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Abstract

Let Hn
H denote the n-dimensional quaternionic hyperbolic space. The linear group Sp(n, 1) acts on Hn

H

by isometries. A subgroup G of Sp(n, 1) is called Zariski dense if it neither fixes a point on Hn
H ∪ ∂Hn

H

nor preserves a totally geodesic subspace of Hn
H. We prove that a Zariski dense subgroup G of Sp(n, 1) is

discrete if for every loxodromic element g ∈ G the two-generator subgroup 〈 f , g f g−1〉 is discrete, where
the generator f ∈ Sp(n, 1) is a certain fixed element not necessarily from G.

2010 Mathematics subject classification: primary 20H10; secondary 51M10.
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1. Introduction

The classical Jørgensen inequality [12] gives a necessary criterion to check
discreteness of a two-generator subgroup of SL(2, C) that acts by Möbius
transformations on the Riemann sphere. It has been generalised to the higher
dimensional Möbius group that acts on n-dimensional real hyperbolic space. A well-
known consequence of the generalised Jørgensen inequality is that a subgroup G of the
Möbius group is discrete if and only if every two-generator subgroup is discrete (see
[1, 16]). There have been several refinements of this result giving discreteness criteria
in Möbius groups (see [5, 9, 17]). Generalisations of the Jørgensen inequality and
related discreteness criteria have been obtained in settings such as complex hyperbolic
space and normed spaces (see [7, 11, 14, 15]).

Let H denote the division ring of Hamilton’s quaternions and Hn
H the n-dimensional

quaternionic hyperbolic space. Let Sp(n, 1) be the linear group that acts on Hn
H by

isometries. Following the theme sketched above, we give discreteness criteria for a
subgroup of Sp(n, 1). The arguments restrict over the complex numbers and, as a
corollary, we obtain discreteness criteria in SU(n, 1). To state our main result, we need
the following notions.

The first author acknowledges partial support from SERB MATRICS grant MTR/2017/000355; the third
author is supported by NBHM-SRF.
c© 2019 Australian Mathematical Publishing Association Inc.

283

https://doi.org/10.1017/S000497271900087X Published online by Cambridge University Press

https://orcid.org/0000-0003-4327-0660
https://orcid.org/0000-0001-8687-5374
https://orcid.org/0000-0002-7714-1130
https://doi.org/10.1017/S000497271900087X


284 K. Gongopadhyay, M. M. Mishra and D. Tiwari [2]

An element g ∈ Sp(n, 1) is elliptic if it has a fixed point on Hn
H, parabolic if it has

a unique fixed point on the boundary ∂Hn
H and loxodromic (or hyperbolic) if it has

exactly two fixed points on the boundary ∂Hn
H. A unipotent parabolic element, that

is, a parabolic element having all eigenvalues 1, is called a Heisenberg translation.
It is well known that an elliptic or loxodromic isometry g is conjugate to a diagonal
element in Sp(n, 1) (see [6]). If g is elliptic, then, up to conjugacy,

g = diag(λ1, . . . , λn+1), (1.1)

where |λi| = 1 for each i and the eigenvalue λ1 is such that the corresponding
eigenvector has negative Hermitian length, while all other eigenvectors have positive
Hermitian length. An elliptic element g is called regular if it has mutually disjoint
classes of eigenvalues. A regular elliptic element has a unique fixed point on Hn

H. If g
is loxodromic, then we may assume, up to conjugacy, that

g = diag(λ1, λ̄1
−1
, λ3, . . . , λn+1) (1.2)

with |λ1| > 1. Certain conjugacy invariants are associated to isometries as follows:

• for g elliptic, define

δ(g) = max{ |λ1 − 1| + |λi − 1| : i = 2, . . . , n + 1}; (1.3)

• for g loxodromic, following [2], define

δcp(g) = max{|λi − 1| : i = 3, . . . ,n + 1} and Mg = 2δcp(g) + |λ1 − 1| + |λ̄−1
1 − 1|.

Let Ts,ζ be a Heisenberg translation in Sp(n, 1). We may assume up to conjugacy that

Ts,ζ =

1 0 0
s 1 ζ∗

ζ 0 I

 ,
where Re(s) = 1

2 |ζ |
2 (see [6, page 70]).

