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 Design of a neurofuzzy algorithm-based shared controller for
 telerobot systems
 D . H .  Cha* and H . S .  Cho †

 SUMMARY
 This paper proposes a novel design method of a shared
 controller for telerobot systems .  A shared controller can
 enlarge a reflected force by combining force reflection
 and compliance control .  However ,  the maximum
 boundary of the force reflection gain guaranteeing the
 stability greatly depends upon characteristics of the
 elements in the system such as ;  a master arm which is
 combined with the human operator’s hand ,  the
 environments where the slave arm contacts and the
 compliance controller .  In normal practice ,  it is therefore ,
 very dif ficult to determine such a maximum boundary of
 the gain .  To overcome this dif ficulty ,  the paper proposes
 a force reflection gain-selecting algorithm based on
 neural network and fuzzy logic features .  The method
 estimates characteristic of the master arm and the
 environments by using neural networks ,  and then ,
 determines the force reflection gain from the estimated
 characteristics by using fuzzy logic .  The algorithm can
 work in an on-line manner ,  and can be easily applied to
 any telerobot system because it requires no a priori
 knowledge on the system .  The ef fectiveness of the
 proposed control scheme is verified through a series of
 experiments using a laboratory-made telerobot system .

 KEYWORDS :  Neurofuzzy algorithm ;  Telerobot systems ;
 Force rejection gain ;  Shared control .

 1 .  INTRODUCTION
 A telerobot system is generally composed of a master
 arm which is controlled by a human operator and a slave
 arm which duplicates the motion of the master arm and
 performs actual works in a remote site .  In a typical
 telerobot system with no force reflection or compliance
 control ,  a stif f slave arm strictly follows the motion of a
 master arm .  To achieve more complex tasks ,  however ,
 such a system may be unsuitable because of insuf ficient
 information on the working environment .  The forces
 exerted by a slave arm interacting with the environment
 contain much information on the teleoperation processes
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 or working environments .  The use of force information ,
 therefore ,  can greatly improve the task performance .
 Two major techniques that utilize the contact forces are
 compliance control and bilateral control .

 In the compliance control system , 1 – 4  the contact forces
 are not reflected to the operator but used for the
 compliance control of a slave arm .  An operator assigns
 reference trajectory to a slave arm through a master arm
 and the forces are fed back to a compliance controller .
 The compliance controller ,  then ,  generates corrective
 motions and these are superimposed to the reference
 trajectory ,  and as a result ,  a modified reference trajectory
 is generated .  In a bilateral control system , 5 – 7  the contact
 forces are reflected to a human operator via the master
 arm so that he / she can correct his / her motions according
 to these forces .  Such a system is also called as a force
 reflection system ,  and the force reflection can sig-
 nificantly enhance the task performance .  The larger the
 force reflection gain is ,  the bigger the reflected force
 becomes .  However ,  the gain should be bounded into a
 certain value because of the instability problem . 8

 To enlarge the reflected force ,  many shared control
 algorithms have been proposed by combining the
 bilateral control and the compliance control . 8 – 1 0  In these
 schemes ,  a slave arm becomes more compliant by
 employing compliance control ,  and therefore ,  it is
 possible to enlarge the reflected force .  Thus ,  good task
 performance can be assured .

 Hannaford 9  studies the ef fect of compliance loop on
 stability and performance in the shared control ,  and
 showed that the compliance control at the slave side can
 reduce instability problem .  Goldenberg 1 0  proposed an
 advanced bilateral control algorithm where the reflected
 force was derived from the velocity error and contact
 force .  This scheme ,  however ,  requires the perfect model
 of the master arm .  Kim 8  found out a stable limit of the
 force reflection gain using the open-loop transfer
 function ,  and proposed the low-pass-filtered bilateral
 control algorithm which can considerably increase the
 force reflection gain .

 In spite of the previous studies ,  there still remains an
 unsolved problem ;  how to determine a force reflection
 gain under the uncertain characteristics of master and
 environments .  In the shared control ,  the force reflection
 gain greatly af fects the task performance of the system :
 too small gain results poor performance while too large
 gain makes the system to be unstable .  To ensure good
 performance ,  the gain should be adequately adjusted by
 guaranteeing the stability of the system .  However ,  the
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 12  Neurofuzzy algorithm

 maximum boundary of the gain greatly depends upon
 characteristics* of the elements in the system such as ;  a
 master arm which is combined with the human operator’s
 hand ,  a slave arm ,  a compliance controller ,  and the
 environments with which the slave arm contacts .  In many
 cases ,  the slave arm is required to work in uncertain
 environments ,  and thus ,  the characteristics of the
 environments can be assumed to be unknown and
 significantly change according to the task to be done . 3

 Also ,  it has been reported that the characteristics of the
 master †  are changing significantly whether the operator
 holds the master with a firm or loose grasp . 7 , 11

 Furthermore ,  the master shows highly nonlinear
 characteristics which still remains unknown .  In normal
 practice ,  it is therefore ,  very dif ficult to determine the
 maximum boundary of the force reflection gain .

