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 SUMMARY
 Neural networks were used to find the inverse kinematics
 of a two-link planar and three-link manipulator arms .
 The neural networks utilised were multi-layered
 perceptions with a back-propagation training algorithm .
 Because of the redundancy in the manipulators studied ,
 this work used lookup tables for the dif ferent
 configurations of the manipulator arm .
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 1 .  INTRODUCTION
 The forward and inverse kinematic solutions for
 manipulator arms are computer intensive and time
 consuming ,  especially for many degrees of freedom
 manipulator arm .  Colbaugh et al . 1  proposed an adaptive
 algorithm based on Model Reference Adaptive Control
 (MRAC) to solve the inverse kinematics problem of
 manipulator .  Arteaga-Bravo 2  used a multi-layered back
 propagation network to solve the equations for forward
 and inverse kinematics .  Even though he modelled a
 two-link planar manipulator ,  the training of the artificial
 neural network for the inverse kinematics solution was
 done on a simulated single-link manipulator .  Guo et al . 2

 proposed an approach based on the Jacobian control
 technique for the solution of the inverse kinematics .
 They used a Hopfield neural network to find the
 solutions of the inverse kinematics of a planar four
 degree-of-freedom manipulator .  The end ef fector tra-
 versed a straight line trajectory in the  xy -coordinate
 frame .

 Whatever inverse kinematics algorithm is used for
 redundant manipulators ,  there are many solutions that
 are available for any single point or position of the end
 ef fector .  The work presented here is an extension to the
 solution of inverse kinematics using artificial neural
 network .  The inverse kinematics of a manipulator arm is
 solved by using a feedforward multi-layered perceptron
 with back-propagation algorithm for the training session .
 The network is then trained with data for a number of
 end ef fector positions expressed in Cartesian co-
 ordinates and the corresponding joint angles .  The data
 consists of the dif ferent configurations available for the
 arm .  For any position of the end ef fector in Cartesian
 space ,  lookup tables of the weights for the artificial
 neural network are created for each of the configurations
 or orientations of the arm .  The lookup tables 4  can then

 be used to plan the trajectory of the arm for whichever
 configuration of the arm is required .

 2 .  THEORY
 The work described is based on two manipulator arm
 configurations .  One is a two-link planar manipulator and
 the other is a three-link manipulator arm in three-
 dimensional space .  For both the two-link and three-link
 manipulators ,  there are two orientations or poses that
 are possible for every position of the end ef fector in
 Cartesian space .  The dif ferent poses of the arm are then
 used to train a three-layer ,  fully connected back-
 propagation model (Figure 1) .  Thus ,  this gave two sets of
 weights for each manipulator arm after the training
 session was over .

 The network is trained until it gives an error of about
 2% or less for the dif ference between an actual and
 desired output ,  the error value of 2% having been
 chosen because it was suf ficient for this work .  The
 weights of the connections are saved as lookup tables .
 This lookup tables can then be used ,  depending on the
 orientations of the manipulator required ,  to find the joint
 angles of the arm given the position of the end ef fector in
 Cartesian space .

 A block diagram of the proposed work is shown in
 Figure 2 .

 The signals ,   o j i ,  are presented to a hidden layer neuron
 in the network via the input neurons .  Each of the signals
 from the input neurons are multiplied by the value of the
 weights of the connection ,   w j ,  between the respective
 input neurons and the hidden neuron .  The net input to a
 hidden neuron is calculated as the sum of the values for
 all connections coming into the neuron .

 net-input (hidden  neuron)  5  i h  5  O n
 j 5 1

 w j  3  o j i  (1)

 for  n  inputs .
 The output ,   o k j  ,  of a hidden neuron as a function of its

 net input is described in equation 2 .  The sigmoid
 function is :

 output  5  o k j  5
 1

 1  1  e 2 i h
 (2)

 Once the outputs of the hidden layer neurons have
 been calculated ,  the net input to each output layer is
 calculated in a similar manner as in equation 1 .

