ON DISCRETENESS OF SUBGROUPS OF QUATERNIONIC HYPERBOLIC ISOMETRIES

KRISHNENDU GONGOPADHYAY[®], MUKUND MADHAV MISHRA[®] and DEVENDRA TIWARI^{®⊠}

(Received 23 April 2019; accepted 1 July 2019; first published online 16 August 2019)

Abstract

Let $\mathbf{H}_{\mathbb{H}}^{n}$ denote the *n*-dimensional quaternionic hyperbolic space. The linear group $\operatorname{Sp}(n, 1)$ acts on $\mathbf{H}_{\mathbb{H}}^{n}$ by isometries. A subgroup *G* of $\operatorname{Sp}(n, 1)$ is called *Zariski dense* if it neither fixes a point on $\mathbf{H}_{\mathbb{H}}^{n} \cup \partial \mathbf{H}_{\mathbb{H}}^{n}$ nor preserves a totally geodesic subspace of $\mathbf{H}_{\mathbb{H}}^{n}$. We prove that a Zariski dense subgroup *G* of $\operatorname{Sp}(n, 1)$ is discrete if for every loxodromic element $g \in G$ the two-generator subgroup $\langle f, gfg^{-1} \rangle$ is discrete, where the generator $f \in \operatorname{Sp}(n, 1)$ is a certain fixed element not necessarily from *G*.

2010 *Mathematics subject classification*: primary 20H10; secondary 51M10. *Keywords and phrases*: hyperbolic space, Jørgensen inequality, discreteness, quaternions.

1. Introduction

The classical Jørgensen inequality [12] gives a necessary criterion to check discreteness of a two-generator subgroup of $SL(2, \mathbb{C})$ that acts by Möbius transformations on the Riemann sphere. It has been generalised to the higher dimensional Möbius group that acts on *n*-dimensional real hyperbolic space. A well-known consequence of the generalised Jørgensen inequality is that a subgroup *G* of the Möbius group is discrete if and only if every two-generator subgroup is discrete (see [1, 16]). There have been several refinements of this result giving discreteness criteria in Möbius groups (see [5, 9, 17]). Generalisations of the Jørgensen inequality and related discreteness criteria have been obtained in settings such as complex hyperbolic space and normed spaces (see [7, 11, 14, 15]).

Let \mathbb{H} denote the division ring of Hamilton's quaternions and $\mathbf{H}_{\mathbb{H}}^{n}$ the *n*-dimensional quaternionic hyperbolic space. Let Sp(*n*, 1) be the linear group that acts on $\mathbf{H}_{\mathbb{H}}^{n}$ by isometries. Following the theme sketched above, we give discreteness criteria for a subgroup of Sp(*n*, 1). The arguments restrict over the complex numbers and, as a corollary, we obtain discreteness criteria in SU(*n*, 1). To state our main result, we need the following notions.

The first author acknowledges partial support from SERB MATRICS grant MTR/2017/000355; the third author is supported by NBHM-SRF.

^{© 2019} Australian Mathematical Publishing Association Inc.

An element $g \in \text{Sp}(n, 1)$ is *elliptic* if it has a fixed point on $\mathbf{H}_{\mathbb{H}}^n$, *parabolic* if it has a unique fixed point on the boundary $\partial \mathbf{H}_{\mathbb{H}}^n$ and *loxodromic* (or hyperbolic) if it has exactly two fixed points on the boundary $\partial \mathbf{H}_{\mathbb{H}}^n$. A unipotent parabolic element, that is, a parabolic element having all eigenvalues 1, is called a *Heisenberg translation*. It is well known that an elliptic or loxodromic isometry g is conjugate to a diagonal element in Sp(n, 1) (see [6]). If g is elliptic, then, up to conjugacy,

$$g = \operatorname{diag}(\lambda_1, \dots, \lambda_{n+1}), \tag{1.1}$$

where $|\lambda_i| = 1$ for each *i* and the eigenvalue λ_1 is such that the corresponding eigenvector has negative Hermitian length, while all other eigenvectors have positive Hermitian length. An elliptic element *g* is called *regular* if it has mutually disjoint classes of eigenvalues. A regular elliptic element has a unique fixed point on $\mathbf{H}_{\mathbb{H}}^n$. If *g* is loxodromic, then we may assume, up to conjugacy, that

$$g = \operatorname{diag}(\lambda_1, \bar{\lambda_1}^{-1}, \lambda_3, \dots, \lambda_{n+1})$$
(1.2)

with $|\lambda_1| > 1$. Certain conjugacy invariants are associated to isometries as follows:

• for g elliptic, define

$$\delta(g) = \max\{ |\lambda_1 - 1| + |\lambda_i - 1| : i = 2, \dots, n+1 \};$$
(1.3)

