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In this paper we derive representations for the limiting distributions of the
regression-based seasonal unit root test statistics of Hylleberg, Engle, Granger,
and Yoo~1990, Journal of Econometrics44, 215–238! and Beaulieu and Miron
~1993, Journal of Econometrics55, 305–328!, inter alia, when the underlying
process displays near seasonal integration+ Our results generalize those pre-
sented in previous studies by allowing for an arbitrary seasonal periodicity~includ-
ing the nonseasonal case!, a wide range of possible assumptions on the initial
conditions, a range of~seasonal! deterministic mean effects, and finite autoregres-
sive behavior in the driving shocks+ We use these representations to simulate the
asymptotic local power functions of the seasonal unit root tests, demonstrating a
significant dependence on serial correlation nuisance parameters in the case of
the pairs oft-statistics, but not the associatedF-statistic, for unit roots at the
seasonal harmonic frequencies+ Monte Carlo simulation results are presented that
suggest that the local limiting distribution theory provides a good approximation
to the finite-sample behavior of the statistics+ Our results lend further weight to
the advice of previous authors that inference on the unit root hypothesis at the
seasonal harmonic frequencies should be based on theF-statistic, rather than on
the associated pairs oft-ratios+

1. INTRODUCTION

In a recent paper Rodrigues~2001! presents representations for the limiting dis-
tributions of the quarterly seasonal unit root test statistics of Hylleberg, Engle,
Granger, and Yoo~1990! when the characteristic roots of the underlying sea-
sonal process are local to unity+ In deriving his results, Rodrigues~2001! assumes
that the data are generated by a mean-zero near seasonally integrated process
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with zero starting values, whose driving shocks form an independent and iden-
tically distributed~i+i+d+! sequence+

In this paper we generalize the work of Rodrigues~2001! in four separate
directions+ First, we allow for any given seasonal aspect, S, say, so that our
results extend those of Rodrigues~2001! for S5 4 to, inter alia, monthly ~S5
12!, daily trading~S5 5!, biannual~S5 2!, bimonthly ~S5 6!, and, indeed,
nonseasonal~S5 1! data+ Second, under the near seasonally integrated model,
and following the work of Canjels and Watson~1997! and Phillips and Lee
~1996!, we allow for a wide spectrum of initial conditions ranging from asymp-
totically negligible initial conditions to the so-called unconditional case where
the starting values of the process are of the same stochastic order as the sub-
sequent data points+ Third, following Smith and Taylor~1998, 1999a, 1999b!
and Nabeya~2001a!, we allow for ~seasonal! deterministic mean effects in the
process, ranging from a zero mean to seasonal intercepts and seasonal trends+
Fourth, we allow for finite autoregressive~AR! behavior in the driving shocks+
The final generalization also allows us to expand upon the recent work of Bur-
ridge and Taylor~2001!, who derive representations for the limiting null distri-
butions of the quarterly~S5 4! HEGY ~Hylleberg, Engle, Granger, and Yoo!
tests when the shocks follow a finite AR process+

The paper is organized as follows+ In Section 2 we outline the seasonal frame-
work, defining the hypotheses of interest and the regression-based, or so-called
HEGY, approach to seasonal unit root testing, where one tests the null hypoth-
esis of unit root behavior against the stable alternative at each of the zero and
seasonal frequencies+ In Section 3 we provide our main result, detailing the
limiting distributions of the seasonal unit root test statistics under the near-
integrated seasonal model+ These representations are related to previous results
in the literature, where relevant+ In particular, the asymptotic local power func-
tions of thet-tests~defined subsequently! for unit roots at the zero and Nyquist
~S even! frequencies are shown to coincide with that of the conventional aug-
mented Dickey–Fuller~ADF! unit root test+ A key result that we demonstrate is
that the limiting distributions of thet-statistics for testing a unit root at the zero
and Nyquist frequencies are invariant to the serial correlation nuisance param-
eters in the shocks, as are theF-statistics for testing the null hypothesis of a
complex pair of unit roots at each of the seasonal harmonic frequencies, but
that the pairs oft-statistics for complex unit roots are not invariant to these
nuisance parameters+ Our results for the harmonic seasonal frequencies build
upon the work of Burridge and Taylor~2001!, who demonstrate this result under
the seasonal unit root null for the particular case ofS 5 4+ In Section 4 we
simulate the asymptotic local power functions of the seasonal unit root tests,
highlighting the relative performance of thet- andF-statistics in both serially
correlated and serially uncorrelated cases and quantifying the degree of power
loss seen when~seasonal! intercepts and~seasonal! time trends are included in
the test regression+ Finite sample simulations are also provided that suggest
that the local limiting distribution theory provides a good approximation to the
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small sample behavior of the statistics+ Section 5 concludes+ A mathematical
Appendix contains the proof of our main result+

2. THE SEASONAL UNIT ROOT FRAMEWORK

2.1. The Seasonal Model

Following Hylleberg et al+ ~1990!, Beaulieu and Miron~1993!, Smith and Tay-
lor ~1998, 1999a!, and Nabeya~2001a!, inter alia, consider the scalar process
$xSn1s% , observed with seasonal periodicityS, written as the sum of a purely
deterministic component, mSn1s, and a purely stochastic process, vSn1s, namely,

xSn1s 5 mSn1s 1 vSn1s, s5 1 2 S, + + + ,0, n 5 1, + + + ,N, (2.1)

a~L!vSn1s 5 uSn1s, s5 1 2 S, + + + ,0, n 5 2, + + + ,N, (2.2)

mSn1s 5 gs
*1 bs

*~Sn1 s!, (2.3)

wherea~L! [ 1 2 (j51
S aj

*L j in ~2+2! is anSth-order autoregressive~AR~S!!
polynomial in the conventional lag~backshift! operator, LkxSn1s [ xSn1s2k,
k 5 0,1, + + + + The driving shocks$uSn1s% of ~2+2! are assumed to follow an
AR~ p!, 0 # p , ` process, namely, f~L!uSn1s 5 «Sn1s, the roots of
f~z! [ 1 2 (j51

p fj z j 5 0 all lying outside the unit circle, 6z6 5 1, with
«Sn1s ; i+i+d+~0,s2!, with finite fourth moments+ Exact assumptions on the ini-
tial conditionsvS1s, s5 1 2 S, + + + ,0, are delayed until later+ In what follows we
use the notationT [ SN to denote the total sample size+

The specification~2+1!–~2+3! allows for the presence of deterministic mean
effects in$xSn1s% throughmSn1s+ For the purposes of this paper, we follow Smith
and Taylor~1999a! and consider the following six cases of interest+

Case 1+ No intercept, no trend: gs
* 5 0, bs

* 5 0, s 5 1 2 S, + + + ,0+

Case 2+ Constant intercept, no trend: gs
* 5 g, bs

* 5 0, s 5 1 2 S, + + + ,0+

Case 3+ Seasonal intercepts, no trend: bs
* 5 0, s 5 1 2 S, + + + ,0+

Case 4+ Constant intercept, constant trend: gs
*5 g, bs

*5 b, s5 1 2 S, + + + ,0+

Case 5+ Seasonal intercepts, constant trend: bs
* 5 b, s 5 1 2 S, + + + ,0+

Case 6+ Seasonal intercepts, seasonal trends: as in ~2+3! with gs
* and bs

*

unrestricted+

2.2. The Seasonal Unit Root Hypotheses

In this paper we are concerned with the behavior of tests for seasonal unit roots
in theAR~S! polynomial, a~L!, against near seasonally integrated alternatives;
that is, the null hypothesis of interest is

H0 : a~L! 5 12 LS [ DS, (2.4)
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whereas, following Tanaka~1996, pp+ 355–356!, Rodrigues~2001!, and Nabeya
~2000, 2001b!, inter alia, the near seasonally integrated alternative we consider
is of the form