 During the training phase ,  the feedforward output
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 Fig .  1 .  A model of the 3 layer perceptron neural network .

 state calculation is combined with backward error
 propagation and weight adjustment calculations that
 represent the network’s learning ,  or training .  Equation 3
 presents the definition of the error signal for the ouptut
 layer neurons .

 d  5  f  9 ( i )( t  2  o k )  (3)

 and from equation 2 :

 d l  5  o k (1  2  o k )( t  2  o k )  (4)

 where  t  is the target or desired value ,  and  o k   is the actual
 value from output neuron after going through the
 feedforward calculation .  The error calculation was
 implemented on a neuron-by-neuron basis over the
 entire set (epoch) of patterns .  This error value ,   d  ,  was
 used to perform the appropriate weight adjustments of
 the weight connection between the output layer and
 hidden layer .  The error value from equation 5 was used
 for the weight adjustments between the hidden layer and
 input layer .

 d h  5  f  9 ( i h )  O n l

 l 5 0
 w l h d l  5  o h (1  2  o h )  O n l

 l 5 0
 w l h d l  (5)

 where  d h   is the error value of the hidden layer ,   d l   is the
 error value of the output layer ,   o h   is the output of the
 sigmoid function and  w l h   is the connection weights
 between the output and hidden layers .

 The weight changes were calculated according to
 equation 6 :

 w (old)  5  w (new)  1  h d o  1  a  [ D w (old)]  (6)

 The aim of the training phase is to minimise this
 average sum squared error over all training patterns .  The
 speed of convergence of the network depends on the
 training rate ,   h  ,  and the momentum factor ,   a .

 Fig .  2 .  A block diagram of the system .

 The back-propagation algorithm provides an ap-
 proximation to the trajectory in weight space computed
 by the method of steepest descent .  The smaller the
 learning rate ,   h  ,  the smaller will the changes to the
 synaptic weights in the network be from one iteration to
 the next ,  and the smoother will be the trajectory in
 weight space .  This improvement ,  however ,  is at the
 expense of a slower rate of learning .  However ,  if the
 learning rate parameter is made large so as to speed up
 the rate of learning ,  the resulting large changes may
 result in the network becoming unstable ,  i . e .  oscillatory .
 A simple method of increasing the rate of learning and
 yet avoiding the danger of instability is to include a
 momentum term ,   a  .  The other problem with this kind of
 weight updating is that it sometimes gets caught in local
 energy minima .  By multiplying the momentum term with
 the previous weight change ,  the network can overcome
 the pull of the local minima and continues its gradient
 descent towards the globally optimal solution .

 3 .  TWO-LINK PLANAR MANIPULATOR ARM
 Figure 3 shows the two-link planar manipulator arm
 simulated and Table I shows its joint parameters .  Both
 the link lengths are taken to be 1 .  The equations that
 relate the Cartesian position of the end ef fector with the
 joint angles of the manipulator arm are given in equation
 7 .

 (7a) x  5  cos  ( θ  1  1  θ  2 )  1  cos  ( θ  1 )

 y  5  sin  ( θ  1  1  θ  2 )  1  sin  ( θ  1 )  (7b)
 giving

 (8a) θ  1  5  atan  2(  y ,  x )  2  atan  2( k 2  ,  k 1 )

 θ  2  5  atan  2(sin  θ  2  ,  cos  θ  2 )  (8b)

 where  k 1  5  1  1  cos  θ  2

 k 2  5  sin  θ  2

 cos  θ  2  5  ( x 2  1  y  2  2  2) / 2
 sin  θ  2  5  Ú 4 1  2  cos 2  θ  2

 A single hidden layer neural network with two inputs ,
 x  and  y ,  and two outputs ,   θ  1  and  θ  2 ,  was trained using
 the back-propagation algorithm described earlier ,  along a
 trajectory of the end ef fector in the  xy -plane .  The final
 weights ,  when the error results were less than or equal to
 2% ,  were saved as lookup tables to be used later as a
 check of the system on dif ferent points along that
 trajectory .

