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Design of a neurofuzzy algorithm-based shared controller for

telerobot systems
D.H. Cha* and H.S. Chot

SUMMARY

This paper proposes a novel design method of a shared
controller for telerobot systems. A shared controller can
enlarge a reflected force by combining force reflection
and compliance control. However, the maximum
boundary of the force reflection gain guaranteeing the
stability greatly depends upon characteristics of the
elements in the system such as; a master arm which is
combined with the human operator’s hand, the
environments where the slave arm contacts and the
compliance controller. In normal practice, it is therefore,
very difficult to determine such a maximum boundary of
the gain. To overcome this difficulty, the paper proposes
a force reflection gain-selecting algorithm based on
neural network and fuzzy logic features. The method
estimates characteristic of the master arm and the
environments by using neural networks, and then,
determines the force reflection gain from the estimated
characteristics by using fuzzy logic. The algorithm can
work in an on-line manner, and can be easily applied to
any telerobot system because it requires no a priori
knowledge on the system. The effectiveness of the
proposed control scheme is verified through a series of
experiments using a laboratory-made telerobot system.

KEYWORDS: Neurofuzzy algorithm; Telerobot
Force rejection gain; Shared control.

systems;

1. INTRODUCTION

A telerobot system is generally composed of a master
arm which is controlled by a human operator and a slave
arm which duplicates the motion of the master arm and
performs actual works in a remote site. In a typical
telerobot system with no force reflection or compliance
control, a stiff slave arm strictly follows the motion of a
master arm. To achieve more complex tasks, however,
such a system may be unsuitable because of insufficient
information on the working environment. The forces
exerted by a slave arm interacting with the environment
contain much information on the teleoperation processes
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or working environments. The use of force information,
therefore, can greatly improve the task performance.
Two major techniques that utilize the contact forces are
compliance control and bilateral control.

In the compliance control system,'™ the contact forces
are not reflected to the operator but used for the
compliance control of a slave arm. An operator assigns
reference trajectory to a slave arm through a master arm
and the forces are fed back to a compliance controller.
The compliance controller, then, generates corrective
motions and these are superimposed to the reference
trajectory, and as a result, a modified reference trajectory
is generated. In a bilateral control system,””’ the contact
forces are reflected to a human operator via the master
arm so that he/she can correct his/her motions according
to these forces. Such a system is also called as a force
reflection system, and the force reflection can sig-
nificantly enhance the task performance. The larger the
force reflection gain is, the bigger the reflected force
becomes. However, the gain should be bounded into a
certain value because of the instability problem.®

To enlarge the reflected force, many shared control
algorithms have been proposed by combining the
bilateral control and the compliance control.*'° In these
schemes, a slave arm becomes more compliant by
employing compliance control, and therefore, it is
possible to enlarge the reflected force. Thus, good task
performance can be assured.

Hannaford® studies the effect of compliance loop on
stability and performance in the shared control, and
showed that the compliance control at the slave side can
reduce instability problem. Goldenberg'® proposed an
advanced bilateral control algorithm where the reflected
force was derived from the velocity error and contact
force. This scheme, however, requires the perfect model
of the master arm. Kim® found out a stable limit of the
force reflection gain using the open-loop transfer
function, and proposed the low-pass-filtered bilateral
control algorithm which can considerably increase the
force reflection gain.

In spite of the previous studies, there still remains an
unsolved problem; how to determine a force reflection
gain under the uncertain characteristics of master and
environments. In the shared control, the force reflection
gain greatly affects the task performance of the system:
too small gain results poor performance while too large
gain makes the system to be unstable. To ensure good
performance, the gain should be adequately adjusted by
guaranteeing the stability of the system. However, the
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maximum boundary of the gain greatly depends upon
characteristics* of the elements in the system such as; a
master arm which is combined with the human operator’s
hand, a slave arm, a compliance controller, and the
environments with which the slave arm contacts. In many
cases, the slave arm is required to work in uncertain
environments, and thus, the characteristics of the
environments can be assumed to be unknown and
significantly change according to the task to be done.’
Also, it has been reported that the characteristics of the
master{ are changing significantly whether the operator
holds the master with a firm or loose grasp.”"
Furthermore, the master shows highly nonlinear
characteristics which still remains unknown. In normal
practice, it is therefore, very difficult to determine the
maximum boundary of the force reflection gain.