Hc : a~L! 5 F12 S11
c

N
DLSG, (2.5)

wherec is a fixed nonpositive constant+ Notice thatHc reduces toH0 for c 5 0+
UnderH0 of ~2+4! the data generating process~DGP! ~2+1!–~2+3! of $xSn1s%

is that of a seasonally integrated process~with or without drifts according to
the form ofmSn1s!, admitting unit roots at both the zero frequency, v0 [ 0, and
at each of the seasonal spectral frequencies, vk [ 2pk0S, k 5 1, + + + , @S02# , @{#
denoting the integer part of its argument+ UnderHc of ~2+5! the process$xSn1s%
is locally stable at each of the zero and seasonal frequencies ifc , 0+ Although
we constrainc to be nonpositive, all of the analysis that follows also holds for
positivec, in which case the process is locally explosive+

Denoting i [ M21, we may factorize the polynomiala~L! under Hc of
~2+5! as

a~L! 5 )
k50

@S02#

vk
c~L!, (2.6)

where the lag polynomial

v0
c~L! [ F12 S11

c

N
D10S

LG (2.7)

corresponds to the zero frequencyv0 [ 0 and the lag polynomialvk
c~L! corre-

sponds to the harmonic seasonal frequencies~vk,2p 2 vk! and is defined by

vk
c~L! [ F12 2S11

c

N
D10S

cos~vk!L 1 S11
c

N
D20S

L2G, (2.8)

k 5 1, + + + ,S*, whereS*[ ~S02! 2 1 ~if S is even! or @S02# ~if S is odd!, together
with

vS02
c ~L! [ F11 S11

c

N
D10S

LG (2.9)

corresponding to the Nyquist frequencyvS02 [ p, whenS is even+ Moreover,
as demonstrated in Rodrigues~2001! for the case ofS 5 4, taking a Taylor
series expansion about one on each of the factors of~2+6! allowsa~L! of ~2+2!
to be written as
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a~L! 5 F12 S11
c

T
1 O~T22!DLGF11 S11

c

T
1 O~T22!DLG

3 )
k51

S* F12 2S11
c

T
1 O~T22!Dcos~vk!L

1 S11
2c

T
1 O~T22!DL2G + (2.10)

Consequently, Hc of ~2+5! is correspondingly partitioned asHc [ ùk50
@S02#Hc, k,

where the hypothesisHc,0 corresponds to a local to unit root at the zero fre-
quencyv0 5 0, whereasHc,S02 yields a local to unit root at the Nyquist fre-
quencyvS02 5 p, whereS is even+ A pair of complex conjugate local to unit
roots at the harmonic seasonal frequencies~vk,2p 2 vk! is obtained underHc, k,
k 5 1, + + + ,S* ~see also Gregoir, 2001!+ Notice therefore that the particular local
alternative, Hc of ~2+5!, that we have considered imposes a common noncen-
trality parameter, c, on each of the zero and seasonal frequencies+ However, as
we see subsequently, this involves no loss of generality+

2.3. Regression-Based Seasonal Unit Root Tests

Following Hylleberg et al+ ~1990! and Smith and Taylor~1999a!, inter alia, the
regression-based approach to testing for seasonal unit roots ina~L! consists of
two stages+ First, one obtains the ordinary least squares~OLS! demeaned series
xSn1s

k 5 xSn1s 2 [mSn1s
k , where [mSn1s

k is the fitted value from the OLS regression
of xSn1s on the intercept and trend variables relevant to each of Cases 1–6,
k [ $1, + + + ,6% indicating the case of interest+ Notice that for Case 1, [mSn1s

1

will be zero, and hencexSn1s
1 5 xSn1s, by definition+ In what follows we

assume thatmSn1s is not estimated under an overly restrictive case, such that
the resulting unit root tests will be exact invariant to the parameters character-
izing the mean functionmSn1s ~see Burridge and Taylor, 2004!+

Following Smith and Taylor~1999a, equation~4+17!, p+ 9!, we then linearize
a~L! in ~2+2! around the seasonal unit roots exp~6 i 2pk0S!, k 5 0, + + + , @S02# ,
to obtain the auxiliary regression equation

DSxSn1s
k 5 p0 x0,Sn1s21

k 1 pS02 xS02,Sn1s21
k

1 (
k51

S*

~pa, k xk,Sn1s21
a,k 1 pb, k xk,Sn1s21

b,k !

1 (
j51

p*

fj
*DSxSn1s2j

k 1 «Sn1s
k , (2.11)
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which may be estimated alongSn1 s5 p* 1 S1 1, + + + ,T, p* $ p, omitting the
term pS02 xS02,Sn1s21

k if S is odd, and where corresponding to the zero and sea-
sonal frequenciesvk 5 2pk0S, k 5 0, + + + , @S02# ,

x0,Sn1s
k [ (

j50

S21

xSn1s2j
k , xS02,Sn1s

k [ (
j50

S21

cos@~ j 1 1!p#xSn1s2j
k ,

xk,Sn1s
a,k [ (

j50

S21

cos@~ j 1 1!vk#xSn1s2j
k , (2.12)

xk,Sn1s
b,k [ 2(

j50

S21

sin@~ j 1 1!vk#xSn1s2j
k ,

k 5 1, + + + ,S*, together withDSxSn1s
k [ xSn1s

k 2 xS~n21!1s
k + For the case of quar-

terly data, S 5 4, the relevant transformations arex0,Sn1s
k [ ~1 1 L 1

L2 1 L3!xSn1s
k , x2,Sn1s

k [ 2~1 2 L 1 L2 2 L3!xSn1s
k , x1,Sn1s

a,k [ 2L~1 2
L2!xSn1s

k , andx1,Sn1s
b,k [ 2~1 2 L2!xSn1s

k +
It is the elements ofp [ ~p0,pS02,p1,a , + + + + ,pS*,b!' , omitting pS02 whereS

is odd, from ~2+11! that are of focal interest+ From the characterization theorem
of Smith and Taylor~1999a, p+ 7!, the following expressions for the elements
of p, omitting that forpS02 whereS is odd, obtain+ This result is proved in the
accompanying working paper, Rodrigues and Taylor~2003!+

PROPOSITION 2+1+ The elements of the parameter vectorp from the test
regression (2.11), when theDGP is (2.1)–(2.3) underHc of (2.5), are given by

p0 5 f~1!
c

T
1 O~T22!, pS02 5 f~21!

c

T
1 O~T22!, (2.13)

pk,a 5 Re$f@exp~2ivk!#%S2c

T
D2 Im$f@exp~2ivk!#%dk

*1 O~T22!, (2.14)

pk,b 5 Re$f@exp~2ivk!#%dk
*1 Im$f@exp~2ivk!#%S2c

T
D1 O~T22!, (2.15)

wheredk
* [ @10sin~vk!# @~~1 1 2c0T !102 2 1!2 cos~vk!# , k 5 1, + + + ,S*.

