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SUMMARY

This paper deals with the perception mode of smart
wheelchairs. First we evoke the many mobility aid prototypes
developed in rehabilitation robotics by considering the point
of view of perception. Then we describe the localization
mode of the VAHM∗∗. We show how the odometric, ultra-
sound, and vision sensors are used in a complementary way
in order to locate the wheelchair in its known environment.
The mode of adjustment of the odometric position by the
least-squared method using ultrasonic measurements is
detailed. Then the use of vision to perceive the vertical
segments of the environment so as to refine the orientation
is presented. The results of the tests carried out on the
wheelchair are given and commented.

KEYWORDS: Smart wheelchair; Localization; Ultrasonic
sensors; Vision

1. Introduction

During the last 15 years, the mobility aid for people with
severe motor disabilities became a new field of research
in mobile robotics. To that end, powered wheelchairs are
designed by integrating an on-board computer that partially
deals with the steering task. The implementation of such
devices entails approaching the classic problems of mobile
robotics (path planning, navigation, localization, etc.) and
adapting them to the particular context of the application.

The VAHM project, developed in our laboratory, aims
to conceive such a prototype. The vehicle is fitted with
odometric, ultrasound, and vision sensors; in this paper
we deal with its localization mode during movement. We
endeavor to show how the specificity of the application led
us to use the various sensors in a complementary way so as
to make the most of measurements of the ones to make up
for the weaknesses of the others.

The paper is organized as follows: In Section 2, we describe
the works on similar projects developed by other teams.
Section 3 shows the localization mode of the VAHM and the
study on the validity of odometric measurements. Section 4
describes the approach on how to correct the position with
the ultrasonic sensors, by using the least-squared method.
Section 5 deals with orientation adjustment using pictures
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acquired by the camera. Finally we conclude by considering
the contribution of this work on future developments of smart
wheelchairs.

2. Previous Works

Several studies have been carried out to design smart wheel-
chairs. They led to systems with different levels of autonomy
as well as different means of achieving various functional-
ities. One can count more than 20 prototypes which offer a
diversity of movement approaches with various correspond-
ing functionalities of perception. The referenced works are
described according to their environment perception modes.

2.1. Reactive mode
Measurements are interpreted immediately to adapt the tra-
jectory. The most prevalent method is “obstacle avoidance,”
which consists in modifying the trajectory to avoid colliding
with an obstacle. This function may be achieved through
various levels of interpretation of the measurements.

The most immediate approaches take measurements
and reduce the speed in the direction where an obstacle is
perceived, for example with ultrasound (US) measurements1

or infrared (IR) measurements28 or by combining IR,
US, and bumper.2−4 The whole US measurements can be
gathered in a single representation allowing to choose the
direction which is the closest to the one pointed out by
the user and presenting no obstacle.6,7 Obstacle avoidance
can also be complementary to localization.8 Other methods
translate sensor readings into control on the motors for
the avoidance of obstacle by resorting to fuzzy logic,9−11

artificial intelligence,12 or probabilistic models.13,14

Other reactive primitives take place directly from
the sensor measurements using alternatives to obstacle
avoidance. “Path following” will react to the sensor measure-
ments by reproducing a trajectory learned during a training
phase.25,26 “Mobile following” makes the wheelchair carry
out the same movement as a person or another vehicle as
perceived by the camera.1,9 “Wall following” consists in
adjusting the trajectory on a line parallel with a wall, with
the distance between the wheelchair and the wall measured
by sonar sensors and kept constant.7,10 And “door passing”
slows the wheelchair down to make it move through a
difficult crossing.7,12

https://doi.org/10.1017/S0263574708004773 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574708004773


304 Perception mode of a smart wheelchair

2.2. Localization
Sensor measurements are used to establish the position of
the wheelchair so as to carry out programmed trajectories
correctly. The approaches differ depending on whether
artificial beacons are present or not, on whether there is
preliminary knowledge of the environment or not, and on
the mode of interpretation of the measurements.

