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Abstract An analytically irreducible hypersurface germ (S, 0) ⊂ (Cd+1, 0) is quasi-ordinary if it can
be defined by the vanishing of the minimal polynomial f ∈ C{X}[Y ] of a fractional power series in
the variables X = (X1, . . . , Xd) which has characteristic monomials, generalizing the classical Newton–
Puiseux characteristic exponents of the plane-branch case (d = 1). We prove that the set of vertices of
Newton polyhedra of resultants of f and h with respect to the indeterminate Y , for those polynomials h

which are not divisible by f , is a semigroup of rank d, generalizing the classical semigroup appearing in the
plane-branch case. We show that some of the approximate roots of the polynomial f are irreducible quasi-
ordinary polynomials and that, together with the coordinates X1, . . . , Xd, provide a set of generators of
the semigroup from which we can recover the characteristic monomials and vice versa. Finally, we prove
that the semigroups corresponding to any two parametrizations of (S, 0) are isomorphic and that this
semigroup is a complete invariant of the embedded topological type of the germ (S, 0) as characterized
by the work of Gau and Lipman.
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1. Introduction

The set of intersection multiplicities at the origin of a plane branch (C, 0) with those
curves that do not contain this branch as a component is a sub-semigroup of Z�0,
which is, in fact, a complete invariant of the embedded topological type of the germ
(C, 0) ⊂ (C2, 0) (see [Re]). If f ∈ C{X}[Y ] is a Weierstrass polynomial defining the
germ C, we can build a system of generators of the semigroup by considering the curves
defined by X = 0 and by the vanishing of some of the approximate roots of the polynomial
f . If the curve X = 0 is not contained in the tangent cone of the germ (C, 0), this set of
generators is the minimal one (see [Z2,A-M1,A-M2,PP1,G-P]).

In this paper we generalize some of the above results to the more general class of
analytically irreducible quasi-ordinary hypersurface germs. A germ of complex analytic
variety (S, o) is quasi-ordinary if there exists a finite morphism (S, o) → (Cd, 0) such
that the discriminant locus is contained (germ wise) in a normal crossing divisor. Quasi-
ordinary hypersurface singularities arise classically in Jung’s approach of analysing a
surface singularity by using embedded resolution of the discriminant of any of its finite
projections to a smooth surface (see [L2,W]).
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A quasi-ordinary hypersurface germ can be defined by an equation f = 0, where
f ∈ C{X}[Y ] is a quasi-ordinary polynomial, i.e. a monic polynomial such that the
discriminant ∆Y f is of the form Xδε for a unit ε (where X denotes (X1, . . . , Xd)). The
Jung–Abhyankar theorem implies that the roots of quasi-ordinary polynomials, called
quasi-ordinary branches, are fractional power series in the ring C{X1/n} for some positive
integer n (see [J, A1]). Since the difference ζ − ζ ′ of any two roots of f divides the
discriminant, it must be of the form Xλε, where ε ∈ C{X1/n} is a unit and λ is a d-
tuple of non-negative rationals. The monomials Xλ so obtained are called characteristic
monomials.

Lipman builds an inversion lemma that associates to any quasi-ordinary branch ζ

a normalized quasi-ordinary branch parametrizing the same germ whose characteristic
monomials are obtained from those of ζ by an inversion formulae similar to that of the
plane-curve case (see [L1] and the appendix of [Gau]). Being normalized is a techni-
cal condition that in the plane-curve case means that the projection (X, Y ) �→ X is
transversal. In the two-dimensional case, Lipman proved that the characteristic mono-
mials of a normalized quasi-ordinary branch are an analytical invariant of the surface
(see [L1,L3]). Luengo gives another proof of this result (see [Lu]). Lipman remarked,
using general results of Zariski on saturation of local rings, that the characteristic mono-
mials of a normalized quasi-ordinary branch determine the topological type of the germ it
parametrizes (see [L4] and also [Oh] for another proof); Gau proved the converse: these
monomials define a complete invariant of the embedded topological type of the germ.
Gau’s proof involves some results of Lipman on topological invariants of quasi-ordinary
singularities: the description of the local divisor class group in terms of the characteristic
monomials (see [Gau,L4]).

When f is an irreducible quasi-ordinary polynomial, we can generalize some of the
properties of the intersection multiplicity of plane-curve germs by studying the combi-
natorial structure of the set of compact faces of the Newton polyhedra of the resultants
with respect to the indeterminate Y of the polynomial f and polynomials in the ring
C{X}[Y ]. In particular, we prove that the set of vertices of Newton polyhedra of the
resultant ResY (f, h), for those polynomials h which are not divisible by f , is a semigroup
of rank d (see Theorem 3.6 and Corollary 3.7). When d = 1, we obtain the classical semi-
group associated a plane branch. In general, we prove that the Newton polyhedra of the
resultants of f and of the minimal polynomials of some suitable truncations of the series
ζ together with the coordinates X1, . . . , Xd, have only one vertex and that these vertices
generate the semigroup. The same result holds when we replace the minimal polynomials
of the truncations of ζ by approximate roots of f of the same degrees. We prove that
these approximate roots are irreducible quasi-ordinary polynomials and that their roots
are fractional power series that coincide up to prescribed terms, which are some of the
characteristic monomials, with the series ζ (see Proposition 4.3). The set of generators
of the semigroup is related to the characteristic monomials by formulae similar to those
that appear in the plane-branch case. Relevant to these formulae and to the properties of
the semigroup are a set of integers and rank-d lattices determined by the characteristic
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monomials, which we use to give properties characterizing those semigroups associated
to a quasi-ordinary branch.

In the last section we use Theorem 3.6 and Corollary 3.7 to prove that the semigroups
associated to a quasi-ordinary branch and its normalized quasi-ordinary branch by the
inversion lemma of Lipman are isomorphic. As a consequence, we give another proof of the
inversion formulae relating their characteristic monomials. Then we prove Theorem 5.3,
which states that the semigroup we build from a quasi-ordinary branch is a complete
invariant of the embedded topological type (as characterized by Gau): two quasi-ordinary
branches parametrizing the same hypersurface germ have isomorphic semigroups and this
semigroup determines the normalized characteristic exponents. Up to Theorem 5.3, which
uses the characterization of the topological type, the results of this work are valid also in
the algebroid case when we replace C{X}, the ring of germs of holomorphic functions at
the origin of the affine complex space, by the ring of formal power series with coefficients
in an algebraically closed field of characteristic zero.

