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Finding the inverse kinematics of manipulator arm using
artificial neural network with lookup table
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SUMMARY

Neural networks were used to find the inverse kinematics
of a two-link planar and three-link manipulator arms.
The neural networks utilised were multi-layered
perceptions with a back-propagation training algorithm.
Because of the redundancy in the manipulators studied,
this work used lookup tables for the different
configurations of the manipulator arm.
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1. INTRODUCTION

The forward and inverse kinematic solutions for
manipulator arms are computer intensive and time
consuming, especially for many degrees of freedom
manipulator arm. Colbaugh et al.' proposed an adaptive
algorithm based on Model Reference Adaptive Control
(MRAC) to solve the inverse kinematics problem of
manipulator. Arteaga-Bravo® used a multi-layered back
propagation network to solve the equations for forward
and inverse kinematics. Even though he modelled a
two-link planar manipulator, the training of the artificial
neural network for the inverse kinematics solution was
done on a simulated single-link manipulator. Guo et al.”
proposed an approach based on the Jacobian control
technique for the solution of the inverse kinematics.
They used a Hopfield neural network to find the
solutions of the inverse kinematics of a planar four
degree-of-freedom manipulator. The end effector tra-
versed a straight line trajectory in the xy-coordinate
frame.

Whatever inverse kinematics algorithm is used for
redundant manipulators, there are many solutions that
are available for any single point or position of the end
effector. The work presented here is an extension to the
solution of inverse kinematics using artificial neural
network. The inverse kinematics of a manipulator arm is
solved by using a feedforward multi-layered perceptron
with back-propagation algorithm for the training session.
The network is then trained with data for a number of
end effector positions expressed in Cartesian co-
ordinates and the corresponding joint angles. The data
consists of the different configurations available for the
arm. For any position of the end effector in Cartesian
space, lookup tables of the weights for the artificial
neural network are created for each of the configurations
or orientations of the arm. The lookup tables* can then
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be used to plan the trajectory of the arm for whichever
configuration of the arm is required.

2. THEORY

The work described is based on two manipulator arm
configurations. One is a two-link planar manipulator and
the other is a three-link manipulator arm in three-
dimensional space. For both the two-link and three-link
manipulators, there are two orientations or poses that
are possible for every position of the end effector in
Cartesian space. The different poses of the arm are then
used to train a three-layer, fully connected back-
propagation model (Figure 1). Thus, this gave two sets of
weights for each manipulator arm after the training
session was over.

The network is trained until it gives an error of about
2% or less for the difference between an actual and
desired output, the error value of 2% having been
chosen because it was sufficient for this work. The
weights of the connections are saved as lookup tables.
This lookup tables can then be used, depending on the
orientations of the manipulator required, to find the joint
angles of the arm given the position of the end effector in
Cartesian space.

A block diagram of the proposed work is shown in
Figure 2.

The signals, o;;, are presented to a hidden layer neuron
in the network via the input neurons. Each of the signals
from the input neurons are multiplied by the value of the
weights of the connection, w;, between the respective
input neurons and the hidden neuron. The net input to a
hidden neuron is calculated as the sum of the values for
all connections coming into the neuron.

n
net'input(hidden neuron) = lh = 2 Wj X Oji (1)
j=1
for n inputs.
The output, oy, of a hidden neuron as a function of its
net input is described in equation 2. The sigmoid
function is:

b
1+e

output = oy; = 2)
Once the outputs of the hidden layer neurons have

been calculated, the net input to each output layer is

calculated in a similar manner as in equation 1.

During the training phase, the feedforward output
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Fig. 1. A model of the 3 layer perceptron neural network.

state calculation is combined with backward error
propagation and weight adjustment calculations that
represent the network’s learning, or training. Equation 3
presents the definition of the error signal for the ouptut
layer neurons.

& =1t~ ox) ®)

and from equation 2:

8, =0,(1 = 0,)(t — 0) 4)

where ¢ is the target or desired value, and o is the actual
value from output neuron after going through the
feedforward calculation. The error calculation was
implemented on a neuron-by-neuron basis over the
entire set (epoch) of patterns. This error value, &, was
used to perform the appropriate weight adjustments of
the weight connection between the output layer and
hidden layer. The error value from equation 5 was used
for the weight adjustments between the hidden layer and
input layer.

