; Zolotukhin et al. 2020).
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2 G. Liziakin and others

FIGURE 1. Basic diagram of a separator.

As a magnetic field primarily allows for the creation of electric fields in plasma, it
serves as an additional obstacle for the current flow through the medium. At the same
time, an electric field can be realized along a magnetic field if the mean free path of
charged particles is substantially less than the installation size (Jin et al. 2019).

In the configuration of the magnetic field of a rectilinear solenoid, the creation of a
radial electric field in plasma causes rotation of the entire plasma (Barber et al. 1972;
Del Bosco et al. 1991). This phenomenon led to the fact that in the 1970s–1980s,
various schemes of plasma centrifuges for isotope separation were proposed and actively
developed (Grossman & Shepp 1991). Unlike gas centrifuges, there were no rotating parts
in the plasma centrifuges, and it was assumed that the rotation speed could be higher.
However, plasma centrifuges have not yet found an industrial application.

In recent decades, methods for plasma processing of spent nuclear fuel (SNF) have
been actively developed (Dolgolenko & Muromkin 2017; Zweben et al. 2018). In SNF
reprocessing (separation of fission products from actinides), a lower resolution of the
device is required when compared with the separation of isotopes. Unlike plasma
centrifuges, where the elements of the mixture to be separated are in collisional
equilibrium, the separation in the new generation of plasma separators is supposed to be
carried out in a collisionless mode.

Among the wide variety of separation schemes, there are also those in which the use
of crossed electric and magnetic fields in a linear configuration is proposed (Gueroult
et al. 2019b; Liziakin et al. 2021). The simplest scheme of such a separator is shown in
figure 1. A cylindrical vacuum chamber is immersed in a longitudinal magnetic field. End
electrodes are installed at the ends of the chamber. The voltages on the electrodes are
provided by a power supply. At both ends, the distribution of the electrode potential is
identical.

In such separators, the possibility to control the radial profile of the potential is actually
the possibility to control the particle trajectories (Smirnov et al. 2018, 2020). Therefore,
the question about the shape of the profile and the possibility of its adjustment for more
efficient separation of the mixture has become particularly topical.

It is necessary to distinguish between cases when the negative potential (Liziakin et al.
2017) (relative to the outer cylindrical surface) and the positive one (Shinohara & Horii
2007) are maintained on the cylinder axis. The difference between these cases consists
primarily of the difference between the areas of the negative and positive electrodes. An
ion current flows to the negative electrode; its density is much lower than the electron one.
For a stationary state, when the total charge of the system is preserved, the magnitude of
the current in the system is determined by the area of the electrode collecting ions. The
area of the end electrodes, as a rule, is much smaller than the area of the outer cylindrical
surface. Hence the current between the electrodes, in the case of negatively biased end
electrodes, will be significantly less than for the case of positively biased ones. The present
study will focus on the case with negatively biased electrodes.
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Radial distribution of the plasma potential 3

Liziakin et al. (2020) considered the formation mechanism of a negative potential on
the axis of a cylindrical plasma column immersed in a magnetic field. The formula was
obtained with which it is possible to estimate the plasma column potential. The current
paper will deepen the analysis of such a system and consider the shape of the potential
profile.

In the present study, it will be assumed that the plasma along the magnetic field is
conducting perfectly. This assumption should be clarified. In a number of cases, the
longitudinal conductivity can make a significant contribution to the electric potential
distribution even in a magnetized plasma. This can happen because the electrode that sets
the potential has small geometrical dimensions compared with the interelectrode distance
(Gilmore et al. 2015; Gueroult et al. 2016; Jin et al. 2019). Poulos (2019) introduced a
dimensionless parameter

s = a
L

√
σ||
σ⊥

, (1.1)

where a is the radius of the electrode that sets the potential, L is the cylinder length, and
σ||, σ⊥ are the longitudinal and transverse plasma conductivities, respectively. Gueroult
et al. (2019a) verified that in the experiments with end electrodes in which s−1 was much
less than one, the potential was reproduced well. On the other hand, in those experiments
where this parameter was of the order of one, a significant change in the plasma potential
along the column was observed. Therefore, assuming that the plasma along the magnetic
field is ideally conducting, one should have in mind that this parameter is much less than
one and, as a result, the change in potential along the magnetic field is negligible.