The position can be determined from a simple comparison
between current data and learned data, which may be of
various types: trajectories,15 multidimensional histograms
(color gradient textures, etc.),17 or profiles of free space.16

The perception of known visual beacons is also possible.
They can consist of a simple marking on the floor18 or more
or less complex patterns on the walls.8,19

Some works use more elaborate mathematical formalisms
in order to adjust the odometric position. The measurements
are matched with the features of the environment that they
perceive. Then an adjustment of the position is worked
out using the least-squared method20,21,22,23 or a Kalman
filter.8,24

3. Localization Approach

3.1. Presentation of the VAHM project
The VAHM project aims at developing a powered wheelchair
dedicated to moving in an indoor environment. It offers the
user various functionalities to make its driving easier. The
prototype on which we work is shown in Fig. 1.

It consists of a classical Power PushTM powered wheelchair
fitted with 16 ultrasonic sensors, an odometric system, a CCD
camera fixed below the armrests, and a microcomputer. The
man–machine communication system consists of a screen,
on which the machine displays its information and requests,
and of a sensor allowing the user to give his instructions.

The type and the activation means of the control handle
depend on the abilities of the user. It can consist of a joystick,
like on a standard powered wheelchair, or of an on-off switch,
thanks to which the driver selects destinations displayed on
the screen.20 The on-board computer is intended for the
realization of various functionalities, which may range from
reactive primitives to the machine exerting full control of
movements. In this case the user indicates the place he wants
to reach, using the graphical interface, and the system looks
for the best path and checks its achievement.

In this context the localization is essential in order to
check that the trajectory is followed properly and that

Fig. 1. Prototype of the VAHM.

the destination is actually reached. Two distinct modes of
localization are established according to the state of the
wheelchair: stationary or moving. We developed a method
based on the occupancy grids for the stationary wheelchair.27

It allows to compute the position of the wheelchair from the
ultrasonic measurements in less than one minute. When the
wheelchair is moving, real-time execution requires a faster
procedure which uses odometric measurements, ultrasonic
measurements, and the pictures delivered by camera.

We conceived two distinct procedures in order to make the
most of the possibilities of each case. In fact, the static mode
of localization requires few measurements but a significant
processing time while the dynamic localization mode—
which is the subject of this paper—uses more measurements
but a shorter processing time.

The conception of the dynamic localization method is
led by the search for the best complementarity between the
perception abilities of our three sensors. Its principle is as
follows: the odometry gives a first estimate of the position and
orientation of the vehicle, then the ultrasonic measurements
allow to adjust the position, and finally the orientation is
refined by the camera. This principle is based on the following
considerations:

• The odometric position is instantaneously delivered but is
prone to drifting.

• The ultrasonic sensors give a first exteroceptive perception
to correct the odometric drift but their orientation acuity
is low because of their emission cone.

• The pictures allow to quickly specify the orientation of
the vehicle if its position is known.

We will detail the various elements of this procedure and the
results obtained during the tests on our prototype.

3.2. Principle of the odometry
The odometric position of the wheelchair is assessed by
computing its move from a known starting point. This move
is obtained thanks to the optical encoders, which measure the
number of turns carried out by the wheels. The uncertainty on
the diameter of the wheels and their possible skidding may
cause errors on the computed position and the odometric
position becomes more inaccurate as the traveled distance
increases.

Studies have been carried out to assess these errors and
to consider how best to overcome them5; the tested vehicles
were robots with solid wheels. The wheelchair on which
we work is equipped with air-inflated tires, so as to make
the user acceptably comfortable; therefore, the diameter of
the wheels can vary leading to more inaccuracies on the
odometric position. That is why we have tested the accuracy
of odometric data in our context.

3.3. Odometry testing on the prototype
The vehicle performed a rectilinear displacement of 1.50 m
several times and we compared the odometric position with
the true position at 50, 100, and 150 cm. The results obtained
for 50 trials are shown in Fig. 2.

The crosses represent the positions given by the odometer
and the horizontal line is the true trajectory. The ellipses
represent the margins of uncertainty, which include 90%
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Fig. 2. Tests of the odometry on the VAHM.

of the points, supposing the error vector is governed by a
Gaussian model. Table I gives the estimated average and
standard deviation of the position and orientation errors at
50, 100, and 150 cm.

For 50 cm covered, the ellipse of uncertainty has a radius
of approximately 8 cm on x-axis and 17 cm on y-axis and
the error in orientation is about 10◦. The drift is faster on the
axis orthogonal to the trajectory than on the direction of the
trajectory. This is due to the inaccuracy on the orientation
which has more repercussions on the orthogonal axis; indeed
for a rather small angle the cosine remains almost equal to 1
while the sine is approximately equal to the angle itself. That
is why the position estimated in the direction of displacement,
proportional to the cosine, varies less with the angle than the
position estimated in the orthogonal direction.