A subgroup G of Sp(n, 1) is called Zariski dense if it neither fixes a point on
Hn
H ∪ ∂Hn

H nor preserves a totally geodesic subspace of Hn
H. With this notation, we

prove the following theorem.

Theorem 1.1. Let G be a Zariski dense subgroup of Sp(n, 1).

(1) Let g ∈ Sp(n, 1) be a regular elliptic element such that δ(g) < 1. If 〈g, hgh−1〉 is
discrete for every loxodromic element h ∈ G, then G is discrete.

(2) Let g ∈ Sp(n, 1) be a loxodromic element such that Mg < 1. If 〈g, hgh−1〉 is
discrete for every loxodromic element h ∈ G, then G is discrete.

(3) Let g ∈ Sp(n, 1) be a Heisenberg translation such that |ζ | < 1
2 . If 〈g, hgh−1〉 is

discrete for every loxodromic element h in G, then G is discrete.

Restricting everything over the complex numbers, the above theorem also holds for
SU(n, 1).
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Corollary 1.2. Let G be a Zariski dense subgroup in Sp(n, 1) or SU(n, 1).

(1) Let g ∈ Sp(n, 1) or SU(n, 1) respectively be a regular elliptic element such that
δ(g) < 1. If 〈g, hgh−1〉 is discrete for every regular elliptic element h ∈ G, then G
is discrete.

(2) Let g ∈ Sp(n, 1) or SU(n, 1) respectively be a loxodromic element such that
Mg < 1. If 〈g, hgh−1〉 is discrete for every regular elliptic h ∈ G, then G is
discrete.

(3) Let g ∈ Sp(n, 1) or SU(n, 1) respectively be a Heisenberg translation such that
|ζ | < 1

2 . If 〈g,hgh−1〉 is discrete for every regular elliptic h in G, then G is discrete.

These results show that the discreteness of a Zariski dense subgroup G of Sp(n, 1)
or SU(n, 1) is determined by the two-generator subgroups 〈g, hgh−1〉, where h ∈ G.
The generator g is fixed and need not be an element from G and it is enough to take
h to be loxodromic or regular elliptic. After fixing such a ‘test map’ g, conjugates
of g by generic elements of G determine the discreteness. For isometries of the real
hyperbolic space, similar discreteness criteria using a test map and its conjugates have
been obtained in [18], [9, Theorem 1.2] and [8]. Theorem 1.1 and Corollary 1.2
generalise these results to Sp(n, 1) and SU(n, 1).

We note some preliminary notions in Section 2 and prove the main result in
Section 4. To prove the results, we use some generalised Jørgensen inequalities in
Sp(n, 1). We use the Jørgensen inequality of Cao and Parker [2] to deal with subgroups
having a loxodromic generator. For subgroups having a unipotent parabolic generator,
we use a quaternionic version of Shimizu’s lemma following Hersonsky and Paulin
[10]. To deal with subgroups having a regular elliptic generator, we use a variation of
the inequality of Cao and Tan [4]. For this case, we have introduced the new conjugacy
invariant δ(g) given above. The invariant δ(g) is different from the conjugacy invariant
δct(g) used by Cao and Tan and may be considered as a restriction of the Cao–Parker
invariant δcp(g) to subgroups having at least one elliptic generator. This new invariant
gives quantitatively better bounds in a larger domain. We refer to Section 3 for more
details.

2. Preliminaries

2.1. Quaternionic hyperbolic space. We begin with some background material on
quaternionic hyperbolic geometry. Much of this can be found in [6, 13].

Let Hn,1 be the right vector space over H of quaternionic dimension n + 1 (so that
its real dimension is 4n + 4) equipped with the quaternionic Hermitian form

〈z,w〉 = −(z̄0w1 + z̄1w0) +

n∑
i=2

z̄iwi

for z = (z0, . . . , zn), w = (w0, . . . ,wn). Thus, the quaternionic Hermitian form is defined
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by the matrix

J2 =

 0 −1 0
−1 0 0
0 0 In−1

 .
Equivalently, when convenient, one may also use the Hermitian form given by the
matrix

J1 =

(
−1 0
0 In

)
.

Following [6, Section 2], let

V0 = {z ∈ Hn,1 − {0} : 〈z, z〉 = 0}, V− = {z ∈ Hn,1 : 〈z, z〉 < 0}.