It should be noted that the ideal conductivity of the plasma in the longitudinal direction
does not mean that the density of the current between the electrode and the plasma can
reach arbitrarily large values. There is a thin near-electrode layer between these objects.
In this layer, it is no longer possible to speak of ideal conductivity, and it is precisely that
which can serve as a limiter for the longitudinal current density.

Although in many experimental papers, the end electrodes were made of a large
number of concentric electrodes (>2), quite often, all electrodes were divided into one
or two groups of short-circuited electrodes and the same voltage was applied to each
group of electrodes (Amatucci et al. 1996; Shinohara & Horii 2007). Thus, a group of
short-circuited electrodes effectively acted as a single electrode. In this work, we will
consider both the cases of such electrode connections and the general case of independent
connection of more than two electrodes.

The main objective of the work is to derive the dependence of the plasma potential radial
distribution on the end electrodes potential radial distribution.

To verify the proposed model, we conducted an experimental study and compared its
results with the predictions of the model.

2. Ohm’s law

Let us consider an axially symmetric system in which the magnetic field is directed
along the axis (see figure 1). Let concentric electrodes be placed at the ends of such a
system, while the interelectrode gap is filled with plasma.

Although the transverse conductivity across the magnetic field can be influenced by a
large number of parameters, which include various types of instabilities, we will consider
classical conductivity. Thus, this calculation can be considered as a lower estimate.

In the hydrodynamic plasma model, one can obtain the generalized Ohm’s law from
the momentum balance equations. Neglecting the motion of neutrals in the laboratory
coordinate system (Paschmann et al. 2003), one can obtain the radial component of
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FIGURE 2. Relation between Mνin and mνen in argon.

current density
jr = σ n

P Er, (2.1)

where Er is the radial electric field and σ n
P is the transverse conductivity in the rest frame

of neutrals.
Let us show that in a certain range of parameters, the main contribution to the transverse

conductivity is made by collisions of ions with neutrals. In the model of three liquids (ions,
electrons and neutral atoms), the transverse conductivity in the rest system of neutrals has
the form (Song et al. 2001)

σ n
P = ene

B
κ

(κ)2 + 1
, where κ = Ωi

νin
+ νen

Ωe
+ νei

Ωe
. (2.2)

Here, Ωi,Ωe are the Larmor frequencies of rotation of ions and electrons, while νin, νen, νei
are the corresponding collision frequencies. In obtaining this equation, the relation
Mνin � mνen was assumed to be correct. As shown in figure 2, it is valid in a wide
range of plasma parameters, in particular, for argon in the range of Te ∈ [2, 35] eV, Ti ∈
[0.01, 100] eV. When obtaining figure 2, the values of the elastic collisions cross-section
of ions with neutrals in the energy range of 4–400 eV were used from the study by Cramer
(1959). At lower energies, we used (2.26) from Raizer et al. (2011), which determines
the polarization cross-section. For the elastic collisions cross-section of electrons with
neutrals we used the data from Ramsauer (1922).

As follows from (2.2) the relationship between the magnetization parameters of
electrons and ions determines which of the particle species makes the largest contribution
to the transverse transport. Figure 3 shows the components κ in their dependence on the
magnetic field, neutral gas pressure and plasma density for argon. When analysing this
graph, it should be considered that the upper and lower horizontal axes can be changed
independently, since they are defined by different components of κ . So the lower axis
determines the components Ωi/νin and νen/Ωe, and the upper one νei/Ωe.

To the right of the dashed line in figure 3, there is a domain where the ionic conductivity
is more than 10 times greater than the electronic one. Most experiments with end
electrodes are performed using the parameters from this domain (Gueroult et al. 2019a;
Liziakin et al. 2020). Therefore, it will be further assumed that the plasma conductivity
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FIGURE 3. Comparison of the contribution of electrons and ions to the transverse conductivity
of plasma. The dashed line indicates the excess of ionic conductivity over the electronic one by
10 times in the considered temperature range of electrons and ions.

across the magnetic field is determined by the transport of ions. However, it is worth
remembering that such a consideration is true only for the indicated B/p and B/ne. In this
case, the conductivity takes the form

σ n
P = ene

B
χ

(χ)2 + 1
= e2ne

Mνin

1
(χ)2 + 1

, where χ = Ωi

νin
= eB

M
1

nnσinui
. (2.3)

Here σin is the elastic collisions cross-section of ions with neutrals.