As the VAHM project vehicle is intended to move in
indoor environments like an apartment or a hospital, a precise
estimate of the position is necessary in order to follow the
programmed trajectories properly. In this context a position
error of 5 cm on each axis and an orientation error of 3◦
are the limits which we estimate acceptable to ensure the
displacement is properly carried out. The results obtained
with the odometry show the need for using other sensors so
as to get an estimation of the position within the required
margins.

4. Contribution of the Ultrasonic Sensors

A belt of 16 ultrasonic sensors is attached to the wheelchair
and their measurements are used for other modules such as
obstacle avoidance and wall following. We use the data to
adjust the position of the wheelchair in relation to its known
environment.

4.1. Modeling of measurements and environment
The model of measurements we have defined is a punctual
model. We consider that a measurement d perceived by the

Table I. Error on the odometric position.

εx (cm) εy (cm) εθ (cm)

Distance μ σ μ σ μ σ

50 cm 0.2 3.2 −1.7 7.9 0.2 4.8
100 cm 0.7 6.1 −1.9 14.2 0.6 8.0
150 cm −0.8 9.9 −0.9 20.8 −0.2 13.5

Fig. 3. Punctual model of a US measurement.

sensor represents an obstacle located at the distance d from
the sensor in its axis (Fig. 3). This model corresponds to
reality when the perceived segment is orthogonal with the
acoustic axis of the sensor but constitutes a rather strong
approximation when the obstacle is orientated differently.
The choice of this model is guided by two considerations:

• The punctual model is the lightest to treat during position
adjustment and makes it possible to limit execution time.

• Placing the impact point at this location is the means of
minimizing modelization errors.

From the position and orientation of each sensor on the
wheelchair, the location of each impact point is computed
in the reference frame linked to the wheelchair. This set of
points constitutes the local map of measurements.

The environment in which the robot moves is represented
by a set of straight-line segments corresponding to the
boundaries between free space and occupied space in the
horizontal plane of ultrasonic sensors. An ellipse is asso-
ciated with each segment; it defines a zone of validity to
associate the impact points of the sensors to the segments of
the environment. According to the estimation of the errors on
the odometric positions (Fig. 2) we take 15 cm for the length
of the orthogonal axis of the ellipse. This set of ellipses and
segments constitutes the global map of the environment.
Figure 4 shows an example of the local map built around the
wheelchair in the global map of the environment.

4.2. Matching points and segments
Matching the points of the local map, projected around the
current position, and the segments of the global map is
achieved according to the following criteria:

Fig. 4. Local map and global map.
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Fig. 5. Multiple matching.

• Ellipse: The first condition to assign a point to a segment
is that it is located inside the ellipse associated to the
segment (see Fig. 4).

• Angle of incidence: With ultrasonic sensors, if the wave
collides with the obstacle with large angle of incidence,
the reflected wave does not return to the sensor and the
obstacle is not perceived. Consequently, a matching is
validated if the angle of incidence is lower than α (half of
the sensor’s opening angle).

• Crosstalk: In some cases, the wave perceived by a sensor
was emitted by another sensor; therefore the measurement
of the time of flight is erroneous and represents a
fictitious obstacle. A procedure was developed named
Error Eliminating Rapid Ultrasonic Firing (EERUF)30

to avoid this failure of US sensors but it supposes to
activate the sensors in a specific mode. In our context
the only problem is the risk of a parasitic matching if
the fictitious obstacle is confused with a true obstacle
in the environment. This type of error can be detected
if there is another obstacle between the sensor and the
“perceived” segment, proving the unlikelihood of the
measurement. Thus, for each matching, we check that
there is no obstacle in the path of the ultrasonic wave. If
there is, the measurement is aberrant and we eliminate it.

• Distance criterion: An impact point may be simultan-
eously located in two ellipses. If other tests (angle of
incidence and crosstalk) are positive in both cases, then
we choose the segment closest to the point. In Fig. 5,
d1 < d2 and therefore point P is associated with segment
S1.