• for g loxodromic, following [2], define

 $\delta_{cp}(g) = \max\{|\lambda_i - 1| : i = 3, \dots, n+1\} \text{ and } M_g = 2\delta_{cp}(g) + |\lambda_1 - 1| + |\bar{\lambda}_1^{-1} - 1|.$

Let $T_{s,\zeta}$ be a Heisenberg translation in Sp(n, 1). We may assume up to conjugacy that

$$T_{s,\zeta} = \begin{pmatrix} 1 & 0 & 0 \\ s & 1 & \zeta^* \\ \zeta & 0 & I \end{pmatrix},$$

where $\text{Re}(s) = \frac{1}{2} |\zeta|^2$ (see [6, page 70]).

A subgroup G of Sp(n, 1) is called Zariski dense if it neither fixes a point on $\mathbf{H}^n_{\mathbb{H}} \cup \partial \mathbf{H}^n_{\mathbb{H}}$ nor preserves a totally geodesic subspace of $\mathbf{H}^n_{\mathbb{H}}$. With this notation, we prove the following theorem.

THEOREM 1.1. Let G be a Zariski dense subgroup of Sp(n, 1).

- (1) Let $g \in \text{Sp}(n, 1)$ be a regular elliptic element such that $\delta(g) < 1$. If $\langle g, hgh^{-1} \rangle$ is discrete for every loxodromic element $h \in G$, then G is discrete.
- (2) Let $g \in \text{Sp}(n, 1)$ be a loxodromic element such that $M_g < 1$. If $\langle g, hgh^{-1} \rangle$ is discrete for every loxodromic element $h \in G$, then G is discrete.
- (3) Let $g \in \text{Sp}(n, 1)$ be a Heisenberg translation such that $|\zeta| < \frac{1}{2}$. If $\langle g, hgh^{-1} \rangle$ is discrete for every loxodromic element h in G, then G is discrete.

Restricting everything over the complex numbers, the above theorem also holds for SU(n, 1).

COROLLARY 1.2. Let G be a Zariski dense subgroup in Sp(n, 1) or SU(n, 1).

- (1) Let $g \in \text{Sp}(n, 1)$ or SU(n, 1) respectively be a regular elliptic element such that $\delta(g) < 1$. If $\langle g, hgh^{-1} \rangle$ is discrete for every regular elliptic element $h \in G$, then G is discrete.
- (2) Let $g \in \text{Sp}(n, 1)$ or SU(n, 1) respectively be a loxodromic element such that $M_g < 1$. If $\langle g, hgh^{-1} \rangle$ is discrete for every regular elliptic $h \in G$, then G is discrete.
- (3) Let $g \in \text{Sp}(n, 1)$ or SU(n, 1) respectively be a Heisenberg translation such that $|\zeta| < \frac{1}{2}$. If $\langle g, hgh^{-1} \rangle$ is discrete for every regular elliptic h in G, then G is discrete.

These results show that the discreteness of a Zariski dense subgroup *G* of Sp(n, 1) or SU(n, 1) is determined by the two-generator subgroups $\langle g, hgh^{-1} \rangle$, where $h \in G$. The generator *g* is fixed and need not be an element from *G* and it is enough to take *h* to be loxodromic or regular elliptic. After fixing such a 'test map' *g*, conjugates of *g* by generic elements of *G* determine the discreteness. For isometries of the real hyperbolic space, similar discreteness criteria using a test map and its conjugates have been obtained in [18], [9, Theorem 1.2] and [8]. Theorem 1.1 and Corollary 1.2 generalise these results to Sp(n, 1) and SU(n, 1).

We note some preliminary notions in Section 2 and prove the main result in Section 4. To prove the results, we use some generalised Jørgensen inequalities in Sp(*n*, 1). We use the Jørgensen inequality of Cao and Parker [2] to deal with subgroups having a loxodromic generator. For subgroups having a unipotent parabolic generator, we use a quaternionic version of Shimizu's lemma following Hersonsky and Paulin [10]. To deal with subgroups having a regular elliptic generator, we use a variation of the inequality of Cao and Tan [4]. For this case, we have introduced the new conjugacy invariant $\delta(g)$ given above. The invariant $\delta(g)$ is different from the conjugacy invariant $\delta_{ct}(g)$ used by Cao and Tan and may be considered as a restriction of the Cao–Parker invariant $\delta_{cp}(g)$ to subgroups having at least one elliptic generator. This new invariant gives quantitatively better bounds in a larger domain. We refer to Section 3 for more details.

2. Preliminaries

2.1. Quaternionic hyperbolic space. We begin with some background material on quaternionic hyperbolic geometry. Much of this can be found in [6, 13].

