
 Robotica (1997) volume 15 , pp 617 – 625 . Printed in the United Kingdom ÷ 1997 Cambridge University Press

 Finding the inverse kinematics of manipulator arm using
 artificial neural network with lookup table
 A . S . Morris and A . Mansor
 Department of Automatic Control & Systems Engineering , Uni y ersity of Shef field , Mappin St . , Shef field SI 3 JD (UK)

 (Received in Final Form : January 14 , 1997)

 SUMMARY
 Neural networks were used to find the inverse kinematics
 of a two-link planar and three-link manipulator arms .
 The neural networks utilised were multi-layered
 perceptions with a back-propagation training algorithm .
 Because of the redundancy in the manipulators studied ,
 this work used lookup tables for the dif ferent
 configurations of the manipulator arm .

 KEYWORDS : Manipulator arm ; Inverse kinematics ; Neural
 network ; Redundancy ; Lookup table .

 1 . INTRODUCTION
 The forward and inverse kinematic solutions for
 manipulator arms are computer intensive and time
 consuming , especially for many degrees of freedom
 manipulator arm . Colbaugh et al . 1 proposed an adaptive
 algorithm based on Model Reference Adaptive Control
 (MRAC) to solve the inverse kinematics problem of
 manipulator . Arteaga-Bravo 2 used a multi-layered back
 propagation network to solve the equations for forward
 and inverse kinematics . Even though he modelled a
 two-link planar manipulator , the training of the artificial
 neural network for the inverse kinematics solution was
 done on a simulated single-link manipulator . Guo et al . 2

 proposed an approach based on the Jacobian control
 technique for the solution of the inverse kinematics .
 They used a Hopfield neural network to find the
 solutions of the inverse kinematics of a planar four
 degree-of-freedom manipulator . The end ef fector tra-
 versed a straight line trajectory in the xy -coordinate
 frame .

 Whatever inverse kinematics algorithm is used for
 redundant manipulators , there are many solutions that
 are available for any single point or position of the end
 ef fector . The work presented here is an extension to the
 solution of inverse kinematics using artificial neural
 network . The inverse kinematics of a manipulator arm is
 solved by using a feedforward multi-layered perceptron
 with back-propagation algorithm for the training session .
 The network is then trained with data for a number of
 end ef fector positions expressed in Cartesian co-
 ordinates and the corresponding joint angles . The data
 consists of the dif ferent configurations available for the
 arm . For any position of the end ef fector in Cartesian
 space , lookup tables of the weights for the artificial
 neural network are created for each of the configurations
 or orientations of the arm . The lookup tables 4 can then

 be used to plan the trajectory of the arm for whichever
 configuration of the arm is required .

 2 . THEORY
 The work described is based on two manipulator arm
 configurations . One is a two-link planar manipulator and
 the other is a three-link manipulator arm in three-
 dimensional space . For both the two-link and three-link
 manipulators , there are two orientations or poses that
 are possible for every position of the end ef fector in
 Cartesian space . The dif ferent poses of the arm are then
 used to train a three-layer , fully connected back-
 propagation model (Figure 1) . Thus , this gave two sets of
 weights for each manipulator arm after the training
 session was over .

 The network is trained until it gives an error of about
 2% or less for the dif ference between an actual and
 desired output , the error value of 2% having been
 chosen because it was suf ficient for this work . The
 weights of the connections are saved as lookup tables .
 This lookup tables can then be used , depending on the
 orientations of the manipulator required , to find the joint
 angles of the arm given the position of the end ef fector in
 Cartesian space .

 A block diagram of the proposed work is shown in
 Figure 2 .

 The signals , o j i , are presented to a hidden layer neuron
 in the network via the input neurons . Each of the signals
 from the input neurons are multiplied by the value of the
 weights of the connection , w j , between the respective
 input neurons and the hidden neuron . The net input to a
 hidden neuron is calculated as the sum of the values for
 all connections coming into the neuron .

 net-input (hidden neuron) 5 i h 5 O n
 j 5 1

 w j 3 o j i (1)

 for n inputs .
 The output , o k j , of a hidden neuron as a function of its

 net input is described in equation 2 . The sigmoid
 function is :

 output 5 o k j 5
 1

 1 1 e 2 i h
 (2)

 Once the outputs of the hidden layer neurons have
 been calculated , the net input to each output layer is
 calculated in a similar manner as in equation 1 .