 To overcome this dif ficulty ,  the paper proposes a force
 reflection gain selecting algorithm based on neural
 network and fuzzy logic features .  The method estimates
 characteristics of the master arm and the environments
 using neural networks ,  and then ,  determines the force
 reflection gain using fuzzy logic based upon the estimated
 characteristics .  The algorithm can work in an on-line
 manner ,  and can be easily applied to any telerobot
 system because it requires no a priori knowledge .  The
 ef fectiveness of the presented algorithm is verified
 through a series of experiments under various conditions

 *  In this paper ,  the term ‘‘characteristics’’ of a system means
 ‘‘dynamic characteristics’’ of the system ,  such as
 impedance(stif fness) or admittance(compliance) .
 †  From now on ,  the term ‘‘characteristics of master arm’’
 implies ‘‘the characteristics of master arm combined with the
 operator’s hand’’ .

 of teleoperation using a laboratory-made telerobot
 system .

 The paper is organized as follows :  Section 2 describes
 the telerobot system used in the study .  In section 3 ,  the
 factors af fecting task performance and stability are
 briefly discussed to present a guide line for determining
 the force reflection gain .  Section 4 shows the detailed
 algorithm of the proposed method ,  and section 5
 discusses the experimental procedure and results .  Finally ,
 some conclusions are made in section 6 .

 2 .  THE TELEROBOT SYSTEM
 Figure 1 shows the telerobot system developed at the
 Laboratory for Control Systems and Automation (LCA)
 in the Korea Advanced Institute of Science and
 Technology .  The system consists of a force reflective
 master arm ,  a slave arm and a system controller .  The
 master arm has a vertical articulated structure with three
 degrees of freedom (d . o . f . ) .  Three D . C .  servo motors
 with harmonic drives are mounted in each axis .  To
 reduce friction ,  each motor is directly connected to the
 rotational shaft of each axis .  To enhance man-
 euverability ,  balancing weights are attached to the
 second and third axes .  Three axis-control boards are
 developed as torque controllers .  The slave arm is an
 industrial robot (Samsung ,  FARA A1-U) which has a
 vertical articulated structure with six d . o . f .  A joint
 position control (JPC) board ,  used as a slave arm
 controller ,  controls angular positions of the six joints of
 the arm . 1 2

 A six axes force / torque sensor (ATI ,  FT 30 / 100) is
 attached at the end of the slave arm to measure the

 Fig .  1 .  The structure of the LCA telerobot system .
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 Neurofuzzy algorithm  13

 force / moment .  To provide visual information of the
 contact force ,  a force level indicator composed of 16 light
 emitting diodes (LED) with a bar graph arrangement is
 installed at the operator site .  Although the human
 operator can feel the contact force through the master
 arm ,  addition of visual feedback of force can enhance
 task performance significantly during the experiments .
 To monitor the slave environment ,  a CCTV camera is
 installed at the ceiling of the working site .

 The telerobot system controller implemented by a PC
 486 / DX2-66 is composed of a master arm kinematics
 routine ,  a workspace mapping routine ,  a slave arm
 inverse kinematics routine ,  a compliance controller and a
 force reflection controller .  Since the master and slave
 arms have kinematically dif ferent structures ,  workspace
 mapping is required so that a position of the master arm ,
 X M  ,  can be appropriately transformed to the corres-
 ponding space of the slave arm ,   X S .  The detailed
 algorithm is similar to that described in reference 13 .  The
 contact force measured by the force / torque sensor is
 converted to the froce with respect to the base
 coordinate of the slave arm .  The reflected force is
 evaluated by multiplying the contact force by the force
 reflection gain ,  and then ,  the resultant is converted to the
 torque applied at each axis of master arm through the
 transpose of the master Jacobian .  The master and slave
 controllers are connected with a main PC through the
 PC-AT bus via two parallel I / O boards .

 3 .  FACTORS AFFECTING TASK
 PERFORMANCE AND STABILITY
 Figure 2 shows a typical block diagram of a shared
 control of a telerobot system .  The controller consists of a
 compliance controller and a force reflection controller .
 The compliance controller constitutes an inner feedback
 loop ,  while the force reflection controller constitutes an
 outer feedback loop .  When contact force occurs ,  the
 compliance controller receives this force as an input and
 generates corresponding corrective motion ,   X C  ,  as an
 output .  This corrective motion is superimposed on the
 master arm trajectory ,   X R 1  ,  and as a result ,  a modified
 reference trajectory ,   X R 2  ,  is generated .  At the same
 time ,  the contact force is also reflected back to the
 human operator through the master arm after scaling by
 a force reflection gain ,   k f  .

 Fig .  2 .  A typical block diagram of the shared control .

 Fig .  3 .  A simplified block diagram of the shared control .

 3 . 1  Ef fects of the force reflection gain
 Figure 3 shows a simplified block diagram of a shared
 control system ,  where      denotes the compliance loop ,
 i . e .  a resultant function of the slave ,  the environment and
 the compliance controller .  In this system ,  the contact
 forces measured by the force / torque sensor are reflected
 back to the human operator through the master arm
 after scaling by a force reflection gain ,   k f  .  This forms a
 closed loop system and causes a trade-of f between task
 performance and stability .