Remark 2+1+ It follows immediately from~2+13! that Tp0 5 f~1!c 1 o~1!
and TpS02 5 f~21!c 1 o~1! ~S even!+ Similarly, from ~2+14! and ~2+15!,
Tpk,a 5 2c Re$f~exp~2ivk!!% 1 o~1!, and Tpk,b 5 2c Im$f@exp~2ivk!#% 1
o~1!, k 51, + + + ,S*, where we have used the result that limNr`@T0sin~vk!#$@~11
~2c0T ! 1 O~T22!!102 2 1# 2 cos~vk!% 5 0, k 5 1, + + + ,S*+

Remark 2+2+ Suppose that, instead of using a single noncentrality parameter
c in ~2+6!, we used a set of frequency-specific noncentrality parameters~which
may or may not be equal!, that is, a~L! 5 ) j50

@S02# vj
cj ~L!, where thevj

cj ~L! are
as defined in~2+7!–~2+9! but replacingc by cj , j 5 0, + + + , @S02# + Then the results
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in Proposition 2+1 remain valid on replacingc in ~2+13!–~2+15! by the appro-
priate noncentrality parametercj , j 5 0, + + + , @S02# + This result is proved in Rod-
rigues and Taylor~2003!+

Noting that forc 5 0 the expansion in~2+10! is exact,1 it is clear from Prop-
osition 2+1 that underH0 of ~2+4!, p 5 0, regardless of the lag parameters char-
acterizingf~z!+ Under Hc of ~2+5! with c , 0 andT finite, it can be shown
from Proposition 2+1 thatp0, pS02 ~S even! andpk,a, k 5 1, + + + ,S*, are nega-
tive, regardless off~z!, whereas thepk,b, k 5 1, + + + ,S*, can either be zero or
nonzero, depending on the form off~z!+ Consequently, to testH0 of ~2+4! against
the alternative of stationarity at one or more of the zero and seasonal frequen-
cies, Hylleberg et al+ ~1990! and Smith and Taylor~1999a!, inter alia, have sug-
gested using standard regressiont- andF-statistics from~2+11!+

Specifically, tests for the presence or otherwise of a unit root at the zero
and Nyquist~Seven! frequencies are conventional lower tailed regressiont-tests,
denotedt0 and tS02, for the exclusion ofx0,Sn1s21

k andxS02,Sn1s21
k , respectively,

from ~2+11!+ Similarly, the hypothesis of a pair of complex unit roots at the
kth harmonic seasonal frequency may be tested by the lower tailedtk

a and
two-tailed tk

b regressiont-tests from~2+11! for the exclusion ofxk,Sn1s21
a,k and

xk,Sn1s21
b,k , respectively, or by the regressionF-test, denotedFk, for the exclu-

sion of bothxk,Sn1s21
a,k and xk,Sn1s21

b,k from ~2+11!, k 5 1, + + + ,S*+ Ghysels, Lee,
and Noh~1994!, Taylor ~1998!, and Smith and Taylor~1998, 1999a! also con-
sider the joint frequency regressionF-tests from~2+11!, F1+ + + @S02#, for the exclu-
sion of xS02,Sn1s21

k ~S even! and$xk,Sn1s21
a,k , xk,Sn1s21

b,k %k51
S* , andF0+ + + @S02#, for the

exclusion ofx0,Sn1s21
k , xS02,Sn1s21

k ~S even! and $xk,Sn1s21
a,k , xk,Sn1s21

b,k %k51
S* + The

former tests the null hypothesis of unit roots at all of the seasonal frequencies,
whereas the latter tests the overall null, H0+

Various percentiles from approximations to the finite sample null distribu-
tions of the precedingt- and F-statistics for certain choices of the seasonal
aspectS, obtained by Monte Carlo simulation, assuming that$uSn1s% ; IN~0,1!,
appear in the literature; see, inter alia, Hylleberg et al+ ~1990, Tables 1a and
1b, pp+ 226–277!, Smith and Taylor~1998, Tables 1a and 1b, p+ 276!, Beau-
lieu and Miron ~1993, Table A+1, pp+ 325–326! and Ghysels et al+ ~1994,
Tables C+1 and C+2, pp+ 440–441!+ Asymptotic critical values are also pro-
vided in Beaulieu and Miron~1993, Table A+1, pp+ 325–326! and Taylor~1998,
Tables I and II, pp+ 356–357!+

3. ASYMPTOTIC REPRESENTATIONS

In this section we derive representations for the limiting distributions of the
OLS seasonal unit root statistics computed from the test regression~2+11! for
each of Cases 1–6 of~2+3!, under the near seasonally integrated alternative, Hc

of ~2+5!+
In what follows, what we assume about the initial conditionsvS1s, s 5

1 2 S, + + + ,0, is important+ One possibility, following Elliott, Rothenberg, and
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Stock~1996!, is to assume that the starting values satisfyT2102vS1s r
p 0, s5

1 2 S, + + + ,0+ One particular example of this is the so-called conditional case
wherevS1s 5 uS1s, s5 1 2 S, + + + ,0, so that the initial observation in each of the
S seasons, xS1s, has variance equal to that of the shocks+ In contrast, Pantula,
Gonzalez-Farias, and Fuller~1994! argue that “there are a modest number of
situations” ~p+ 459! where one might reasonably assume that the conditional
case applies+ For macroeconomic data in particular, the conditional assumption
seems untenable+ Pantula et al+ ~1994! suggest instead the unconditional case,
where the initial conditions obey the same data generating process as the rest
of the process+ Within our near seasonally integrated model we can contain
both the conditional and unconditional cases within a more general framework
by making the following assumption, which is the seasonal generalization of
Assumption 3 of Canjels and Watson~1997, p+ 185; see also Phillips and Lee,
1996!+

Assumption 3+1+ The initial conditions satisfyvS1s 5 (k50
m1@Nl#~1 1

c0N!kuS~12k!1s, s5 1 2 S, + + + ,0, wherel $ 0 andm [ $0,1, + + + ,m*%, m* finite+
As noted in Canjels and Watson~1997!, the unconditional case obtains taking
the limit aslN r `+ The conditional case obtains forl 5 m 5 0+

In the results given in Theorem 3+1, which follows, we will use the super-
scriptj to indicate which of Cases 1–6 ofmSn1s of ~2+3! hold+ For the zero fre-
quencyv0 tests: Case 1: j 5 0; Cases 2 and 3: j 5 1; Cases 4–6: j 5 2+ For the
seasonal frequencyvk tests, k 5 1, + + + , @S02# : Cases 1, 2, and 4: j 5 0; Cases 3
and 5: j 5 1; Case 6: j 5 2+ For example, substitutingj 5 0 into the expression
given in ~3+1!, which follows, for t0 gives the limiting representation for the
t0 statistic under Case 1~no deterministics! of mSn1s, whereasj 5 1 gives the
limiting representation under Case 2~nonseasonal intercept, no trend! and Case 3
~seasonal intercepts, no trend!+ Similarly, substitutingj 5 2 into ~3+2! and~3+3!
gives the limiting representations for thetk

a andtk
b statistics, respectively, under

Case 6~seasonal intercepts and seasonal trends! of mSn1s+
We now state our main theorem+ Some remarks follow+

THEOREM 3+1+ Let the process$xSn1s% be generated by (2.1)–(2.3) and let
the (unique) polynomialc~z! be defined such thatc~z!f~z! [ 1. Then, under
Hc of (2.5) and Assumption 3.1, and denoting weak convergence of the associ-
ated probability measures byn,

ti n cHE
0

1

@ NJi,c
j ~r,l!# 2 drJ102

1

E
0

1

NJi,c
j ~r,l! d NJi,0

0 ~r,0!