The semigroup of a quasi-ordinary hypersurface germ determines an embedded resolu-
tion of the germ, re-embeded in an affine complex space of larger dimension, by a method
generalizing that of Goldin and Teissier in the plane-branch case (see [G-T,GP3]).

2. Quasi-ordinary hypersurface singularities

A germ of complex analytic variety (S, o) is a quasi-ordinary singularity if there exists
a finite morphism (S, o) → (Cd, 0) (called a quasi-ordinary projection) such that the
discriminant locus is contained (germ wise) in a normal crossing divisor. This means
that there exist some analytical coordinates X = (X1, . . . , Xd) at the origin such that
the projection is unramified over the torus X1 · · ·Xd = 0 in a neighbourhood of the ori-
gin. The finite map (S, o) → (Cd, 0) corresponds algebraically to a local homomorphism
C{X} → R of their analytic algebras, which gives R the structure of finite C{X}-module.
The germ (S, o) is a quasi-ordinary hypersurface if R is generated by one element. In this
case, we have a surjection C{X}[Y ] → R corresponding geometrically to an embedding
(S, o) ↪→ (Cd × C, 0). The kernel of the homomorphism above is a principal ideal gener-
ated by a monic polynomial f ∈ C{X}[Y ] such that f(0, Y ) = Y n (where n = deg f is
also equal to the degree of the quasi-ordinary projection) and the discriminant ∆Y f of
f with respect to the variable Y is of the form XδH for a unit H in C{X}. We say that
a polynomial f in C{X}[Y ] satisfying these conditions is quasi-ordinary, since it defines
a quasi-ordinary hypersurface for the projection (X, Y ) �→ X. The Jung–Abhyankar the-
orem (see [J] or [A1, Theorem 3] for an algebraic proof) implies that the roots of the
quasi-ordinary polynomial f are fractional power series in the ring C{X1/k} for some pos-
itive integer k, where X1/k = (X1/k

1 , . . . , X
1/k
d ). The roots of quasi-ordinary polynomials

are called quasi-ordinary branches. Any difference of two distinct roots of f divides the
discriminant in C{X1/k}, thus it is necessarily of the form ζ(s) − ζ(t) = XλstHst, where
Hst is a unit in C{X1/k}. When d = 1, the exponents λst obtained are the classical
Newton–Puiseux characteristic exponents of the (analytically) irreducible components
of the germ (S, o) in general coordinates and the orders of coincidence of the fractional
parametrizations of distinct components.
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If the polynomial f is irreducible, we can take k = n := deg f (see [L4, p. 52] and [GP1,
Remarque 1]). The analytic algebra R = C{X}[Y ]/(f) can be viewed as the subring
C{X}[ζ] of C{X1/n} for ζ any root of f . If L (respectively, Ln) is the field of fractions
of C{X} (respectively, of C{X1/n}), the field extension L ⊂ Ln is finite and Galois. Its
Galois group is obtained from the action of d-tuples (η1, . . . , ηd) of nth roots of unity
given by X

1/n
i �→ ηiX

1/n
i for i = 1, . . . , d. It follows that the field extension obtained from

R ⊂ C{X1/n} by taking fields of fractions is Galois, and therefore the roots of f are the
conjugates of ζ by the above action. The fractional monomials Xλst (respectively, the
vector exponents λst) are called characteristic or distinguished monomials (respectively,
exponents) of the quasi-ordinary branch ζ.

If f is a reduced quasi-ordinary polynomial, it follows from the geometrical definition
that all its irreducible factors are quasi-ordinary polynomials.

Definition 2.1 (cf. [GP2]). The polynomials f (i) and f (j) in C{X}[Y ] have order
of coincidence λ(i,j) if f (i)f (j) is a quasi-ordinary polynomial and λ(i,j) is the largest
exponent of the set {λst/f (i)(ζ(s)) = 0, f (j)(ζ(t)) = 0}.

It follows in this case that the λst above are orders of coincidence of pairs of different
factors or characteristic exponents of the factors.

The partial order in Qd, defined by λ � λ′ if and only if we have ‘�’ coordinate wise,
induces a total order in the set of characteristic exponents of a quasi-ordinary branch
(see [L4, Lemma 5.6]). We relabel them in a unique form λ1 < λ2 < · · · < λg (where ‘<’
means ‘�’ and ‘�=’).

Lemma 2.2 (cf. Proposition 1.5 of [L3] and Proposition 1.3 of [Gau]). Let
ζ =

∑
cλXλ be a non-unit in C{X1/n}. Then ζ is a quasi-ordinary branch if and only

if there exist elements λi ∈ (1/k)Zd
�0 (1 � i � g) such that

(i) λ1 < λ2 < · · · < λg and cλi �= 0 for 1 � i � g;

(ii) if cλ �= 0, then λ is in the subgroup of Qd given by Zd +
∑

λi�λ Zλi;

(iii) λj is not in the subgroup of Qd given by Zd +
∑

λi<λj
Zλi for j = 1, . . . , g.

If such elements exist, they are uniquely determined by ζ, and they are the characteristic
exponents of ζ.

Remark 2.3. Lemma 2.2 gives us a canonical way of writing the terms of a quasi-
ordinary branch,

ζ = p0 + p1 + · · · + pg,

where p0 is in C{X} and Xλ appears in pi with non-zero coefficient implies that λi � λ

and λi+1 �� λ.

We say that the quasi-ordinary branch ζ has well-ordered variables if the g-tuples
(λ1,i, . . . , λg,i) of i-coordinates of the characteristic exponents λ1, . . . , λg are ordered lex-
icographically, i.e. we have that

(λ1,i, . . . , λg,i) �lexicographically (λ1,j , . . . , λg,j) for 1 � i < j � d.
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It is clear that, given a quasi-ordinary branch ζ, we can relabel the variables X1, . . . , Xd

in order to satisfy this condition.

Definition 2.4. The quasi-ordinary branch ζ is normalized if it is given with well-
ordered variables, and if it happens that the first characteristic exponent is of the form
λ1 = (λ1,1, 0, . . . , 0), then we have λ1,1 > 1.

This condition in the case of plane curves implies that the projection (X, Y ) �→ X is
transversal. Lipman proved that any quasi-ordinary hypersurface is parametrized by a
normalized quasi-ordinary branch ζ (see [L1] and the appendix of [Gau]).