 To investigate the ef fect of the force reflection gain ,  let
 us consider a stability condition of the system shown in
 Figure 3 by following a similar procedure described in
 Cha 7  et al .  Generally ,  the master arm ,  slave arm and
 environments can be considered as nonlinear systems .  If
 we use the small gain throrem 1 4  for stability of such a
 system ,  its suf ficient condition can be obtained by

 i  [ M ( F m )] T  i  #

 i  [ k f  ?    ( X R 1 )] T  i  #

 g  1  i  ( F m ) T  i
 g  2  i  ( X R 1 ) T  i

 ; T  $  0 ,  ; F m  P  L 2 e

 ; T  $  0 ,  ; X R 1  P  L 2 e

 (1)

 g  1  ?  g  2  #  1

 where  M ( ? ) denotes a function for master arm ,  while  i  ?  i
 denotes the function norm and ( ? ) T   denotes the
 projection operator defined by

 f T  ( t )  5 H f  ( t )
 0

 if  t  #  T
 if  t  .  T .

 (2)

 The above equations mean that the system is BIBO
 (bounded input bounded output) stable if the loop gain is
 less than unity . 1 5  To show the ef fect of the force reflect
 gain more clearly ,  let the DC gains of  M  and      be
 denoted by  M 0  and    0 ,  respectively .  Then ,  the DC loop
 gain ,   G D C   should be less than unity for the system to be
 stable , 8  i . e .

 G D C  5  k f  ?    0  ?  M 0  #  1  (3)
 Namely ,

 k f  #
 1

 Z e 0  ?    0
 (4)

 Note that    0  contains the slave ,  the environments and
 the compliance controller .  From these equations ,  then ,  it
 can be seen that the force reflection gain should be
 determined under the consideration of characteristics of
 the master ,  the slave ,  the environments and the
 compliance controller .

 A small force reflection gain results in a small reflected
 force ,  and thus ,  the operator hardly feels the contact
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 force so that task performance becomes poor .  On the
 other hand ,  a large gain results in a large reflection force ,
 thus ,  ensuring good task performance ,  however ,  too
 large gain causes instability .  From these facts ,  it can be
 seen that there is a trade-of f between stability and task
 performance .

 3 . 2  Ef fects of the compliance loop
 Ef fect of the compliance controller can be seen to
 decrease the ef fective stif fness of a slave arm . 8  The
 higher the gain of the compliance controller is ,  the lower
 the ef fect stif fness of the slave arm becomes .  However ,
 the gain of the compliance controller should be limited
 because too large gain makes the system unstable .  To
 concisely investigate the stable condition of the
 compliance loop shown in Figure 2 ,  let us following a
 similar procedure described in the above section .  Let  S
 denotes the slave arm ,  and DC gains of  S , H  and  Z e   be
 denoted by  S 0  , H 0  and  Z e 0  ,  respectively .  The DC loop
 gain ,   G D C  ,  then ,  should be less than unity for the system
 to be stable ,  i . e .,

 G D C  5  H 0  ?  Z e 0  ?  S 0  #  1  (5)

 Namely ,

 H 0  #
 1

 Z e 0  ?  S 0
 (6)

 From these equations ,  it can be seen that a compliance

 Fig .  4 .  Compliance characteristics of the LCA master arm (a)
 Testing procedure (b) Force-displacement relationship of the
 master arm for three operators (the case of excitation
 frequency  v  5  0 . 5  Hz) .

 controller should be determined under the consideration
 of characteristics of the slave arm and the environments .

 3 . 3  Characteristics of master , sla y  e arm and en y  ironments
 The compliance characteristics of the master arm
 changes significantly depending upon how the operator
 holds the master arm . 6 , 7  To investigate the characteristics
 of the master arm shown in Figure 1 ,  some experiments
 were performed as shown in Figure 4(a) .  The
 z-directional force ,   F  5  F Z  sin  v t ,  was given as the
 reference value for the torque controller and the
 corresponding motion of the master arm ,   X  5
 X Z  sin  ( v t  1  f  ) ,  was measured .  During the experiment ,
 the motion of the master arm was not transferred to the
 slave ,  and thus ,  the slave did not move .  The experiments
 were conducted by three operators ,  and the excitation
 frequency ,   v  ,  was set to the two values ,  0 . 5  Hz and 2  Hz ,
 which were the minimum and the maximum frequency
 values used in Uebel’s study . 1 6  From the results shown in
 Figure 4(b) ,  it can be seen that the compliance
 characteristics of the master significantly change
 according to the operator’s working mode and show
 nonlinear relationships .  Also ,  they change significantly
 with respect to the operator .  Although the results has not
 been shown here due to space limitation ,  the ef fect of
 frequency was found to be small compared with those of
 operator’s mode ,  which is similar to those in reference 7 .

 In many cases ,  the slave arm is required to operate in
 uncertain or even unknown environments ,  and thus ,
 characteristics of the environment are often assumed to
 be unknown with nonlinearities . 3  Also they change
 significantly depending upon the type of the task to be
 done .

 In some telerobot systems ,  industrial manipulators are
 frequently used as slave arms .  As typical industrial
 manipulators are controlled by position serve systems
 with high servo gains and high gear ratio ,  their dynamics
 can be represented by a second order linear system with
 constant parameters . 17 , 18  In this study ,  therefore it is
 assumed that the dynamic characteristics of the slave arm
 remains unchanged .

 4 .  THE NEUROFUZZY ALGORITHM-BASED
 SHARED CONTROLLER
 Figure 5 shows the block diagram of the proposed
 algorithm .  The shared controller consists of a first-order
 linear compliance controller ,  a force reflection gain ,  and
 a force reflection gain selecting algorithm .  First ,  the force
 reflection gain selecting algorithm is presented ,  and then ,
 a design criteria of the compliance controller is
 described .