 During the training phase , the feedforward output

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 618 Neural network

 Fig . 1 . A model of the 3 layer perceptron neural network .

 state calculation is combined with backward error
 propagation and weight adjustment calculations that
 represent the network’s learning , or training . Equation 3
 presents the definition of the error signal for the ouptut
 layer neurons .

 d 5 f 9 (i)(t 2 o k) (3)

 and from equation 2 :

 d l 5 o k (1 2 o k)(t 2 o k) (4)

 where t is the target or desired value , and o k is the actual
 value from output neuron after going through the
 feedforward calculation . The error calculation was
 implemented on a neuron-by-neuron basis over the
 entire set (epoch) of patterns . This error value , d , was
 used to perform the appropriate weight adjustments of
 the weight connection between the output layer and
 hidden layer . The error value from equation 5 was used
 for the weight adjustments between the hidden layer and
 input layer .

 d h 5 f 9 (i h) O n l

 l 5 0
 w l h d l 5 o h (1 2 o h) O n l

 l 5 0
 w l h d l (5)

 where d h is the error value of the hidden layer , d l is the
 error value of the output layer , o h is the output of the
 sigmoid function and w l h is the connection weights
 between the output and hidden layers .

 The weight changes were calculated according to
 equation 6 :

 w (old) 5 w (new) 1 h d o 1 a [D w (old)] (6)

 The aim of the training phase is to minimise this
 average sum squared error over all training patterns . The
 speed of convergence of the network depends on the
 training rate , h , and the momentum factor , a .

 Fig . 2 . A block diagram of the system .

 The back-propagation algorithm provides an ap-
 proximation to the trajectory in weight space computed
 by the method of steepest descent . The smaller the
 learning rate , h , the smaller will the changes to the
 synaptic weights in the network be from one iteration to
 the next , and the smoother will be the trajectory in
 weight space . This improvement , however , is at the
 expense of a slower rate of learning . However , if the
 learning rate parameter is made large so as to speed up
 the rate of learning , the resulting large changes may
 result in the network becoming unstable , i . e . oscillatory .
 A simple method of increasing the rate of learning and
 yet avoiding the danger of instability is to include a
 momentum term , a . The other problem with this kind of
 weight updating is that it sometimes gets caught in local
 energy minima . By multiplying the momentum term with
 the previous weight change , the network can overcome
 the pull of the local minima and continues its gradient
 descent towards the globally optimal solution .

 3 . TWO-LINK PLANAR MANIPULATOR ARM
 Figure 3 shows the two-link planar manipulator arm
 simulated and Table I shows its joint parameters . Both
 the link lengths are taken to be 1 . The equations that
 relate the Cartesian position of the end ef fector with the
 joint angles of the manipulator arm are given in equation
 7 .

 (7a) x 5 cos (θ 1 1 θ 2) 1 cos (θ 1)

 y 5 sin (θ 1 1 θ 2) 1 sin (θ 1) (7b)
 giving

 (8a) θ 1 5 atan 2(y , x) 2 atan 2(k 2 , k 1)

 θ 2 5 atan 2(sin θ 2 , cos θ 2) (8b)

 where k 1 5 1 1 cos θ 2

 k 2 5 sin θ 2

 cos θ 2 5 (x 2 1 y 2 2 2) / 2
 sin θ 2 5 Ú 4 1 2 cos 2 θ 2

 A single hidden layer neural network with two inputs ,
 x and y , and two outputs , θ 1 and θ 2 , was trained using
 the back-propagation algorithm described earlier , along a
 trajectory of the end ef fector in the xy -plane . The final
 weights , when the error results were less than or equal to
 2% , were saved as lookup tables to be used later as a
 check of the system on dif ferent points along that
 trajectory .

 Tables IIa and IIb show the training data or patterns

 Fig . 3 . A model of the two-link planar manipulator arm .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 Neural network 619

 Table I . Joint parameters of the two-link planar manipulator
 arm

 used during the training stage of the two orientations of
 the two-link manipulator arm .

 3 . 1 Results for the two - link manipulator arm
 The trajectory of the end ef fector that was used to train
 the back-propagation neural network in two-dimensional
 space is shown in Figures 4a and 4b . Both the figures give
 the orientation of the arm while traversing the same path
 or trajectory . For the first orientation , the hidden layer
 has 5 neurons , the rate of training , h , was 2 . 018 , and the
 momentum factor , a , was 0 . 54 .