HE
0

1

@ NJi,c
j ~r,l!# 2 drJ102

[ Ii,c
j ~l!, (3.1)
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tk
a n cbk

* H~ak
2 1 bk

2!E
0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% drJ102

1 FHakHE
0

1

@ NJb, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 2 NJa, k,c
j ~r,l! d NJb, k,0

0 ~r,0!#J
1 bkHE

0

1

@ NJa, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 1 NJb, k,c
j ~r,l! d NJb, k,0

0 ~r,0!#JJ
3 H~ak

2 1 bk
2!E

0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% drJ2102G
[ Ia, k,c

j ~l,ak,bk,bk
*!, (3.2)

tk
b
n cak

* H~ak
2 1 bk

2!E
0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% drJ102

1 FHbkE
0

1

@ NJa, k,c
j ~r,l! d NJb, k,0

0 ~r,0! 2 NJb, k,c
j ~r,l! d NJa, k,0

0 ~r,0!#

1 akE
0

1

@ NJa, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 1 NJb, k,c
j ~r,l! d NJb, k,0

0 ~r,0!#J
3 H~ak

2 1 bk
2!E

0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% drJ2102G
[ Ib, k,c

j ~l,ak,bk,ak
*!, (3.3)

Fk n
1

2
@~Ia, k,c

j ~l,0,1,1!!2 1 ~Ib, k,c
j ~l,0,1,0!!2# [ Ik,c

j ~l!, (3.4)

F1+ + + @S02# n
1

S2 1 H~IS02,c
j ~l!!2 1 2 (

k51

S

Ik,c
j ~l!J , (3.5)

F0+ + + @S02# n
1

SH (
i50,S02

~Ii,c
j ~l!!2 1 2 (

k51

S

Ik,c
j ~l!J , (3.6)

omitting IS02,c
j ~l! in (3.5) and (3.6) where S is odd. In (3.1), i5 0,S02 if S

is even and i5 0 if S is odd, whereas k5 1, + + +S* in (3.2)–(3.4). The nomen-
clature j is as defined following Assumption 3.1, ak [ Im$c@exp~ ivk!# %,
ak
* [ Im$f@exp~2ivk!#%, bk [ Re$c@exp~ivk!#%, bk

* [ Re$f@exp~2ivk!#%.
Finally, the independent limiting processesNJi,c

j ~r,l!, i 5 0,S02, and NJa, k,c
j ~r,l!

and NJb, k,c
j ~r,l!, k 5 1, + + + ,S*, are as defined in Definition A.1 of the Appendix.

Remark 3+1+ Settingc 5 0 andS5 4, the representations provided in Theo-
rem 3+1 reduce to the limiting null representations provided in Burridge and
Taylor ~2001!+ Theorem 3+1 therefore generalizes the results of Burridge and
Taylor to an arbitrary seasonal aspect, S, and to the near seasonally integrated
case, c Þ 0+ For c 5 0 andf~z! 5 1, the representations in Theorem 3+1 also
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reduce to those given in Smith and Taylor~1999a! and Nabeya~2001a!+ More-
over, notice that the representations in~3+1!–~3+6! for c 5 0 do not depend on
the initial conditionsvS1s, s5 1 2 S, + + + ,0, providedj . 0+ Indeed, for each of
Cases 3, 5, and 6 ofmSn1s of ~2+3!, the statistics also yield exact similar tests
~for detailed discussion on this point, see Smith and Taylor 1998, 1999a!+

Remark 3+2+ The representations given in Theorem 3+1 delineate the asymp-
totic local power functions of the seasonal unit root tests from~2+11! in all
cases indexed by a common noncentrality parameterc+ Numerical tabulations
of certain of these functions are given in Section 4, which allow us to investi-
gate the relative power properties of the tests and also to quantify the degree of
power loss incurred when~seasonal! intercepts and~seasonal! time trends are
included in the test regression+ Notice also, for example, from the results in
Theorem 3+1 that the asymptotic local power functions of the seasonal fre-
quencytS02 ~S even!, tk

a , tk
b and Fk, k 5 1, + + + ,S*, and F1+ + + @S02# tests are not

affected by including a nonseasonal intercept or time trend in~2+11! but are
affected by the inclusion of seasonal intercepts and seasonal trends+ Similarly,
the asymptotic local power function of thet0 test is not affected by the inclu-
sion of seasonal intercepts~trends! vis-à-vis the case where a nonseasonal inter-
cept ~trend! is included in~2+11!+ The asymptotic local power function of the
F0+ + + @S02# test is, however, clearly affected by both seasonal and nonseasonal
intercepts and time trends+

Remark 3+3+ In practice, we would probably want to permit the noncentral-
ity parameter to vary across the seasonal frequenciesvk [ 2pk0S, k 5 0, + + + ,
@S02# , as in Remark 2+2+ Just as argued in Rodrigues~2001, p+ 80!, the asymp-
totic orthogonality result stated in Remark A+1 of the Appendix ensures that
the representations given in Theorem 3+1 remain appropriate in such cases on
substitutingc for ck # 0, k 5 0, + + + , @S02# , in ~3+1! and ~3+2!, respectively,
throughout and appropriately redefining Assumption 3+1+

Remark 3+4+ From ~3+1!–~3+6!, it is seen that the limiting distributions of the
t0, tS02 ~Seven!, Fk, k 5 1, + + + ,S*, F1+ + + @S02#, andF0+ + + @S02# statistics do not depend
on the serial correlation nuisance parameters$fi % i51

p under Hc of ~2+5!,
whereas those of the harmonic frequencyt-statisticstk

a andtk
b , k 5 1, + + +S*, do,

in general+ We investigate this dependence for the case of an AR~1! error pro-
cess in Section 4+ An obvious exception occurs whenf~z! is expressible as
f~zS!, that is, f~z! is a purely seasonal polynomial+ In this case the limiting
distributions of thetk

a and tk
b statistics in~3+2! and ~3+3! are invariant to the

parameters characterizingf~z!, k 5 1, + + +S*+ Other exceptions can occur at spe-
cific frequencies+ For example, if S is an integer multiple of four, then the lim-
iting distributions of thetS04

a and tS04
b statistics, corresponding to the harmonic

frequency pair~p02,3p02!, will be invariant to the parameters off~z!, pro-
videdf~z! is expressible asf~z2!+ Notice that in the serially uncorrelated case,
f~z! 5 1, ak 5 0, k 5 1, + + + ,S*, and bk 5 1, k 5 0, + + + , @S02# + For the special
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case ofS5 4, c 5 0, andl 5 0, these results reproduce those proved in Bur-
ridge and Taylor~2001!+

Remark 3+5+ It can be seen from~3+1! of Theorem 3+1 that for a given value
of j, t0 and tS02 have identical limiting representations, and hence asymptotic
local power functions, under Hc of ~2+5!+ These limiting distributions are
also seen to be independent, by virtue of the independence ofNJ0,c

j ~r,l! and
NJS02,c
j ~r,l!, j [ $0,1,2% + For c 5 0 andj 5 1,2, these coincide with the cor-

responding limiting null representations for the augmented Dickey–Fuller~ADF!
t-statistic provided in Theorem 10+1+3, p+ 561, and Theorem 10+1+6, pp+ 567–
568, of Fuller ~1996!, respectively+ For j 5 0 the representations obtained for
l 5 0 coincide with the representation given in Corollary 10+1+1+5 of Fuller
~1996, p+ 554!, noting that Fuller imposes zero starting values on his analysis+
For c , 0 andj 5 2 they replicate the representation given in Canjels and
Watson~1997, Footnote 13, p+ 192! for the asymptotic power function of the
conventional ADF test+ For l 5 0 the representation in~3+1! replicates those
given for the ADF test in, inter alia, Chan and Wei~1987!, Nabeya and Tanaka
~1990!, Perron~1989!, Phillips ~1987!, and Elliott et al+ ~1996!, with graphs
of the associated asymptotic power function forj 5 0,1,2 provided in Fig-
ures 1, 2, and 3, respectively, of Elliott et al+ ~1996, pp+ 822–824!+

Remark 3+6+ Representations~3+2!–~3+5! of Theorem 3+1 demonstrate that,
underHc of ~2+5!, the tk

a and tl
a , k Þ l, and tk

b and tl
b , k Þ l, k, l 5 1, + + + ,S*,

statistics are asymptotically mutually independent and are also asymptotically
independent oft0 and tS02; the F-statisticsFk, k 5 1, + + + ,S*, possess mutually
independent and identical limiting representations and are asymptotically inde-
pendent of thet0 and tS02 statistics; and theF-statisticF1+ + + @S02# is asymptoti-
cally independent of the zero frequencyt0 statistic+