 4 . 1  The force reflection controller
 The force reflection controller consists of a force
 reflection gain selecting algorithm and a force reflection
 gain .  The force reflection gain selecting mechanism ,
 which is similar to that of the previous work , 7  consists of
 two multi-layered neural networks ,  a fuzzy gain selector
 and a decision maker .  The characteristics of the master
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 Neurofuzzy algorithm  15

 Fig .  5 .  The block diagram of the proposed algorithm .

 arm and environments are classified by the NN1 and
 NN2 ,  respectively .  The fuzzy gain selector determines
 the inferred force reflection gain ,   k f * ,  based upon the
 estimated characteristics and the compliance characteris-
 tic of the compliance controller .  Finally ,  a decision
 maker determines whether or not the present gain ,   k f  ,
 should be updated with the new one inferred from the
 fuzzy gain selector .

 4 . 1 . 1  Neural classifier .  Now ,  the problem at hand is to
 classify characteristics of the master and the environ-
 ments which have nonlinearity and undergo significant
 change depending upon working conditions .  Unfortun-
 ately ,  it is very dif ficult to classify the characteristics of
 the master arm in an on-line manner and little classifying
 method has been reported .  One solution to this problem
 is to utilize artificial neural network .  The neural classifier
 used herein consists of two multi-layered neural
 networks ,  NN 1 and NN 2 .  Their objectives are to
 classify the dynamic characteristics of the master and
 environments in an on-line manner .  The NN 1 received
 the reflected-force data and position information of the
 master arm as inputs ,  and produces an output ,   m ,  which
 is a value between zero and unity representing the
 characteristics of the master arm .  On the other hand ,  the
 NN 2 received the position and force information of the
 slave arm as inputs ,  and yields an output ,   z ,  ranging

 Table I  Various conditions of the operator
 and the environments

 No .
 Operator 9 s

 working mode  Environment

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 firm
 loose
 firm

 loose
 firm

 loose
 firm

 loose
 firm

 loose

 styrofoam
 styrofoam

 rubber
 rubber
 steel
 steel

 plastic
 plastic
 silicon
 silicon

 between a value between zero and unity ,  which
 represented characteristics of the environment .

 (a)  Actual network training .  Now ,  the experiments
 performed to train the neural classifier will be discussed .
 Three operators conducted a series of experiments under
 ten dif ferent conditions of the master arm and
 environments as shown in Table I .  During the
 experiments ,  direction of the end ef fector of the slave
 arm is fixed at a constant direction ( 2 Z S   direction) with
 respect to the global reference coordinates .  The task
 performance in the experiments was to maintain a
 constant contact force of 20N in z-direction as shown in
 Figure 6(a) .  During the experiments ,  the force reflection
 gain was set to 0 . 1 ,  and the compliance controller ,

 Fig .  6 .  Ef fective stif fness of various workpieces (a) Testing
 procedure (b) Ef fective stif fness of various workpieces .
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 H ( s )  5  h  / ( τ s  1  1) ,  was set to  h  3  4  3  10 2 6  and  τ  5  0 . 1 .
 All data were collected at 62 . 5  Hz .  Figure 6(b) shows the
 ef fective stif fness of the various workpieces used in the
 experiments .  Here ,  the  ef fecti y  e stif fness  means a
 combined stif fness of the workpiece and the end ef fector
 of slave arm .

 Although three directional positions and forces (x ,  y
 and z-direction) were measured ,  only z-directional data
 were used for the training .  Generally ,  all positions and
 forces can be collected during the teleoperation ,  but if it
 is assumed that the characteristics of master and
 environment have isotropic properties ,  only one
 directional position and force data are suf ficient to
 classify their characteristics .  The above assumption can
 be adopted in most of teleoperation .

 The main feature of training the multi-layered neural
 network is to learn the relationship between the inputs
 and outputs .  Thus ,  determination of suitable data for
 inputs and outputs are one of the essential issues in
 practical implementation of the neural classifier .  To
 obtaining the suitable data set ,  training the neural
 networks was conducted under various sets of inputs and
 outputs as shown in Table II .

 Among ten data sets collected ,  the six data set (No .
 1 – 6 in Table I) were presented to the networks for
 training .  First ,  six data composed of three position data
 of the master arm and three reflection force data ,  were
 given as the inputs for NN 1 .  In a similar way ,  six data ,
 three position data of the slave arm and three contact
 force data ,  were given as inputs for NN 2 .  The inputs are
 given in Table II in detail .  The target outputs for the NN

 Table II  Inputs and outputs for the neural classifier

 input  data  for  NN  Number  of  inputs

 NN 1  NN 2  6  8  10

 X m ( t )  2  X m c
 D X m ( t )
 D X m ( t  2  1)
 D X m ( t  2  2)
 D X m ( t  2  3)

 F r ( t )
 D F r ( t )
 D F r ( t  2  1)
 D F r ( t  2  2)
 D F r ( t  2  3)

 X S ( t )  2  X S C
 D X S ( t )
 D X S ( t  2  1)
 D X S ( t  2  2)
 D X S ( t  2  3)

 F S ( t )
 D F S ( t )
 D F S ( t  2  1)
 D F S ( t  2  2)
 D F S ( t  2  3)

 O
 O
 O
 X
 X

 O
 O
 O
 X
 X

 O
 O
 O
 O
 X

 O
 O
 O
 O
 X

 O
 O
 O
 O
 O

 O
 O
 O
 O
 O

 O :  included ,  X :  not included .
 X m c :  the position of the master arm when contact occurs .
 X S C :  the position of the slave arm when contact occurs .