To overcome this difficulty, the paper proposes a force
reflection gain selecting algorithm based on neural
network and fuzzy logic features. The method estimates
characteristics of the master arm and the environments
using neural networks, and then, determines the force
reflection gain using fuzzy logic based upon the estimated
characteristics. The algorithm can work in an on-line
manner, and can be easily applied to any telerobot
system because it requires no a priori knowledge. The
effectiveness of the presented algorithm is verified
through a series of experiments under various conditions

*In this paper, the term ‘“‘characteristics” of a system means
“dynamic  characteristics” of the system, such as
impedance(stiffness) or admittance(compliance).

+ From now on, the term ‘characteristics of master arm”
implies “‘the characteristics of master arm combined with the
operator’s hand”.

Neurofuzzy algorithm

of teleoperation using a laboratory-made telerobot
system.

The paper is organized as follows: Section 2 describes
the telerobot system used in the study. In section 3, the
factors affecting task performance and stability are
briefly discussed to present a guide line for determining
the force reflection gain. Section 4 shows the detailed
algorithm of the proposed method, and section 5
discusses the experimental procedure and results. Finally,
some conclusions are made in section 6.

2. THE TELEROBOT SYSTEM
Figure 1 shows the telerobot system developed at the
Laboratory for Control Systems and Automation (LCA)
in the Korea Advanced Institute of Science and
Technology. The system consists of a force reflective
master arm, a slave arm and a system controller. The
master arm has a vertical articulated structure with three
degrees of freedom (d.o.f.). Three D.C. servo motors
with harmonic drives are mounted in each axis. To
reduce friction, each motor is directly connected to the
rotational shaft of each axis. To enhance man-
euverability, balancing weights are attached to the
second and third axes. Three axis-control boards are
developed as torque controllers. The slave arm is an
industrial robot (Samsung, FARA A1-U) which has a
vertical articulated structure with six d.o.f. A joint
position control (JPC) board, used as a slave arm
controller, controls angular positions of the six joints of
the arm."?

A six axes force/torque sensor (ATI, FT 30/100) is
attached at the end of the slave arm to measure the
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Fig. 1. The structure of the LCA telerobot system.
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force/moment. To provide visual information of the
contact force, a force level indicator composed of 16 light
emitting diodes (LED) with a bar graph arrangement is
installed at the operator site. Although the human
operator can feel the contact force through the master
arm, addition of visual feedback of force can enhance
task performance significantly during the experiments.
To monitor the slave environment, a CCTV camera is
installed at the ceiling of the working site.

The telerobot system controller implemented by a PC
486/DX2-66 is composed of a master arm kinematics
routine, a workspace mapping routine, a slave arm
inverse kinematics routine, a compliance controller and a
force reflection controller. Since the master and slave
arms have kinematically different structures, workspace
mapping is required so that a position of the master arm,
Xy, can be appropriately transformed to the corres-
ponding space of the slave arm, Xs. The detailed
algorithm is similar to that described in reference 13. The
contact force measured by the force/torque sensor is
converted to the froce with respect to the base
coordinate of the slave arm. The reflected force is
evaluated by multiplying the contact force by the force
reflection gain, and then, the resultant is converted to the
torque applied at each axis of master arm through the
transpose of the master Jacobian. The master and slave
controllers are connected with a main PC through the
PC-AT bus via two parallel I/O boards.

3. FACTORS AFFECTING TASK
PERFORMANCE AND STABILITY

Figure 2 shows a typical block diagram of a shared
control of a telerobot system. The controller consists of a
compliance controller and a force reflection controller.
The compliance controller constitutes an inner feedback
loop, while the force reflection controller constitutes an
outer feedback loop. When contact force occurs, the
compliance controller receives this force as an input and
generates corresponding corrective motion, X, as an
output. This corrective motion is superimposed on the
master arm trajectory, Xz, and as a result, a modified
reference trajectory, Xg,, is generated. At the same
time, the contact force is also reflected back to the
human operator through the master arm after scaling by
a force reflection gain, k.

Human operator

command {F,) Fn Master & Xr1 Xr2 Slave :;ctsl:“a;: I(a)zlse) =
K human hand | arm g
Reflected y
force (F,) Compliance

Environ
Ze -ment

H controller

Force refiection gain

Kf <

Contact force (Fg)

Fig. 2. A typical block diagram of the shared control.
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Fig. 3. A simplified block diagram of the shared control.

3.1 Effects of the force reflection gain

Figure 3 shows a simplified block diagram of a shared
control system, where W denotes the compliance loop,
i.e. a resultant function of the slave, the environment and
the compliance controller. In this system, the contact
forces measured by the force/torque sensor are reflected
back to the human operator through the master arm
after scaling by a force reflection gain, k. This forms a
closed loop system and causes a trade-off between task
performance and stability.