After having passed all these tests, each point of the local map
is affected with a segment or eliminated if no valid segment
is found.

4.3. Method to find the wheelchair’s position
The wheelchair’s position is determined by calculating the
best match between the local map and the global map.
First, we select the points on the local map which satisfy
the matching conditions described above once projected
onto the global map around the current position. Then we
determine the translation and the rotation to be applied
to the wheelchair’s position in order to adjust the points
on the segments.29 The algorithm (Fig. 6) is initialized by
the odometric position that is adjusted in an iterative way
by calculating several successive translations (Tx , Ty) and
rotations (T�). The procedure is repeated until the adjustment
obtained is smaller than the acceptable uncertainty, that is to
say 5 cm in position and 3◦ in orientation.

Fig. 6. Localization principle.

4.4. Calculation of the adjustment
The adjustment of the position aims at placing each point Pi

from the local map on its associated segment on the global
map. That is to say that the displacement of point (xpi , ypi),
linked to the adjustment of the position, must cover distance
di separating the point from the segment.21 This is expressed
by

−di = [sin αi − cos αi]

[
Tθ

(
0 −1
1 0

)(
xpi

ypi

)
+

(
Tx

Ty

)]
(ei),

with αi being the orientation of the considered segment, Tθ

the angle of adjustment in orientation, Tx the adjustment on
the x-axis, and Ty the adjustment on the y-axis.

This equation (ei) supposes that Tθ is sufficiently small
to consider that sin Tθ

∼= Tθ and cos Tθ
∼= 1; it is defined

for each one of Np points on the local model and makes it
possible to determine the values of Tx , Ty , and Tθ . Thus,
we have Np equations to calculate three unknowns. It is an
overdetermined system, which we treat by the least-squared
method. It does not ensure that the points will be placed on the
segments but it minimizes the sum of the point-to-segment
distances squared.

Let us consider vector Y of Np rows and matrix X of Np
rows and three columns, with

Yi = −di ; Xi,1 = sin αi ; Xi,2 = −cos αi ; and

Xi,3 = (cos αi sin αi)

(
0 −1
1 0

)(
xpi

ypi

)
.

If

b =

⎛
⎜⎝Tx

Ty

Tθ

⎞
⎟⎠ ,

the system of Np equations (ei) is expressed by Y = Xb and
the solution b̂ is defined with the least-squared method by
b̂ = (XT X)

−1
XTY. We must have at least three points on the

local map to apply this procedure.
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Fig. 7. Trajectory of tests of the adjustment algorithm.

4.5. Tests
We realized a series of tests on the adjustment algorithm
on the VAHM prototype in an indoor environment. The
16 positions successively tested are represented in Fig. 7.
For each one of them we recorded the values given by the
algorithm as well as the position and the orientation of the
robot measured on the floor.

The tests are carried out off-line by initializing the
odometric position in a set of values located around the true
location of the wheelchair, in a square of 30 cm per side
and for an orientation in a cone of 20◦. The variation step is
1 cm in position and 1◦ in orientation which leads to testing
20,181 initial positions for one actual position of the vehicle.
Table II shows the averages and the standard deviations of
the errors on adjusted positions. The processing time is 300
ms on average.

In this table the suppressed rows (1, 2, 8, and 12) corres-
pond to configurations for which the adjustment did not
take place because less than three US measurements

Table II. Errors of localization for the tests.

εx (cm) εy (cm) εθ (˚)

Case μ σ μ σ μ σ

0 0.3 0.3 2 0.4 1.8 2.8
3 2.7 1 7.8 6.9
4 3.1 1.5 1.2 0.7 22.5 12.5
5 2.1 1.7 1.0 0.8 9.8 6.5
6 2.5 0.4 1.3 1.3 8.1 6.5
7 1.3 1.1 1.5 0.6 5.1 4.5
9 3.3 1.2 1.6 0.7 6.4 6.2

10 2 1.2 0.7 0.4 5.5 5.5
11 1.2 0.6 1.7 1.8 2.8 3.6
13 2.3 0.7 0.9 0.4 9.4 11
14 0.5 0.8 0.4 0.7 9.8 5.5
15 1.5 1.5 0.9 0.4 8.4 6.9

Fig. 8. Image of the camera and extracted vertical edges.

were associated with line segments from the environment,
which is insufficient to carry out the algorithm. In case 3 the
adjustment did not work on the x-axis because the sensors did
not detect any usable obstacles in that direction. In general
the problems appear in the configurations where the positions
of the sensors are such that the angle of incidence is large
and the approximation of the punctual model very rough,
which places the measurement out of the ellipse associated
with the segment. But when enough matches are available
and most of them are favorable to the punctual model, the
error on the estimated position is within the acceptable limits
(inferior to 5 cm). On the other hand, we note that the results
are not acceptable for the orientation correction: the error is
around 7◦, which is far above the 3◦ we were aiming for.