 D X i ( t )  5  X i ( t )  2  X i ( t  2  1)  ( i  5  m ,  s )

 D F i ( t )  5  F i ( t )  2  F i ( t  2  1)  ( i  5  r ,  s )

 Target  outputs  for  NN  1  Target  outputs  for  NN  2

 firm

 loose

 operator A
 operator B
 operator C
 operator A
 operator B
 operator C

 1 . 0
 0 . 82
 0 . 62
 0 . 33
 0 . 23
 0 . 0

 styrofoam
 rubber
 steel

 0 . 0
 0 . 5
 1 . 0

 1 and NN 2 were assigned as values between zero and
 unity ,  and are given in Table II .  Both the two networks
 have 60-20-10-1 nodes .  Training was conducted using the
 error back propagation algorithm 1 9  until the number of
 iteration reaches 20 , 000 .  The total number of the training
 sample was 2 , 400 .

 (b)  Results and discussions .  The training results for NN
 1 are shown in Figure 7(a) .  In the figure ,  the average
 system error is a mean-square error between the target
 output and trained output ,  which is defined by

 E  5
 1

 2 P
 O
 p

 ( t p  2  o p ) 2  (7)

 where  t p   denotes the target output and  o p   denotes the
 output generated by the neural network while the
 subscript  p  denotes  p -th training sample ,  and  P  is the
 total number of training samples .

 From the figure ,  it can be seen that in the case of six
 input ,  the error decreases rapidly in early stage ,  and
 thereafter ,  does not decrease further .  The training results
 for NN 2 given in Figure 7(b) show a similar trend ,  and
 the error is not exactly converged to zero .  In this case ,
 additional training was performed up to 40 , 000 iterations ,

 Fig .  7 .  Training results for various number of inputs (a)
 Average system errors for NN 1 (b) Average system errors for
 NN 2 .
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 Neurofuzzy algorithm  17

 and the result also showed no further decrease in error .
 If eight and ten data are given as inputs to both the NN 1
 and NN 2 as shown in Table II ,  the results are quite
 dif ferent from those of the previous case :  the error
 converges to zero as shown in the same figure .  These
 results indicate that the train was performed well .

 From the above results ,  it can be seen that ,  in the case
 of the six inputs ,  the NNs can not learn well the
 characteristics of the master and environments due to the
 insuf ficient input data .  In the cases of the eight and ten
 inputs ,  however ,  the networks can learn the characteris-
 tics of the master and environments .  The reason for the
 results can be explained as follows :  In order for a
 multi-layered neural network to represent the behavior
 of a dynamic system at time  t ,  the previous knowledge of
 the system (i . e .,  inputs and outputs of the system before
 time  t ) should be given to the network as inputs .  If the
 previous knowledge is insuf ficient ,  the network can not
 represent the behaviour of the system .

 (c)  Ef fects of the node size .  One of the main design
 parameters of the neural network is the number of
 hidden layers ,  and the number of nodes in each layer .  As
 these parameters increase ,  a network can perform more
 complex mapping .  However ,  the resulting complexity of

 Fig .  8 .  Training results for various number of nodes (a)
 Average system errors for NN 1 (b) Average system errors for
 NN 2 .

 connections in the network requires more computation
 time .  In this study ,  two hidden layers were used because
 they are enough to realize the usual mapping functions .

 To investigate the ef fect of node size ,  training was
 conducted for various sizes of the node number in the
 case of the eight inputs .  Figures 8(a) – (b) show the
 results .  In both cases ,  convergence speed of the 8-15-8-1
 networks are found to be very slow ,  and the final error is
 much larger than those of other cases .  In the cases of
 8-20-10-1 and 8-25-15-1 ,  convergence speed appears to be
 satisfactory .

 4 . 1 . 2  Fuzzy gain selector .  It is very dif ficult and yet
 remains unknown to find out the optimal force reflection
 gain ,  even though the characteristics of the master and
 the environments are known .  In most force reflection
 systems ,  human operator usually determines the gain
 based upon his / her experiences and / or knowledge about
 the teleoperation .  Many research works have shown that
 a fuzzy logic witjh approximate reasoning can emulate
 the decision-making ability of a skilled human
 operator . 2 0  Based upon this reasoning ,  fuzzy logic can be
 ef fectively applied to determine the force reflection gain .

 As shown in Figure 5 ,  the inputs of the fuzzy gain
 selector are two outputs of the neural classifier and a DC
 gain of the compliance controller ,  while its output is a
 force reflection gain .  The selector consists of four
 modules just as the general fuzzy logic controller does :  a
 fuzzy decoder ,  a rule base ,  a fuzzy reasoning and a
 defuzzifier .

 (a)  Fuzzy decoder .  The input fuzzy variables are
 obtained by scaling from the inputs of the fuzzy gain
 selector and they are defined by

 m ̃  5  g m  3  m

 z ̃  5  g z  3  z  (8)

 h ̃  5  g h  3  h

 where  m , z  and  h  denote the output of NN  1 ,  NN  2 ,  and
 the DC gain of compliance controller ,  while  g m  , g z   and  g h

 denote scaling factors for  m , z  and  h ,  respectively .