Let $\mathbb{H}^{n,1}$ be the right vector space over \mathbb{H} of quaternionic dimension n + 1 (so that its real dimension is 4n + 4) equipped with the quaternionic Hermitian form

$$\langle z, w \rangle = -(\bar{z}_0 w_1 + \bar{z}_1 w_0) + \sum_{i=2}^n \bar{z}_i w_i$$

for $z = (z_0, \ldots, z_n)$, $w = (w_0, \ldots, w_n)$. Thus, the quaternionic Hermitian form is defined

by the matrix

$$J_2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & I_{n-1} \end{pmatrix}.$$

Equivalently, when convenient, one may also use the Hermitian form given by the matrix

$$J_1 = \begin{pmatrix} -1 & 0 \\ 0 & I_n \end{pmatrix}.$$

Following [6, Section 2], let

$$V_0 = \{ \mathbf{z} \in \mathbb{H}^{n,1} - \{ 0 \} : \langle \mathbf{z}, \mathbf{z} \rangle = 0 \}, \quad V_- = \{ \mathbf{z} \in \mathbb{H}^{n,1} : \langle \mathbf{z}, \mathbf{z} \rangle < 0 \}.$$

Clearly, V_0 and V_- are invariant under Sp(n, 1). We define an equivalence relation ~ on $\mathbb{H}^{n,1}$ by $\mathbf{z} \sim \mathbf{w}$ if and only if there exists a nonzero quaternion λ so that $\mathbf{w} = \mathbf{z}\lambda$. Let $[\mathbf{z}]$ denote the equivalence class of \mathbf{z} . Let $\mathbb{P} : \mathbb{H}^{n,1} - \{0\} \longrightarrow \mathbb{H}\mathbb{P}^n$ be the *right projection* map given by $\mathbb{P} : \mathbf{z} \longmapsto z$, where $z = [\mathbf{z}]$. The *n*-dimensional quaternionic hyperbolic space is defined to be $\mathbf{H}^n_{\mathbb{H}} = \mathbb{P}(V_-)$ with boundary $\partial \mathbf{H}^n_{\mathbb{H}} = \mathbb{P}(V_0)$.

In the model using J_2 , there are two distinct points 0 and ∞ on $\partial \mathbf{H}_{\mathbb{H}}^n$. For $z_1 \neq 0$, the projection map \mathbb{P} is given by

$$\mathbb{P}(z_1, z_2, \dots, z_{n+1}) = (z_2 z_1^{-1}, \dots, z_{n+1} z_1^{-1})$$

and accordingly we choose boundary points

$$\mathbb{P}(0, 1, \dots, 0, 0)^{t} = 0, \\ \mathbb{P}(1, 0, \dots, 0, 0)^{t} = \infty.$$

In the model using J_1 , we mark $\mathbb{P}(1, 0, ..., 0, 0)^t$ as the origin $0 = (0, 0, ..., 0)^t$ of the quaternionic hyperbolic ball. The Bergmann metric on $\mathbf{H}^n_{\mathbb{H}}$ is given by the distance formula

$$\cosh^2 \frac{\rho(z,w)}{2} = \frac{\langle \mathbf{z}, \mathbf{w} \rangle \langle \mathbf{w}, \mathbf{z} \rangle}{\langle \mathbf{z}, \mathbf{z} \rangle \langle \mathbf{w}, \mathbf{w} \rangle} \quad \text{where } z, w \in \mathbf{H}^n_{\mathbb{H}}, \mathbf{z} \in \mathbb{P}^{-1}(z), \mathbf{w} \in \mathbb{P}^{-1}(w).$$

The above formula is independent of the choice of \mathbf{z} and \mathbf{w} .

Now consider the noncompact linear Lie group

$$\operatorname{Sp}(n,1) = \{A \in \operatorname{GL}(n+1,\mathbb{H}) : A^*J_iA = J_i\}.$$

An element $g \in \text{Sp}(n, 1)$ acts on $\overline{\mathbf{H}}_{\mathbb{H}}^{-n} = \mathbf{H}_{\mathbb{H}}^{n} \cup \partial \mathbf{H}_{\mathbb{H}}^{n}$ as $g(z) = \mathbb{P}g\mathbb{P}^{-1}(z)$. Thus, the isometry group of $\mathbf{H}_{\mathbb{H}}^{n}$ is given by $\text{PSp}(n, 1) = \text{Sp}(n, 1)/\{I, -I\}$.