3. Radial profile of the potential

It was found in the previous section that in the considered parameter range, the main
current across the magnetic field was transported by ions.

Consider the relation between the plasma potential and the potential of the end
electrodes in the case when the potential of electrodes monotonically increases with r
(Ue1 < Ue2). Figure 4 shows an equivalent electrical circuit. The outer cylindrical surface
and electrode 3 are grounded, and their potentials are equal to zero (Ue3 = 0). On the two
inner electrodes (Ue1, Ue2), a negative potential relative to electrode 3 is maintained by the
external power source. The symbols Vsh1, Vsh2 indicate the near-electrode potential drop.
We should point out that the discrete current loops schematically indicated in figure 4
are in fact continuous, and the magnitude of the near-electrode potential drop is radially
varying.

The elementary increment of the plasma potential along the radius can be written in the
form

dU(r) = Ir(r) dR(r), (3.1)

where

dR(r) = 1
σ n

P(r)
dr

2πrL
, (3.2)

whereas Ir is the total current along the radial coordinate and L is the length of the plasma
cylinder. Taking into account the stationarity of the flow of currents and the law of the
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FIGURE 4. Equivalent electrical circuit of an axisymmetric system with an axial magnetic
field and end electrodes.

charge conservation, one can find that the radial current in an arbitrary coordinate r should
be equal to the total current of all the electrodes located in the region r̃ < r

Ir(r) =
∫ r

0
j(r̃) dS(r̃), (3.3)

where j is the density of current to the end electrodes and dS = 2πr̃ dr̃. Therefore, the
plasma potential at an arbitrary point should be equal to

U(r) =
∫ r

rg

∫ r̂

0
j(r̃) dS(r̃)

1
σ n

P(r̂)
dr̂

2πr̂L
, (3.4)

where r̃, r̂ are integration variables and rg is the inner edge of the grounded electrode.
The plasma conductivity under the integral is a function of the ion velocity, which in

turn is a function of the radial electric field.

3.1. Strongly negative equipotential end
The simplest case of connecting the end electrodes is by short-circuiting all of the
electrodes to each other except for the outermost one (Ue1 = Ue2, while Ue3 = 0, figure 4).
A large negative potential eUe � Te is applied to electrodes 1 and 2. This configuration
looks most like a classical reflex discharge (Liziakin et al. 2016). In this case, j from (3.4)
can be substituted by the density of the ion saturation current (Lieberman & Lichtenberg
2005) jis = 0.52en(kTe)

0.5M−0.5 times the number of ends with electrodes Nsurf (1 or
2). If one assumes that the neutral density, plasma density, electron temperature and
the cross-section of elastic collisions of ions with neutrals do not depend on the radial
coordinate, then the potential increment along the radius can be represented in the form

−dU(r) = 0.52
e

M0.5(kTe)
0.5nnσinNsurf

BL

∫ r̂

0
(r̃ dr̃)

(
U′(r̂)

[
1 +

(
eB2

Mnnσin

1
U′(r̂)

)2
])

dr̂
r̂

.

(3.5)

Here, for simplification, σin is taken to be constant and is equal to 2.5 × 10−15 cm2,
whereas the velocity of ions equals ui = E/B = U′/B. Then, performing integration with
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FIGURE 5. Potential radial profile in the configuration when all the electrodes (except for the
external grounded electrode) are at a large negative potential eUe � Te.

respect to the variable r̃ and denoting

C1 = 0.52
2e

M0.5(kTe)
0.5nnσinNsurf

BL
, C2 =

(
eB2

Mnnσin

)2

, (3.6a,b)

one can get

U(r) = C1

∫ r

rg

r̂U′(r̂)
(

1 + C2

(U′(r̂))2

)
dr̂ + U(rg). (3.7)

Differentiating both sides of (3.7), expressing U′ and integrating from the inner edge of
the grounded electrode rg, one can obtain

U(r) =
√

C2

∫ r

rg

√
r̂

1/C1 − r̂
dr̂

=
√

C2C1r
1 − C1r

(
√

C1r(C1r − 1) + √
1 − C1rsin−1(

√
C1r))

C3/2
1

√
r

− F(rg) + U(rg). (3.8)

Here and after, F(r) is an antiderivative of the function. For C1r � 1, one can expand
this in a Taylor series to the first non-zero term

U(r) = 2
3

√
C1C2(r3/2 − r3/2

g ) + U(rg). (3.9)