 (b)  Rule base .  In constructing the rule base ,  there are
 generally three ways as described in the followings :  (1)
 expert’s knowledge or experiences ;  (2) self-improvement ;
 (3) fuzzy modeling .  In this study ,  the rule base is
 constructed using the first method .  The output variables
 of the fuzzy rule takes the form of fuzzy singleton ,  which
 decreases the calculation time considerably ,  and thus ,
 profitable in real time application .  The rule base consists
 of 18 rules and takes the form :

 Rule  R I :  IF  m ̃  is  M i ,  z ̃  is  Z i ,  h ̃  is  H i  THEN  k ̃  * f  is  K i

 (i  5  1 ,  2 ,  .  .  .  ,  18)  (9)

 where the subscript i denotes the i-th rule .  Also ,  M i ,  Z i ,
 H i  and K i  are the fuzzy subsets corresponding to the
 variables  m ̃  , z ̃  , h ̃    and  k ̃  * f  ,  respectively .  The fuzzy subsets
 for each variables are defined as shown in Figure 9 while
 the 18 rules are shown in Table III .
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 Fig .  9 .  Definition of the fuzzy linguistic variables (a) the
 linguistic values for the  m ̃    (b) The linguistic values for the  z ̃    (c)
 The linguistic values for the  h ̃  .

 (c)  Fuzzy inference .  For each rule base ,  the min – max
 operation is adopted to perform fuzzy inference .  Let  m  K i

 ( k ̃  i *)   be the membership function for a subset of the
 output which is result of the k-th rule .  Then ,  it can be
 obtained by

 m K i ( k ̃  * i  )  5  [ m  M i ( m ̃  )  ∧  m  Z i ( z ̃  )  ∧  m  H i ( h ̃  )  ∧  m  K i ( k ̃  * f  )]  (10)

 where the operator ,   ∧ ,  denotes the min operation .  From
 the results of the 18 rules ,  the final membership function ,
 m  K  ( k ̃  * f  ) ,  can be obtained by using max operator :

 m  K ( k ̃  * f  )  5  [ m  K 1 ( k ̃  1 * )  ∨  m  K 2 ( k ̃  2 * )  ∨  ?  ?  ?  ∨  m  K 1 8 ( k ̃  * 1 8 )]  (11)

 where the operator ,   ∨ ,  denotes the max operation .

 Table III  Fuzzy rules for the fuzzy gain selector

 (a)  in the case of  h  5  ZR

 z
 m  SOFT  MED  STIFF

 LOOSE
 FIRM

 0 . 3
 0 . 6

 0 . 18
 0 . 25

 0 . 1
 0 . 15

 (b) in the case of  h  5  SM

 z
 m  SOFT  MED  STIFF

 LOOSE
 FIRM

 0 . 45
 0 . 75

 0 . 25
 0 . 4

 0 . 15
 0 . 2

 (c) in the case of  h  5  LA

 z
 m  SOFT  MED  STIFF

 LOOSE
 FIRM

 0 . 65
 1 . 0

 0 . 3
 0 . 55

 0 . 2
 0 . 26

 (d)  Defuzzifier .  The proposed algorithm requires a crisp
 force reflection gain .  Thus ,  a defuzzifier is adopted to
 yield a crisp gain from the inferred fuzzy gain given in
 equation (10) .  The crisp force reflection gain ,   k * f  ,  can be
 obtained by

 k f *  5  g k  3  Defuzzify h m  K ( k ̃  * f  ) j  (12)

 where  g k   are the scaling factors for  k ̃  f * and Defuzzify  h  ?  j
 denotes the defuzzifier operator which performs
 defuzzification by using the center of gravity method .

 4 . 1 . 3  Decision maker .  The ultimate aim of selecting
 force reflection gain is to enhance the task performance .
 For such a purpose ,  the gain selecting algorithm should
 be designed to have the following properties ;  if the
 characteristics of a master or environments are changed ,
 the gain should be changed adaptively .  Otherwise ,  the
 gain should remain unchanged because gain change
 causes the operator to be confused ,  resulting in poor
 performance .

 It can be seen in the experimental results which will be
 described in the next section in more detail ,  that the
 outputs of the neural classifier change slightly even
 though the characteristics of master or environments
 remains unchanged (for example ,  see the results in the
 Figure 11(a) and (b)) .  This is due to the imperfect
 learning capability of the neural networks or inevitable
 measuring noise contained in the inputs .  Such a slight
 change of the estimated values can be frequently seen in
 many other classification algorithms working in an
 on-line manner .  In this case ,  the output of the fuzzy gain
 selector tends to change slightly .  Upon consideration of
 this fact ,  it is necessary to design a decision maker which
 determines whether or not the present gain should be
 updated with the new one ,  inferred from the fuzzy gain
 selector .