The adjustment algorithm performs well on position
when a sufficient number of measurements are exploitable.
But the correction of the orientation does not significantly
improve the results due to the uncertainties on the direction
of ultrasonic measurements. The vision sensor that gives
another perception of the environment will compensate for
this deficiency.

5. Perception of the Orientation Through Vision

5.1. Principle
The camera allows to refine the orientation of the vehicle by
watching the vertical boundaries of the environment (edge
of blackboard, door, window, etc.) whose position has been
recorded beforehand.

Therefore, the first task is to extract the vertical edges of
the picture (Fig. 8). To do this the contrast of the picture
is enhanced using histogram equalization after which we
apply a Deriche filter. The filter is designed to consider
only the transitions in the x-axis representing the vertical
edges.21 The filtering result is treated by local non-maxima
suppression, hysteresis thresholding, and edge following.
Finally we register the x-coordinate of each vertical edge in
the picture. The principle of the orientation adjustment is as
follows (Fig. 9): knowing the position of a vertical boundary
V in the environment and the position of the camera F as well
as its estimated orientation θ̂F, we assess the x-coordinate P

where the vertical edge should be seen in the image plan.
Then the adjustment τgn the orientation of the camera is
determined by the deviation between P and P ′, where the
edge is actually seen.

To associate vertical boundary V with point P ′ in the
picture, the correspondence between the verticals of the
environments and the edges detected in the picture must
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Fig. 9. Adjustment of the orientation of the camera.

be established. To achieve this, we use an interpretation tree
which is described in the following subsection.

5.2. Interpretation tree
The interpretation tree is a structure, created in a recursive
way, which establishes all the possible correspondences
between the edges of the picture and the verticals of the
environment. From a root R each level represents an edge
and each node represents a pairing between this edge and
one of the possible verticals. Figure 10 shows an example of
a tree created for two edges and four verticals.

For each node, an adjustment τ of the camera’s orientation
is calculated according to the principle described above. The
branch, which represents the proper matching of the M edges
with the N verticals, will have appreciably constant values of
τ along its successive nodes. Thus, we calculate the average
and the standard deviation of the successive adjustments of
the branches. The correct matching is detected by searching
for the branch with the smallest standard deviation. And the
estimated value of the adjustment is the average value of this
branch.

5.3. Refinement of the tree
Limitation of the verticals: To reduce the dimension of the
tree and the time necessary for its analysis, we consider only
part of the verticals of the environment. We select those that
are in the camera’s field of vision widened with a 10◦ angular
margin to account for the uncertainty on its orientation. Then
we eliminate the verticals hidden by an obstacle (Fig. 11).

Pruning of the tree: In the initial tree all possible combi-
nations of M edges with N verticals are considered. But

Fig. 10. Interpretation tree for two edges and four verticals.

Fig. 11. Selection of the verticals.

some solutions are not coherent in so far as they “cross”
projections. For example in the case of Fig. 12 if edge Cb is
associated with vertical V2 then, at the inferior level of the
tree, edge Cc cannot be associated with vertical V1.

This matching analysis considerably reduces the size of
the tree21; indeed if we value St , the number of nodes in the
initial tree for M edges and N verticals, we obtain

St =
M∑

i=1

Ai
N =

M∑
i=1

N!

(N − i)!
.

If we consider Se the same number for the pruned tree, we
obtain

Se =
M∑

i=1

Ci
N =

M∑
i=1

N!

i!(N − i)!

because the order in which the verticals are treated no longer
matters. In fact, the place of the edges in the picture imposes
the verticals they are associated to. For example, for nine
verticals and five edges, the total tree has 18,729 nodes but
this number is reduced to 381 for the pruned tree, that is to
say 50 times fewer.