2.2. The inequality of Cao and Parker. The quaternionic cross ratio of four distinct points z_1, z_2, z_3, z_4 on $\partial \mathbf{H}_{\mathbb{H}}^n$ is

$$[z_1, z_2, z_3, z_4] = \langle \mathbf{z}_3, \mathbf{z}_1 \rangle \langle \mathbf{z}_3, \mathbf{z}_2 \rangle^{-1} \langle \mathbf{z}_4, \mathbf{z}_2 \rangle \langle \mathbf{z}_4, \mathbf{z}_1 \rangle^{-1},$$

where \mathbf{z}_i denotes the lift to \mathbb{H}^{n+1} of a point z_i on $\partial \mathbf{H}_{\mathbb{H}}^n$. We note the following lemma concerning cross ratios.

[4]

LEMMA 2.1 [2]. Let $0, \infty \in \partial \mathbf{H}_{\mathbb{H}}^n$ stand for the respective points $(0, 1, ..., 0)^t$ and $(1, 0, ..., 0)^t \in \mathbb{H}^{n,1}$ under the projection map \mathbb{P} and let $h \in PSp(n, 1)$ be given by (2.2). Then

$$|[h(\infty), 0, \infty, h(0)]| = |bc|, \quad |[h(\infty), \infty, 0, h(0)]| = |ad|, \quad |[\infty, 0, h(\infty), h(0)]| = \frac{|bc|}{|ad|}$$

The theorem of Cao and Parker may be stated as follows.

THEOREM 2.2 (Cao and Parker [2]). Let g and h be elements of Sp(n, 1) such that g is a loxodromic element with fixed points $u, v \in \partial \mathbf{H}_{\mathbb{H}}^n$ and $M_g < 1$. If $\langle g, h \rangle$ is nonelementary and discrete, then

$$|[h(u), u, v, h(v)]|^{1/2} |[h(u), v, u, h(v)]|^{1/2} \ge \frac{1 - M_g}{M_g^2}.$$

2.3. Shimizu's lemma in Sp(n, 1). We use the Hermitian form J_2 in this section. Up to conjugacy, we assume that a Heisenberg translation fixes the boundary point 0, that is, it is of the form

$$T_{s,\zeta} = \begin{pmatrix} 1 & 0 & 0 \\ s & 1 & \zeta^* \\ \zeta & 0 & I \end{pmatrix},$$
 (2.1)

where $\operatorname{Re}(s) = \frac{1}{2}|\zeta|^2$.

Let *A* be an element in Sp(n, 1). Then one can choose *A* to be of the form

$$A = \begin{pmatrix} a & b & \gamma^* \\ c & d & \delta^* \\ \alpha & \beta & U \end{pmatrix},$$
(2.2)

where *a*, *b*, *c*, *d* are scalars, γ , δ , α , β are column matrices and *U* is an element in $M(n-1, \mathbb{H})$. It is easy to compute

$$A^{-1} = \begin{pmatrix} \bar{d} & \bar{b} & -\beta^* \\ \bar{c} & \bar{a} & -\alpha^* \\ -\delta & -\gamma & U^* \end{pmatrix}.$$

The next theorem follows by mimicking the arguments of Hersonsky and Paulin in [10, Appendix]. Hersonsky and Paulin proved it over the complex numbers. Over the quaternions, only a slight variation is needed and it is straightforward.

THEOREM 2.3. Suppose that $T_{s,\zeta}$ is a Heisenberg translation in Sp(n, 1) and A is an element in Sp(n, 1) of the form (2.2). Suppose that A does not fix 0. Set

$$t = \sup\{|b|, |\beta|, |\gamma|, |U - I|\}, \quad M = |s| + 2|\zeta|.$$

If $Mt + 2|\zeta| < 1$, then the group generated by A and $T_{s,\zeta}$ is either nondiscrete or fixes 0.

This is the simplest quaternionic version of Shimizu's lemma for two-generator subgroups of Sp(n, 1) with a unipotent parabolic generator. Stronger versions of Shimizu's lemma in Sp(n, 1) have been obtained by Kim and Parker [13, Theorem 4.8] and Cao and Parker [3]. The version in Theorem 2.3 is easier to apply for our purpose.

2.4. Useful results. A subgroup *G* of Sp(n, 1) is called elementary if it has a finite orbit in $\mathbf{H}_{\mathbb{H}}^n \cup \partial \mathbf{H}_{\mathbb{H}}^n$. If all its orbits are infinite, then *G* is nonelementary. In particular, *G* is nonelementary if it contains two nonelliptic elements of infinite order with distinct fixed points.

THEOREM 2.4 [6]. Let G be a Zariski dense subgroup of Sp(n, 1). Then G is either discrete or dense in Sp(n, 1).