Remark 3+7+ The limiting representation in~3+2! for c 5 l 5 0 can be shown
to coincide with that of the limiting null distribution of thet-statistic of Dickey,
Hasza, and Fuller~1984! for the case of a biannual~S5 2! seasonal process+
Moreover, for c # 0, the stated representation in~3+2! for the tk

a statistic when
l 5 0, ak 5 0 andbk 5 1, k 5 1, + + + ,S*, reduces to that provided by Chan~1989,
Theorem 1, p+ 282! and Perron~1992, Theorem 2, p+ 127! for j 5 0 and Tanaka
~1996, pp+ 355–362! and Nabeya~2000, 2001b! for j 5 0,1,2 for the limiting
distribution of the Dickey et al+ ~1984! statistic forS5 2+

4. NUMERICAL RESULTS

In Figures 1a–c we graph the asymptotic local power functions of thetk
a , tk

b ,
and Fk tests for unit roots at the seasonal harmonic frequenciesvk,
k [ $1, + + + ,S*% , for f~z! 5 1+ Figures 2a and b graph the corresponding results
for the tS04

a and tS04
b tests, respectively, for unit roots at the harmonic fre-

quency pair~p02,3p02! in cases whereS is an integer multiple of four, when
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Figure 1. Asymptotic local power functions of harmonic unit root tests: ~a! f~L! 5 1,
j 5 0; ~b! f~L! 5 1, j 5 1; ~c! f~L! 5 1, j 5 2+
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f~z! 5 1 2 f1L, a first-order autoregression+ We report results forf1 5
$0+5,0+9,0+95,0+99% +2

In the case of Figures 1a–c these functions are reported forj 5 $0,1,2% ,
whereas for Figures 2a and b only results forj 5 1 are reported, these display-
ing the same qualitative features with respect tof1 as were seen forj 5 0 and
j 5 2+3 All reported results were for tests conducted at the asymptotic 0+05 sig-
nificance level, but in unreported results we considered other significance lev-
els+ These results were qualitatively no different from those reported+We tabulate

Figure 2. Asymptotic local power functions of~a! tS04
a : f~L! 5 1 2 f1L, j 5 1; and

~b! tS04
b : f~L! 5 1 2 f1L, j 5 1+
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the limiting powers of these tests under the conditional environment, the initial
conditions generated by Assumption 3+1 with l 5 0+ Corresponding simula-
tions for other values ofl, including the unconditional case, were also com-
puted but, comfortingly given thatl is unknown in practice, differed very little
from the results reported here; full details may be obtained on request+ The
reported results were obtained by direct simulation of the appropriate limiting
functionals from Theorem 3+1; that is, they were calculated using discrete approx-
imations to the relevant stochastic integrals appearing in Theorem 3+1, as in, for
example, Beaulieu and Miron~1993, p+ 317!+ All simulations were based on
60,000 replications and a sample size of 4,000 and used the RNDN function of
Gauss 3+1+ As noted in Remark 3+5, graphs of the asymptotic local power func-
tions of thet0 andtS02 ~Seven! tests can be found in Elliott et al+ ~1996!+

Consider first Figures 1a–c+ A number of interesting features are apparent
from these asymptotic local power functions+ First, the power loss from using
theFk rather thantk

a statistics in testing for unit roots at the seasonal harmonic
frequencies is not too large+ The biggest differences are seen in the case of
j 5 0+ However, this case is arguably of no practical interest because the result-
ing unit root tests will neither be similar with respect to the starting values of
the process nor be invariant to the seasonal intercepts, gs

*, s 5 1 2 S, + + + ,0, of
~2+3! ~for details, see Smith and Taylor, 1998, 1999a; Burridge and Taylor, 2004!+
For j 5 1 the difference between the power functions of the two tests is rela-
tively small and is further reduced forj 5 2+ Figures 1a–c also highlight the
fact that thetk

b tests do not display power in the case off~z! 5 1; indeed, it is
straightforward to show from~3+3! that tk

b
r p 0 asc r 2` in this case+

Figures 1a–c also show the power loss in thetk
a andFk tests when determin-

istic components are included in~2+11!+ As has also been observed by Elliott
et al+ ~1996, p+ 823! for the asymptotic local power functions of the ADF test,
the power loss incurred when moving fromj 5 0 to j 5 1 is somewhat larger
than that when moving fromj 5 1 to j 5 2 for both thetk

a andFk tests+
Turning to Figures 2a and b one observes a strong dependence of the asymp-

totic local power functions of the harmonic frequencyt-tests on the AR param-
eter, f1+ From Figure 2a it is seen that forc 5 0, the tS04

a test is undersized, the
more so asf1 increases toward unity+ For a given value ofc, this undersizing is
translated into large reductions in power relative tof1 5 0+ Indeed, comparing
Figures 2a and 1b it is seen that theFS04 test is considerably more powerful
than thetS04

a test whenf Þ 0+ A similar but reversed pattern is seen in thetS04
b

test, where considerable oversizing is seen forc 5 0, with test size approaching
20% in many cases,4 with associated power gains whenc , 0+ Notice that under
this designpS04

b is nonzero whenc , 0 andf1 Þ 0, so that thetS04
b test will

diverge asc r 2`, whereas it is zero whenf1 5 0+
We now use Monte Carlo simulation methods to investigate the finite sam-

ple local power properties of thet0, t1a , t1
b , F1, and t2 tests from~2+11! for the

case of quarterly data, S5 4, when the true DGP for$x4n1s% is the near sea-
sonally integrated AR model:
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S12 F11
c

N GL4Dx4n1s 5 u4n1s, s5 23, + + + ,0, n 5 2, + + + ,N, (4.1)

~12 f1L!u4n1s 5 e4n1s ; IN~0,1!,

s5 23, + + + ,0, n 5 1, + + + ,N, (4.2)

with u4k1s 5 0, s 5 23, + + + ,0, k # 0, for the conditional case, x41s 5 u41s,
s 5 23, + + + ,0+5 We report the effects of varying the noncentrality parameterc
amongc 5 $0,21,25,29,213, 217,221% and the first-order autoregressive
parameterf1 amongf1 5 $0+0,0+5,0+9% + Results forf1 5 0 with p* 5 0 in
~2+11! are reported in Table 1, whereas those forf1 5 0+5 and 0+9 with p* 5 1
in ~2+11! are reported in Table 2+

We focus on the sample sizesN 5 25, 50, 100 and on Case 3 of~2+11!, where
j 5 1 for all reported tests+ All tests were run at the nominal 0+05 level using
finite sample critical values+ These were computed using data generated accord-
ing to ~4+1! and~4+2! with c 5 f1 5 0 and were based on 60,000 Monte Carlo

Table 1. Empirical power of quarterly unit root tests
~nominal 0+05 level!

c N t0 tk
a tk

b t2 F1

21 25 0+060 0+068 0+053 0+061 0+069
21 50 0+063 0+069 0+052 0+058 0+067
21 100 0+059 0+068 0+055 0+061 0+065

25 25 0+136 0+225 0+037 0+134 0+195
25 50 0+128 0+214 0+039 0+126 0+183
25 100 0+123 0+207 0+040 0+124 0+175

29 25 0+338 0+622 0+029 0+334 0+543
29 50 0+297 0+582 0+030 0+292 0+493
29 100 0+279 0+562 0+033 0+277 0+467