To investigate the effect of the force reflection gain, let
us consider a stability condition of the system shown in
Figure 3 by following a similar procedure described in
Cha’ et al. Generally, the master arm, slave arm and
environments can be considered as nonlinear systems. If
we use the small gain throrem'* for stability of such a
system, its sufficient condition can be obtained by

IIME)rll =y I(F)rl YT =0, VE, €L,
Iks - W(Xr)]r | = v2 [(Xg) 7l VT =0, VXg €L,
1)
Y1t v2=1

where M(-) denotes a function for master arm, while |||
denotes the function norm and (-); denotes the
projection operator defined by

f@®) iftt=T

fr()= {0 if 1> T,

2
The above equations mean that the system is BIBO
(bounded input bounded output) stable if the loop gain is
less than unity."” To show the effect of the force reflect
gain more clearly, let the DC gains of M and W be
denoted by M, and W, respectively. Then, the DC loop
gain, Gp should be less than unity for the system to be
stable,® i.e.

Gpc=k; Wy My=1 3)
Namely,

1

ky=———
! Zeo Wy

4)
Note that W, contains the slave, the environments and
the compliance controller. From these equations, then, it
can be seen that the force reflection gain should be
determined under the consideration of characteristics of
the master, the slave, the environments and the
compliance controller.

A small force reflection gain results in a small reflected
force, and thus, the operator hardly feels the contact
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force so that task performance becomes poor. On the
other hand, a large gain results in a large reflection force,
thus, ensuring good task performance, however, too
large gain causes instability. From these facts, it can be
seen that there is a trade-off between stability and task
performance.

3.2 Effects of the compliance loop

Effect of the compliance controller can be seen to
decrease the effective stiffness of a slave arm.® The
higher the gain of the compliance controller is, the lower
the effect stiffness of the slave arm becomes. However,
the gain of the compliance controller should be limited
because too large gain makes the system unstable. To
concisely investigate the stable condition of the
compliance loop shown in Figure 2, let us following a
similar procedure described in the above section. Let §
denotes the slave arm, and DC gains of S, H and Z, be
denoted by S,, H, and Z,,, respectively. The DC loop
gain, Gp¢, then, should be less than unity for the system
to be stable, i.e.,

Gpc=HyZyy- So=1 (5)
Namely,
1
H=y ©)

From these equations, it can be seen that a compliance
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Fig. 4. Compliance characteristics of the LCA master arm (a)
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master arm for three operators (the case of excitation
frequency w = 0.5 Hz).
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controller should be determined under the consideration
of characteristics of the slave arm and the environments.

3.3 Characteristics of master, slave arm and environments
The compliance characteristics of the master arm
changes significantly depending upon how the operator
holds the master arm.®’ To investigate the characteristics
of the master arm shown in Figure 1, some experiments
were performed as shown in Figure 4(a). The
z-directional force, F = F,sin wt, was given as the
reference value for the torque controller and the
corresponding motion of the master arm, X =
X sin (wt + ¢), was measured. During the experiment,
the motion of the master arm was not transferred to the
slave, and thus, the slave did not move. The experiments
were conducted by three operators, and the excitation
frequency, w, was set to the two values, 0.5 Hz and 2 Hz,
which were the minimum and the maximum frequency
values used in Uebel’s study.'® From the results shown in
Figure 4(b), it can be seen that the compliance
characteristics of the master significantly change
according to the operator’s working mode and show
nonlinear relationships. Also, they change significantly
with respect to the operator. Although the results has not
been shown here due to space limitation, the effect of
frequency was found to be small compared with those of
operator’s mode, which is similar to those in reference 7.

In many cases, the slave arm is required to operate in
uncertain or even unknown environments, and thus,
characteristics of the environment are often assumed to
be unknown with nonlinearities.> Also they change
significantly depending upon the type of the task to be
done.

In some telerobot systems, industrial manipulators are
frequently used as slave arms. As typical industrial
manipulators are controlled by position serve systems
with high servo gains and high gear ratio, their dynamics
can be represented by a second order linear system with
constant parameters.'”'® In this study, therefore it is
assumed that the dynamic characteristics of the slave arm
remains unchanged.

4. THE NEUROFUZZY ALGORITHM-BASED
SHARED CONTROLLER

Figure 5 shows the block diagram of the proposed
algorithm. The shared controller consists of a first-order
linear compliance controller, a force reflection gain, and
a force reflection gain selecting algorithm. First, the force
reflection gain selecting algorithm is presented, and then,
a design criteria of the compliance controller is
described.