3. The inequality of Cao and Tan revisited

THEOREM 3.1. Let g and h be elements of Sp(n, 1). Suppose that g is a regular elliptic element with fixed point q and $\delta(g)$ is as in (1.3). If

$$\cosh\frac{\rho(q,h(q))}{2}\,\delta(g) < 1,\tag{3.1}$$

then the group $\langle g, h \rangle$ generated by g and h is either elementary or not discrete.

The proof of Theorem 3.1 is a variation of the proof of [4, Theorem 1.1]. The initial computations are very similar, except that at a crucial stage we replace the Cao-Tan invariant by $\delta(g)$ and observe that the proof still works. We sketch the proof for completeness. We follow similar notation to [4] and use the ball model, that is, the Hermitian form J_1 .

PROOF. Using conjugation, we may assume that g is of the form (1.2) having fixed point $q = (0, ..., 0)^t \in \mathbf{H}_{\mathbb{H}}^n$ and

$$h = (a_{i,j})_{i,j=1,\dots,n+1} = \begin{pmatrix} a_{1,1} & \beta \\ \alpha & A \end{pmatrix}.$$

For $L = \text{diag}(\lambda_2, \ldots, \lambda_{n+1})$, write

$$g = \begin{pmatrix} \lambda_1 & 0 \\ 0 & L \end{pmatrix}.$$

Then

$$\cosh \frac{\rho(q, h(q))}{2} = |a_{1,1}|, \quad \delta(g) = \max\{|\lambda_1 - 1| + |\lambda_i - 1| : i = 2, \dots, n+1\}.$$

The inequality (3.1) becomes

$$|a_{1,1}|\delta(g) < 1.$$

Let $h_0 = h$ and $h_{k+1} = h_k g h_k^{-1}$ and write

$$h_k = (a_{i,j}^{(k)})_{i,j=1,\dots,n+1} = \begin{pmatrix} a_{1,1}^{(k)} & \beta^{(k)} \\ \alpha^{(k)} & A^{(k)} \end{pmatrix}.$$

If $\beta^{(k)} = 0$ for some k, it follows as in the proof of [4, Theorem 1.1] that $\langle g, h \rangle$ is elementary. So, assume that $\beta^{(k)} \neq 0$ and that the group $\langle g, h \rangle$ is nonelementary. By similar computations to those in the proof of [4, Theorem 1.1],

$$|a_{1,1}^{(k+1)}|^2 \le |a_{1,1}^{(k)}|^4 + |\beta^{(k)}|^4 - \sum_{i=2}^{n+1} |a_{1,1}^{(k)}|^2 |a_{1,i}^{(k)}|^2 (2 - |u_1 - u_i|^2),$$
(3.2)

where

$$u_i = \overline{a_{1,i}^{(k)}}^1 \lambda_i \overline{a_{1,i}^{(k)}}, \quad i = 2, \dots, n+1.$$

Noting that $|a_{1,1}^{(k)}|^2 - |\beta^{(k)}|^2 = 1$, by (3.2),

$$\begin{aligned} |a_{1,1}^{(k+1)}|^2 - 1 &\leq |a_{1,1}^{(k)}|^2 \sum_{i=2}^{n+1} |a_{1,i}^{(k)}|^2 |u_1 - u_i|^2 \\ &\leq |a_{1,1}^{(k)}|^2 \sum_{i=2}^{n+1} |a_{1,i}^{(k)}|^2 |(|u_1 - 1|^2 + |u_i - 1|^2) \\ &\leq |a_{1,1}^{(k)}|^2 \sum_{i=2}^{n+1} |a_{1,i}^{(k)}|^2 (|u_1 - 1| + |u_i - 1|)^2. \end{aligned}$$

Therefore,

$$|a_{1,1}^{(k+1)}|^2 - 1 \le (|a_{1,1}^{(k)}|^2 - 1) |a_{1,1}^{(k)}|^2 \delta^2(g).$$

Then, by induction,

$$|a_{1,1}^{(k+1)}| < |a_{1,1}^{(k)}|$$

and

$$|a_{1,1}^{(k+1)}|^2 - 1 < (|a_{1,1}|^2 - 1)(|a_{1,1}|^2 \delta^2(g))^{k+1}$$

Since $|a_{1,1}|\delta(g) < 1$, it follows that $|a_{1,1}^{(k)}| \to 1$ and, as in the last part of the proof of [4, Theorem 1.1],

$$\beta^{(k)} \to 0, \quad \alpha^{(k)} \mapsto 0, \quad A^{(k)} (A^{(k)})^* \to I_n$$

By passing to a subsequence, we may assume that

$$A^{(k_t)} \to A_{\infty}, \ a_{1,1}^{(k_t)} \to a_{\infty}$$

Thus, h_{k+1} converges to

$$h_{\infty} = \begin{pmatrix} a_{\infty} & 0\\ 0 & A_{\infty} \end{pmatrix} \in \operatorname{Sp}(n, 1).$$

which implies that $\langle g, h \rangle$ is not discrete. This completes the proof.