Figure 5 demonstrates potential profiles, calculated by (3.9) with U(rg) = 0, under fixed
magnetic field, electron temperature, length and radius of installation in argon gas. In this
example, rg = 0.25 m. The ion-saturation current is the maximal current which can flow
through a layer (sheath) of a cold negative electrode. Therefore, the presented profiles
are an estimate from above for the possible potential values. For the conditions shown in
figure 5, the dimensionless parameter s−1 is in the range (2–55) × 10−3.
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3.2. Floating-gap configuration
In the experimental implementation of the electrode geometry described in the previous
section, an arc discharge may occur between negative and grounded electrodes across the
magnetic field. To avoid this, one can install another electrode between these electrodes
with an intermediate voltage or under a floating potential (I2 = 0 in figure 4). Thus, a
buffer zone appears that prevents disruption of the discharge. In this case, the plasma
potential will be determined by the system of equations

U(r) =
⎧⎨
⎩

2
3

√
C1C2(r3/2 − r3/2

e ) + U(re),r ∈ [0, re]∫ re

0
jis dS

∫ r

rg

dR, r ∈ [re, rg]
, (3.10)

where re is the outer radius of the negative electrode. Substituting jis into the second
equation of system (3.10) and taking into account (3.2), one can get

U(r) = r2
e C1

∫ r

rg

U′(r̂)
(

1 + C2

U′2(r̂)

)
dr̂
r̂

+ U(rg). (3.11)

Then, similar to (3.7), differentiating both sides of (3.11), expressing U′ and performing
integration, one can get

U(r) = 2
√

r2
e C1C2(

√
r − r2

e C1 −
√

rg − r2
e C1) + U(rg), r ∈ [re, rg]. (3.12)

3.3. Thermionic element on the axis of the system
Equation (3.1) shows that an increase in the potential of the plasma volume can be achieved
by increasing the radial current. In an experimental implementation, this can be done by
using a thermionic cathode.

When electrons are injected into a vacuum, their current is limited by the
Child–Langmuir law (Langmuir & Compton 1931). When electrons are injected into
neutral plasma, the space charge of electrons is compensated by the space charge of ions
in the cathode layer. Although the current of thermoelectrons can significantly exceed the
ion-saturation current, its magnitude is bounded just the same. At a low-ion-saturation
current, a virtual cathode is formed. The critical thermionic current as a function of the
potential of the cathode layer was found by Poulos (2019).

Consider the case when a thermal cathode with a radius rth is situated on the axis. Then
the potential increment along the radius will be a piecewise-defined function

dU =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(∫ r

0
jth(r̃) dS +

∫ r

0
jis(r̃) dS

)
dR,r ∈ [0, rth](∫ rth

0
jth dS +

∫ r

0
jis(r̃) dS

)
dR, r ∈ [rth, re](∫ rth

0
jth dS +

∫ re

0
jis dS

)
dR, r ∈ [re, rg]

. (3.13)

Denoting

C3 = MnnσinNsurf

2e2neBL
, (3.14)
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and considering that

C1 = jisC3, (3.15)

one can obtain, similar to the previous sections,

U(r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
3

√
(jth + jis)C3C2(r3/2 − r3/2

th ) + U(rth), r ∈ [0, rth]∫ r

re

√
(jthr2

th + jisr2)C3C2

r − (jthr2
th − jisr2)C3

dr + U(re), r ∈ [rth, re]

2
√

(jthr2
th + jisr2

e)C3C2

√
r − (jthr2

th + jisr2
e)C3 − F(rg) + U(rg),r ∈ [re, rg]

.

(3.16)

The constants in the expression are chosen so the function is continuous.

3.4. Slightly negative electrodes
In §§3.1–3.3, particular cases of connecting end electrodes to an electrical circuit were
considered. The main simplification that allowed obtaining analytical equations for U(r)
is that a large negative potential eUe � Te is applied to the negative electrode. In these
cases, as seen from (3.9), (3.12) and (3.16), the plasma potential does not depend on the
electrode potential. For such a voltage, the electrons from the plasma cannot get onto
the negative electrode, and therefore their current can be neglected. In this section, we
consider the case when the electrodes are slightly negative biased (eUe ∼ Te). In this case
Ir from (3.1) should be written in the form