 Tables IIa and IIb show the training data or patterns

 Fig .  3 .  A model of the two-link planar manipulator arm .
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 Table I .  Joint parameters of the two-link planar manipulator
 arm

 used during the training stage of the two orientations of
 the two-link manipulator arm .

 3 . 1  Results for the two - link manipulator arm
 The trajectory of the end ef fector that was used to train
 the back-propagation neural network in two-dimensional
 space is shown in Figures 4a and 4b .  Both the figures give
 the orientation of the arm while traversing the same path
 or trajectory .  For the first orientation ,  the hidden layer
 has 5 neurons ,  the rate of training ,   h  ,  was 2 . 018 ,  and the
 momentum factor ,   a  ,  was 0 . 54 .

 The training of the 9 patterns was done 3000 times .
 The average percentage error ,  i . e .  the percentage of the
 dif ference between actual and targeted / desired output ,  at
 the final iteration of the final session was 0 . 02% for the
 first joint and 0 . 3% for the second joint .  Figure 5 shows
 the graph of the training session done on the arm for the
 first orientation .  An average sum squared error is taken
 as an indication of the average error to of fset any
 negative number present in the error .  The average sum
 squared errors obtained were 0 . 7% for the first joint and
 1 . 2% for the second joint and 1 . 1% for the first joint and
 0 . 7% for the second joint ,  for the first and second
 orientation respectively .  Figures 6a and 6b shows the
 dif ference between the actual and desired outputs for the
 dif ferent joints for the first orientation .

 As a check ,  a neural network with 6 hidden neurons

 Table II .  The normalised training data of the two-link man-
 ipulator arm for (a) the first orientation ,  (b) the second

 orientation

 Fig .  4 .  The planar manipulator arm traversing a path used for
 training in (a) first orientation (b) second orientation .

 was used for the training ,  with all other parameters
 remaining the same .  The average sum squared error
 were found to be 0 . 6% and 1 . 3% for the first and second
 link respectively .

 The number of hidden neurons were randomly chosen
 for the neural network .  There are no specific method or
 algorithm to choosing the number of hidden neurons at
 the initial stage . 5 , 6  Then the learning parameter and the
 momentum factor were initialised to small random
 numbers .  These two numbers were then adjusted (by
 increasing or decreasing the value) to give the smallest
 error value of the average sum squared error at the
 output of the network .  Table III shows the average sum

 Fig .  5 .  A graph of the training session for first orientation of
 the two-link arm .
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 Fig .  6 .  Comparison of target and actual outputs of the neural
 network training session of the two-link arm for (a) first joint of
 first orientation (b) second joint of first orientation .

 squared error with dif ferent values of the learning
 parameter and momentum factor for the two-link arm in
 first orientation .  The number of iterations done was
 3000 .  The testing of the arm was done on dif ferent points
 of the same trajectory as the training ,  and the average
 error was found to be 0 . 01% for the first joint and 0 . 9%
 for the second joint .  Figure 7 shows the graph of both the
 actual and target output for the two joints for first
 orientation .

 The same was done for the second orientation using a

 Table III .  A table of the dif ferent values of the learning term
 and momentum factor with their corresponding error for the

 first orientation of the two-link arm

 Fig .  7 .  Comparison between actual and desired outputs during
 the test session of the two joints for first orientation of the
 two-link arm .