Introduction of “nil nodes”: The first tests carried out
showed that the presence of parasitic edges could deteriorate
the matching procedure. Indeed, the mode of creation of
the tree, where each level represents an edge, imposes the
association of the edge with a vertical to consider the next
edge. Therefore a parasitic edge will be associated to a
vertical which cannot be used thereafter, which ruins the
procedure. To overcome this problem we create a “nil node”
which associates a given edge from the picture to a virtual
vertical. This vertical does not exist in the environment but

Fig. 12. Coherence of matching vertical-edges.
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Table III. Errors corrected in orientation.

Case εx (cm) εy (cm) εθmin (◦) εθmax (◦)

0 5 5 −20 21
1 5 5 −14 9
2 7 5 −17 19
3 9 10 −15 23
4 8 5 −17 16
5 5 11 −2 10
6 10 5 −14 11
7 6 5 −10 10
8 6 8 −12 14
9 9 8 −10 19

11 8 7 −12 18
12 9 10 −12 11
13 7 8 −10 10
14 5 8 −20 17
15 8 8 −10 18

it is treated like any other vertical, which neutralizes the
influence of a parasitic edge on the construction of the tree.

5.4. Tests on the prototype
In order to test the performances of the procedure, we go back
to the 16 successive positions of the wheelchair used for the
previous tests (Fig. 7). We define a position of the wheelchair
its true position to which we add a random error ranging
between 5 and 11 cm. And we estimate the error range on the
orientation that can be corrected by the vision. That is to say
that we increase the initial value of the error until we reach
the limit for which the procedure does not deliver a correct
orientation to within 3◦. In Table III, position errors are in
the left columns and the ranges of orientation error are given
in the two right-hand-side columns.

The procedure proves to be operational in most cases
except in trials 5 and 10. For trial 10 the procedure could not
be carried out because only one edge is present in the picture.
For trial 5 the inferior limit is –2◦ because the position error
is large on y-axis (11 cm) which puts several edges into the
picture which do not correspond to selected verticals from the
model. But in general the range of acceptable errors exceeds
±10◦ which is consistent with our expectations since the
orientation error is in this range after US adjustment.

The procedure described here uses vision as a comple-
mentary mode of perception so as to adjust the orientation
of the vehicle. It is based on the matching of vertical edges
perceived in the picture and known vertical segments of the
environment. The calculation charge inherent in this type of
approach is limited because we select the verticals located in
the camera’s field of vision and take topological criteria into
account to consider possible matches. We obtain an algorithm
which is carried out in a mean time of 500 ms and which gives
acceptable results in most cases.

6. Conclusion

The work reported in this paper explores the possibilities
of localization, during movement, of our prototype in its
environment. We established a mode of adjustment of the
odometric position using ultrasonic sensors and vision,

which, under certain conditions, give the position of the
wheelchair in less than 1 s. The difficulty to compare the
performances of our method with those reported in the
technical literature is the specificity of our application. We
know the method of localization with odometry (Borenstein),
US sensors (Crowley), vision (Krotkov), or fusing several
sensor measurements (Thrun), but the specificity of our work
is the search of a simple way to fuse the measures of different
sensors in order to apply it in the field of the mobility aid for
people with disabilities. The differences between the contexts
makes the comparison uneasy.

Moreover, we discuss the result obtained by off-line
implementation of our approach because with the on-line
implementation we could not assess the deviation between
the values given by the algorithm and the true values of the
position and the orientation of the wheelchair. We chose to
detail every step of the trajectory in order to specify the
propitious cases for the procedure. Yet the on-line tests are
in progress in our laboratory. The use of this procedure,
in actual conditions, requires a possible intervention of the
user, in order to signal if a failure occurs. In this case the
wheelchair stops and static localization is carried out.

Like most of the projects initiated in the nineties, at first the
VAHM project sought to adapt mobile robotics methods to
driving assistance for electrical wheelchairs. Rehabilitation
robotics now tends to aim for a closer cooperation between
the user and the intelligent wheelchair. Thus, the VAHM
project is heading toward a more reactive approach of
displacements. Therefore, the context of a totally modeled
environment and the “trajectory execution” mode are called
into question. However, the undertaken study makes it
possible to specify the fields of efficiency of each sensor and
to consider how to make the most of the complementarity of
their perception capabilities.
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