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In all cases, the new solution has a smaller hypotenuse than the original
triangle. Since there cannot be an infinite series of decreasing hypotenuses,
there can be no triangle with the required properties.

Concluding remarks
A positive rational solution of any of the equations

~+/ i ~-/ i
x4 + 4/ l x4

- 4/ = l
would give rise to a right-angled triangle contradicting the Theorem. All of
these equations are therefore insoluble.

It is worth noting that it is not obvious how to use a supposed solution
of x4 + y4 = Z4 to find another solution of the same equation. However, by
strengthening the conjecture as shown above it was possible to carry out the
proof relatively simply. This illustrates an important feature of Fermat's
method of proof; that the choice of conjecture can be crucial to the success
of the method. Sometimes it can be much easier to prove a stronger result
than the one which is needed.
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95.25 Goldbach variations
The Goldbach conjecture is one of the most famous unsolved problems

in number theory, indeed in all of mathematics. It states that each even
number 2n > 2 is expressible as the sum of two primes

2n = p + q, where p and q are prime.

The conjecture has been verified for all 2n less than 1018, but a general proof
is lacking. Looking at the conjecture from another angle, let us pick an even
number, say 10 000 and consider 10 000 - p, for each prime p less than
10 000. We would probably be surprised if the resulting number was never
prime, and this viewpoint gives the conjecture a certain amount of
plausibility.

Theorem 1: There are infinitely many natural numbers n for which 2n is the
sum of two prime numbers.

Proof. A famous result of Euclid states that there are infinitely many prime
numbers p. So for n = p, 2n = p + p, the sum of two primes!

Unfortunately, infinitely many does not mean all and any prize this
proof deserves is pretty small-perhaps zero! But, as someone has said,
inside every hard problem there are several easier problems struggling to get
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out. Recall that a natural number is prime if it has exactly two distinct
divisors, namely itself and one; a natural number is composite if it has more
than two distinct divisors. Clearly I is neither prime nor composite. The
following are some pretty variants on the Goldbach conjecture.

Theorem 2: Every natural number greater than II is the sum of two
composite numbers.

Proof A quick calculation shows that 8 = 4 + 4 and 10 = 6 + 4 are the
only numbers less than II which are expressible as the sum of two
composites and that II is not so expressible. We need therefore to consider
only numbers greater than II. The 'divide and conquer' approach suggests
that we consider even and odd natural numbers separately.
(i) Consider 2n for n > 5. Now, 2n = (2n - 4) + 4 = 2(n - 2) + 4, which

is the sum of two composites.
(ii) Consider 2n + I, for n > 5. Now, 2n + I = 2n - 8 + 9 = 2(n - 4) + 9,

which is again the sum of two composites.

Of course, in general, this decomposition can be achieved in several
ways. For example, 12=4+8=6+6 and 19=4+15=9+10, so this
suggests the following

Investigation I: In how many different ways can a given n be expressed as
the sum of composites a + b, where a is less than or equal to b?

The reader is invited to draw up a chart to see if any pattern can be
discerned.

How about mixing primes and composites? After a little
experimentation, one is led to the following result.

Theorem 3: Every natural number greater than 5 is the sum of a composite
number and a prime number.

Proof A quick check shows that any number less than or equal to 5 cannot
be so expressed, so we need consider only numbers greater than 5. Again,
we consider the even and odd cases separately.
(i) For n > 2, 2n = 2n - 2 + 2 = 2 (n - 1) + 2, which is the sum of a

composite and the prime 2.
(ii) For n > 2, 2n + 1 = 2n - 2 + 3 = 2(n - 1) + 3, which is the sum of a

composite and the prime 3.

Again this decomposition can be achieved in several ways, for example,
11 = 2 + 9 = 3 + 8 = 4 + 7 = 5 + 6 and 12 = 2 + IO = 3 + 9. This prompts

Investigation 2: In how many different ways can a given n be expressed as
the sum of a prime number and a composite number?

https://doi.org/10.1017/S0025557200003028 Published online by Cambridge University Press

https://doi.org/10.1017/S0025557200003028


NOTES 273

Again the reader is invited to draw up a chart or use a computer to see if
any conclusions can be drawn or any further conjectures can be made. And
always remember, mathematics is an experimental science!
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95.26 Nice cubics
Introduction

A discussion with some other mathematics teachers raised the question
whether it is possible to find a 'nice' cubic, that is one which has three
rational zeros and two rational stationary points. The idea was to use it as
an exercise for students to find the zeros and stationary points without
having to substitute surds back into the cubic.

I was not aware of a solution without a repeated zero and my initial
reaction was that it was not possible with three distinct zeros, but then a
colleague managed to find one. So I decided to try and see if it was possible
to find all solutions.

To simplify the problem, by a suitable transformation we can assume
that one of the zeros is zero, the others are coprime integers and the cubic is
monic (i.e. with a leading coefficient of 1). So the cubic can be assumed to
be y = x(x - a)(x - b) = x3 - (a + b)x2 + abx where a and b are
coprime integers.

On differentiating and setting to zero, the stationary points are given by

3x2-2(a+b)x+ab=O, (1)

which has roots Ha + b ± ..j(a + bi - 3ab), which are rational if, and
only if, (a + b)2 - 3ab = a2 - ab + b2 is the square of a rational number
(hence the square of an integer as a and b are integers).

So we need to find integer solutions of

a2 _ ab + b2 = d2. (2)

Finding solutions
Such equations (solving polynomials in integers) are known as

Diophantine equations (after Diophantus whose work Fermat annotated with
his famous marginal note). A famous Diophantine equation is the
Pythagoras equation and one method of finding Pythagorean triples is to
factorise over the Gaussian integers, which are numbers of the form a + bi
where a and b are integers. To solve (2) we need to factorise in the ring of
Eisenstein integers, Z [w], which are numbers of the form p + qw where p
and q are integers and w is a complex cube root of one. Such structures are
rings of algebraic integers. An algebraic integer is a zero of a monic
polynomial with integer coefficients. Loosely speaking, a ring is an
algebraic structure with an arithmetic similar to Z.
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