 The training of the 9 patterns was done 3000 times .
 The average percentage error , i . e . the percentage of the
 dif ference between actual and targeted / desired output , at
 the final iteration of the final session was 0 . 02% for the
 first joint and 0 . 3% for the second joint . Figure 5 shows
 the graph of the training session done on the arm for the
 first orientation . An average sum squared error is taken
 as an indication of the average error to of fset any
 negative number present in the error . The average sum
 squared errors obtained were 0 . 7% for the first joint and
 1 . 2% for the second joint and 1 . 1% for the first joint and
 0 . 7% for the second joint , for the first and second
 orientation respectively . Figures 6a and 6b shows the
 dif ference between the actual and desired outputs for the
 dif ferent joints for the first orientation .

 As a check , a neural network with 6 hidden neurons

 Table II . The normalised training data of the two-link man-
 ipulator arm for (a) the first orientation , (b) the second

 orientation

 Fig . 4 . The planar manipulator arm traversing a path used for
 training in (a) first orientation (b) second orientation .

 was used for the training , with all other parameters
 remaining the same . The average sum squared error
 were found to be 0 . 6% and 1 . 3% for the first and second
 link respectively .

 The number of hidden neurons were randomly chosen
 for the neural network . There are no specific method or
 algorithm to choosing the number of hidden neurons at
 the initial stage . 5 , 6 Then the learning parameter and the
 momentum factor were initialised to small random
 numbers . These two numbers were then adjusted (by
 increasing or decreasing the value) to give the smallest
 error value of the average sum squared error at the
 output of the network . Table III shows the average sum

 Fig . 5 . A graph of the training session for first orientation of
 the two-link arm .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 620 Neural network

 Fig . 6 . Comparison of target and actual outputs of the neural
 network training session of the two-link arm for (a) first joint of
 first orientation (b) second joint of first orientation .

 squared error with dif ferent values of the learning
 parameter and momentum factor for the two-link arm in
 first orientation . The number of iterations done was
 3000 . The testing of the arm was done on dif ferent points
 of the same trajectory as the training , and the average
 error was found to be 0 . 01% for the first joint and 0 . 9%
 for the second joint . Figure 7 shows the graph of both the
 actual and target output for the two joints for first
 orientation .

 The same was done for the second orientation using a

 Table III . A table of the dif ferent values of the learning term
 and momentum factor with their corresponding error for the

 first orientation of the two-link arm

 Fig . 7 . Comparison between actual and desired outputs during
 the test session of the two joints for first orientation of the
 two-link arm .

 6 neurons hidden layer . The training rate was at 2 . 13 and
 the momentum factor was at 0 . 23 . As before , the number
 of hidden neurons , the learning rate and momentum
 factor were initally chosen randomly . They were then
 adjusted accordingly to get the smallest error output
 from the network . Figure 8 shows the graph of the
 training session done on the arm for the first . Figures 9a
 and 9b show the dif ference between the actual and
 desired outputs for the dif ferent joints for the second
 orientation . Again the average error of the first joint was
 0 . 6% and 0 . 1% for the second joint . The average error
 for the testing session was 0 . 7% for the first joint and
 0 . 1% for the second joint . Figure 10 shows the graph of
 both the actual and desired output for the two joints for
 second orientation . The second orientation of the arm
 needs more neurons for the training stage because of the
 wide distribution of the output data . The network was
 found to need more training either by increasing the
 number of hidden neurons or iterations when the data or
 patterns are widely distributed .

 4 . THREE-LINK MANIPULATOR ARM IN 3-D
 SPACE
 Figure 11 shows the three-link manipulator arm for
 which the link parameters are shown in Table IV . Again
 the link lengths are taken to be 1 as above , to simplify
 the calculations . The arm can move around in
 three-dimensional workspace . Again , an artificial neural
 network , with three inputs and outputs , and a single
 hidden layer was used for the training session . The path
 that was used to train the neural network is the trajectory
 of the end ef fector in three-dimensional workspace as

 Fig . 8 . A graph of the training session for second orientation of
 the two-link arm .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 Neural network 621

 Fig . 9 . Comparison of target and actual outputs of the neural
 network training session of the two-link arm for (a) first joint
 of second orientation (b) second joint of second orientation .

 shown in Figures 12a and 12b for the first and second
 orientation of the arm respectively . Tables V(a) and
 V(b) shows the respective data used during the training
 of the neural network .

 Fig . 10 . Comparison between actual and desired outputs during
 the test session of the two joints for second orientation .

 Fig . 11 . A model of the three-link manipulator arm .