8, =f"(in) Z Wi, = 0,(1 —o04) 2 Wy, 6, )
=0 =0

where 9§, is the error value of the hidden layer, §; is the
error value of the output layer, o, is the output of the
sigmoid function and wjy, is the connection weights
between the output and hidden layers.

The weight changes were calculated according to
equation 6:

w(old) = w(new) + ndo + a[Aw(old)] (6)

The aim of the training phase is to minimise this
average sum squared error over all training patterns. The
speed of convergence of the network depends on the
training rate, n, and the momentum factor, a.

Lookup
table
-
X g
P ANN -

Fig. 2. A block diagram of the system.
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The back-propagation algorithm provides an ap-
proximation to the trajectory in weight space computed
by the method of steepest descent. The smaller the
learning rate, m, the smaller will the changes to the
synaptic weights in the network be from one iteration to
the next, and the smoother will be the trajectory in
weight space. This improvement, however, is at the
expense of a slower rate of learning. However, if the
learning rate parameter is made large so as to speed up
the rate of learning, the resulting large changes may
result in the network becoming unstable, i.e. oscillatory.
A simple method of increasing the rate of learning and
yet avoiding the danger of instability is to include a
momentum term, «. The other problem with this kind of
weight updating is that it sometimes gets caught in local
energy minima. By multiplying the momentum term with
the previous weight change, the network can overcome
the pull of the local minima and continues its gradient
descent towards the globally optimal solution.

3. TWO-LINK PLANAR MANIPULATOR ARM
Figure 3 shows the two-link planar manipulator arm
simulated and Table I shows its joint parameters. Both
the link lengths are taken to be 1. The equations that
relate the Cartesian position of the end effector with the
joint angles of the manipulator arm are given in equation
7.

x = cos (6, + 6,) + cos (6,) (7a)
y =sin (6, + 6,) + sin (6,) (7b)
giving
0, = atan 2(y, x) — atan 2(k», k;) (8a)
6, = atan 2(sin 6,, cos 6) (8b)

where k; =1+ cos 6,
k,=sin 6,
cos 0, = (x> +y*—2)/2
sin 6, = im

A single hidden layer neural network with two inputs,
x and y, and two outputs, 6, and 6,, was trained using
the back-propagation algorithm described earlier, along a
trajectory of the end effector in the xy-plane. The final
weights, when the error results were less than or equal to
2%, were saved as lookup tables to be used later as a
check of the system on different points along that
trajectory.

Tables I1a and IIb show the training data or patterns

ty

6 X

>
>

Fig. 3. A model of the two-link planar manipulator arm.
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Table I. Joint parameters of the two-link planar manipulator
arm

Jointi 6; a; o d

1 e | 1] 0] o0

2 0, 1 0 0

used during the training stage of the two orientations of
the two-link manipulator arm.

3.1 Results for the two-link manipulator arm

The trajectory of the end effector that was used to train
the back-propagation neural network in two-dimensional
space is shown in Figures 4a and 4b. Both the figures give
the orientation of the arm while traversing the same path
or trajectory. For the first orientation, the hidden layer
has 5 neurons, the rate of training, n, was 2.018, and the
momentum factor, «, was 0.54.

The training of the 9 patterns was done 3000 times.
The average percentage error, i.e. the percentage of the
difference between actual and targeted/desired output, at
the final iteration of the final session was 0.02% for the
first joint and 0.3% for the second joint. Figure 5 shows
the graph of the training session done on the arm for the
first orientation. An average sum squared error is taken
as an indication of the average error to offset any
negative number present in the error. The average sum
squared errors obtained were 0.7% for the first joint and
1.2% for the second joint and 1.1% for the first joint and
0.7% for the second joint, for the first and second
orientation respectively. Figures 6a and 6b shows the
difference between the actual and desired outputs for the
different joints for the first orientation.