We denote the lattice Zd by M and by Mj the lattice Zd +
∑

λi<λj+1
Zλi for

j = 1, . . . , g, with the convention λg+1 = +∞. Following Lipman, we associate to the
characteristic exponents sequences of lattices and integers (see [L4, p. 61]). In the plane-
branch case, the sequence of integers coincide with the first component of the character-
istic pairs in arbitrary coordinates (see [GP2]).

Definition 2.5. The characteristic lattices are the lattices Mi defined above. The char-
acteristic integers are the indexes nj of Mj−1 in Mj for j = 1, . . . , g.

We denote by ei−1 = ni · · ·ng for i = 1, . . . , g and we set n0 := 1.
We denote by N the dual lattice of M and by NR the real vector space N ⊗Z R

spanned by the lattice N . We denote by ρ ⊂ NR the cone spanned by the dual basis of
the canonical basis of M . The exponents of the quasi-ordinary branch ζ belong to the
semigroup ρ∨ ∩ Mg, where ρ∨ = {u ∈ MR/〈u, v〉 � 0 ∀v ∈ ρ} is the dual cone of the
cone ρ. The series ζ can be viewed as an element of the ring C{ρ∨ ∩ Mg} of germs of
holomorphic functions at the special point of the affine toric variety Spec C[ρ∨ ∩ Mg]
(see [GP3]). We denote the ring C{X} by C{ρ∨ ∩M}. The advantage of these notations
is that we can define ring homomorphisms by changing the lattice or the cones, for
instance, the ring extension R = C{ρ∨ ∩ M}[ζ] → C{ρ∨ ∩ Mg} is the inclusion in the
integral closure (see [GP3, Proposition 14]).

The field of fractions of R is L[ζ], since ζ is algebraic over L.

Lemma 2.6 (cf. Lemma 5.7 of [L4]). We have the following equality:

L[ζ] = L[Xλ1 , . . . , Xλg ].

Remark 2.7. The integers nj and ei are the degrees of the Galois extensions,

ei := [L[ζ] : L[Xλ1 , . . . , Xλi ]] for i = 1, . . . , g,

nj := [L[Xλ1 , . . . , Xλj ] : L[Xλ1 , . . . , Xλj−1 ]] for j = 1, . . . , g.

}
(2.1)

In particular, we have that deg f = e0 = n1 · · ·ng = n.

It follows from Lemma 2.6 that the polynomial f has all its roots in the field L[ζ]
(since it is also equal to the field of fractions of C{ρ∨ ∩ Mg}), and thus the exten-
sion L[ζ] : L[Xλ1 , . . . , Xλi ] is Galois. The assertion on the degrees follows then from
Definition 2.5 and Lemma 2.6 using the fact that the minimal polynomial of Xλj over
L[Xλ1 , . . . , Xλj−1 ] is Y nj − Xnjλj .
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3. The semigroup of a quasi-ordinary branch

In the following sections we study the singularity (S, o) defined parametrized by a quasi-
ordinary branch ζ with g � 1 characteristic exponents λ1, . . . , λg.

If d = 1, then S is a plane branch and the set of intersection multiplicities (S, S′)0 of S

that those plane-curve germs S′ not containing S as a component defines the semigroup
of the branch S. A set of generators of the semigroup is obtained from the characteristic
exponents by the following formula (see [Z2]):

γ̄1 = nλ1, γ̄j+1 = nj γ̄j + nλj+1 − nλj for j = 1, . . . , g − 1. (3.1)

For j = 0, . . . , g − 1, we expand,

γ̄j+1 = n((n1 − 1)n2 · · ·njλ1 + (n2 − 1)n3 · · ·njλ2 + · · · + (nj − 1)λj + λj+1)

= n1 · · ·nj((e0 − e1)λ1 + (e1 − e2)λ2 + · · · + (ej−1 − ej)λj + ejλj+1) (3.2)

We denote (1/n)γ̄i by γi for i = 1, . . . , g. We have

γ1 = λ1, γj+1 = njγj + λj+1 − λj for j = 1, . . . , g − 1. (3.3)

Recall that if q ∈ C{X}[Y ] defines a germ of curve S′ at the origin, the intersec-
tion multiplicity (S, S′)0 = dimC C{X, Y }/(f, q) coincides with the order in X of the
resultant ResY (f, q) of the polynomials f and q with respect to Y .

Proposition 3.1. Let q ∈ C{ρ∨ ∩ M}[Y ] be any irreducible quasi-ordinary polynomial
of degree n0n1 · · ·nj for 0 � j � g − 1. The following are equivalent.

(1) The polynomial q has order of coincidence λj+1 with f .

(2) ResY (f, q) = X γ̄j+1εj for a unit εj ∈ C{ρ∨ ∩ M}.

(3) q(ζ) = Xγj+1εj for a unit εj ∈ C{ρ∨ ∩ Mg}.

Proof. The result is trivial for j = 0. Suppose first that q is an irreducible quasi-ordinary
polynomial of degree � 1 comparable with f and having order of coincidence α. Since
the roots {ζ(k)}n

k=1 of f are a complete set of conjugates over L and the polynomial q

has its coefficients on this ring, the series {q(ζ(k))}n
k=1 are a complete set of conjugates

over L. Thus we have

N (ResY (f, q)) = N
( n∏

k=1

q(ζ(k))
)

= deg fN (q(ζ)). (3.4)

We deduce from (3.4) the equivalence between assertions (2) and (3). If τ is any root of
the irreducible polynomial q, we deduce by symmetry from (3.4) that

N (ResY (f, q)) = deg qN (f(τ)).

Take a root ζ(k) of f such that ζ(k) − τ = Xα · unit. By definition of the order of co-
incidence, the biggest characteristic exponent of τ that is less than α, if it exists, is a
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characteristic exponent λi of ζ(k). The roots of f verifying this property are obtained
from ζ(k) by the action of the Galois group of the extension L[Xλ1 , . . . , Xλj ] ⊂ L[ζ] by
Remark 2.7 and conversely thus

#{roots ζ(l) of f such that ζ(l) − τ = Xα · unit} = [L[ζ] : L[Xλ1 , . . . , Xλi ]] = ei. (3.5)

Analogously, we obtain that

#{roots ζ(l) of f such that ζ(l) − τ = Xλk .unit} = ek−1 − ek for k = 1, . . . , i. (3.6)

By (3.4) and (3.5), this implies that ResY (f, q) = Xγ · unit, where

γ = deg q((e0 − e1)λ1 + (e1 − e2)λ2 + · · · + (ei−1 − ei)λi + eiα). (3.7)

If α = λj+1, then we have that i = j and γ = γ̄j+1 by equation (3.2) and the equality
deg q = n1 · · ·nj .