4.1 The force reflection controller

The force reflection controller consists of a force
reflection gain selecting algorithm and a force reflection
gain. The force reflection gain selecting mechanism,
which is similar to that of the previous work,’ consists of
two multi-layered neural networks, a fuzzy gain selector
and a decision maker. The characteristics of the master
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Fig. 5. The block diagram of the proposed algorithm.

arm and environments are classified by the NN1 and
NN2, respectively. The fuzzy gain selector determines
the inferred force reflection gain, k#, based upon the
estimated characteristics and the compliance characteris-
tic of the compliance controller. Finally, a decision
maker determines whether or not the present gain, kj,
should be updated with the new one inferred from the
fuzzy gain selector.

4.1.1 Neural classifier. Now, the problem at hand is to
classify characteristics of the master and the environ-
ments which have nonlinearity and undergo significant
change depending upon working conditions. Unfortun-
ately, it is very difficult to classify the characteristics of
the master arm in an on-line manner and little classifying
method has been reported. One solution to this problem
is to utilize artificial neural network. The neural classifier
used herein consists of two multi-layered neural
networks, NN 1 and NN 2. Their objectives are to
classify the dynamic characteristics of the master and
environments in an on-line manner. The NN 1 received
the reflected-force data and position information of the
master arm as inputs, and produces an output, 1, which
is a value between zero and unity representing the
characteristics of the master arm. On the other hand, the
NN 2 received the position and force information of the
slave arm as inputs, and yields an output, z, ranging

Table 1 Various conditions of the operator
and the environments

Operator's
No working mode Environment
1 firm styrofoam
2 loose styrofoam
3 firm rubber
4 loose rubber
5 firm steel
6 loose steel
7 firm plastic
8 loose plastic
9 firm silicon
10 loose silicon
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Contact force (Fg)

between a value between zero and unity, which
represented characteristics of the environment.

(a) Actual network training. Now, the experiments
performed to train the neural classifier will be discussed.
Three operators conducted a series of experiments under
ten different conditions of the master arm and
environments as shown in Table 1. During the
experiments, direction of the end effector of the slave
arm is fixed at a constant direction (—Zs direction) with
respect to the global reference coordinates. The task
performance in the experiments was to maintain a
constant contact force of 20N in z-direction as shown in
Figure 6(a). During the experiments, the force reflection
gain was set to 0.1, and the compliance controller,

slave
arm
F/T sensor
Z
deflection
x, [ =T Lz :i:
work piece

(a) Testing procedure
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(b) Effective stiffness of various workspieces

Fig. 6. Effective stiffness of various workpieces (a) Testing
procedure (b) Effective stiffness of various workpieces.
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H(s)=h/(ts + 1), was set to h Xx4x107® and 7=0.1.
All data were collected at 62.5 Hz. Figure 6(b) shows the
effective stiffness of the various workpieces used in the
experiments. Here, the effective stiffness means a
combined stiffness of the workpiece and the end effector
of slave arm.

Although three directional positions and forces (x, y
and z-direction) were measured, only z-directional data
were used for the training. Generally, all positions and
forces can be collected during the teleoperation, but if it
is assumed that the characteristics of master and
environment have isotropic properties, only one
directional position and force data are sufficient to
classify their characteristics. The above assumption can
be adopted in most of teleoperation.

The main feature of training the multi-layered neural
network is to learn the relationship between the inputs
and outputs. Thus, determination of suitable data for
inputs and outputs are one of the essential issues in
practical implementation of the neural classifier. To
obtaining the suitable data set, training the neural
networks was conducted under various sets of inputs and
outputs as shown in Table II.

Among ten data sets collected, the six data set (No.
1-6 in Table I) were presented to the networks for
training. First, six data composed of three position data
of the master arm and three reflection force data, were
given as the inputs for NN 1. In a similar way, six data,
three position data of the slave arm and three contact
force data, were given as inputs for NN 2. The inputs are
given in Table II in detail. The target outputs for the NN

Table IT Inputs and outputs for the neural classifier

input data for NN Number of inputs

NN 1 NN 2 6 8 10
Xm(t) _ch XS(t) _XSC O O O
AX, (1) AX() @) @) o
AX, (1—1) AXo(f—1) 0 0 0
AX,,(t—=2) AXg(t—2) X 0] 0]
AX,,(t —3) AX(t —3) X X 0
E (1) Es(1) O O O
AE(t) AFy(1) 0 0 0
AE(f—1) AE(f—1) 0 0 0
AF(t —2) AF(t —2) X 0 0
AE(t —3) AFy(t - 3) X X o)

O: included, X: not included.
X,,..: the position of the master arm when contact occurs.
X! the position of the slave arm when contact occurs.