Clearly, V0 and V− are invariant under Sp(n, 1). We define an equivalence relation ∼
on Hn,1 by z ∼ w if and only if there exists a nonzero quaternion λ so that w = zλ. Let
[z] denote the equivalence class of z. Let P : Hn,1 − {0} −→ HPn be the right projection
map given by P : z 7−→ z, where z = [z]. The n-dimensional quaternionic hyperbolic
space is defined to be Hn

H = P(V−) with boundary ∂Hn
H = P(V0).

In the model using J2, there are two distinct points 0 and∞ on ∂Hn
H. For z1 , 0, the

projection map P is given by

P(z1, z2, . . . , zn+1) = (z2z−1
1 , . . . , zn+1z−1

1 )

and accordingly we choose boundary points

P(0, 1, . . . , 0, 0)t = 0,
P(1, 0, . . . , 0, 0)t =∞.

In the model using J1, we mark P(1, 0, . . . , 0, 0)t as the origin 0 = (0, 0, . . . , 0)t of the
quaternionic hyperbolic ball. The Bergmann metric on Hn

H is given by the distance
formula

cosh2 ρ(z,w)
2

=
〈z, w〉〈w, z〉
〈z, z〉〈w, w〉

where z,w ∈ Hn
H, z ∈ P

−1(z),w ∈ P−1(w).

The above formula is independent of the choice of z and w.
Now consider the noncompact linear Lie group

Sp(n, 1) = {A ∈ GL(n + 1,H) : A∗JiA = Ji}.

An element g ∈ Sp(n, 1) acts on HH
n

= Hn
H ∪ ∂Hn

H as g(z) = PgP−1(z). Thus, the
isometry group of Hn

H is given by PSp(n, 1) = Sp(n, 1)/{I,−I}.

2.2. The inequality of Cao and Parker. The quaternionic cross ratio of four
distinct points z1, z2, z3, z4 on ∂Hn

H is

[z1, z2, z3, z4] = 〈z3, z1〉〈z3, z2〉
−1〈z4, z2〉〈z4, z1〉

−1,

where zi denotes the lift to Hn+1 of a point zi on ∂Hn
H. We note the following lemma

concerning cross ratios.
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Lemma 2.1 [2]. Let 0,∞ ∈ ∂Hn
H stand for the respective points (0, 1, . . . , 0)t and

(1, 0, . . . , 0)t ∈ Hn,1 under the projection map P and let h ∈ PSp(n, 1) be given by (2.2).
Then

|[h(∞), 0,∞, h(0)]| = |bc|, |[h(∞),∞, 0, h(0)]| = |ad|, |[∞, 0, h(∞), h(0)]| =
|bc|
|ad|

.

The theorem of Cao and Parker may be stated as follows.

Theorem 2.2 (Cao and Parker [2]). Let g and h be elements of Sp(n, 1) such that g is a
loxodromic element with fixed points u, v ∈ ∂Hn

H and Mg < 1. If 〈g, h〉 is nonelementary
and discrete, then

|[h(u), u, v, h(v)]|1/2|[h(u), v, u, h(v)]|1/2 ≥
1 − Mg

M2
g

.

2.3. Shimizu’s lemma in Sp(n, 1). We use the Hermitian form J2 in this section.
Up to conjugacy, we assume that a Heisenberg translation fixes the boundary point 0,
that is, it is of the form

Ts,ζ =

1 0 0
s 1 ζ∗

ζ 0 I

 , (2.1)

where Re(s) = 1
2 |ζ |

2.
Let A be an element in Sp(n, 1). Then one can choose A to be of the form

A =

a b γ∗

c d δ∗

α β U

 , (2.2)

where a, b, c, d are scalars, γ, δ, α, β are column matrices and U is an element in
M(n − 1,H). It is easy to compute

A−1 =

 d̄ b̄ −β∗

c̄ ā −α∗

−δ −γ U∗

 .
The next theorem follows by mimicking the arguments of Hersonsky and Paulin in

[10, Appendix]. Hersonsky and Paulin proved it over the complex numbers. Over the
quaternions, only a slight variation is needed and it is straightforward.

Theorem 2.3. Suppose that Ts,ζ is a Heisenberg translation in Sp(n, 1) and A is an
element in Sp(n, 1) of the form (2.2). Suppose that A does not fix 0. Set

t = sup{|b|, |β|, |γ|, |U − I|}, M = |s| + 2|ζ |.