289

290

Using the embedding of $SL(2, \mathbb{C})$ in Sp(1, 1) and applying similar arguments to those in the proof of [4, Theorem 1.2] gives the following corollary. It may be thought of as a generalised version of the classical Jørgensen inequality in $SL(2, \mathbb{C})$ for two-generator subgroups with an elliptic generator.

COROLLARY 3.2. Let g and h be elements in $SL(2, \mathbb{C})$, say

$$g = \begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix} (with \ \theta \in [0,\pi]), \quad h = \begin{pmatrix} a & b\\ c & d \end{pmatrix}.$$

Let $||h||^2 = |a|^2 + |b|^2 + |c|^2 + |d|^2$. If $\langle g, h \rangle$ is nonelementary and discrete, then

$$4\sin^2\frac{\theta}{2}(\|h\|^2+2) \ge 1.$$
(3.3)

PROOF. Let \hat{g} be the image of g in Sp(1, 1). By calculations similar to those in [4, Section 4],

$$\delta(\hat{g}) = 4\sin\frac{\theta}{2}, \quad \cosh^2\left(\frac{\rho(0, \hat{h}(0))}{2}\right) = ||h||^2.$$

This gives the proof.

3.1. Comparison of the conjugacy invariants. Let g be elliptic. Up to conjugacy in Sp(n, 1),

$$g = \operatorname{diag}(\lambda_1, \ldots, \lambda_{n+1})$$

where $|\lambda_i| = 1$ for all *i*. Instead of $\delta(g)$, Cao and Tan used the conjugacy invariant

$$\delta_{ct}(g) = \max\{|\lambda_i - \lambda_1|^2 : i = 2, \dots, n+1\}.$$

Let $\lambda_j = e^{i\theta_j}$ with $\theta_j \in [0, \pi]$ for j = 1, ..., n. Note that

$$|e^{i\theta} - 1| + |e^{i\phi} - 1| = 2\left(\left|\sin\frac{\theta}{2}\right| + \left|\sin\frac{\phi}{2}\right|\right)$$

From (1.3),

$$\delta(g) = 2 \max\left\{ \left| \sin \frac{\theta_1}{2} \right| + \left| \sin \frac{\theta_{j+1}}{2} \right| : j = 1, \dots, n \right\}$$
$$= \max\left\{ 2\left(\sin \frac{\theta_1}{2} + \sin \frac{\theta_{j+1}}{2} \right) : j = 1, \dots, n \right\}$$
$$= \max\left\{ 4 \sin \frac{\theta_1 + \theta_{j+1}}{4} \cos \frac{\theta_1 - \theta_{j+1}}{4} : j = 1, \dots, n \right\}$$

On the other hand, the Cao–Tan invariant in [4] is given by

$$\delta_{ct}(g) = \max\left\{4\sin^2\frac{\theta_1\pm\theta_{j+1}}{2}: j=1,\ldots,n\right\}.$$

By [4, Corollary 1.2], under the hypotheses of Corollary 3.2,

$$4\sin^2\theta(\|h\|^2 + 2) \ge 1. \tag{3.4}$$

By comparing the sine terms on the left-hand sides of the inequalities (3.3) and (3.4),

 $\sin^2(\theta/2) \le \sin^2 \theta$ for $\theta \in [0, 2\pi/3]$,

showing that the inequality (3.3) is stronger than the inequality (3.4) of Cao and Tan. But $\sin^2(\theta/2) > \sin^2 \theta$ for $\theta \in (2\pi/3, \pi]$, so the inequality of Cao and Tan is better in this subinterval.

4. Proof of Theorem 1.1

PROOF. Given g, let F_g denote the subgroup of Sp(n, 1) that stabilises the set of fixed points of g. The subgroup F_g is closed in Sp(n, 1).

Suppose, if possible, that *G* is not discrete. Then *G* is dense in Sp(*n*, 1), by Theorem 2.4. Since the set of loxodromic elements \mathcal{L} forms an open subset of Sp(*n*, 1), it follows that $\mathcal{L} \setminus F_g$ is also an open subset in Sp(*n*, 1).