Ir(r) = 2π

∫ r

0

(
jes(r̃)exp

(
e(Ue(r̃) − U(r̃))

kTe

)
− jis(r̃)

)
r̃ dr̃. (3.17)

Since now the potential of the electrode may not differ much from the potential of the
plasma (eUe/Te ∼ 1), regions may appear where U′(r) → 0, in this case, in (2.3) for the
collision frequency, the ion thermal velocity uT should be added

ui = U′(r̂)
B

+ uT . (3.18)

For uT we use room temperature of 300 K.
If the discharge is self-sustained, that is, the plasma is created only by electrodes,

then the area occupied by the plasma is bounded by the condition r < rg. If the plasma
is maintained by an external ionization source (electron beam (Maggs et al. 2007),
radio-frequency (rf) discharge (Litvak et al. 2003; Shinohara & Horii 2007; Gilmore et al.
2015; Gueroult et al. 2016; Liziakin et al. 2017; Vorona et al. 2019), microwave plasma
source (Amatucci et al. 1996)), then the plasma density may not be equal to zero for r > rg.
In this case, when moving away along the radius from the inner edge of the grounded
electrode, the plasma potential tends to the value

U(r > rg) = Te ln
(√

π

2
m
M

)
. (3.19)
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FIGURE 6. An example of solving (3.20) with parameters B = 1.4 kG, P = 0.2 m Torr,
ne = 1011 cm−3, Te = 5 eV.

Then the distribution of the plasma potential is the solution of the equation

U(r) = Mnn

e2L

∫ r

rex

∫ r̂

0

(
jes(r̃)exp

(
e(Ue(r̃) − U(r̃))

kTe

)
− jis(r̃)

)
r̃ dr̃σin

×

⎛
⎜⎜⎜⎝1 +

(
eB

Mnaσin

)2 1(
U′(r̂)

B
+ vT

)2

⎞
⎟⎟⎟⎠

×
(

U′(r̂)
B

+ vT

)
1

n(r̂)
dr̂
r̂

+ U(rex). (3.20)

Here, integration is carried out from the outer boundary rex of the electrode system. It is
also considered in this equation that the plasma density and electron temperature depend
on the radial coordinate. A methodology for numerically solving this equation is presented
in Appendix A. The computer program LaPotential that solves this equation is presented
by Oiler & Liziakin (2021).

An example of the calculation results for a case when the voltage at the electrodes is
not large (eUe/Te ∼ 1) is presented in figure 6. A positive current density corresponds to
the electronic current to the electrodes, whereas a negative value corresponds to the ionic
current.

4. Comparison with experimental data

To test the model described above, a series of experiments was carried out. The
experimental set-up is shown in figure 7. The vacuum chamber was a cylinder with a
diameter of 85 cm and a length of 220 cm. A longitudinal magnetic field was created by a
four-coil solenoid. On the chamber axis, the magnetic field was 1.4 kG. The working gas
was argon at a pressure of 0.3 mTorr.

End electrodes in the form of truncated cones were placed at the ends of the chamber.
Three internal electrodes (r < 15 cm) from each end were connected between one another
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FIGURE 7. Experimental scheme.

FIGURE 8. Radial profile of the plasma density.

and constant voltage was maintained on them. The fourth and fifth electrodes (15 < r <
25 cm) were under floating potential. The walls with r > 25 cm were at ground potential.
A thermal cathode made of LaB6 with a diameter of 2 cm was installed at the left end
(figure 7) in the very centre of the electrode. The emissive electrode was electrically
connected with three internal electrodes. The end electrodes, together with the grounded
cylindrical surface of the vacuum chamber, formed the geometry of the reflex discharge
(Hooper 1970). Two modes of discharge functioning were investigated. The first mode
was when the thermal cathode is not heated, that is, the discharge operates as a usual
reflex discharge with cold electrodes. The second mode was when the thermal cathode is
heated. In the first case, the voltage at the electrodes was maintained at a level of −1 kV,
while the discharge current was 50 mA; in the second case, the voltage was −0.5 kV, and
the current was 10 A. The density profiles in both modes are presented in figure 8. Table 1
summarizes the parameters of both modes. The calculated values for s−1 correspond to
0.01 and 0.03 for the cold and hot modes, respectively.
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Discharge Discharge Averaged plasma Gas pressure Electron
Mode voltage (V) current (A) density (cm−3) (mTorr) temperature (eV)

Cold cathode 1000 0.05 3.7 × 109 0.3 2–4
Hot cathode 500 10 2.5 × 1010 0.5 8.5

TABLE 1. Experimental parameters of the reflex discharge.