AX,(1) = X,(0) ~ Xt~ 1) (i=m,s)
AE()=E@) ~E(~1)  (i=rs)

Target outputs for NN 1 Target outputs for NN 2

firm operator A 1.0
operator B 0.82
operator C 0.62 i;}g&f:(r)am 82
loose  operator A 0.33 steel 10
operator B 0.23 '
operator C 0.0
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1 and NN 2 were assigned as values between zero and
unity, and are given in Table II. Both the two networks
have 60-20-10-1 nodes. Training was conducted using the
error back propagation algorithm' until the number of
iteration reaches 20,000. The total number of the training
sample was 2,400.

(b) Results and discussions. The training results for NN
1 are shown in Figure 7(a). In the figure, the average
system error is a mean-square error between the target
output and trained output, which is defined by

1 2
Ezﬁg(tp—Op) (7)

where 1, denotes the target output and o, denotes the
output generated by the neural network while the
subscript p denotes p-th training sample, and P is the
total number of training samples.

From the figure, it can be seen that in the case of six
input, the error decreases rapidly in early stage, and
thereafter, does not decrease further. The training results
for NN 2 given in Figure 7(b) show a similar trend, and
the error is not exactly converged to zero. In this case,
additional training was performed up to 40,000 iterations,
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and the result also showed no further decrease in error.
If eight and ten data are given as inputs to both the NN 1
and NN 2 as shown in Table II, the results are quite
different from those of the previous case: the error
converges to zero as shown in the same figure. These
results indicate that the train was performed well.

From the above results, it can be seen that, in the case
of the six inputs, the NNs can not learn well the
characteristics of the master and environments due to the
insufficient input data. In the cases of the eight and ten
inputs, however, the networks can learn the characteris-
tics of the master and environments. The reason for the
results can be explained as follows: In order for a
multi-layered neural network to represent the behavior
of a dynamic system at time ¢, the previous knowledge of
the system (i.e., inputs and outputs of the system before
time ¢) should be given to the network as inputs. If the
previous knowledge is insufficient, the network can not
represent the behaviour of the system.

(c) Effects of the node size. One of the main design
parameters of the neural network is the number of
hidden layers, and the number of nodes in each layer. As
these parameters increase, a network can perform more
complex mapping. However, the resulting complexity of
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connections in the network requires more computation
time. In this study, two hidden layers were used because
they are enough to realize the usual mapping functions.

To investigate the effect of node size, training was
conducted for various sizes of the node number in the
case of the eight inputs. Figures 8(a)-(b) show the
results. In both cases, convergence speed of the §8-15-8-1
networks are found to be very slow, and the final error is
much larger than those of other cases. In the cases of
8-20-10-1 and 8-25-15-1, convergence speed appears to be
satisfactory.

4.1.2 Fuzzy gain selector. It is very difficult and yet
remains unknown to find out the optimal force reflection
gain, even though the characteristics of the master and
the environments are known. In most force reflection
systems, human operator usually determines the gain
based upon his/her experiences and/or knowledge about
the teleoperation. Many research works have shown that
a fuzzy logic witjh approximate reasoning can emulate
the decision-making ability of a skilled human
operator.”® Based upon this reasoning, fuzzy logic can be
effectively applied to determine the force reflection gain.

As shown in Figure 5, the inputs of the fuzzy gain
selector are two outputs of the neural classifier and a DC
gain of the compliance controller, while its output is a
force reflection gain. The selector consists of four
modules just as the general fuzzy logic controller does: a
fuzzy decoder, a rule base, a fuzzy reasoning and a
defuzzifier.

(a) Fuzzy decoder. The input fuzzy variables are
obtained by scaling from the inputs of the fuzzy gain
selector and they are defined by

m=g,Xm
I=g. Xz ()
h=g,xXh

where m, z and h denote the output of NN 1, NN 2, and
the DC gain of compliance controller, while g,,, g. and g,
denote scaling factors for m, z and A, respectively.