 6 neurons hidden layer .  The training rate was at 2 . 13 and
 the momentum factor was at 0 . 23 .  As before ,  the number
 of hidden neurons ,  the learning rate and momentum
 factor were initally chosen randomly .  They were then
 adjusted accordingly to get the smallest error output
 from the network .  Figure 8 shows the graph of the
 training session done on the arm for the first .  Figures 9a
 and 9b show the dif ference between the actual and
 desired outputs for the dif ferent joints for the second
 orientation .  Again the average error of the first joint was
 0 . 6% and 0 . 1% for the second joint .  The average error
 for the testing session was 0 . 7% for the first joint and
 0 . 1% for the second joint .  Figure 10 shows the graph of
 both the actual and desired output for the two joints for
 second orientation .  The second orientation of the arm
 needs more neurons for the training stage because of the
 wide distribution of the output data .  The network was
 found to need more training either by increasing the
 number of hidden neurons or iterations when the data or
 patterns are widely distributed .

 4 .  THREE-LINK MANIPULATOR ARM IN 3-D
 SPACE
 Figure 11 shows the three-link manipulator arm for
 which the link parameters are shown in Table IV .  Again
 the link lengths are taken to be 1 as above ,  to simplify
 the calculations .  The arm can move around in
 three-dimensional workspace .  Again ,  an artificial neural
 network ,  with three inputs and outputs ,  and a single
 hidden layer was used for the training session .  The path
 that was used to train the neural network is the trajectory
 of the end ef fector in three-dimensional workspace as

 Fig .  8 .  A graph of the training session for second orientation of
 the two-link arm .
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 Fig .  9 .  Comparison of target and actual outputs of the neural
 network training session of the two-link arm for (a)  first joint
 of second orientation (b)  second joint of second orientation .

 shown in Figures 12a and 12b for the first and second
 orientation of the arm respectively .  Tables V(a) and
 V(b) shows the respective data used during the training
 of the neural network .

 Fig .  10 .  Comparison between actual and desired outputs during
 the test session of the two joints for second orientation .

 Fig .  11 .  A model of the three-link manipulator arm .

 Table IV .  Joint parameters of the three-link manipulator arm

 The equations relating the  xyz -coordinates with the
 joint angles are given in equation 9 :

 x  5  cos  θ  1  3  [cos  ( θ  2  1  θ  3 )  1  cos  θ  2 ]  (9a)

 y  5  sin  θ  1  3  [cos  ( θ  2  1  θ  3 )  1  cos  θ  2 ]  (9b)

 z  5  sin  ( θ  2  1  θ  3 )  1  sin  θ  2  (9c)

 thus giving :

 θ  1  5  atan  2(  y ,  x )  (10a)

 θ  2  5  atan  2( z ,  x  / cos  θ  1 )  2  atan  2( k 2  ,  k 1 )  (10b)

 θ  3  5  atan  2(sin  θ  3  ,  cos  θ  3 )  (10c)

 Fig .  12 .  The path of the arm in 3-D space (a)  during training in
 first orientation and (b)  in second orientation .
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 Table V .  The normalised training data of the three-link man-
 ipulator arm for (a) the first orientation ,  (b) the second

 orientation

 where  k  5  1  1  cos  θ  3

 k 2  5  sin  θ  3

 cos  θ  3  5  ( x 2  1  y  2  1  z  2  2  2) / 2
 sin  θ  3  5  Ú 4 1  2  cos 2  θ  3

 4 . 1  Results for the three - link manipulator arm
 The training of the first orientation was done using a
 three layer back-propagation neural network with one
 hidden layer .  The hidden layer had 6 neurons .  For the
 first orientation ,   h   was 0 . 71 and  a   was 0 . 055 .  These two
 values gave the smallest output error of the neural
 network during the training stage .  The average
 percentage error was 0 . 7% ,  0 . 01% and 0 . 002% for the
 first ,  second and third joint respectively when the
 training was stopped at 30 , 000 iterations .  The number of
 patterns used for the training was 19 .  Training was
 stopped at 30 , 000 iterations because the maximum size
 integer possible on a PC is 32 , 000 .