213 25 0+667 0+944 0+025 0+665 0+902
213 50 0+570 0+911 0+027 0+567 0+848
213 100 0+527 0+889 0+028 0+523 0+810

217 25 0+919 0+998 0+024 0+915 0+994
217 50 0+831 0+994 0+025 0+832 0+982
217 100 0+772 0+989 0+027 0+777 0+970

221 25 0+992 1+00 0+022 0+992 1+00
221 50 0+965 1+00 0+025 0+964 0+999
221 100 0+931 1+00 0+025 0+931 0+998

Note: DGP ~4+1! with f1 5 0+ Auxiliary regression~2+11!, p* 5 0: Case 3+
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replications of the statistics from~2+11!, for each of the sample sizes consid-
ered+6 The remaining cases of~2+11! were also considered, as were tests run at
other nominal levels, and the corresponding tests for other values ofS, but in
each case yielded qualitatively similar conclusions to those reported and are
hence omitted+ The corresponding results forN r ` are given in Figures 1b,
2a, and 2b for thet1

a , t1
b , andF1 tests and in Elliott et al+ ~1996! for t0 and t2+

As N is increased the reported quantities appear to be converging rapidly
toward the corresponding asymptotic power levels as might be expected+ As an
example, for c 5 27 the asymptotic local power of thet1

a andF1 tests is 0+202
and 0+174, respectively, both of which are very close indeed to the local power
of these tests forN 5 100 given in Table 1+ Mirroring the asymptotic local
power results in Figure 1b we also see from Table 1 that forf1 5 0 ~the only
case where thet1

a statistic is correctly sized! only relatively small losses in
power are incurred from using theF1 rather than thet1

a test+
A general feature of the results reported in Table 1 forf1 5 0 is that for all

of the tests the finite sample powers for a given value ofc approach the limit-
ing value for that value ofc from above, as has also been noted by Tanaka

Table 2. Empirical size and power of quarterly unit root tests~nominal
0+05 level!

f1 5 0+5 f1 5 0+9

c N t0 tk
a tk

b t2 F1 t0 tk
a tk

b t2 F1

0 25 0+049 0+042 0+105 0+049 0+051 0+061 0+028 0+172 0+051 0+049
0 50 0+052 0+040 0+101 0+050 0+049 0+056 0+029 0+167 0+049 0+048
0 100 0+051 0+041 0+107 0+048 0+050 0+053 0+029 0+177 0+049 0+051

21 25 0+056 0+058 0+123 0+059 0+068 0+062 0+040 0+207 0+059 0+065
21 50 0+059 0+054 0+120 0+058 0+066 0+062 0+038 0+207 0+056 0+065
21 100 0+058 0+054 0+126 0+058 0+067 0+061 0+039 0+216 0+058 0+066

25 25 0+101 0+164 0+158 0+125 0+185 0+079 0+095 0+327 0+126 0+180
25 50 0+110 0+151 0+155 0+117 0+176 0+095 0+086 0+320 0+117 0+172
25 100 0+113 0+145 0+166 0+117 0+177 0+102 0+083 0+337 0+118 0+177

29 25 0+223 0+430 0+221 0+308 0+517 0+108 0+236 0+513 0+320 0+520
29 50 0+245 0+381 0+217 0+277 0+471 0+157 0+203 0+492 0+275 0+475
29 100 0+251 0+361 0+224 0+263 0+461 0+194 0+188 0+503 0+269 0+464

213 25 0+420 0+751 0+311 0+618 0+876 0+139 0+462 0+709 0+646 0+885
213 50 0+453 0+677 0+296 0+537 0+825 0+227 0+378 0+672 0+550 0+831
213 100 0+460 0+637 0+302 0+502 0+803 0+311 0+342 0+664 0+505 0+805

217 25 0+636 0+935 0+415 0+885 0+990 0+162 0+706 0+855 0+908 0+993
217 50 0+676 0+885 0+378 0+802 0+977 0+298 0+581 0+808 0+813 0+979
217 100 0+690 0+850 0+380 0+753 0+968 0+436 0+523 0+795 0+761 0+970

221 25 0+813 0+989 0+524 0+983 1+00 0+185 0+881 0+939 0+990 1+00
221 50 0+847 0+972 0+474 0+950 0+999 0+364 0+762 0+902 0+960 0+999
221 100 0+862 0+957 0+462 0+919 0+998 0+555 0+691 0+886 0+925 0+998

Note: DGP ~4+1! with f 1 5 0+5, 0+9+ Auxiliary regression~2+11!, p* 5 1: Case 3+
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~1996, p+ 351! for the ADF test+ In Table 2 this general pattern is reversed in
the case of thet0 test, which displays a relatively strong finite sample depen-
dence onf1+ This behavior is to be expected given that positive values off1

will imply spectral mass at frequency zero+ Indeed, in the case off1 5 0+9
there are cases where this yields the dominant root at frequency zero+ This occurs
for ~c,N! 5 ~29,25!, ~213,25!, ~217,25!, ~221,25!, and~221,50!+ The results
for the t2 andF1 tests in Table 2 are very similar to those reported in Table 1,
showing very little finite sample dependence onf1+ The results for thet1

a and
t1

b tests show a clear dependence onf1 with the finite sample results approach-
ing the limiting values for those values off1 andc+

In practice it is therefore quite clear from these results that proper inference
cannot be based on thetk

a and tk
b tests, their size properties under autocorre-

lated errors being unknown, even asymptotically+ The fact that the asymptotic
local power functions of theFk tests are invariant to the parameters off~z! and
that theFk tests display only small power losses relative to thetk

a test when
f~z! 5 1, and are otherwise more powerful, makes the case in favor of the use
of the Fk tests overwhelming+

5. CONCLUSIONS

In this paper we have derived representations for the limiting distributions of
regression-based seasonal unit root test statistics when the characteristic roots
of the underlying seasonal process are local to unity+We derived our results for
the case of a process observed for any given seasonal periodicity, S, under very
general assumptions on the initial values of the process, for test regressions
that included either no deterministic variables or variables that ranged from a
nonseasonal intercept to seasonal intercepts and seasonal trends, and for driv-
ing shocks that followed a stationary AR~ p! process+

Our results have built upon and generalized, in various directions, earlier
representations provided in Rodrigues~2001!, Burridge and Taylor~2001!, Smith
and Taylor~1999a!, and Nabeya~2001a!+ In our key result we have demon-
strated that the limiting distributions of thet0 andtS02 statistics for testing for a
unit root at the zero and Nyquist~Seven! frequencies, respectively, under near
seasonal integration coincide with that of the conventional ADF statistic and
are invariant to the serial correlation nuisance parameters in the shocks+ This
invariance property has also been shown to hold for theFk statistics for testing
the null hypothesis of a complex pair of unit roots at the seasonal harmonic
frequencies, k 5 1, + + + ,S*, but not for the correspondingtk

a and tk
b statistics,

whose asymptotic distributions under near seasonal integration are not, in gen-
eral, invariant to these nuisance parameters+ Our findings confirmed the recom-
mendations of earlier authors against the use of thetk

a and tk
b statistics for

practical data analysis in favor of theFk statistics; see, inter alia, Burridge and
Taylor ~2001! and Smith and Taylor~1999a!+
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NOTES

1+ That is, ~1 2 LS! [ ~1 2 L!~1 1 L!d )k51
S* ~1 2 2 cosvkL 1 L2!, whered 5 1~0! if S is even

~odd!+
2+ We need only consider positive values off1 because the asymptotic local power functions in

this case are easily shown to be invariant to the sign off1+ Moreover, there is no need to report
results forFS04 because its asymptotic local power function is invariant tof1, as demonstrated in
Theorem 3+1+