Conversely, if 1 � i < j or if α is less than or equal to any characteristic exponent
of τ , we deduce from formulae (3.2) and (3.7) that α � λj+1. This implies that λj is
less than α and it is also a characteristic exponent of τ ; a contradiction. If j < i, we
obtain from (3.2) and (3.7) that γ > γ̄j+1. Therefore, γ = γ̄j+1 implies that i = j and
α = λj+1. �

Remark 3.2. With the previous notations, the leading exponent δ of the discriminant
of f (which is defined by ∆Y f = Xδε, for ε a unit) is equal to δ =

∑g
k=1(ek−1 − ek)λk.

The proof follows using equation (3.6) for the roots of f and the relation ∆Y f =∏
i �=j(ζ

(i) − ζ(j)).

We associate to the characteristic monomials of the quasi-ordinary branch ζ the
sequence of semigroups

Γj = ρ∨ ∩ M + γ1Z�0 + · · · + γgZ�0 for j = 0, . . . , g.

We denote nΓj by Γ̄j for j = 0, . . . , g. If d = 1, the semigroup Γ̄g ⊂ Z�0 is the classical
semigroup of the plane branch S.

Lemma 3.3 (cf. Chapter I, Lemma 2.2.1 of [T] in the plane-branch case
and [GP2]).

(1) The sub-lattice of Mg generated by Γj is equal to Mj for 0 � j � g.

(2) The order of the image of γj in the group Mj/Mj−1 is equal to nj for j = 1, . . . , g.

(3) We have that γj > nj−1γj−1 for j = 2, . . . , g.

(4) If a vector uj ∈ ρ∨ ∩ Mj , then we have uj + njγj ∈ Γj .

(5) The vector njγj belongs to the semigroup Γj−1 for j = 1, . . . , g. Moreover, we have
a unique relation

njγj = α(j) + l
(j)
1 γ1 + · · · + l

(j)
j−1γj−1 (3.8)

such that 0 � l
(j)
i � ni − 1 and α(j) ∈ M0 for j = 1, . . . , g.
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Proof. The first assertion follows from (3.3). The second assertion follows from the
definition of the integers ni and the fact that γi = λi mod Mi−1 for i = 1, . . . , g. We
deduce the third from (3.3) and the inequality

njγj − nj−1γj−1 = nj−1(nj − 1)γj−1 + nj(λj − λj−1)

> (nj − 1)(nj−1γj−1 + λj − λj−1)

= (nj − 1)γj . (3.9)

Assertion (4) is easy for j = 1. We suppose it is true for j−1 � 1. A vector uj ∈ ρ∨∩Mj

is of the form uj = αjγj + u′
j for a unique 0 � αj < nj and u′

j ∈ Mj−1. By (3.9), the
vector uj−1 := u′

j + njγj − nj−1γj−1 belongs to ρ∨ ∩ Mj−1. By induction hypothesis,
the vector uj−1 + nj−1γj−1 = u′

j + njγj is in the semigroup Γj−1, and hence the vector
uj + njγj = αjγj + u′

j + njγj belongs to the semigroup Γj .
We deduce from (3.3) that njγj = njnj−1γj−1+nj(λj −λj−1). By assertions (1) and 2,

the vector nj(λj −λj−1) is in the lattice Mj−1 and, by Lemma 2.2, it belongs to ρ∨. Now
we apply (4) to obtain the first assertion of (5). The existence of relations of the form (3.8)
follows by induction on g using Euclidean division: for g = 1 it is clear. We suppose true
for g − 1. Then, by induction, we have the required relations for j = 1, . . . , g − 1. We
have proved that njγg ∈ Γg, and thus we have a relation,

njγg = α0 + l1γ1 + · · · + lg−1γg−1. (3.10)

We divide the non-negative integer lg−1 by ng−1 and we obtain lg−1 = kng−1 + l
(g)
g−1 with

0 � l
(g)
g−1 � ng−1 − 1. Then we substitute lg−1γg−1 by

l
(g)
g−1γg−1 + k

(
α(g−1) +

g−2∑
i=1

l
(g−1)
i γi

)

in (3.10) and we obtain a formula of the same type where lg−1 = l
(g)
g−1. The required

expansion is obtained by iterating this procedure. The unicity follows from (2). �

We say that a set of generators of a semigroup is minimal if none of the generators
belongs to the semigroup spanned by the others.

Lemma 3.4. The semigrup Γg has a unique minimal set of generators. If ζ is normalized,
this set is the canonical basis of M0 union {γ1, . . . , γg}.

Proof. Since the semigroup Γζ is contained in the cone with vertex ρ∨, we can use
Lemmas 3.6 and 3.5 of [Ew, Chapter V] to prove that Γζ has a minimal set of gen-
erators, which is unique. We show that the canonical basis vectors and γ1, . . . , γg are
a minimal set of generators of Γζ . The condition of being normalized implies that the
canonical basis vectors are the first elements of the semigroup Γζ appearing on the edges
of the cone ρ∨, and hence we cannot eliminate any of them while preserving the semi-
group. They generate the subsemigroup Γ0 = ρ∨ ∩ M0 of Γg. If we have a relation of
the form γk = u +

∑
ajγj , with u ∈ Γ0, aj ∈ Z�0 and ak = 0, then assertion (3) of

Lemma 3.3 implies that aj = 0 for j > k. The relation obtained contradicts assertion (2)
of Lemma 3.3. �
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Remark 3.5. Properties (1), (2), (3) and (5) of Lemma 3.3 characterize those semigroups
Λ of the form

Λ = ρ∨ ∩ M0 + γ1Z�0 + · · · + γgZ�0 for γi ∈ ρ∨ ∩ MQ, i = 1, . . . , g,

which are associated to the characteristic monomials of a quasi-ordinary branch.