 Table IV . Joint parameters of the three-link manipulator arm

 The equations relating the xyz -coordinates with the
 joint angles are given in equation 9 :

 x 5 cos θ 1 3 [cos (θ 2 1 θ 3) 1 cos θ 2] (9a)

 y 5 sin θ 1 3 [cos (θ 2 1 θ 3) 1 cos θ 2] (9b)

 z 5 sin (θ 2 1 θ 3) 1 sin θ 2 (9c)

 thus giving :

 θ 1 5 atan 2(y , x) (10a)

 θ 2 5 atan 2(z , x / cos θ 1) 2 atan 2(k 2 , k 1) (10b)

 θ 3 5 atan 2(sin θ 3 , cos θ 3) (10c)

 Fig . 12 . The path of the arm in 3-D space (a) during training in
 first orientation and (b) in second orientation .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 622 Neural network

 Table V . The normalised training data of the three-link man-
 ipulator arm for (a) the first orientation , (b) the second

 orientation

 where k 5 1 1 cos θ 3

 k 2 5 sin θ 3

 cos θ 3 5 (x 2 1 y 2 1 z 2 2 2) / 2
 sin θ 3 5 Ú 4 1 2 cos 2 θ 3

 4 . 1 Results for the three - link manipulator arm
 The training of the first orientation was done using a
 three layer back-propagation neural network with one
 hidden layer . The hidden layer had 6 neurons . For the
 first orientation , h was 0 . 71 and a was 0 . 055 . These two
 values gave the smallest output error of the neural
 network during the training stage . The average
 percentage error was 0 . 7% , 0 . 01% and 0 . 002% for the
 first , second and third joint respectively when the
 training was stopped at 30 , 000 iterations . The number of
 patterns used for the training was 19 . Training was
 stopped at 30 , 000 iterations because the maximum size
 integer possible on a PC is 32 , 000 .

 Figure 13 and 14 shows the graph of the training
 session on the 19 patterns of the neural network for the
 first and second orientations respectively . Figure 15 and

 Fig . 13 . A graph of the training session for first orientation of
 the three-link arm .

 Fig . 14 . A graph of the training session for second orientation
 of the three-link arm .

 16 shows the output data compared to the target data for
 all the joints in first and second orientation respectively .

 The average percentage error when using the lookup
 table for the testing was found to be 2 . 4% , 0 . 1% and
 0 . 5% for the first , second and third joints , respectively .
 The test was done on 15 dif ferent points lying on the
 same trajectory as the training path . Figure 17 shows the
 dif ference between the actual and the desired outputs for
 all three joints in first configurations or orientations in
 the testing session . Table VI shows the percentage error

 Fig . 15 . Comparison between actual and desired outputs of
 three joints for first orientation in 3-D for the train patterns .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 Neural network 623

 Fig . 16 . Comparison between actual and desired outputs of
 three joints for second orientation in 3-D for the train patterns .

 Fig . 17 . Comparison between actual and desired outputs of
 three joints for first orientation in 3-D for the test patterns .

 value for each train pattern for joint 1 of the first
 orientation . Even though the average percentage error
 was 0 . 7% , the percentage pattern error for the first 4
 patterns was quite large . The neural network was not
 trained long enough to give a good generalisation of the
 first 4 patterns . Table VII shows the percentage error
 value for each test pattern . As can be seen , those
 patterns that fall in the training pattern range (Table VI :
 about 0 . 33 and less) gave large percentage pattern error .
 This was why the average percentage error for the first

 Table VI . Train patterns with pattern error for the first joint of
 the first orientation . (* division by zero)

 Table VII . Test patterns with pattern error for the first joint of
 the first orientation

 link of the first orientation of the three-link manipulator
 arm was quite large , 2 . 4% .

 A similar network was used for the second orientation .
 The training rate , h , was 0 . 596 and the momentum
 factor , a , was 0 . 932 . The average percentage error for
 the first , second and third joints were 0 . 1% , 0 . 6% and
 0 . 001% , respectively . After the test was done , the
 average percentage error was found to be 0 . 5% , 0 . 2%
 and 0 . 3% for the first , second and third joints . Figure 18
 shows dif ference in outputs for all the joints for the
 second orientation in the testing session .

 4 .1 .1 Ef fect of increasing the training period . These
 results suggested that a larger training period might
 produce better results . As the maximum integer size on a
 PC does not allow a longer training session , i . e . more
 than 30 , 000 iterations , the work was repeated on a SUN
 workstation for the three-link manipulator arm in the
 first orientation with 45 , 000 iterations during the training
 period . The average percentage error for the first link is
 now 1 . 1% . Table VIII shows the new percentage error
 value for each test pattern . A graph of the training
 session , the training results and the test results are shown
 in Figures 19 , 20 and 21 , respectively .