Part (1). Suppose first that g is regular elliptic. We shall use the ball model. Up to conjugacy, we may assume that q = 0 is a fixed point of g and it is of the form (1.1). Since G is dense in Sp(n, 1), there is a sequence of loxodromic elements $\{h_m\}$ in $\mathcal{L} \cap G$ such that $h_m \to I$. For each m, the element $h_m g h_m^{-1}$ is also regular elliptic with fixed point $h_m(q)$. Let

$$h_m g h_m^{-1} = (a_{i,j}^{(m)}) = \begin{pmatrix} a_{1,1}^{(m)} & \beta^{(m)} \\ \alpha^{(m)} & A^{(m)} \end{pmatrix}.$$
(4.1)

Then $h_m g h_m^{-1} \to g$. In particular, $a_{1,1}^m \to \lambda_1$, where $|\lambda_1| = 1$. Since q = 0 is a fixed point of g, the left-hand side of (3.1) becomes $|a_{1,1}^{(m)}|\delta(g)$. The group $\langle g, h_m g h_m^{-1} \rangle$ is clearly discrete.

If possible, suppose that $\langle g, h_m g h_m^{-1} \rangle$ is elementary. Then $h_m(0) \neq 0$ since loxodromic elements have no fixed point on $\mathbf{H}_{\mathbb{H}}^n$. Thus, g and $h_m g h_m^{-1}$ do not have a common fixed point. Then $\langle g, h_m g h_m^{-1} \rangle$ must keep two boundary points p_1, p_2 invariant and hence will keep invariant the quaternionic line l passing through p_1 and p_2 . Then $g|_l$ acts as a regular elliptic element of $\mathrm{Isom}(l) \approx \mathrm{Sp}(1, 1)$. Hence, q must belong to l, otherwise g would have at least two fixed points, contradicting regularity of g. Now, note that $g^2|_l$ is also an elliptic element that fixes p_1, p_2 and q. With respect to a chosen basis \mathbf{p}_1 and $\mathbf{p}_2, g^2|_l$ must be of the form $g^2|_l = \mathrm{diag}(\lambda, \lambda)$, where $|\lambda| = 1$. This implies that g has an eigenvalue class represented by $\lambda^{1/2}$ of multiplicity at least two, contradicting the regularity of g.

So, the group $\langle g, h_m g h_m^{-1} \rangle$ must be nonelementary. By Theorem 3.1,

$$|a_{1,1}^{(m)}| \,\delta(g) \ge 1.$$

But $|a_{1,1}^{(m)}| \to 1$ and $\delta(g) < 1$, which is a contradiction. This proves Part (1) of Theorem 1.1.

Part (2). Suppose that g is loxodromic. We shall use the Siegel domain model. Up to conjugacy, let 0 and ∞ be the fixed points of g, so that g is of the form (1.2). Since G is

dense in Sp(*n*, 1), there exists a sequence $\{h_n\}$ of loxodromic elements in $(\mathcal{L} \setminus F_g) \cap G$ such that $h_n \to g$. Let

$$h_n g h_n^{-1} = \begin{pmatrix} a_n & b_n & \gamma_n^* \\ c_n & d_n & \delta_n^* \\ \alpha_n & \beta_n & U_n \end{pmatrix}.$$
 (4.2)

Since $h_n \in \mathcal{L} \setminus F_g$, it follows that g and h_n cannot have a common fixed point and neither can have a two-point invariant subset. So, $\langle g, h_n g h_n^{-1} \rangle$ is nonelementary for each n. By Theorem 2.2,

$$|a_n d_n|^{1/2} |b_n c_n|^{1/2} \ge \frac{1 - M_f}{M_f^2}.$$

But $b_n c_n \to 0$ as $n \to \infty$ and hence

$$\frac{1-M_f}{M_f^2} \le 0.$$

which is a contradiction. This proves Part (2) of Theorem 1.1.

Part (3). Let *g* be a Heisenberg translation and again use the Siegel domain model. Up to conjugacy, let 0 be the fixed point of *g*, so that *g* has the form (2.1). As $g \in \overline{G}$, there exists a sequence of loxodromic elements $\{h_n\} \in (\mathcal{L} \setminus F_g) \cap G$ such that

$$h_n \rightarrow g$$

Let $h_n g h_n^{-1}$ be of the form (4.2). Since $h_n g h_n^{-1} \to g$, it follows that $t_n \to 0$.

Since g and $h_ngh_n^{-1}$ have no fixed points in common, $\langle g, h_ngh_n^{-1} \rangle$ is discrete and nonelementary; hence, by Theorem 2.3,

$$Mt_n + 2|\zeta| > 1.$$

But $t_n \to 0$ as $n \to \infty$. Thus, for large n, $|\zeta| \ge \frac{1}{2}$, contrary to the hypothesis in Part (3) of Theorem 1.1.

This completes the proof.

4.1. Proof of Corollary 1.2. Note that the set of regular elliptic elements in Sp(n, 1) forms an open subset \mathcal{E} .