If Mt + 2|ζ | < 1, then the group generated by A and Ts,ζ is either nondiscrete or fixes 0.
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This is the simplest quaternionic version of Shimizu’s lemma for two-generator
subgroups of Sp(n, 1) with a unipotent parabolic generator. Stronger versions of
Shimizu’s lemma in Sp(n, 1) have been obtained by Kim and Parker [13, Theorem 4.8]
and Cao and Parker [3]. The version in Theorem 2.3 is easier to apply for our purpose.

2.4. Useful results. A subgroup G of Sp(n, 1) is called elementary if it has a finite
orbit in Hn

H ∪ ∂Hn
H. If all its orbits are infinite, then G is nonelementary. In particular,

G is nonelementary if it contains two nonelliptic elements of infinite order with distinct
fixed points.

Theorem 2.4 [6]. Let G be a Zariski dense subgroup of Sp(n, 1). Then G is either
discrete or dense in Sp(n, 1).

3. The inequality of Cao and Tan revisited

Theorem 3.1. Let g and h be elements of Sp(n, 1). Suppose that g is a regular elliptic
element with fixed point q and δ(g) is as in (1.3). If

cosh
ρ(q, h(q))

2
δ(g) < 1, (3.1)

then the group 〈g, h〉 generated by g and h is either elementary or not discrete.

The proof of Theorem 3.1 is a variation of the proof of [4, Theorem 1.1]. The
initial computations are very similar, except that at a crucial stage we replace the Cao–
Tan invariant by δ(g) and observe that the proof still works. We sketch the proof for
completeness. We follow similar notation to [4] and use the ball model, that is, the
Hermitian form J1.

Proof. Using conjugation, we may assume that g is of the form (1.2) having fixed
point q = (0, . . . , 0)t ∈ Hn

H and

h = (ai, j)i, j=1,...,n+1 =

(
a1,1 β
α A

)
.

For L = diag(λ2, . . . , λn+1), write

g =

(
λ1 0
0 L

)
.

Then

cosh
ρ(q, h(q))

2
= |a1,1|, δ(g) = max{|λ1 − 1| + |λi − 1| : i = 2, . . . , n + 1}.

The inequality (3.1) becomes
|a1,1|δ(g) < 1.
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Let h0 = h and hk+1 = hkgh−1
k and write

hk = (a(k)
i, j )i, j=1,...,n+1 =

a(k)
1,1 β(k)

α(k) A(k)

 .
If β(k) = 0 for some k, it follows as in the proof of [4, Theorem 1.1] that 〈g, h〉 is
elementary. So, assume that β(k) , 0 and that the group 〈g, h〉 is nonelementary. By
similar computations to those in the proof of [4, Theorem 1.1],

|a(k+1)
1,1 |

2 ≤ |a(k)
1,1|

4 + |β(k)|4 −

n+1∑
i=2

|a(k)
1,1|

2|a(k)
1,i |

2(2 − |u1 − ui|
2), (3.2)

where

ui = a(k)
1,i

−1
λia

(k)
1,i , i = 2, . . . , n + 1.

Noting that |a(k)
1,1|

2 − |β(k)|2 = 1, by (3.2),

|a(k+1)
1,1 |

2 − 1 ≤ |a(k)
1,1|

2
n+1∑
i=2

|a(k)
1,i |

2|u1 − ui|
2

≤ |a(k)
1,1|

2
n+1∑
i=2

|a(k)
1,i |

2|(|u1 − 1|2 + |ui − 1|2)

≤ |a(k)
1,1|

2
n+1∑
i=2

|a(k)
1,i |

2 (|u1 − 1| + |ui − 1|)2.

Therefore,
|a(k+1)

1,1 |
2 − 1 ≤ (|a(k)

1,1|
2 − 1) |a(k)

1,1|
2δ2(g).

Then, by induction,
|a(k+1)

1,1 | < |a
(k)
1,1|

and
|a(k+1)

1,1 |
2 − 1 < (|a1,1|

2 − 1)(|a1,1|
2δ2(g))k+1.

Since |a1,1|δ(g) < 1, it follows that |a(k)
1,1| → 1 and, as in the last part of the proof of

[4, Theorem 1.1],
β(k) → 0, α(k) 7→ 0, A(k)(A(k))∗ → In.