As a check, a neural network with 6 hidden neurons

Table II. The normalised training data of the two-link man-
ipulator arm for (a) the first orientation, (b) the second

orientation

Operational space Joint space
X y 0y 0,
1.0 0.55 0.6665 0.8759
0.9 0.60 0.7215 0.9085
0.8 0.65 0.7780 0.9358
0.7 0.70 0.8356 0.9573
0.6 0.75 0.8936 0.9726
0.5 0.80 0.9508 0.9814
0.5 0.85 0.9519 0.9592
0.6 0.90 0.9010 0.9085
0.7 0.95 0.8525 0.8543

Operational space Joint space
X y 0" 0"
1.0 0.55 0.6787 0.8759
0.9 0.60 0.6414 0.9085
0.8 0.65 0.5891 0.9358
07 0.70 0.5173 0.9573
0.6 0.75 0.4169 0.9726
0.5 0.80 0.2596 0.9814
0.5 0.85 0.1269 0.9592
0.6 0.90 0.1287 0.9085
0.7 0.95 0.0628 0.8543
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Fig. 4. The planar manipulator arm traversing a path used for
training in (a) first orientation (b) second orientation.

was used for the training, with all other parameters
remaining the same. The average sum squared error
were found to be 0.6% and 1.3% for the first and second
link respectively.

The number of hidden neurons were randomly chosen
for the neural network. There are no specific method or
algorithm to choosing the number of hidden neurons at
the initial stage.® Then the learning parameter and the
momentum factor were initialised to small random
numbers. These two numbers were then adjusted (by
increasing or decreasing the value) to give the smallest
error value of the average sum squared error at the
output of the network. Table III shows the average sum

Graph of Average Error against No. of Trainings.
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Fig. 5. A graph of the training session for first orientation of
the two-link arm.
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Fig. 6. Comparison of target and actual outputs of the neural
network training session of the two-link arm for (a) first joint of
first orientation (b) second joint of first orientation.

squared error with different values of the learning
parameter and momentum factor for the two-link arm in
first orientation. The number of iterations done was
3000. The testing of the arm was done on different points
of the same trajectory as the training, and the average
error was found to be 0.01% for the first joint and 0.9%
for the second joint. Figure 7 shows the graph of both the
actual and target output for the two joints for first
orientation.

The same was done for the second orientation using a

Table III. A table of the different values of the learning term
and momentum factor with their corresponding error for the
first orientation of the two-link arm

n o error
1.000 0.54 0.000419
1.500 0.54 0.000173
1.900 0.54 0.000107
2.018 0.54 0.000102
2.018 0.3 0.000248
2.018 0.4 0.000158
2.018 0.5 0.00011
2.018 0.6 0.00011
2.018 0.7 0.00062
2.020 0.54 0.000102
2.010 0.54 0.000102
2.200 0.54 0.000105
2.005 0.54 0.000103
2.018 0.53 0.000104
2.018 0.55 0.000102
2.500 0.54 0.000162
3.000 0.54 0.003146
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Fig. 7. Comparison between actual and desired outputs during
the test session of the two joints for first orientation of the
two-link arm.

6 neurons hidden layer. The training rate was at 2.13 and
the momentum factor was at 0.23. As before, the number
of hidden neurons, the learning rate and momentum
factor were initally chosen randomly. They were then
adjusted accordingly to get the smallest error output
from the network. Figure 8 shows the graph of the
training session done on the arm for the first. Figures 9a
and 9b show the difference between the actual and
desired outputs for the different joints for the second
orientation. Again the average error of the first joint was
0.6% and 0.1% for the second joint. The average error
for the testing session was 0.7% for the first joint and
0.1% for the second joint. Figure 10 shows the graph of
both the actual and desired output for the two joints for
second orientation. The second orientation of the arm
needs more neurons for the training stage because of the
wide distribution of the output data. The network was
found to need more training either by increasing the
number of hidden neurons or iterations when the data or
patterns are widely distributed.

4. THREE-LINK MANIPULATOR ARM IN 3-D
SPACE

Figure 11 shows the three-link manipulator arm for
which the link parameters are shown in Table I'V. Again
the link lengths are taken to be 1 as above, to simplify
the calculations. The arm can move around in
three-dimensional workspace. Again, an artificial neural
network, with three inputs and outputs, and a single
hidden layer was used for the training session. The path
that was used to train the neural network is the trajectory
of the end effector in three-dimensional workspace as

Graph of Average Error against No. of Trainings.
0.20 ([2:6:2], n=2.13, o= 0.23)
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Fig. 8. A graph of the training session for second orientation of
the two-link arm.
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Fig. 9. Comparison of target and actual outputs of the neural
network training session of the two-link arm for (a) first joint
of second orientation (b) second joint of second orientation.

shown in Figures 12a and 12b for the first and second
orientation of the arm respectively. Tables V(a) and
V(b) shows the respective data used during the training
of the neural network.