3+ The unreported results may be obtained from the authors on request+
4+ For j 5 2, empirical test size rises to around 40% in these cases+
5+ We also ran our experiments under the unconditional case+ The results in this case were little

different from those reported+
6+ For this reason the results forc 5 0 are omitted from Table 1+
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APPENDIX

Proof of Theorem 3.1. In what follows we simplify the exposition by settinggs
* 5

bs
* 5 0, s 5 1 2 S, + + + ,0, in ~2+3!+ Before proving our main theorem, we need to set up

some notation and establish some preparatory lemmas+
UnderHc of ~2+5! and Assumption 3+1 it follows from ~2+1!–~2+3! that

xSn1s 5 (
i52

n

expH~n 2 i !
c

N
J uSi1s 1 (

j50

@Nl#1m

expH~n 1 j 2 1!
c

N
J us2S~ j21! ,

s5 1 2 S, + + + ,0+ (A.1)

Defining the annualized processes

un 5 @uS~n21!11,uS~n21!12, + + + ,uSn#
', «n 5 @«S~n21!11,«S~n21!12, + + + ,«Sn#

'

we may writeun 5 C*~L!«n [ (k50
` Ck

*«n2k, where the sequence ofS 3 S matrices
$Ck
*%k50
` are as defined in the Appendix of Burridge and Taylor~2001!+ Notice that

the sequence$kCk
*% is absolutely summable by virtue of the stationarity of$uSn1s%

~cf+ Burridge and Taylor, 2001!+ Moreover, E~«n«n
' ! 5 s2I S and E~unun2q

' ! 5
s2 (k50

` Ck1q
* Ck

*' , q 5 0,1, + + + ++
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LEMMA A +1+ Let $xSn1s% be generated by (2.1)–(2.3) underHc of (2.5) and Assump-
tion 3.1. Defining the annualized processXn

k [ @xS~n21!11
k , xS~n21!12

k , + + + , xSn
k # ', then as

N r `,

@C*~1!#21~s2N!2102X @rN #
k n Jc

k~r ! 1 dc~exp$rc% ZJc
k~l!! [ Jc

k~r,l!,

r [ @0,1# , l $ 0, (A.2)

where@C*~1!#21 is the inverse of the matrixC*~1! anddc is a scalar indicator variable
such thatdc 5 1 if c Þ 0 or if c 5 0 and k 5 1,2,4, and dc 5 0 otherwise. In (A.2),
Jc

k~r ! [ ~J12S,c
k ~r !, + + + , J0,c

k ~r !!' and ZJc
k~l! [ ~ ZJ12S,c

k ~l!, + + + , ZJ0,c
k ~l!!' are mutually inde-

pendent S-vectors each with independent elements such thatJc
k~r,l! [ ~J12S,c

k ~r,l!,
+ + + , J0,c

k ~r,l!!', where Js,c
1 ~r,l! 5 Js,c

1 ~r ! 1 dc~exp$rc% ZJs,c
1 ~l!!, with Js,c

1 ~r ! and ZJs,c
1 ~l!

independent Ornstein–Uhlenbeck~OU) processes, s5 1 2 S, + + + ,0, and

Js,c
2 ~r,l! [ Js,c

1 ~r,l! 2E
0

1F 1

S (
s512S

0

Js,c
1 ~r,l!G dr, (A.3)

Js,c
3 ~r,l! [ Js,c

1 ~r,l! 2E
0

1

Js,c
1 ~r,l! dr, (A.4)

Js,c
4 ~r,l! [ Js,c

2 ~r,l! 2 12Sr 2
1

2DE0

1Sr 2
1

2DF 1

S (
s512S

0

Js,c
2 ~r,l!G dr, (A.5)

Js,c
5 ~r,l! [ Js,c

3 ~r,l! 2 12Sr 2
1

2DE0

1Sr 2
1

2DF 1

S (
s512S

0

Js,c
3 ~r,l!G dr, (A.6)

Js,c
6 ~r,l! [ Js,c

3 ~r,l! 2 12Sr 2
1

2DE0

1Sr 2
1

2DJs,c
3 ~r,l! dr+ (A.7)

Proof. The proof follows from a straightforward extension of results proved in Rod-
rigues ~2001!, using the multivariate invariance principle of Phillips~1988, p+ 1026!,
coupled with~A+1! of Canjels and Watson~1997, p+ 197! and applications of the con-
tinuous mapping theorem~CMT!+ n

LEMMA A +2+ Under the conditions of Lemma A.1 and as Nr `,

N22 (
n52

N

Xn21
k ~Xn21

k !' n s2C*~1! HE
0

1

Jc
k~r,l!@Jc

k~r,l!# ' drJC*~1!' (A.8)

and

N21 (
n52

N

Xn21
k «n

' n s2C*~1!E
0

1

Jc
k~r,l! dJ0

1~r,0!'+ (A.9)

Proof. The proof follows from Lemma A+1 and applications of the CMT+ n
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We next define the mutually orthogonalS3 1 selection vectors,

c0 5 @1,1, + + + ,1# ', cS02 5 @cos~p!,cos~2p!, + + + ,cos~Sp!# ', (A.10)

ca, k 5 @cos~vk!,cos~2vk!, + + + ,cos~Svk!# ', (A.11)

cb, k 5 2@sin~vk!,sin~2vk!, + + + ,sin~Svk!# ', (A.12)

omitting cS02 if S is odd+ In the analysis that follows we will require the following def-
inition, which makes use of the preceding selection vectors+

DEFINITION A+1+ For each of Cases 1–6 and r[ @0,1# , we define NJ0,c
j ~r,l!,

NJS02,c
j ~r,l! (S even), NJa, k,c

j ~r,l!, and NJb, k,c
j ~r,l!, k5 1, + + + ,S*, for j 5 0,1,2, as follows:

MS NJ0,c
0 ~r,l! [ c0

' Jc
1~r,l!,

MS NJ0,c
1 ~r,l! [ c0

' Jc
k~r,l!, k 5 2,3,

MS NJ0,c
2 ~r,l! [ c0

' Jc
k~r,l!, k 5 4,5,6,

! S

2
NJa, k,c
0 ~r,l! [ ca, k

' Jc
k~r,l!, ! S

2
NJb, k,c
0 ~r,l! [ cb, k

' Jc
k~r,l!, k 5 1,2,4,

! S

2
NJa, k,c
1 ~r,l! [ ca, k

' Jc
k~r,l!, ! S

2
NJb, k,c
1 ~r,l! [ cb, k

' Jc
k~r,l!, k 5 3,5,

! S

2
NJa, k,c
2 ~r,l! [ ca, k

' Jc
6~r,l!, ! S

2
NJb, k,c
2 ~r,l! [ cb, k

' Jc
6~r,l!,

k 5 1, + + + ,S*, and, for S even,

MS NJS02,c
0 ~r,l! [ cS02

' Jc
k~r,l!, k 5 1,2,4,

MS NJS02,c
1 ~r,l! [ cS02

' Jc
k~r,l!, k 5 3,5,

MS NJS02,c
2 ~r,l! [ cS02

' Jc
6~r,l!+

These are straightforwardly seen to be mutually independent because they are mutually
orthogonal transformations of the OU-based functionals from (A.2). Moreover, it is
straightforwardly seen that forl 5 0 these are independent standard, demeaned, and
demeaned and detrended OU processes forj 5 0, j 5 1, andj 5 2, respectively.