Proof. In this proof we denote by Mj the lattice M0 +
∑j

i=1 γiZ, by Γj the semi-
groups ρ∨ ∩ M0 +

∑j
i=1 γiZ�0 for i = 0, . . . g, and by ni the order of γi modulo Mi−1

for i = 1, . . . , g. We define vectors in MQ: α1 := γ1 and αj+1 := γj+1 − γj + αj

for j = 1, . . . , g − 1. It follows by property (3) and induction that αj+1 is greater
than αj and belongs to the semigroup ρ∨ ∩ Mg for j = 1, . . . , g − 1. By Lemma 2.2,
the series ζ := Xα1 + · · · + Xαg is a quasi-ordinary branch with minimal polynomial in
C{ρ∨ ∩ M0}[Y ], with characteristic exponents αi for i = 1, . . . , g and with the previ-
ously defined characteristic integers n1, . . . , ng and lattices M1, . . . , Mg. It follows that
Λ = Γg. �

3.1. Semigroup and Newton polyhedra

Newton polyhedra are used in this section to characterize the semigroup associated to
a quasi-ordinary branch.

The Newton polyhedron of a series 0 �= φ =
∑

caXa ∈ C{ρ∨ ∩ M} is the convex hull
of the set

⋃
ca �=0 a + ρ∨. We define the Newton polyhedron of 0 �= φ ∈ C{ρ∨∩M ′} for M ′

a lattice containing M in the same way. It follows that the Newton polyhedron does not
change after a lattice extension. The face determined by η ∈ ρ on the Newton polyhedron
N (φ) is the set {v ∈ N (φ)/〈η, v〉 = infv′∈N (φ)〈η, v′〉}. All faces of the polyhedron N (φ)
can be recovered in this way; in particular, the compact faces are determined by the
vectors η in the interior of ρ. The cone σ(F) ⊂ ρ associated to the face F of the polyhedron
N (φ) is

σ(F) := {η ∈ ρ/ inf
v′∈N (φ)

〈η, v′〉 = 〈η, v〉, ∀v ∈ F}.

The set of cones σ(F), for F running through the set of faces of the polyhedron N (φ), is
called the dual Newton diagram of φ. The Newton principal part φ|N of φ is the sum of
those terms of φ having exponents lying on the compact faces of its Newton polyhedron
(see [Kou] for the terminology).

Any non-zero element of the ring R = C{ρ∨∩M}[ζ] is of the form h(ζ) for a polynomial
h ∈ C{ρ∨ ∩ M}[Y ] of degree less than n. The following proposition (see [GP2]) is a
generalization of a result of plane branches (see [Z2, Chapter II, Theorem 3.9]).

We denote by qi the minimal polynomial of the truncation p0 + p1 + · · · + pi of the
parametrization of f for i = 0, . . . , g (see Remark 2.7). The polynomials qi are quasi-
ordinary by Lemma 2.2 and deg qi = n0 · · ·ni for i = 0, . . . , g.

Theorem 3.6. If deg h < n0 · · ·nj , then the Newton principal part of h(ζ) belongs to
the ring C[Γj ] for j = 0, . . . , g.
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Proof. We show the result by induction. For j = 0, if deg h < n0 = 1, the result is
trivial, since Γ0 = ρ∨ ∩ M . We suppose the result holds for degrees less than n0 · · ·nj−1.
If deg h < n1 · · ·nj , using Euclidean division several times we can expand the polynomial
h in a unique way: the qj−1-adic expansion of h,

h = a0 + a1qj−1 + · · · + asq
s
j−1, (3.11)

where ak are polynomials in C{ρ∨ ∩M}[Y ] of degree less than n1 · · ·nj−1 = deg qj−1 for
k = 0, . . . , s and 0 � s < nj . The Newton principal part of (akqk

j−1)(ζ) is the product
of the Newton principal parts of the factors. We have that (qk

j−1(ζ))|N = Xkγj and, by
induction hypothesis, ak(ζ)|N belongs to the ring C[Γj−1]. The exponents of the Newton
principal part of (akqk

j−1)(ζ) belong to the set kγj + Mj−1 for k = 0, . . . , s and, by
Lemma 3.3, these sets are disjoint since the order nj of γj in the group Mj/Mj−1 is
greater than s. It follows that the terms of the Newton principal parts of (akqk

j−1)(ζ)
cannot cancel each other, and thus the polynomial h(ζ)|N is a sum of the terms of the
Newton principal parts of (akqk

j−1)(ζ) for k = 0, . . . , s. �

Corollary 3.7. The Newton principal part of ResY (f, h), for those polynomials h in
C{X}[Y ] that are not divisible by (f), runs through the elements of the ring C[Γ̄g].

The set of vertices of Newton polyhedra of ResY (f, h) (respectively, of h(ζ)) for
h ∈ (C{X}[Y ] \ (f)) is a semigroup with respect to the addition which is isomorphic
to Γg.

Proof. The proof is a consequence of (3.4) and of Theorem 3.6. �

This corollary gives the analogy with the classical definition of the semigroup of a
plane branch using the canonical valuation of the integral closure of the ring R. We say
that the semigroup Γg is associated to the quasi-ordinary branch ζ and we denote it also
by Γζ .

Remark 3.8. An alternate way of defining the semigroup Γζ is given by Popescu-Pampu
in [PP2]: he introduces first the set Cf of functions h ∈ C{X}[Y ] \ (f) such that the
Newton polyhedron of h(ζ) has only one vertex γh, then he defines the semigroup by
Γζ = {γh/h ∈ Cf}.

Remark 3.9. Any polynomial h ∈ C{ρ∨ ∩ M}[Y ] can be written in a unique way as

h =
∑

cl1,...,lg+1q
l1
0 ql2

1 · · · qlg+1
g , (3.12)

with cl1,...,lg+1 ∈ C{ρ∨ ∩ M}, 0 � lk � nk − 1 for k = 1, . . . , g and lg+1 ∈ Z�0.

This follows by computing the qg expansion of h first and then the qg−1 expansion of
the coefficients and iterating the procedure (see [A3] in the case of plane branches). By
using Lemma 3.3, we deduce the following fact (see [PP2]).

Remark 3.10. The exponents of the Newton principal part of the terms

(cl1,...,lg+1q
l1
0 ql2

1 · · · qlg
g−1)(ζ)

cannot cancel each other.
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4. Semi-roots and approximate roots

In the plane-branch case, several authors have studied the properties of those curves S′

such that the intersection multiplicity with S at the origin belongs to the unique minimal
set of generators of the semigroup of the branch (see [Z2]). In [LJ1], Lejeune introduced
the notion of curves of maximal contact of higher genus with a given plane-curve germ for
curves defined over a field of arbitrary characteristic in terms of the resolution (see [LJ2]).
If the characteristic is zero, it turns out that both notions are equivalent (see [Ca]). If
the projection (X, Y ) is transversal, we can study these curves by means of the minimal
polynomials of suitable truncations of the roots of f . When we do this with respect to
an arbitrary projection, the curves we obtain provide a non-necessarily minimal set of
generators of the semigroup of the branch S. We call them semi-roots, following the
terminology of Abhyankar and Popescu-Pampu (see [A3, PP1]). They are also called
pseudo-roots by Gwoździewicz and Ploski (see [G-P]). Approximate roots are used by
Abhyankar and Moh (see [A-M1, A-M2]) to obtain several results on the local and
global geometry of plane curves. We show that the approximate roots of f of degrees ej

for j = 0, . . . , g are semi-roots of f (see [GP2]). We follow the approach of the plane-
curve case given by Gwoździewicz and Ploski (see [G-P]) and by Popescu-Pampu in the
survey [PP1].