2nd. joint
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Fig. 10. Comparison between actual and desired outputs during
the test session of the two joints for second orientation.

y (x.y)
2

\

@\ :

Fig. 11. A model of the three-link manipulator arm.
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Table IV. Joint parameters of the three-link manipulator arm

Jointi o a; o d

1 6, 0 90 0
2 6, 1 0 0
3 63 1 0 0

The equations relating the xyz-coordinates with the
joint angles are given in equation 9:

x =cos 0 X [cos (6, + 65) + cos 6,] (9a)
(9b)

(%)

y =sin 6, X [cos (6, + 65) + cos 6,]
z=sin (6, + 65) +sin 6,

thus giving:

6, = atan 2(y, x) (10a)
6, = atan 2(z, x/cos 6,) — atan 2(k,, k) (10b)
6; = atan 2(sin 65, cos 65) (10c)

05 -05

0 o0

Fig. 12. The path of the arm in 3-D space (a) during training in
first orientation and (b) in second orientation.
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Table V. The normalised training data of the three-link man-
ipulator arm for (a) the first orientation, (b) the second
orientation

X y F4 64 62 03
0.05 | 0.00 | 0.950 | 0.00000 | 0.93060 | 0.42227
0.10 | 0.05 | 0.950 ] 0.23182 | 0.91293 | 0.41850
015 | 0.10 [ 0.948 | 0.29400 | 0.89260 | 0.41223
020 | 0.15 [ 0.946 | 0.32175 | 0.87158 | 0.40499
025 | 020 | 0.942 | 0.33737 | 0.85065 | 0.39840
0.30 | 0.25 [ 0.936 | 0.34737 | 0.83040 | 0.39408
035 | 030 [ 0.929 1 0.35431 | 0.81135 | 0.39361
040 | 035 [ 0.918 | 0.35941 [ 0.79390 | 0.39839
045 | 040 | 0.904 | 0.36332 | 0.77828 | 0.40943
050 | 0.45 [ 0.887 | 0.36641 | 0.76450 | 0.42726
055 | 050 | 0.867 | 0.36891 | 0.75231 | 0.45184
0.60 | 0.55 | 0.842 | 0.37097 | 0.74128 | 0.48265
0.65 | 060 | 0.813 | 0.37271 [ 0.73075 | 0.51881
0.70 | 0.65 | 0.778 | 0.37419 | 0.71994 | 0.55918
0.75 | 0.70 | 0.739 | 0.37546 | 0.70797 | 0.60249
0.80 | 0.75 | 0.694 | 0.37658 | 0.69381 | 0.64729
0.85 | 0.80 | 0.643 | 0.37755 | 0.67634 | 0.69197
090 | 085 [ 0.585 | 0.37842 | 0.65429 | 0.73462
0.95 | 0.90 | 0.521 [ 0.37919 | 0.62625 | 0.77301

X y 4 [$]] 02 03
0.05 | 0.00 [ 0.950| 0.00000 | 0.81852 | 0.42227
0.10 | 0.05 [ 0.950| 0.46365 | 0.79874 | 0.41850
0.15 [ 0.10 | 0.948 | 0.58800 | 0.77791 | 0.41223
0.20 | 0.15 [ 0.946 | 0.64350] 0.75712 | 0.40499
0.25 | 0.20 [ 0.942| 0.67474 | 0.73580 | 0.39840
0.30 [ 0.25 | 0.936 | 0.69474 | 0.71312 | 0.39408
0.35 [ 0.30 | 0.929 | 0.70863 | 0.68819 | 0.39361
0.40 [ 0.35 | 0.918] 0.71883 | 0.66014 | 0.39839
0.45 [ 0.40 | 0.904 | 0.72664 | 0.62827 | 0.40943
0.50 [ 0.45 | 0.887 | 0.73282 [ 0.59207 | 0.42726
0.55 | 0.50 | 0.867 | 0.73782 [ 0.55124 | 0.45184
0.60 | 0.55 | 0.842] 0.74195 [ 0.50572 | 0.48265
0.65 | 0.60 | 0.813] 0.74542 | 0.45552 | 0.51881
0.70 | 0.65 | 0.778 ] 0.74838 | 0.40074 | 0.55918
0.75 | 0.70 | 0.739} 0.75093 | 0.34146 | 0.60249
0.80 | 0.75 | 0.694 | 0.75315| 0.27779 | 0.64729
0.85 | 0.80 | 0.643 | 0.75510 | 0.20982 | 0.69197
0.90 [ 0.85 | 0.585| 0.75683 [ 0.13777 | 0.73462
0.95 [ 0.90 | 0.521 | 0.75838 | 0.06199 | 0.77301