FIGURE 9. Comparison of the plasma potential profile calculated by the system of (3.10) with
the experimental one without a thermal cathode.

Plasma density and electron temperature were measured by the double probe, and
the plasma potential was measured with an emission probe (Murzaev et al. 2019). The
temperature of electrons weakly depended on the radial coordinate and was 4 eV in the
electrode region and 2 eV in the floating electrode region for the cold cathode mode. For
the hot cathode mode, the electron temperature was Te = 8.5 ± 1.5 eV.

Figure 9 presents a comparison of the plasma potential profile calculated by the
system of (3.10) and that obtained experimentally in the mode with cold electrodes.
Two profiles are presented with different cross-sections. The first profile corresponds to
elastic collisions σin = 25 × 10−20 m2 and the second corresponds to the sum of elastic
and charge exchange cross-section σin = 50 × 10−20 m2. Thus, there is an input parameter
in this model that could quantitatively affect predictions, and these parameters are not all
well-constrained experimentally. While U ∼ σ−0.5

in T0.25
e doubling the cross-section gives

the same result as decreasing Te by 4 times. It can be reasonable to consider that the
double probe method can overestimate Te. Figure 9 also shows the numerical solution
of (3.20) by LaPotential taking into account polarization cross-section, space variation
of plasma density and electron temperature, and ion temperatures with Ti equal to 0.025
and 0.2 eV. Taking these features into account significantly improved the agreement with
the experimental data. Figure 10 shows a comparison of the plasma potential profile
calculated using the system of (3.16) with the experimental one under the operation of
the thermal cathode with a current of 5.6 A. To exclude the influence of anode processes
(not considered in this article), we set the calculated values of the plasma potential at
rg = 25 cm, equal to the experimental value at this point. In both cases, good agreement
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FIGURE 10. Comparison of the plasma potential profile calculated by the system of (3.16) with
the experimental one under the thermal cathode functioning with a current of 5.6 A.

Mode M (u) Te (eV) nn (cm−3) σ in (10−20 m2) Nsurf B (kG) L (m) ni (cm−3) Ith (A)

Cold cathode 40 4 9.7 × 1012 25. . . 50 2 1.4 2 — —
Hot cathode 40 8.5 1.6 × 1013 25. . . 50 2 1.4 2 2.5 × 1010 5.6

TABLE 2. Input parameters of theoretical model for analytical solution.

was observed between the experimental and theoretical values. All parameters that are
used in the theoretical model are summarized in table 2.

5. Discussion

Consider some specific features of the formation of the radial plasma potential following
from (3.9), (3.12) and (3.16). From (3.5) it follows that, in the approximation of constant
plasma density, the potential profile does not depend on the plasma density. This
statement is true for a configuration with a strongly negative equipotential end (eUe � Te).
Therefore, if the task is simply to obtain a potential difference in the radial direction, then it
makes no sense to transfer much energy into the plasma to increase its density. Besides, the
plasma potential is proportional to the ion mass raised to the power of −0.75. This means
that with the same parameters as presented in figure 5, but with a lighter gas, for example,
with helium, a voltage drop 5.6 times greater than that with argon can be obtained.

From (3.12) it follows that the use of a floating intermediate electrode leads to a decrease
in the radial electric field. While under a strongly negative electrode, the potential grew as
r3/2 in its dependence on the radius, under a floating electrode it grows only as r1/2. When
using a thermionic cathode, in accordance with (3.16), a dependence of the potential on
the plasma density appears. A larger plasma density will result in a smaller potential drop
at the same emission current. It must be kept in mind that the plasma density inside the
thermal cathode domain r < rth can be very different from that at the external region.

Equation (3.20) is written without assuming the uniformity of the spatial distribution of
the plasma density. This is important because the density cannot always be considered to
be constant. It can decrease by 2 orders of magnitude over several centimetres (Liziakin
et al. 2017), and replacing such a profile with a uniform one can significantly distort the
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real picture. The good agreement between the calculated profiles and the experiment in
the current study is largely due to the fact that the density profile in the experiment was
quite flat.