 Let  k f  ( t ) be the force reflection gain used at time t ,
 and  k f *( t ) be the inferred gain at that time .  Then ,  the
 decision  P   can be defined by

 P  5  a D  ?  U 1  2
 k f  ( t )
 k f *( t )

 U  1  b D  ?  U O t

 i 5 t S

 k f *( i )  2  k f  ( i )
 k f  ( i )

 U  2  C  (13)

 where  a D  ,  b D   (0  ,  a D  ,  b D  #  1 ,  a D  1  b D  5  1) are the
 weighting factors and  C  is a constant ,  while  t s   denotes the
 time at which the latest gain change had occurred .  The
 first term of the above equation represents the ratio of
 the present gain to the inferred gain ,  while the second
 term represents the accumulated normalize error
 between the inferred gain and the actual gain since the
 time  t s  .  Now ,  the force reflection gain at time  t  1  1 is
 determined by

 k f  ( t  1  1)  5 H k * f  ( t )
 k f  ( t )

 if  P  $  0
 if  P  ,  0 .

 (14)

 This indicates that ,  if  P   is greater than zero ,  the gain is
 updated ,  otherewise ,  it remains unchanged .  In other
 words ,  the gain is updated when the ratio of the presnt
 gain to the inferred gain is larger and / or the accumulated
 normalized error is large .
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 4 . 2  The compliance controller
 The first order linear compliance controller has a form
 given by

 H ( s )  5
 h

 τ s  1  1
 (15)

 where  h  and  τ   denote the DC gain and the time constant
 of the controller ,  respectively .  Applying equation (6) ,   h
 should be bounded

 h  #
 1

 Z e 0  ?  S 0
 (16)

 Larger value of the time constant ,   τ  ,  can enlarge stable
 region of telerobot system . 2 1  On the other hands ,  from
 many studies to establish required bandwidth of
 telerobot systems , 16 , 22 , 23  it can be concluded that the
 bandwidth of a telerobot system should be greater than
 5  Hz .  Therefore ,  the time constant should be limited
 within a certain boundary so as to satisfy the bandwidth
 requirements of telerobot systems .

 5 .  EXPERIMENTS AND RESULTS
 In this section ,  two types of experiments were conducted :
 first ,  the experiments with fixed force reflection gains
 were conducted to investigate the ef fect of the force
 reflection gain on the task performance .  Second ,  the
 experiments with the proposed algorithm were con-
 ducted to show the ef fectiveness of the proposed
 algorithm ,  and the results were compared with those of
 the first ones .

 A DC gain ,   h ,  of the compliance controller can be
 determined using equation (16) .  To determine  h ,  it
 should be known that the DC gain of environments ,   Z e 0  ,

 and slave arm ,   S 0 .  The  Z e 0  can be found in the ef fective
 stif fness of various environments shown in Figure 6(b) .
 In the figure ,  the ef fective stif fness of steel is largest and
 its value is 2 . 35  3  10 5  N / m .  Since the slave arm can be
 represented by a second order linear system with unit
 DC gain ,  the  S 0  can be treated as an unity .  Now ,  if
 equation (16) is applied ,   h  should be bounded by

 h  ,
 1

 2 . 35  3  10 5  3  1
 5  4 . 26  3  10 2 6

 Thus ,  the  h  is designed to be 4 . 0  3  10 2 6 .  Since the
 bandwidth of a telerobot system should be greater than
 5  Hz ,  the time constant ,   τ  ,  is designed to be 0 . 1 ,  which
 has a bandwidth of 10  Hz .

 5 . 1  Shared control with fixed force reflection gains
 The task was the same as that described in the previous
 section ,  which was to maintain a constant contact force
 (20  N) in z-direction .  Experiments were conducted under
 various values of the force reflection gain .  In the
 following experiments ,  traditional shared controller
 shown in Figure 2 was used .  The operator B in Figure 4
 conducted the task in the case of FIRM-Silicon (Case 9
 in Table I) ,  and some of the results are shown in Figure
 10 .

 When the gain is 0 . 1 ,  the human operator can hardly
 feel the reflection force during the task ,  and therefore ,
 the results were far from satisfaction .  When the gain was
 0 . 2 ,  the results were better than those of the previous ,
 but these were still unsatisfactory .  When the gain was
 0 . 4 ,  the results were fairly good because the contact

 Fig .  10 .  Results of the contacting experiments with various fixed force reflection gains (the case of FIRM-Silicon) .
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 forces were maintained near the desired value .  However ,
 when the gain was 0 . 8 ,  unstable contact occurred .

 From the above results ,  it can be seen that too small
 gain results in poor task performance while too large
 gain results in system instability .  This implies that force
 reflection gain is critical to task performance .

 5 . 2  Shared control with the force reflection gain selecting
 algorithm
 To show the ef fectiveness of the proposed algorithm ,  a
 series of experiments was conducted with the proposed
 controller in an on-line manner under two dif ferent
 conditions of the master and environments as shown in
 Table I (Case 7 – 10) .  Two types of tasks were conducted ;
 (1) to maintain a constant contact force of 20  N in
 z-direction ,  and (2) a peg-in-hole task .  When contact
 occurs ,  the neural classifier identifies the characteristic of
 the master and the environments .  Then ,  the fuzzy gain
 selector and the decision maker determine the new
 reflection gain based on the identified characteristics .  As
 a result ,  the operator can conduct the task with this new
 gain .

 In the following experiments ,  the initial force
 reflection gain was assigned 0 . 1 .  Both the NN 1 and the
 NN 2 have 8-20-10-1 nodes ,  and the four scaling factors
 of the fuzzy selector ,   g m  , g z  , g h   and  g k   were assigned to
 0 . 1 ,  0 . 1 ,  1  3  10 5 ,  and 0 . 1 ,  respectively .  The two weighting
 factors of the decision maker ,   a   and  b  ,  were set to 0 . 9
 and 0 . 1 ,  respectively ,  while the threshold ,   C ,  was set to
 0 . 24 .