Definition 4.1. A j-semi-root of f is an irreducible quasi-ordinary polynomial in
C{ρ∨ ∩ M}[Y ] of degree n0 · · ·nj that has order of coincidence equal to λj+1 with f

for j = 0, . . . , g.

The minimal polynomials of the quasi-ordinary branches p0 + · · · + pj obtained by
truncating ζ in Remark 2.3 are j-semi-roots of f for j = 0, . . . , g.

Proposition 4.2. Let q ∈ C{ρ∨ ∩ M}[Y ] be a monic polynomial of degree n0 · · ·nj .
Then q is a j-semi-root of f if and only if q(ζ) = Xγj+1εj for a unit εj in C{ρ∨ ∩ Mg}.

Proof. We have to show that if q(ζ) is of the form Xγj+1εj for a unit εj , then q is nec-
essarily an irreducible quasi-ordinary polynomial with order of coincidence λj+1 with f .

The polynomial q is irreducible. Suppose that it is equal to the product q1q2 of poly-
nomials of degrees less than n1 · · ·nj . Then we have that q(ζ) = q1(ζ)q2(ζ) = Xγj+1εj+1

for a unit εj+1 ∈ C{ρ∨ ∩ Mg}. The Newton polyhedron of q(ζ) has only one vertex and
since this polyhedron is equal to the Minkowski sum

∑
i=1,2 N (qi(ζ)) and it follows that

each polyhedron N (qi(ζ)) has only one vertex ui. We deduce that qi(ζ) = Xuiεi for εi

a unit in C{ρ∨ ∩ Mg}. Then Proposition 3.6 implies that γj+1 = u1 + u2 belongs to Γj ,
contradicting Lemma 3.3.

By Proposition 3.1, the result follows by proving that the polynomial q is quasi-
ordinary, i.e. that the Newton polyhedron of the discriminant ∆Y q has only one vertex.
The cone associated to a vertex v of the polyhedron N (∆Y q),

σv = {u ∈ ρ/ inf
v′∈N (∆Y q)

〈u, v′〉 = 〈u, v〉},

is of dimension d. Let σ ⊂ σv be any cone generated by a basis of the lattice N (see [Ew]
for its existence). The dual cone σ∨ of σ is generated by a basis of the dual lattice M
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and contains ρ∨. We have the local ring extension C{ρ∨ ∩M} ↪→ C{σ∨ ∩M} defined by
the semigroup inclusion ρ∨ ∩ M ↪→ σ∨ ∩ M . We obtain a similar extension by replacing
the lattice M by Mg. The ring C{σ∨ ∩ M} is isomorphic to the ring C{T1, . . . , Td}, the
isomorphism maps Ti to Xti for t1, . . . , td the basis of M that spans σ∨ as a cone.

We denote an element φ in C{ρ∨ ∩ M} (respectively, in C{ρ∨ ∩ M}[Y ]) viewed as
an element of C{σ∨ ∩ M} (respectively, of C{σ∨ ∩ M}[Y ]) by φσ. The polynomial
fσ is quasi-ordinary: its roots ζ

(i)
σ , for ζ(i) running through the roots of f , are con-

jugated quasi-ordinary branches by Lemma 2.2, since the characteristic monomials of
ζσ are the images of the characteristic monomials of ζ by the local ring extension
C{ρ∨ ∩ Mg} ↪→ C{σ∨ ∩ Mg}, and the characteristic lattices coincide for ζ and ζσ.

The polynomial qσ is quasi-ordinary, since its Newton polyhedron is equal to the
Minkowski sum N (∆Y q) + σ∨ and it has a unique vertex v, since σ ⊂ σv. By the
argument given in the first paragraph of this proof, the polynomial qσ is irreducible and
it follows from Proposition 3.1 that it is a j-semi-root of fσ. The vertex v is determined
by the first j characteristic exponents of f and the associated characteristic integers
(more precisely, we have v =

∑j
k=1(ek−1 − ek)λk by Remark 3.2). This implies that the

polyhedron N (∆Y (q)) has only one vertex v and q ∈ C{ρ∨ ∩ M}[Y ] is a quasi-ordinary
polynomial. �

Let A be a ring containing Q as a subring. If p is any monic polynomial and k divides
the degree of p, there is a unique monic polynomial r in A[Y ] of degree deg(p)/k such
that deg(p − rk) < deg(p) − deg(p)/k. We denote this polynomial by k

√
p. For instance,

if p = Y n − a1Y
n−1 + · · · + a0, we have that n

√
p = Y − a1/n. If k = k1k2 divides deg p,

then we have that k
√

p = k1
√

k2
√

p (see [PP1, Proposition 3.3]). If q ∈ A[Y ] is any monic
polynomial of degree deg(p)/k, we expand, p = qk + a1q

k−1 + · · · + a0, with polynomials
ai ∈ A[Y ] of degree less than deg(p)/k. The map Tp between the set of monic polynomials
of degree deg(p)/k defined by

Tp(q) = q +
1
k

a1

is called the k-Tschirnhausen operator. It is shown that the k-approximate roots can be
computed by iterating the k-Tschirnhausen operator, i.e

k
√

p =

deg(p)/k︷ ︸︸ ︷
Tp ◦ · · · ◦ Tp(q),

where q is any monic polynomial of degree deg(p)/k (see [PP1, Proposition 6.3]).

Proposition 4.3. The ej-approximate roots of f are j-semi-roots of f .