Part (1). Let *g* be regular elliptic and use the ball model. Up to conjugacy, we may assume that *g* is of the form (1.1) and thus g(0) = 0. Since *G* is dense in Sp(*n*, 1), there exists a sequence of regular elliptic elements $\{h_m\}$ in $(\mathcal{E} \setminus F_g) \cap G$ such that $h_m \to I$. For each *m*, the element $h_m g h_m^{-1}$ is also regular elliptic with fixed point $h_m(0)$. Suppose that $h_m g h_m^{-1}$ is of the form (4.1). The group $\langle g, h_m g h_m^{-1} \rangle$ is clearly discrete. We claim that it is also nonelementary. For, otherwise, *g* and $h_m g h_m^{-1}$ must have a common fixed point different from 0 and $h_m(0)$, which will contradict the regularity of the isometries. Now, by Theorem 3.1, $|a_{1,1}^{(m)}| \delta(g) \ge 1$. Since $|a_{1,1}^{(m)}| \to 1$ and $\delta(g) < 1$, this is a contradiction. This proves Part (1).

Using similar arguments to those in the proof of Theorem 1.1, Parts (2) and (3) also follow.

References

- W. Abikoff and A. Haas, 'Nondiscrete groups of hyperbolic motions', *Bull. Lond. Math. Soc.* 22(3) (1980), 233–238.
- [2] W. Cao and J. R. Parker, 'Jørgensen's inequality and collars in *n*-dimensional quaternionic hyperbolic space', *Q. J. Math.* **62**(3) (2011), 523–543.
- [3] W. Cao and J. R. Parker, 'Shimizu's lemma for quaternionic hyperbolic space', *Comput. Methods Funct. Theory* **18**(1) (2018), 159–191.
- [4] W. Cao and H. Tan, 'Jørgensen's inequality for quaternionic hyperbolic space with elliptic elements', *Bull. Aust. Math. Soc.* **81**(1) (2010), 121–131.
- [5] M. Chen, 'Discreteness and convergence of Möbius groups', Geom. Dedicata 104 (2004), 61–69.
- [6] S. S. Chen and L. Greenberg, 'Hyperbolic spaces', in: Contributions to Analysis (A Collection of Papers Dedicated to Lipman Bers) (Academic Press, New York, 1974), 49–87.
- [7] S. Friedland and S. Hersonsky, 'Jorgensen's inequality for discrete groups in normed algebras', *Duke Math. J.* 69(3) (1993), 593–614.
- [8] K. Gongopadhyay and A. Mukherjee, 'Discreteness criteria in Möbius groups by test maps', Preprint, 2018.
- [9] K. Gongopadhyay, A. Mukherjee and S. K. Sardar, 'Test maps and discreteness in SL(2, ℍ)', Glasg. Math. J. 61 (2019), 523–533.
- [10] S. Hersonsky and F. Paulin, 'On the volumes of complex hyperbolic manifolds', *Duke Math. J.* 84(3) (1996), 719–737.
- [11] Y. Jiang, S. Kamiya and J. R. Parker, 'Jørgensen's inequality for complex hyperbolic space', Geom. Dedicata 97 (2003), 55–80.
- [12] T. Jørgensen, 'On discrete groups of Möbius transformations', Amer. J. Math. 98(3) (1976), 739–749.
- [13] I. Kim and J. R. Parker, 'Geometry of quaternionic hyperbolic manifolds', Math. Proc. Cambridge Philos. Soc. 135(2) (2003), 291–320.
- [14] S. Markham and J. R. Parker, 'Collars in complex and quaternionic hyperbolic manifolds', *Geom. Dedicata* 97 (2003), 199–213.
- [15] S. Markham and J. R. Parker, 'Jørgensen's inequality for metric spaces with application to the octonions', Adv. Geom. 7(1) (2007), 19–38.
- [16] G. J. Martin, 'On discrete Möbius groups in all dimensions: a generalization of Jørgensen's inequality', Acta Math. 163(3–4) (1989), 253–289.
- [17] X. Wang, L. Li and W. Cao, 'Discreteness criteria for Möbius groups acting on \mathbb{R}^n ', *Israel J. Math.* **150** (2005), 357–368.
- [18] S. Yang and T. Zhao, 'Test maps and discrete groups in SL(2, C) II', *Glasg. Math. J.* 56(1) (2014), 53–56.

KRISHNENDU GONGOPADHYAY,

Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Punjab 140306, India e-mail: krishnendu@iisermohali.ac.in, krishnendug@gmail.com

MUKUND MADHAV MISHRA, Department of Mathematics, Hansraj College, University of Delhi, Delhi 110007, India e-mail: mukund.math@gmail.com

DEVENDRA TIWARI, Department of Mathematics, University of Delhi, Delhi 110007, India e-mail: devendra9.dev@gmail.com