where k =1 + cos 65
k, =sin 65
cos 6= (x> +y*+z°—2)/2
sin 85 = £V1 — cos® 0,

4.1 Results for the three-link manipulator arm
The training of the first orientation was done using a
three layer back-propagation neural network with one
hidden layer. The hidden layer had 6 neurons. For the
first orientation,  was 0.71 and « was 0.055. These two
values gave the smallest output error of the neural
network during the training stage. The average
percentage error was 0.7%, 0.01% and 0.002% for the
first, second and third joint respectively when the
training was stopped at 30,000 iterations. The number of
patterns used for the training was 19. Training was
stopped at 30,000 iterations because the maximum size
integer possible on a PC is 32,000.

Figure 13 and 14 shows the graph of the training
session on the 19 patterns of the neural network for the
first and second orientations respectively. Figure 15 and
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Fig. 13. A graph of the training session for first orientation of
the three-link arm.
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Fig. 14. A graph of the training session for second orientation
of the three-link arm.
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16 shows the output data compared to the target data for
all the joints in first and second orientation respectively.

The average percentage error when using the lookup
table for the testing was found to be 2.4%, 0.1% and
0.5% for the first, second and third joints, respectively.
The test was done on 15 different points lying on the
same trajectory as the training path. Figure 17 shows the
difference between the actual and the desired outputs for
all three joints in first configurations or orientations in
the testing session. Table VI shows the percentage error

Comparison of desired against output of ANN.
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07 3rd. joint
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Fig. 15. Comparison between actual and desired outputs of
three joints for first orientation in 3-D for the train patterns.
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Table VII. Test patterns with pattern error for the first joint of
the first orientation

0.9
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Fig. 16. Comparison between actual and desired outputs of
three joints for second orientation in 3-D for the train patterns.

13 15 17 19

Desired Actual % error
0.32554 | 0.337986 3.82
0.32895 | 0.341523 3.82
0.33203 | 0.344385 3.72
0.33482 | 0.346705 3.55
0.33737 | 0.34859 3.33
0.33971 | 0.35013 3.07
0.34186 | 0.351395 2.79
0.34384 | 0.352444 2.50
0.34567 | 0.353322 2.21
0.34737 | 0.354068 1.93
0.34895 | 0.354683 1.64
0.35043 | 0.355249 1.38
0.35181 | 0.355728 1.11
0.3531 0.35619 0.88
0.35432 | 0.356595 0.64

. = = = =desired
joint angles
actual
= = = =desired
0.6
1st. joint actual
= = = =desired
3rd. joint -
P . Y actua
e & = wo» hdl v
1 3 5 7 9 11 13 15

pattern

Fig. 17. Comparison between actual and desired outputs of
three joints for first orientation in 3-D for the test patterns.

value for each train pattern for joint 1 of the first
orientation. Even though the average percentage error
was 0.7%, the percentage pattern error for the first 4
patterns was quite large. The neural network was not
trained long enough to give a good generalisation of the
first 4 patterns. Table VII shows the percentage error
value for each test pattern. As can be seen, those
patterns that fall in the training pattern range (Table VI:
about 0.33 and less) gave large percentage pattern error.
This was why the average percentage error for the first

Table VI. Train patterns with pattern error for the first joint of

the first orientation. (* division by zero)

Desired Actual % error
0 0.05576 v
0.23182 | 0.189439| -18.28
0.294 | 0.291069 -1.00
0.32175 | 0.333577 3.68
0.33737 | 0.34859 3.33
0.34737 | 0.35404 1.92
0.35431 | 0.356595 0.64
0.35941 | 0.358418| -0.28
0.36332 | 0.360277| -0.84
0.36641 | 0.362406| -1.09
0.36891 | 0.364859| -1.10
0.37097 | 0.36757 0.92
0.37271 | 0.37047 -0.60
0.37419 | 0.373368| -0.22
0.37546 | 0.376085 0.17
0.37658 | 0.378297 0.46
0.37755 | 0.379675 0.56
0.37842 | 0.379839 0.37
0.37919 | 0.378537| -0.17
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link of the first orientation of the three-link manipulator
arm was quite large, 2.4%.