 (i)  Contacting task .  First ,  the experiments were con-
 ducted in the case of FIRM-Silicon with the operator B .
 Figure 11(a) show the results .  In the figures ,  it can be
 seen that contact occurred at about 1 . 8  sec .  The outputs
 of the NN 1 and the NN 2 were all zero before the
 contact ,  while these became close to 0 . 82 and 0 . 2 after
 the contact ,  respectively .  Note that the target value for
 NN 1 was 0 . 82 at the FIRM mode for the operator B ,
 and the target values for NN 2 were 0 . 0 and 0 . 5 at
 styrofoam and rubber ,  respectively ,  during the training of
 neural classifier .  Considering these facts ,  the results
 indicate that the human operator was working on FIRM
 mode ,  and the environment was stif fer than styrofoam

 Fig .  11 .  Results of the contacting experiments for silicon .
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 but softer than rubber .  Also ,  it can be seen that the
 outputs of the NN 1 and NN 2 vary slightly after the
 contact .  It should be noted from the results that ,
 although the data obtained in this case had never been
 used in the training process ,  the neural classifier could
 successfully identify characteristics of the master and the
 environments .

 Bottom figure of Figure 11(a) shows the output of the
 fuzzy gain selector ,   k * f  ,  and the force reflection gain ,   k f  ,
 which is the output of the decision maker .  The  k * f    had its
 initial value ,  0 . 1 ,  before the contact ,  while it became
 close to 0 . 56 after the contact .  As the outputs of NN 1
 and NN 2 varied slightly ,  the  k * f    accordingly varied
 slightly .  The  k f  ,  however ,  was kepe a constant value ,  and
 thus ,  it can be seen the decision maker behaved well .
 The contact forces after 4 . 0  sec were very close to the
 desired value ,  20  N .  Note that as the contact force was
 controlled by the human operator ,  the results did not
 show the exact value of 20  N .

 Figures 11(b) show the results in the case of
 LOOSE-Silicon .  It can be seen that the neural classifier
 also worked well in this case .  The output of the NN 1
 denotes that the operator was working on the LOOSE

 mode and that the output of the NN 2 shows values
 similar to those in the case of FIRM-Silicon .  From the
 results ,  we can also see that the reflection gain ,   k f  ,  was
 updated during the operation by the decision maker
 according to the equations (13) – (14) .

 (ii)  Peg-in-hole task .  Now ,  a peg-in-hole task was done
 as an another example .  A peg was made of polyethylene
 and its diameter was 20  mm while a hole made of steel
 has its diameter of 20 . 4  mm with chamfer of 45 degrees .
 In the following experiments ,  the proposed algorithm is
 only implemented to the translation in x ,  y and z-axes for
 the simplicity .  During the experiments ,  direction of the
 end ef fector of the slave arm is fixed to a constant
 direction ( 2 Z S  direction) with respect to the global
 reference coordinates ,  and all the other conditions were
 the same as those of the previous experiments .

 The operator C in the Figure 4 conducted the task with
 the firm and loose modes .  The results are shown in
 Figure 12(a) .  As can be seen in the figure ,  the contact
 occurred at about 3 . 0  sec ,  and the outputs of the NN 1
 and the NN 2 were also zero before the contact .  These
 became close to 0 . 57 and 0 . 62 after the contact ,

 Fig .  12 .  Results of the peg-in-hole experiments .
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 respectively .  The above results indicate that the operator
 C was working on firm mode ,  and the environments was
 stif fer than rubber but softer than steel .  Also ,  it can be
 seen that the outputs of NN 1 and NN 2 vary slightly
 after the contact .  It should be noted that ,  although the
 data obtained in this task had never been used in the
 training process ,  the neural classifier can successfully
 identify characteristics of the master and the environ-
 ments .  Before the contact ,  the  k f * had its initial value ,
 0 . 1 ,  while it became close to 0 . 37 after the contact .
 Figure 12(b) shows similar results .  From the figures ,  it
 can be observed that the proposed algorithm also
 behaved well ,  adopting to changing environment .

 6 .  CONCLUSIONS
 A novel design method of a shared controller using
 neurofuzzy algorithm has been proposed .  A shared
 controller can enlarge the reflected force by combining
 force reflection and compliance control .  In a shared
 controller ,  determination of the force reflection gain
 guaranteeing stability largely depends upon characteris-
 tics of a master arm and environments which are
 uncertain or even unknown .  The proposed algorithm
 estimates characteristics of the master arm and
 environments using two multi-layered neural networks ,
 and then ,  determines the force reflection gain based
 upon the estimated characteristics using fuzzy logic .

 From the experimental results using a laboratory-made
 telerobot system ,  it can be seen that the characteristics of
 the master arm combined with the operator and
 environments significantly change with respect to the
 working conditions .  Also ,  the well-trained neural
 classifier can identify these characteristics ,  and the fuzzy
 gain selector can ef fectively determine a force reflection
 gain which ensures good task performance even under
 the changing environment and dynamic characteristics of
 a master arm .  Moreover ,  the algorithm can work in an
 on-line manner ,  and can be implemented to any shared
 telerobot system .
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