6. Conclusion

The paper considers the problem of creating a radial electric field in a cylindrical plasma
column. The case of negative biases is considered. The analytical solutions for the radial
potential profile of three most useful electrode configurations are found, by assuming that
ion velocity is determined by the E/B relation, and neutral density, plasma density, electron
temperature and the elastic collisions cross-section are all constant. In a configuration with
a strongly negative equipotential end (eUe � Te), it is shown that the plasma potential
grows as r3/2. When a floating electrode is added between the negative and the ground
electrodes, the plasma potential grows only as r1/2. The mechanism of how the thermionic
current at the end allows an increase in the radial potential drop is also shown. An
equation is derived for the case when the end electrodes are under potentials close to the
plasma potential. The solver LaPotential for the equation is presented which can consider
the spatial non-uniformity of electron density and temperature, and the cross-section
dependence on ion velocity. To verify the proposed model, an experimental study of the
reflex discharge with cold electrodes and with a thermionic cathode was carried out. A
comparison of the results of the calculation model with experimental data showed their
good agreement.
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Appendix A

Equation (3.20) presented in § 3.4 of this paper can be rewritten as

U(r) = U(rex) −
∫ r

rex

∫ r̂

0

(
A1exp

(
Ue(r̃) − U(r̃)

A3

)
− A2

)
n(r̃)r̃ dr̃

×
(

U′(r̂) + A5 + A4

U′(r̂) + A5

)
1

n(r̂)
dr̂
r̂

, (A1)

here A2 = 0.52(nnσin/LBe)Nsurf
√

MkTe; A1 = A2
√

2M/πm; A3 = Te; A4 = e2B4/
(Mnnσin)

2; A5 = BvT = B
√

2kT0/M, T0 is thermal ion energy.
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We consider the cross-section as

σin = σ∞ + 2πe
√

α√
M
2

U′(r)
B

+ √
kT0

, (A2)

where σ∞ is cross-section on the infinity of energies, α is relative polarizability (Raizer
et al. 2011).

According to (3.19) in § 3.4, U(rex) = Ue(rex) − A3 ln(A2/A1). Let us denote

η(r) = 1
n(r)r

∫ r

0

(
A1exp

(
Ue(r̃) − U(r̃)

A3

)
− A2

)
n(r̃)r̃ dr̃. (A3)

After differentiating (A1) with respect to r, we obtain

U′(r) = −η(r)
(

U′(r) + C5 + C4

U′(r) + C5

)
. (A4)

Excluding U′(r) from the (A4) leads to

U′(r) = 1
2(1 + η(r))

(−C5(1 + 2η(r)) ±
√

C5
2 − 4C4η(r)(1 + η(r))). (A5)

It is not difficult to show that limr→0η(r) = 0. So, from (A3) it follows that U′(0) = 0,
consequently in (A5) U’(0) has to take a + sign. Then

U′(r) = C5

2(1 + η(r))

(
−1 − 2η(r) +

√
1 − 4C4η(r)

C5
2 (1 + η(r))

)
. (A6)

This equation must be solved considering the following boundary conditions:

U′(0) = 0, (A7)

U(rex) = Ue(rex) − C3 ln
(

C2

C1

)
. (A8)

Equation (A6) in conjunction with the boundary conditions (A7)–(A8) solves numerically.
The program LaPotential (Oiler & Liziakin 2021) equation solves by using the shooting

method. First, (A6) needs to be solved with boundary conditions (A7). After that we get
an assemblage of curves U(r) by varying the values of U(0). From this assemblage only
one function needs to be chosen which satisfies boundary condition (A8). The search for
the desired function is realized by the bisection method.

To solve the Cauchy problem ((A6) with boundary initial condition (A7)), the implicit
Euler scheme is used (Dahlquist & Björck 2008):

UN+1 − UN

h
= C5

2(1 + η(rN+1))

(
1 +

√
1 − 4C4η(rN+1)

C5
2 (1 + η(rN+1))

)
− C5, (A9)

where h is an integration step, and

η(rN+1) = 1
((N + 1)h)n((N + 1)h)

N+1∑
k=0

h
(

C1exp
(

Ue(kh) − Uk

C3

)
− C2

)
n(kh)kh.

(A10)
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If in the system in question there is a floating electrode, where the current density is equal
to 0, then the corresponding member of the sum is equal to 0. Value UN+1 on the next
integration step finds as a solution of nonlinear (A9) by means of the Newton method.
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