A similar network was used for the second orientation.
The training rate, n, was 0.596 and the momentum
factor, «, was 0.932. The average percentage error for
the first, second and third joints were 0.1%, 0.6% and
0.001%, respectively. After the test was done, the
average percentage error was found to be 0.5%, 0.2%
and 0.3% for the first, second and third joints. Figure 18
shows difference in outputs for all the joints for the
second orientation in the testing session.

4.1.1 Effect of increasing the training period. These
results suggested that a larger training period might
produce better results. As the maximum integer size on a
PC does not allow a longer training session, i.e. more
than 30,000 iterations, the work was repeated on a SUN
workstation for the three-link manipulator arm in the
first orientation with 45,000 iterations during the training
period. The average percentage error for the first link is
now 1.1%. Table VIII shows the new percentage error
value for each test pattern. A graph of the training
session, the training results and the test results are shown
in Figures 19, 20 and 21, respectively.

5. DISCUSSION AND CONCLUSION
For a multiple degree-of-freedom manipulator arm, there
is redundancy and a particular end effector position can

joint angles
08 1 2nd. joint
S . - et [ e - - Gesired
0.6 1st. joint
actual
04 _ 3rd. joint = = = =desired
actual
02 4+ — 1 T o = = = =desired
1 3 5 7 9 11 13 15
actual

pattern

Fig. 18. Comparison between actual and desired outputs of
three joints for second orientation in 3-D for the test patterns.
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Table VIII. Test patterns with pattern error for the first joint
of the first orientation with 45,000 iterations

target actual % error
0.32554| 0.332058| 2.002
0.32895| 0.334684| 1.743
0.33203] 0.336832 1.446
0.33482] 0.338617] 1.134
0.33737| 0.340124| 0.816
0.33971] 0.34142[ 0.503
0.34186| 0.342556| 0.204
0.34384| 0.343572| -0.078
0.34567| 0.344497| -0.339
0.34737| 0.345354| -0.580
0.34895| 0.346135| -0.807
0.35043| 0.346904| -1.006
0.35181| 0.347621| -1.191
0.3531] 0.348345| -1.347
0.35432| 0.34903] -1.493

Output Error vs. No. of Trainings
([3:6:3], n=0.71, o=0.055, iterations=45000)

o
o
N

o
=]
G

0.03

0.01

Average sum squared error

o
o
[

4 4 4 4 4 4 4

N
No. of trainings

Fig. 19. A graph of the training session for first orientation for
45,000 iterations for the three-link arm.

be reached from many orientations of the arm. The aim
of the work described here was to use the neural net-
work as lookup tables for such redundant manipulators.
(Tables IX and X).

The results presented show that the lookup tables
worked well. The average error for the difference
between the actual and the desired outputs is below 2%
(Figures 9a, 9b and 10), except for the first joint of the
first orientation of the three link manipulator arm due to
the short training time (Figures 6 and 7). The result
could have been better for all joints in all configurations
if the training time had been lengthened. This was not
possible as the simulation was done on an IBM-

98 8 8 8 § § 8 8

Neural network

Comparison of target and actual output.

1 2nd. joint = = = =-target

08 + actual
ﬁ 087 3rd. joint T T ttarget
304 Yue P actual
02+ 1st. joint = = = =target

0 ; T S — actual

123 45 6 7 8 9 1011 1213 1415
Pattern no.
Fig. 21. Comparison between actual and desired outputs of

three joints for first orientation in 3-D for the test patterns
(45,000 iterations).

compatible personal computer, as the number of
iterations is limited to a maximum of 32,000 iterations.
This is probably due to the PC under MS-DOS being a
16 bit system. The largest integer size is 2'°, which is
65,536. With two’s complement, for negative values, this
drops down to about 32,000.

In a real working environment this would not matter,
as the training would have been done off-line. The
training of the new workspace could be done once the
manipulator has been installed. All the possible
orientations of the arm are used in the training of the
network, and the corresponding weights then saved as
lookup tables.