Proof. This is trivial for j = 0 and is also trivial for j = g, since we have that 1
√

f = f

satisfies the condition (for λg+1 = ∞). Suppose the result is true for 1 < j < g. We
show that it is true for j − 1. We have that ej−1 = njej and ej−1

√
f = nj

√
ej
√

f . If we set
p = ej

√
f , we obtain that

ej−1
√

f =

nj︷ ︸︸ ︷
Tp ◦ · · · ◦ Tp(q),

where q is any monic polynomial of degree n1 · · ·nj−1.
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It is sufficient to prove that if q is a (j − 1)-semi-root, the polynomial Tp(q) is a
(j − 1)-semi-root. We expand, p = qnj + a1q

nj−1 + · · · + a0, with ai ∈ C{ρ∨ ∩ M}[Y ]
polynomials of degree less than deg q. By the induction hypothesis, p is a j-semi-root of
f , and thus N (a1(ζ)qnj−1(ζ)) ⊂ N (p(ζ)) = γj+1 + ρ∨. It means that if u is any vertex
of N (a1(ζ)), then u � γj+1 − (nj − 1)γj is greater than γj by Lemma 3.3. It follows that
q + (1/nj)a1 is a (j − 1)-semi-root of f by Proposition 4.2. �

5. Invariance of the semigroup and inversion formulae

In this section we prove that the semigroups associated to a quasi-ordinary branch ζ and
the normalized quasi-ordinary branch obtained from ζ by Lipman’s inversion lemma are
isomorphic. We obtain from this another proof of the inversion formulae relating their
characteristic monomials. We show then that this semigroup is a complete topological
invariant of the embedded topological type of the hypersurface parametrized by ζ, as
characterized by the work of Gau and Lipman.

If ζ is of the form ζ = X
k/n
1 H(X1/n

1 , . . . , X
1/n
d ), with H(0) �= 0 and with minimal

polynomial f ∈ C{X}[Y ], the order of the series f(X1, 0, . . . , 0; 0) is equal to k (for
n = deg f). The Weierstrass polynomial f ′ ∈ C{Y, X2, . . . , Xd}[X1] associated to f

defines the same hypersurface germ. The inversion lemma of Lipman (see [L1, Lemma 2.3]
or the appendix of [Gau]) guarantees that f ′ is a quasi-ordinary polynomial and, if ζ

is not normalized, any root τ of f ′ is. This lemma is a generalization of the classical
inversion lemma of plane branches (see [Z1,A2]).

A root τ of f ′ can be obtained as follows. Let F be a unit such that F k = H. The
series ζ is equal to ζ = ζk

0 , where ζ0 = X
1/n
1 F (X1/n

1 , . . . , X
1/n
d ). The series Y 1/k − ζ0 is

of order one in X
1/n
1 and, by the Weierstrass preparation theorem, there exists a unit ε

such that
ε(Y 1/k − ζ0) = X

1/n
1 − τ0, (5.1)

where τ0 is of the form τ0 = Y 1/kF ′(Y 1/k, X
1/n
2 , . . . , X

1/n
d ) for a unit F ′.

We build from (5.1) an isomorphism,

C{X
1/n
1 , . . . , X

1/n
d } → C{Y 1/k, X

1/n
2 , . . . , X

1/n
d }, (5.2)

which maps X
1/n
1 �→ τ0, X

1/n
i �→ X

1/n
i for i = 2, . . . , d, and such that the inverse image of

Y 1/k (respectively, of Y ) is equal to ζ0 (respectively, to ζk
0 = ζ). Since ζ is a root of f , we

have f ′(ζ, X2, . . . , Xd; X1) = 0, and thus its image by (5.2) is f ′(Y, X2, . . . , Xd, τ
n
0 ) = 0.

Therefore, τ := τn
0 is a root of f ′.

Moreover, we have a commutative diagram

R = C{X1, X2, . . . , Xd, Y }/(f ′) −−−−→ C{Y 1/k, X
1/n
2 , . . . , X

1/n
d }� �

R = C{X1, X2, . . . , Xd, Y }/(f) −−−−→ C{X
1/n
1 , . . . , X

1/n
d }

⊂

⊂

(5.3)

where the horizontal arrows are the ring extensions defined by τ and ζ and the left
vertical arrow is the identity and the right vertical arrow is the isomorphism (5.2).
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If the Newton polyhedron of 0 �= φ ∈ {X
1/n
1 , . . . , X

1/n
d } has only one vertex, the same

happens for the Newton polyhedron of the image of φ by the isomorphism (5.2). By
Corollary 3.7, the semigroup Γζ is isomorphic to the semigroup of Newton polyhedra
(with the Minkowski sum) whose elements are N (φ) of 0 �= φ ∈ R such that N (φ) has
only one vertex. The Newton polyhedron of φ ∈ R is defined in this case as the Newton
polyhedron of the image of φ by the ring extension R ↪→ C{X

1/n
1 , . . . , X

1/n
d }.

The same assertion holds for the semigroup Γτ with respect to the ring extension
R ↪→ C{Y 1/k, X

1/n
2 , . . . , X

1/n
d }. The isomorphism (5.2) induces an isomorphism of semi-

groups Γζ
∼= Γτ , since the diagram (5.3) is commutative and the Newton polyhedron of

a product is the Minkowski sum of the factors. We deduce from this the following.

Proposition 5.1. The semigroups Γζ and Γτ are isomorphic.

Two hypersurfaces germs (H, 0) and (H ′, 0) in Cd+1 have the same embedded topo-
logical type if and only if there is a homeomorphism U → U ′, between two open neigh-
bourhoods of the origin, which maps representatives H ∩U to H ′ ∩U ′. The characteristic
exponents of a quasi-ordinary branch ζ determine the embedded topological type of the
hypersurface it defines. This is deduced from results of Zariski on saturation of local rings
(see [Z1], [L3, § 2] and also [Oh] for another proof). Gau, using some topological results
of Lipman, proves the equivalence.

Theorem 5.2 (cf. Theorem 1.6 of [Gau]). A pair of analytically irreducible quasi-
ordinary hypersurface germs (S, 0) and (S′, 0) in (Cd+1, 0) have the same topological
type if and only if any two normalized quasi-ordinary branches parametrizing (S, 0) and
(S′, 0), respectively, have the same characteristic exponents.

We deduce from Proposition 5.1 and Gau’s characterization the following result.

Theorem 5.3. If ζ and ζ ′ are quasi-ordinary branches parametrizing the same quasi-
ordinary hypersurface, then the semigroups Γζ and Γζ′ are isomorphic. The isomorphism
class of this semigroup determines, and is determined by, the embedded topological type
of the germ (S, 0).