By passing to a subsequence, we may assume that

A(kt) → A∞, a(kt)
1,1 → a∞.

Thus, hk+1 converges to

h∞ =

(
a∞ 0
0 A∞

)
∈ Sp(n, 1),

which implies that 〈g, h〉 is not discrete. This completes the proof. �
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Using the embedding of SL(2,C) in Sp(1, 1) and applying similar arguments to
those in the proof of [4, Theorem 1.2] gives the following corollary. It may be thought
of as a generalised version of the classical Jørgensen inequality in SL(2,C) for two-
generator subgroups with an elliptic generator.

Corollary 3.2. Let g and h be elements in SL(2,C), say

g =

(
eiθ 0
0 e−iθ

)
(with θ ∈ [0, π]), h =

(
a b
c d

)
.

Let ||h||2 = |a|2 + |b|2 + |c|2 + |d|2. If 〈g, h〉 is nonelementary and discrete, then

4 sin2 θ

2
(||h||2 + 2) ≥ 1. (3.3)

Proof. Let ĝ be the image of g in Sp(1, 1). By calculations similar to those in
[4, Section 4],

δ(ĝ) = 4 sin
θ

2
, cosh2

(
ρ(0, ĥ(0)

2

)
= ||h||2.

This gives the proof. �

3.1. Comparison of the conjugacy invariants. Let g be elliptic. Up to conjugacy
in Sp(n, 1),

g = diag(λ1, . . . , λn+1),

where |λi| = 1 for all i. Instead of δ(g), Cao and Tan used the conjugacy invariant

δct(g) = max{|λi − λ1|
2 : i = 2, . . . , n + 1}.

Let λ j = eiθ j with θ j ∈ [0, π] for j = 1, . . . , n. Note that

|eiθ − 1| + |eiφ − 1| = 2
(∣∣∣∣∣ sin

θ

2

∣∣∣∣∣ +

∣∣∣∣∣ sin
φ

2

∣∣∣∣∣).
From (1.3),

δ(g) = 2 max
{∣∣∣∣∣ sin

θ1

2

∣∣∣∣∣ +

∣∣∣∣∣ sin
θ j+1

2

∣∣∣∣∣ : j = 1, . . . , n
}

= max
{
2
(

sin
θ1

2
+ sin

θ j+1

2

)
: j = 1, . . . , n

}
= max

{
4 sin

θ1 + θ j+1

4
cos

θ1 − θ j+1

4
: j = 1, . . . , n

}
.

On the other hand, the Cao–Tan invariant in [4] is given by

δct(g) = max
{
4 sin2 θ1 ± θ j+1

2
: j = 1, . . . , n

}
.

By [4, Corollary 1.2], under the hypotheses of Corollary 3.2,

4 sin2 θ(||h||2 + 2) ≥ 1. (3.4)
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By comparing the sine terms on the left-hand sides of the inequalities (3.3) and (3.4),

sin2(θ/2) ≤ sin2 θ for θ ∈ [0, 2π/3],

showing that the inequality (3.3) is stronger than the inequality (3.4) of Cao and Tan.
But sin2(θ/2) > sin2 θ for θ ∈ (2π/3, π], so the inequality of Cao and Tan is better in
this subinterval.

4. Proof of Theorem 1.1

Proof. Given g, let Fg denote the subgroup of Sp(n, 1) that stabilises the set of fixed
points of g. The subgroup Fg is closed in Sp(n, 1).

Suppose, if possible, that G is not discrete. Then G is dense in Sp(n, 1), by
Theorem 2.4. Since the set of loxodromic elementsL forms an open subset of Sp(n,1),
it follows that L \ Fg is also an open subset in Sp(n, 1).

Part (1). Suppose first that g is regular elliptic. We shall use the ball model. Up to
conjugacy, we may assume that q = 0 is a fixed point of g and it is of the form (1.1).
Since G is dense in Sp(n, 1), there is a sequence of loxodromic elements {hm} in L ∩G
such that hm → I. For each m, the element hmgh−1

m is also regular elliptic with fixed
point hm(q). Let

hmgh−1
m = (a(m)

i, j ) =

a(m)
1,1 β(m)

α(m) A(m)

. (4.1)

Then hmgh−1
m → g. In particular, am

1,1 → λ1, where |λ1| = 1. Since q = 0 is a fixed point
of g, the left-hand side of (3.1) becomes |a(m)