Future work will address the limitations identified so
far, in particular shorter training time.

Table IX. The error value taken for the test pattern of the
two-link manipulator arm for first and second joints for (a) the
first orientation, and (b) the second orientation

0" 0," Error % 0," 0," Error %
0.694 0.691 -0.4 0.893 0.897 0.4
0.722 0.718 -0.5 0.909 0.905 -0.3
0.750 0.747 -0.4 0.923 0.914 -0.9
0.807 0.810 04 0.947 0.932 -1.7
0.836 0.842 0.8 0.957 0.940 -1.8

* Calculated value (target). + Output from ann (output).

0,* 0," Error % 0,* 0," Error %
0.662 0.659 -0.5 0.893 0.894 0.2
0.641 0.643 0.2 0.909 0.909 0.1
0.617 0.623 0.9 0.923 0.923 0.0
0.556 0.565 1.6 0.947 0.945 -0.3
0.517 0.523 1.2 0.957 0.953 -0.4

* Calculated value (target). + Output from ann (output).

Comparison between the target and actual output.

08 4 2nd. joint actual

- = = = =tfarget

é 0871 actual
g 04 3rd. joint i - -target
021 ¢ 1st. joint actual

= = = =target

Pattern no.

"t

15 17 19

Fig. 20. Comparison between actual and desired outputs of three joints for first orientation in 3-D for the train patterns (45,000

iterations).
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Table X. The error value taken for the test pattern for the
second orientation of the three-link manipulator arm for first,
second and third joints.

desired [ actual | error| | desired [ actual | error| | desired| actual | error
o, o, % o, e, % o, 0, %

0.651 | 0.656 [ 0.8 0.753 | 0.755 | 0.3 0.404 | 0.402 | 0.5
0.658 | 0.660 | 0.4 0.749 | 0.751 | 0.3 0.402 | 0.400 | 0.5
0.664 | 0.664 | 0.1 0744 | 0.747 | 0.3 0.401 | 0.399 | 0.5
0.670 | 0.668 | -0.2 0.740 | 0.742 | 0.3 0.400 | 0.398 | 0.5
0675 | 0672 | 0.4 0.736 | 0.738 | 0.3 0.398 | 0.397 | 0.5
0.679 | 0.675 [ 0.6 0.731 | 0.733 | 0.2 0.397 | 0.396 | 0.4
0.684 | 0.679 | 0.7 0.727 | 0.728 | 0.2 0.396 | 0.395 | 0.4
0.688 | 0.682 | 0.8 0.722 | 0.724 | 0.2 0.395 | 0.394 | 0.3
0.691 | 0685 | 0.9 0.718 | 0.719 | 0.2 0.395 | 0.394 | -0.3
0.695 | 0.688 | 0.9 0.713 | 0.714 | 0.1 0.394 | 0.393 | 0.2
0.698 | 0.691 | -1.0 0.708 | 0.708 | 0.1 0.394 | 0.393 | 0.1
0.701 | 0.694 | 0.9 0.703 | 0.704 | 0.0 0.393 | 0.393 | 0.1
0.704 | 0.697 | -0.9 0.698 | 0.698 | 0.0 0.393 | 0.393 | 0.0
0.706 [ 0.700 | -0.9 0.693 | 0.693 | 0.0 0.393 | 0.393 | 0.0
0.709 | 0.703 | -0.9 0.688 | 0.688 | -0.1 0.394 | 0.394 | 0.1

The inverse kinematics solution of a manipulator by
using neural network can also be applied to flexible
manipulators. The neural network can be trained by
using the position of the actual end effector of the
flexible manipulator in Cartesian co-ordinate frame
against the joint angles. And again this can be saved as
lookup tables. The inverse kinematics solution of any
end effector position can then be found by giving the
position in Cartesian frame into the system. As the
flexibility of the manipulator was already included in the
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training session, the result obtained would also give the
position of the joint angles with the flexibility included.
An extension to this work will be done at a later stage
where the architecture of the neural network will be the
same for the lookup tables, i.e. the same number of
hidden neurons for all the lookup tables. Then there is
no need to use a different neural network for the
different lookup tables. The same neural network
architecture can be used for all the different orientations
of the arm by just using the corresponding lookup tables.
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