 5 . DISCUSSION AND CONCLUSION
 For a multiple degree-of-freedom manipulator arm , there
 is redundancy and a particular end ef fector position can

 Fig . 18 . Comparison between actual and desired outputs of
 three joints for second orientation in 3-D for the test patterns .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 624 Neural network

 Table VIII . Test patterns with pattern error for the first joint
 of the first orientation with 45 , 000 iterations

 Fig . 19 . A graph of the training session for first orientation for
 45 , 000 iterations for the three-link arm .

 be reached from many orientations of the arm . The aim
 of the work described here was to use the neural net-
 work as lookup tables for such redundant manipulators .
 (Tables IX and X) .

 The results presented show that the lookup tables
 worked well . The average error for the dif ference
 between the actual and the desired outputs is below 2%
 (Figures 9a , 9b and 10) , except for the first joint of the
 first orientation of the three link manipulator arm due to
 the short training time (Figures 6 and 7) . The result
 could have been better for all joints in all configurations
 if the training time had been lengthened . This was not
 possible as the simulation was done on an IBM-

 Fig . 21 . Comparison between actual and desired outputs of
 three joints for first orientation in 3-D for the test patterns
 (45 , 000 iterations) .

 compatible personal computer , as the number of
 iterations is limited to a maximum of 32 , 000 iterations .
 This is probably due to the PC under MS-DOS being a
 16 bit system . The largest integer size is 2 1 6 , which is
 65 , 536 . With two’s complement , for negative values , this
 drops down to about 32 , 000 .

 In a real working environment this would not matter ,
 as the training would have been done of f-line . The
 training of the new workspace could be done once the
 manipulator has been installed . All the possible
 orientations of the arm are used in the training of the
 network , and the corresponding weights then saved as
 lookup tables .

 Future work will address the limitations identified so
 far , in particular shorter training time .

 Table IX . The error value taken for the test pattern of the
 two-link manipulator arm for first and second joints for (a) the

 first orientation , and (b) the second orientation

 Fig . 20 . Comparison between actual and desired outputs of three joints for first orientation in 3-D for the train patterns (45 , 000
 iterations) .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

 Neural network 625

 Table X . The error value taken for the test pattern for the
 second orientation of the three-link manipulator arm for first ,

 second and third joints .

 The inverse kinematics solution of a manipulator by
 using neural network can also be applied to flexible
 manipulators . The neural network can be trained by
 using the position of the actual end ef fector of the
 flexible manipulator in Cartesian co-ordinate frame
 against the joint angles . And again this can be saved as
 lookup tables . The inverse kinematics solution of any
 end ef fector position can then be found by giving the
 position in Cartesian frame into the system . As the
 flexibility of the manipulator was already included in the

 training session , the result obtained would also give the
 position of the joint angles with the flexibility included .

 An extension to this work will be done at a later stage
 where the architecture of the neural network will be the
 same for the lookup tables , i . e . the same number of
 hidden neurons for all the lookup tables . Then there is
 no need to use a dif ferent neural network for the
 dif ferent lookup tables . The same neural network
 architecture can be used for all the dif ferent orientations
 of the arm by just using the corresponding lookup tables .

 References
 1 . R . Colbaugh , K . Glass & H . Seraji , ‘‘An Adaptive Inverse

 Kinematics Algorithm for Robot Manipulators’’ Int . J .
 Modelling & Simulation 11 , No . 2 , 33 – 38 (1991) .

 2 . F . J . Arteaga-Bravo , ‘‘Multilayer back-propagation network
 for learning the forward and inverse kinematics equations’’
 Proc . Joint 1 9 9 0 IEEE Int . Neural Network Conf . (1990) pt .
 2 , pp . 319 – 321 .

 3 . J . Guo & V . Cherkassky , ‘‘A solution to the inverse
 kinematics problem in robotics using neural network
 processing . ’’ Proc . Int . Conf . On Neural Network (1989) pp .
 II299 – II304 .

 4 . H . Ritter , T . Martinetz & K . Schulten , Neural Computation
 and Self - organising Maps : An Introduction . (Addison-
 Wesley , Reading , Mass ., 1992) .

 5 . Simon S . Haykin , Neural Networks , a Comprehensi y e
 Foundation . (Maxwell Macmillan Int ., London , 1994) .

 6 . Russell C . Eberhart & Roy W . Dobbin , Neural Network PC
 Tools : a practical guide . (Academic Press , New York , 1990) .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