 Figure 13 and 14 shows the graph of the training
 session on the 19 patterns of the neural network for the
 first and second orientations respectively .  Figure 15 and

 Fig .  13 .  A graph of the training session for first orientation of
 the three-link arm .

 Fig .  14 .  A graph of the training session for second orientation
 of the three-link arm .

 16 shows the output data compared to the target data for
 all the joints in first and second orientation respectively .

 The average percentage error when using the lookup
 table for the testing was found to be 2 . 4% ,  0 . 1% and
 0 . 5% for the first ,  second and third joints ,  respectively .
 The test was done on 15 dif ferent points lying on the
 same trajectory as the training path .  Figure 17 shows the
 dif ference between the actual and the desired outputs for
 all three joints in first configurations or orientations in
 the testing session .  Table VI shows the percentage error

 Fig .  15 .  Comparison between actual and desired outputs of
 three joints for first orientation in 3-D for the train patterns .
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 Fig .  16 .  Comparison between actual and desired outputs of
 three joints for second orientation in 3-D for the train patterns .

 Fig .  17 .  Comparison between actual and desired outputs of
 three joints for first orientation in 3-D for the test patterns .

 value for each train pattern for joint 1 of the first
 orientation .  Even though the average percentage error
 was 0 . 7% ,  the percentage pattern error for the first 4
 patterns was quite large .  The neural network was not
 trained long enough to give a good generalisation of the
 first 4 patterns .  Table VII shows the percentage error
 value for each test pattern .  As can be seen ,  those
 patterns that fall in the training pattern range (Table VI :
 about 0 . 33 and less) gave large percentage pattern error .
 This was why the average percentage error for the first

 Table VI .  Train patterns with pattern error for the first joint of
 the first orientation .  (* division by zero)

 Table VII .  Test patterns with pattern error for the first joint of
 the first orientation

 link of the first orientation of the three-link manipulator
 arm was quite large ,  2 . 4% .

 A similar network was used for the second orientation .
 The training rate ,   h  ,  was 0 . 596 and the momentum
 factor ,   a  ,  was 0 . 932 .  The average percentage error for
 the first ,  second and third joints were 0 . 1% ,  0 . 6% and
 0 . 001% ,  respectively .  After the test was done ,  the
 average percentage error was found to be 0 . 5% ,  0 . 2%
 and 0 . 3% for the first ,  second and third joints .  Figure 18
 shows dif ference in outputs for all the joints for the
 second orientation in the testing session .

 4 .1 .1  Ef fect of increasing the training period .  These
 results suggested that a larger training period might
 produce better results .  As the maximum integer size on a
 PC does not allow a longer training session ,  i . e .  more
 than 30 , 000 iterations ,  the work was repeated on a SUN
 workstation for the three-link manipulator arm in the
 first orientation with 45 , 000 iterations during the training
 period .  The average percentage error for the first link is
 now 1 . 1% .  Table VIII shows the new percentage error
 value for each test pattern .  A graph of the training
 session ,  the training results and the test results are shown
 in Figures 19 ,  20 and 21 ,  respectively .

 5 .  DISCUSSION AND CONCLUSION
 For a multiple degree-of-freedom manipulator arm ,  there
 is redundancy and a particular end ef fector position can

 Fig .  18 .  Comparison between actual and desired outputs of
 three joints for second orientation in 3-D for the test patterns .
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 Table VIII .  Test patterns with pattern error for the first joint
 of the first orientation with 45 , 000 iterations

 Fig .  19 .  A graph of the training session for first orientation for
 45 , 000 iterations for the three-link arm .

 be reached from many orientations of the arm .  The aim
 of the work described here was to use the neural net-
 work as lookup tables for such redundant manipulators .
 (Tables IX and X) .