(b) Rule base. In constructing the rule base, there are
generally three ways as described in the followings: (1)
expert’s knowledge or experiences; (2) self-improvement;
(3) fuzzy modeling. In this study, the rule base is
constructed using the first method. The output variables
of the fuzzy rule takes the form of fuzzy singleton, which
decreases the calculation time considerably, and thus,
profitable in real time application. The rule base consists
of 18 rules and takes the form:

Rule R;: IF i is My, Z is Z;, his H; THEN kfis K;

i=1,2,...,18) (9
where the subscript i denotes the i-th rule. Also, M;, Z;,
H; and K; are the fuzzy subsets corresponding to the
variables 771, Z, h and k}, respectively. The fuzzy subsets

for each variables are defined as shown in Figure 9 while
the 18 rules are shown in Table III.
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(a) The linguistic values for the #i  (b) The linguistic values for the z
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[ 0.5 1.0

{c) The linguistic values for the &

Fig. 9. Definition of the fuzzy linguistic variables (a) the
linguistic values for the 7 (b) The linguistic values for the Z (c)
The linguistic values for the 4.

(c) Fuzzy inference. For each rule base, the min—-max
operation is adopted to perform fuzzy inference. Let wy,
(k¥) be the membership function for a subset of the
output which is result of the k-th rule. Then, it can be
obtained by

MK;(Ei*) = [,UvMi(’ﬁ) Dl-bzi(f) D/-LH;(E) D/"LKi(E}k)] (10)

where the operator, [, denotes the min operation. From
the results of the 18 rules, the final membership function,
px (kf), can be obtained by using max operator:

(k) = [, (k) Opi,(k3) O- - - Op (k)] (11)

where the operator, [J, denotes the max operation.

Table III Fuzzy rules for the fuzzy gain selector
(a) in the case of h =ZR

z
m SOFT MED STIFF
LOOSE 0.3 0.18 0.1
FIRM 0.6 0.25 0.15
(b) in the case of h =SM
z
m SOFT MED STIFF
LOOSE 0.45 0.25 0.15
FIRM 0.75 0.4 0.2
(c) in the case of h =LA
z
m SOFT MED STIFF
LOOSE 0.65 0.3 0.2
FIRM 1.0 0.55 0.26
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(d) Defuzzifier. The proposed algorithm requires a crisp
force reflection gain. Thus, a defuzzifier is adopted to
yield a crisp gain from the inferred fuzzy gain given in
equation (10). The crisp force reflection gain, k¥, can be
obtained by

k< = g X Defuzzify{ux (k ¥)} (12)

where g, are the scaling factors for k# and Defuzzify { - }
denotes the defuzzifier operator which performs
defuzzification by using the center of gravity method.

4.1.3 Decision maker. The ultimate aim of selecting
force reflection gain is to enhance the task performance.
For such a purpose, the gain selecting algorithm should
be designed to have the following properties; if the
characteristics of a master or environments are changed,
the gain should be changed adaptively. Otherwise, the
gain should remain unchanged because gain change
causes the operator to be confused, resulting in poor
performance.

It can be seen in the experimental results which will be
described in the next section in more detail, that the
outputs of the neural classifier change slightly even
though the characteristics of master or environments
remains unchanged (for example, see the results in the
Figure 11(a) and (b)). This is due to the imperfect
learning capability of the neural networks or inevitable
measuring noise contained in the inputs. Such a slight
change of the estimated values can be frequently seen in
many other classification algorithms working in an
on-line manner. In this case, the output of the fuzzy gain
selector tends to change slightly. Upon consideration of
this fact, it is necessary to design a decision maker which
determines whether or not the present gain should be
updated with the new one, inferred from the fuzzy gain
selector.

Let kq(¢) be the force reflection gain used at time t,
and k#(t) be the inferred gain at that time. Then, the
decision II can be defined by

ke (2) ; k(i)

where ap, Bp (0<ap, Bp=1, ap+PBp=1) are the
weighting factors and C is a constant, while ¢, denotes the
time at which the latest gain change had occurred. The
first term of the above equation represents the ratio of
the present gain to the inferred gain, while the second
term represents the accumulated normalize error
between the inferred gain and the actual gain since the
time t,. Now, the force reflection gain at time ¢+ 1 is
determined by

HZQD"1

+ Bp - -C (13)

k() ifTI=0
ke(r) ifI1<0.