Proof. We can suppose that ζ and ζ ′ are given with well-ordered variables. The first
assertion follows from Proposition 5.1 and Gau’s characterization. Then we can recover
from the unique minimal set of generators of the semigroup Γζ (by Lemma 3.4) the
characteristic exponents of a normalized quasi-ordinary branch parametrizing the same
hypersurface germ (see Remark 3.5). �

In the case of quasi-ordinary surfaces, the analytical invariance of the semigroup is
deduced without using Gau’s characterization of the topological type, the analytical
invariance of the characteristic monomials being proved by Lipman: he builds a non-
embedded resolution of the surface as a composition of monoidal and quadratic trans-
forms that are determined by, and determine, the characteristic monomials of a nor-
malized quasi-ordinary branch parametrizing the surface (see [L1,L3]). A direct proof
of analytical invariance of the semigroup associated to a quasi-ordinary surface, which
implies the invariance properties of the characteristic monomials, has recently been given
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by Popescu-Pampu (see [PP2, PP3]). In the general case, the semigroup appears in
an intrinsic manner by analysing, with the generalized Abhyankar’s expansions (see
Remark 3.10), some algebraic properties of the minimal resolution of the normaliza-
tion of S at the singular points of the reduced normal crossing divisor defined by the
transform of the singular locus of S.

Another application of Proposition 5.1 is the following proof of the inversion formulae
relating the characteristic exponents of ζ and τ (stated in [L1, p. 78] and [L3, p. 170]).

Lemma 5.4. Let ζ be a quasi-ordinary branch of the form ζ = Xλ0H ∈ C{ρ∨ ∩ Mg},
with λ0 ∈ ρ∨ ∩ M and H a unit. For any positive integer k, the series ζk is a quasi-
ordinary branch and its characteristic exponents are λ′

j = λj +(k −1)λ0 for j = 1, . . . , g,
where {λj}g

j=1 are the characteristic exponents of ζ.

Proof. Firstly, we have that λ′
1 < · · · < λ′

g. The characteristic lattices Mi associated
to ζ coincide with the lattices we can associate to {λ′

j}
g
j=1 by the same formulae. We

show that the λ′
j are exponents of ζk. We expand ζ = p0 +p1 + · · ·+pg using Remark 2.3.

Each summand (
k

s

)
(p0 + · · · + pj−1)k−s(pj + · · · + pg)s

appearing in the binomial expansion of ((p0 + · · ·+pj−1)+(pj + · · ·+pg))k is of the form
X(k−s)λ0+sλj · unit for s = 0, . . . , k, since λ0 < λ1 by the hypothesis.

We have (k − s)λ0 + sλj � (k − 1)λ0 + λj = λ′
j for s = 1, . . . , k, and hence ζk is of the

form
ζk = (p0 + · · · + pj−1)k + Xλ′

j · unit.

The exponents of the terms appearing in (p0+· · ·+pj−1)k belong to the group Mj−1 by
Lemma 2.2. Therefore, the monomial Xλ′

j appears in ζk with non-zero coefficient. It also
follows from the formula above that if we have λ′

j−1 � λ and λ′
j � λ, for λ the exponent

of a term appearing in ζk, then this term appears in (p0 + · · · + pj−1)k, and hence λ is
in the group Mj−1. The conditions in Lemma 2.2 are satisfied for ζk and {λ′

j}
g
j=1. �

Proposition 5.5. Suppose that the rational number α = k/n is not an integer. Let
{λi}g

i=1 be the characteristic exponents of ζ. Denote by λ′
i ∈ Qd the vector with coordin-

ates λ′
i,1 = α−1λi,1 + α−1 − 1 and λ′

i,q = λi,q for q = 2, . . . , d and i = 1, . . . , g. Then the
characteristic exponents of τ are

λ′
1, . . . , λ

′
g if α, α−1 /∈ Z,

λ′
2, . . . , λ

′
g if α−1 ∈ Z.

Proof. We follow the notations above. Let m be the lowest common denominator of k

and n. We have k = u′m and n = um for positive integers, u, u′ with (u, u′) = 1. We
consider U = X

1/u
1 as an indeterminate. As a consequence of Lemma 2.2, the series ζ

defines a quasi-ordinary branch ζ1 = Uu′
Fu′m(U1/m, X

1/n
2 , . . . , X

1/n
d ), whose character-

istic exponents {λi(ζ1)}g
i=2 are obtained from {λi}g

i=2 by multiplying the first coordinate
by u.
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By Lemma 5.4, the series ζ2 = UFm(U1/m, X
1/n
2 , . . . , X

1/n
d ) is a quasi-ordinary branch

with characteristic exponents {λi(ζ2)}g
i=2 with coordinates

λi,1(ζ2) = λi,1(ζ1) − u′ + 1 = uλi,1 − u′ + 1 and λi,q(ζ2) = λi,q(ζ1) = λi,q

for q = 2, . . . , d.
We set V = Y 1/u′

and define

τ1 = V uGum(V 1/m, X
1/n
2 , . . . , X

1/n
d ) and τ2 = V Gm(V 1/m, X

1/n
2 , . . . , X

1/n
d ).

In the same manner, we deduce that the characteristic exponents, {λi(τ)}g′

i=2 of τ that
are greater than λ′

1, are related to the characteristic exponents {λi(τ2)}g′

i=2 of τ2

by λi,1(τ2) = u′λi,1(τ) − u + 1 and λi,q(τ2) = λi,q(τ) for q = 2, . . . , d.
It is easy to see that ζ2 = ζm

0 and that, by the isomorphism (5.2), τ2 = τm
0 thus

restricts to an isomorphism

C{U, X2, . . . , Xd, ζ2} → C{V, X2, . . . , Xd, τ2}.

Therefore, ζ2 and τ2 parametrize the same hypersurface germ. It follows from the fact
that the isomorphism (5.2) preserves Newton polyhedra that the semigroups Γζ2 and Γτ2

are isomorphic. Since ζ2 and τ2 are both normalized and they have the same semigroup,
it follows that they have the same characteristic exponents. This implies that g = g′ and
λi(τ) = λ′

i for i = 2, . . . , g.
If α−1 ∈ Z, the characteristic exponents of τ are {λi}g

i=2, since u′ = 1 and τ = τ1. Since
α /∈ Z, the first characteristic exponent of ζ is λ1 = (α, 0, . . . , 0) and if λ′

1,1 = α−1 /∈ Z,
then λ′

1 is the first characteristic exponent of τ . �
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