1,1 |δ(g). The group 〈g, hmgh−1
m 〉 is clearly

discrete.
If possible, suppose that 〈g, hmgh−1

m 〉 is elementary. Then hm(0) , 0 since
loxodromic elements have no fixed point on Hn

H. Thus, g and hmgh−1
m do not have a

common fixed point. Then 〈g, hmgh−1
m 〉must keep two boundary points p1, p2 invariant

and hence will keep invariant the quaternionic line l passing through p1 and p2. Then
g|l acts as a regular elliptic element of Isom(l) ≈ Sp(1, 1). Hence, q must belong to l,
otherwise g would have at least two fixed points, contradicting regularity of g. Now,
note that g2|l is also an elliptic element that fixes p1, p2 and q. With respect to a
chosen basis p1 and p2, g2|l must be of the form g2|l = diag(λ, λ), where |λ| = 1. This
implies that g has an eigenvalue class represented by λ1/2 of multiplicity at least two,
contradicting the regularity of g.

So, the group 〈g, hmgh−1
m 〉 must be nonelementary. By Theorem 3.1,

|a(m)
1,1 | δ(g) ≥ 1.

But |a(m)
1,1 | → 1 and δ(g) < 1, which is a contradiction. This proves Part (1) of

Theorem 1.1.

Part (2). Suppose that g is loxodromic. We shall use the Siegel domain model. Up to
conjugacy, let 0 and∞ be the fixed points of g, so that g is of the form (1.2). Since G is

https://doi.org/10.1017/S000497271900087X Published online by Cambridge University Press

https://doi.org/10.1017/S000497271900087X


292 K. Gongopadhyay, M. M. Mishra and D. Tiwari [10]

dense in Sp(n, 1), there exists a sequence {hn} of loxodromic elements in (L \ Fg) ∩G
such that hn → g. Let

hngh−1
n =

an bn γ∗n
cn dn δ∗n
αn βn Un

 . (4.2)

Since hn ∈ L \ Fg, it follows that g and hn cannot have a common fixed point and
neither can have a two-point invariant subset. So, 〈g, hngh−1

n 〉 is nonelementary for
each n. By Theorem 2.2,

|andn|
1/2|bncn|

1/2 ≥
1 − M f

M2
f

.

But bncn → 0 as n→∞ and hence
1 − M f

M2
f

≤ 0,

which is a contradiction. This proves Part (2) of Theorem 1.1.

Part (3). Let g be a Heisenberg translation and again use the Siegel domain model. Up
to conjugacy, let 0 be the fixed point of g, so that g has the form (2.1). As g ∈ Ḡ, there
exists a sequence of loxodromic elements {hn} ∈ (L \ Fg) ∩G such that

hn → g.

Let hngh−1
n be of the form (4.2). Since hngh−1

n → g, it follows that tn → 0.
Since g and hngh−1

n have no fixed points in common, 〈g, hngh−1
n 〉 is discrete and

nonelementary; hence, by Theorem 2.3,

Mtn + 2|ζ | > 1.

But tn → 0 as n→∞. Thus, for large n, |ζ | ≥ 1
2 , contrary to the hypothesis in Part (3)

of Theorem 1.1.
This completes the proof. �

4.1. Proof of Corollary 1.2. Note that the set of regular elliptic elements in Sp(n, 1)
forms an open subset E.

Part (1). Let g be regular elliptic and use the ball model. Up to conjugacy, we may
assume that g is of the form (1.1) and thus g(0) = 0. Since G is dense in Sp(n, 1), there
exists a sequence of regular elliptic elements {hm} in (E \ Fg) ∩G such that hm→ I. For
each m, the element hmgh−1

m is also regular elliptic with fixed point hm(0). Suppose that
hmgh−1

m is of the form (4.1). The group 〈g, hmgh−1
m 〉 is clearly discrete. We claim that it

is also nonelementary. For, otherwise, g and hmgh−1
m must have a common fixed point

different from 0 and hm(0), which will contradict the regularity of the isometries. Now,
by Theorem 3.1, |a(m)

1,1 | δ(g) ≥ 1. Since |a(m)
1,1 | → 1 and δ(g) < 1, this is a contradiction.

This proves Part (1).

Using similar arguments to those in the proof of Theorem 1.1, Parts (2) and (3) also
follow.
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