This indicates that, if II is greater than zero, the gain is
updated, otherewise, it remains unchanged. In other
words, the gain is updated when the ratio of the presnt
gain to the inferred gain is larger and/or the accumulated
normalized error is large.

k(+ 1= (14)
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4.2 The compliance controller
The first order linear compliance controller has a form
given by

H(s)= (15)

s +1

where 4 and 7 denote the DC gain and the time constant
of the controller, respectively. Applying equation (6), &
should be bounded

1
ZeO : So

h=

(16)

Larger value of the time constant, 7, can enlarge stable
region of telerobot system.”’ On the other hands, from
many studies to establish required bandwidth of
telerobot systems,'®*** it can be concluded that the
bandwidth of a telerobot system should be greater than
5 Hz. Therefore, the time constant should be limited
within a certain boundary so as to satisfy the bandwidth
requirements of telerobot systems.

5. EXPERIMENTS AND RESULTS
In this section, two types of experiments were conducted:
first, the experiments with fixed force reflection gains
were conducted to investigate the effect of the force
reflection gain on the task performance. Second, the
experiments with the proposed algorithm were con-
ducted to show the effectiveness of the proposed
algorithm, and the results were compared with those of
the first ones.

A DC gain, h, of the compliance controller can be
determined using equation (16). To determine A, it
should be known that the DC gain of environments, Z,,

40
z
€
8
K
g
o
o
10 R . .
(a) Kg=0.1
40
z
e
B
S
3
[5)
10 R . .
0 1.6 3.2 48 6.4
Time, t (sec)
(c)Ks=0.4
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and slave arm, S,. The Z,, can be found in the effective
stiffness of various environments shown in Figure 6(b).
In the figure, the effective stiffness of steel is largest and
its value is 2.35% 10° N/m. Since the slave arm can be
represented by a second order linear system with unit
DC gain, the S, can be treated as an unity. Now, if
equation (16) is applied, /& should be bounded by

1

h<————=——=426%X10"°

2.35X10° % 1
Thus, the & is designed to be 4.0X107° Since the
bandwidth of a telerobot system should be greater than
5 Hz, the time constant, 7, is designed to be 0.1, which
has a bandwidth of 10 Hz.

5.1 Shared control with fixed force reflection gains

The task was the same as that described in the previous
section, which was to maintain a constant contact force
(20N) in z-direction. Experiments were conducted under
various values of the force reflection gain. In the
following experiments, traditional shared controller
shown in Figure 2 was used. The operator B in Figure 4
conducted the task in the case of FIRM-Silicon (Case 9
in Table I), and some of the results are shown in Figure
10.

When the gain is 0.1, the human operator can hardly
feel the reflection force during the task, and therefore,
the results were far from satisfaction. When the gain was
0.2, the results were better than those of the previous,
but these were still unsatisfactory. When the gain was
0.4, the results were fairly good because the contact

40

Contact force (f), N

(b) K= 0.2

Contact force (f), N

0 16 3.2 48 6.4
Time, t (sec)

(d)K;=08

Fig. 10. Results of the contacting experiments with various fixed force reflection gains (the case of FIRM-Silicon).
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forces were maintained near the desired value. However,
when the gain was 0.8, unstable contact occurred.

From the above results, it can be seen that too small
gain results in poor task performance while too large
gain results in system instability. This implies that force
reflection gain is critical to task performance.

5.2 Shared control with the force reflection gain selecting
algorithm

To show the effectiveness of the proposed algorithm, a
series of experiments was conducted with the proposed
controller in an on-line manner under two different
conditions of the master and environments as shown in
Table I (Case 7-10). Two types of tasks were conducted;
(1) to maintain a constant contact force of 20N in
z-direction, and (2) a peg-in-hole task. When contact
occurs, the neural classifier identifies the characteristic of
the master and the environments. Then, the fuzzy gain
selector and the decision maker determine the new
reflection gain based on the identified characteristics. As
a result, the operator can conduct the task with this new
gain.

20
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Outputs of the neural classifier
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(a) the case of firm-silicon

Fig. 11. Results of the contacting experiments for silicon.

https://doi.org/10.1017/50263574797000039 Published online by Cambridge University Press

Neurofuzzy algorithm

In the following experiments, the initial force
reflection gain was assigned 0.1. Both the NN 1 and the
NN 2 have 8-20-10-1 nodes, and the four scaling factors
of the fuzzy selector, g,,, g., g, and g, were assigned to
0.1, 0.1, 1 X 10%, and 0.1, respectively. The two weighting
factors of the decision maker, o and B, were set to 0.9
and 0.1, respectively, while the threshold, C, was set to
0.24.