 The results presented show that the lookup tables
 worked well .  The average error for the dif ference
 between the actual and the desired outputs is below 2%
 (Figures 9a ,  9b and 10) ,  except for the first joint of the
 first orientation of the three link manipulator arm due to
 the short training time (Figures 6 and 7) .  The result
 could have been better for all joints in all configurations
 if the training time had been lengthened .  This was not
 possible as the simulation was done on an IBM-

 Fig .  21 .  Comparison between actual and desired outputs of
 three joints for first orientation in 3-D for the test patterns
 (45 , 000 iterations) .

 compatible personal computer ,  as the number of
 iterations is limited to a maximum of 32 , 000 iterations .
 This is probably due to the PC under MS-DOS being a
 16 bit system .  The largest integer size is 2 1 6 ,  which is
 65 , 536 .  With two’s complement ,  for negative values ,  this
 drops down to about 32 , 000 .

 In a real working environment this would not matter ,
 as the training would have been done of f-line .  The
 training of the new workspace could be done once the
 manipulator has been installed .  All the possible
 orientations of the arm are used in the training of the
 network ,  and the corresponding weights then saved as
 lookup tables .

 Future work will address the limitations identified so
 far ,  in particular shorter training time .

 Table IX .  The error value taken for the test pattern of the
 two-link manipulator arm for first and second joints for (a) the

 first orientation ,  and (b) the second orientation

 Fig .  20 .  Comparison between actual and desired outputs of three joints for first orientation in 3-D for the train patterns (45 , 000
 iterations) .
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 Table X .  The error value taken for the test pattern for the
 second orientation of the three-link manipulator arm for first ,

 second and third joints .

 The inverse kinematics solution of a manipulator by
 using neural network can also be applied to flexible
 manipulators .  The neural network can be trained by
 using the position of the actual end ef fector of the
 flexible manipulator in Cartesian co-ordinate frame
 against the joint angles .  And again this can be saved as
 lookup tables .  The inverse kinematics solution of any
 end ef fector position can then be found by giving the
 position in Cartesian frame into the system .  As the
 flexibility of the manipulator was already included in the

 training session ,  the result obtained would also give the
 position of the joint angles with the flexibility included .

 An extension to this work will be done at a later stage
 where the architecture of the neural network will be the
 same for the lookup tables ,  i . e .  the same number of
 hidden neurons for all the lookup tables .  Then there is
 no need to use a dif ferent neural network for the
 dif ferent lookup tables .  The same neural network
 architecture can be used for all the dif ferent orientations
 of the arm by just using the corresponding lookup tables .

 References
 1 .  R .  Colbaugh ,  K .  Glass & H .  Seraji ,  ‘‘An Adaptive Inverse

 Kinematics Algorithm for Robot Manipulators’’  Int . J .
 Modelling & Simulation  11 ,  No .  2 ,  33 – 38 (1991) .

 2 .  F . J .  Arteaga-Bravo ,  ‘‘Multilayer back-propagation network
 for learning the forward and inverse kinematics equations’’
 Proc . Joint  1 9 9 0   IEEE Int . Neural Network Conf .  (1990) pt .
 2 ,  pp .  319 – 321 .

 3 .  J .  Guo & V .  Cherkassky ,  ‘‘A solution to the inverse
 kinematics problem in robotics using neural network
 processing . ’’  Proc . Int . Conf . On Neural Network  (1989) pp .
 II299 – II304 .

 4 .  H .  Ritter ,  T .  Martinetz & K .  Schulten ,   Neural Computation
 and Self  - organising Maps :   An Introduction .  (Addison-
 Wesley ,  Reading ,  Mass .,  1992) .

 5 .  Simon S .  Haykin ,   Neural Networks , a Comprehensi y  e
 Foundation .  (Maxwell Macmillan Int .,  London ,  1994) .

 6 .  Russell C .  Eberhart & Roy W .  Dobbin ,   Neural Network PC
 Tools :  a practical guide .  (Academic Press ,  New York ,  1990) .

https://doi.org/10.1017/S026357479700074X Published online by Cambridge University Press

https://doi.org/10.1017/S026357479700074X