(i) Contacting task. First, the experiments were con-
ducted in the case of FIRM-Silicon with the operator B.
Figure 11(a) show the results. In the figures, it can be
seen that contact occurred at about 1.8 sec. The outputs
of the NN 1 and the NN 2 were all zero before the
contact, while these became close to 0.82 and 0.2 after
the contact, respectively. Note that the target value for
NN 1 was 0.82 at the FIRM mode for the operator B,
and the target values for NN 2 were 0.0 and 0.5 at
styrofoam and rubber, respectively, during the training of
neural classifier. Considering these facts, the results
indicate that the human operator was working on FIRM
mode, and the environment was stiffer than styrofoam

Contact force (f), N

Contact force

—NN1

08 —NN2

06 }
04 |
02 W
0]

02

Outputs of neural classifier

Outputs of the neural classifier
06

05 ¢

o4 | Ao

Force reflection gain, & f
(@]
w

02 —k
o1 k&
00 : 1 I

0 16 32 48 64

Time (t), sec
Force reflection gain

(b) the case of loose-silicon
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but softer than rubber. Also, it can be seen that the
outputs of the NN 1 and NN 2 vary slightly after the
contact. It should be noted from the results that,
although the data obtained in this case had never been
used in the training process, the neural classifier could
successfully identify characteristics of the master and the
environments.

Bottom figure of Figure 11(a) shows the output of the
fuzzy gain selector, kf, and the force reflection gain, &,
which is the output of the decision maker. The &} had its
initial value, 0.1, before the contact, while it became
close to 0.56 after the contact. As the outputs of NN 1
and NN 2 varied slightly, the kj accordingly varied
slightly. The k;, however, was kepe a constant value, and
thus, it can be seen the decision maker behaved well.
The contact forces after 4.0 sec were very close to the
desired value, 20 N. Note that as the contact force was
controlled by the human operator, the results did not
show the exact value of 20 N.

Figures 11(b) show the results in the case of
LOOSE-Silicon. It can be seen that the neural classifier
also worked well in this case. The output of the NN 1
denotes that the operator was working on the LOOSE

21

mode and that the output of the NN 2 shows values
similar to those in the case of FIRM-Silicon. From the
results, we can also see that the reflection gain, k, was
updated during the operation by the decision maker
according to the equations (13)-(14).

(ii) Peg-in-hole task. Now, a peg-in-hole task was done
as an another example. A peg was made of polyethylene
and its diameter was 20 mm while a hole made of steel
has its diameter of 20.4 mm with chamfer of 45 degrees.
In the following experiments, the proposed algorithm is
only implemented to the translation in X, y and z-axes for
the simplicity. During the experiments, direction of the
end effector of the slave arm is fixed to a constant
direction (—Zg direction) with respect to the global
reference coordinates, and all the other conditions were
the same as those of the previous experiments.

The operator C in the Figure 4 conducted the task with
the firm and loose modes. The results are shown in
Figure 12(a). As can be seen in the figure, the contact
occurred at about 3.0 sec, and the outputs of the NN 1
and the NN 2 were also zero before the contact. These
became close to 0.57 and 0.62 after the contact,
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(a) the case of firm mode

Fig. 12. Results of the peg-in-hole experiments.
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respectively. The above results indicate that the operator
C was working on firm mode, and the environments was
stiffer than rubber but softer than steel. Also, it can be
seen that the outputs of NN 1 and NN 2 vary slightly
after the contact. It should be noted that, although the
data obtained in this task had never been used in the
training process, the neural classifier can successfully
identify characteristics of the master and the environ-
ments. Before the contact, the k/# had its initial value,
0.1, while it became close to 0.37 after the contact.
Figure 12(b) shows similar results. From the figures, it
can be observed that the proposed algorithm also
behaved well, adopting to changing environment.

6. CONCLUSIONS
A novel design method of a shared controller using
neurofuzzy algorithm has been proposed. A shared
controller can enlarge the reflected force by combining
force reflection and compliance control. In a shared
controller, determination of the force reflection gain
guaranteeing stability largely depends upon characteris-
tics of a master arm and environments which are
uncertain or even unknown. The proposed algorithm
estimates characteristics of the master arm and
environments using two multi-layered neural networks,
and then, determines the force reflection gain based
upon the estimated characteristics using fuzzy logic.
From the experimental results using a laboratory-made
telerobot system, it can be seen that the characteristics of
the master arm combined with the operator and
environments significantly change with respect to the
working conditions. Also, the well-trained neural
classifier can identify these characteristics, and the fuzzy
gain selector can effectively determine a force reflection
gain which ensures good task performance even under
the changing environment and dynamic characteristics of
a master arm. Moreover, the algorithm can work in an
on-line manner, and can be implemented to any shared
telerobot system.
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