Noting that the selection vectors defined in~A-10!–~A+12! are precisely those used to
define the transformed level variables in~2+12!, it is straightforward but tedious to show
that the following relations hold, omitting ~A+14! whereS is odd:
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1

MT
x0,S@rN #1s

k 5
1

MT
c0
'X @rN #

k 1 op~1!, (A.13)

1

MT
xS02,S@rN #1s

k 5
1

MT
~21! icS02

' X @rN #
k 1 op~1!, i 5 smod 2, (A.14)

1

MT
xk,S@rN #1s

a,k 5
1

MT
es
'~ca, k
* ca, k

' X @rN #
k 1 cb, k

* cb, k
' X @rN #

k ! 1 op~1!, (A.15)

1

MT
xk,S@rN #1s

b,k 5
1

MT
es
'~cb, k
* ca, k

' X @rN #
k 2 ca, k

* cb, k
' X @rN #

k ! 1 op~1!, (A.16)

s 5 1 2 S, + + + ,0, and where$es%s512S
0 are a collection ofS-dimensional selection vec-

tors whose~S1 s!th element is unity and all other elements are equal to zero, ca, k
* 5

@cos~vk!,cos~0!, + + + ,cos~~2 2 S!vk!#
' , andcb, k

* 5 @sin~vk!,sin~0!, + + + ,sin~~2 2 S!vk!#
' +

In Lemma A+3, which follows, we will make use of the following identities:
ci
'C*~1! [ bi ci

' , wherei 5 0,S02 if S is even andi 5 0 otherwise, ca, k
' C*~1! [ akcb, k

' 1
bkca, k

' , and cb, k
' C*~1! [ 2akca, k

' 1 bkcb, k
' , k 5 1, + + + ,S*, where b0 [ c~1!, bS02 [

c~21! ~Seven!, ak [ Im@c~exp~ivk!!# , andbk [ Re@c~exp~ivk!!# , with c~z! as defined
in Theorem 3+1+

LEMMA A +3+ Under the conditions of Lemma A.1 and as Nr `, and letting, [
S1 p* 1 1,

(i)
1

T 2 (
Sn1s5,

T

~xi,Sn1s21
k !2 n s2bi

2E
0

1

@ NJi,c
j ~r,l!# 2 dr, i 5 0,S02 ~Seven!+

(ii)
1

T 2 (
Sn1s5,

T

~xk,Sn1s21
a,k !2 [

a 1

T 2 (
Sn1s5,

T

~xk,Sn1s21
b,k !2

n
s2

4
~ak

2 1 bk
2!E

0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% dr,

k 5 1, + + + ,S*, and where[
a

denotes asymptotic equivalence.

(iii)
1

T (
Sn1s5,

T

xi,Sn1s21
k «Sn1s n s2biE

0

1

NJi,c
j ~r,l! d NJi,0

0 ~r,0!, i 5 0,S02 ~Seven!+

(iv)
1

T (
Sn1s5,

T

xk,Sn1s21
a,k «Sn1s

n
s2

2 HbkFE
0

1

NJa, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 1E
0

1

NJb, k,c
j ~r,l! d NJb, k,0

0 ~r,0!G
1 akFE

0

1

NJb, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 2E
0

1

NJa, k,c
j ~r,l! d NJb, k,0

0 ~r,0!GJ +
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(v)
1

T (
Sn1s5,

T

xk,Sn1s21
b,k «Sn1s

n
s2

2 HbkFE
0

1

NJa, k,c
j ~r,l! d NJb, k,0

0 ~r,0! 2E
0

1

NJb, k,c
j ~r,l! d NJa, k,0

0 ~r,0!G
1 akFE

0

1

NJa, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 1E
0

1

NJb, k,c
j ~r,l! d NJb, k,0

0 ~r,0!GJ ,
k 5 1, + + + ,S*+

Proof. The proofs of parts~i! and~iii ! follow straightforwardly from~A+13!, ~A+14!,
~A+8!, ~A+9!, and the CMT~for full details, see Rodrigues and Taylor, 2003!+ n

~ii ! From ~A+15! and~A+16! it is straightforward to show that

1

T 2 (
Sn1s5,

T

~xk,Sn1s21
a,k !2 5

1

T 2 (
Sn1s5,

T

~xk,Sn1s21
b,k !2 1 op~1!,

so we need only establish results forT22 (~xk,Sn1s21
a,k !2 in what follows+ From ~A+15!,

1

T 2 (
Sn1s5,

T

~xk,Sn1s21
a,k !2 [

S

2T 2 Sca, k
' F(

n52

N

Xn21
k ~Xn21

k !'Gca, k

1 cb, k
' F(

n52

N

Xn21
k ~Xn21

k !'Gcb, kD1 op~1!+

It then follows from~A+8!, the orthogonality ofca, k andcb, k, and the CMT that

1

T 2 (
Sn1s5,

T

~xk,Sn1s21
a,k !2

n
s2

2S H~akcb, k
' 1 bkca, k

' !E
0

1

Jc
k~r,l!@Jc

k~r,l!# ' dr~akcb, k
' 1 bkca, k

' !'

1 ~2akca, k
' 1 bkcb, k

' !E
0

1

Jc
k~r,l!@Jc

k~r,l!# ' dr~2akca, k
' 1 bkcb, k

' !'J
[

s2

2S
~ak

2 1 bk
2! Hca, k

' HE
0

1

Jc
k~r,l!@Jc

k~r,l!# ' drJ ca, k

1 cb, k
' HE

0

1

Jc
k~r,l!@Jc

k~r,l!# ' drJ cb, kJ
[

s2

4
~ak

2 1 bk
2!E

0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% dr+
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~iv! From ~A+15! we obtain that

1

T (
Sn1s5,

T

xk,Sn1s21
a,k «Sn1s 5

1

T Sca, k
' F(

n52

N

Xn21
k «n

'Gca, k 1 cb, k
' F(

n52

N

Xn21
k «n

'Gcb, kD1 op~1!+

It then follows from~A+9! and applications of the CMT that

1

T (
Sn1s5,

T

xk,Sn1s21
a,k «Sn1s

n
s2

S H~akcb, k
' 1 bkca, k

' !E
0

1

Jc
k~r,l! dJ0

1~r,0!'ca, k

1 ~2akca, k
' 1 bkcb, k

' !E
0

1

Jc
k~r,l! dJ0

1~r,0!'cb, kJ
[

s2

S HbkFca, k
' FE

0

1

Jc
k~r,l! dJ0

1~r,0!'Gca, k 1 cb, k
' FE

0

1

Jc
k~r,l! dJ0

1~r,0!'Gcb, kG
1 akFcb, k

' FE
0

1

Jc
k~r,l! dJ0

1~r,0!'Gca, k

2 ca, k
' FE

0

1

Jc
k~r,l! dJ0

1~r,0!'Gcb, kGJ ,
from which the stated result follows immediately+

~v! From ~A+16! we obtain that

1

T (
Sn1s5,

T

xk,Sn1s21
b,k «Sn1s 5

1

T Sca, k
' F(

n52

N

Xn21
k «n

'Gcb, k 2 cb, k
' F(

n52

N

Xn21
k «n

'Gca, kD1 op~1!+

Again, from ~A+9! and applications of the CMT it follows that

1

T (
Sn1s5,

T

xk,Sn1s21
b,k «Sn1s

n
s2

S H~akcb, k
' 1 bkca, k

' !E
0

1

Jc
k~r,l! dJ0

1~r,0!'cb, k

2 ~2akca, k
' 1 bkcb, k

' !E
0

1

Jc
k~r,l! dJ0

1~r,0!'ca, kJ ,
[

s2

S HbkFca, k
' E

0

1

Jc
k~r,l! dJ0

1~r,0!'cb, k 2 cb, k
' E

0

1

Jc
k~r,l! dJ0

1~r,0!'ca, kG
1 akFcb, k

' E
0

1

Jc
k~r,l! dJ0

1~r,0!'cb, k 1 ca, k
' E

0

1

Jc
k~r,l! dJ0

1~r,0!'ca, kGJ ,
from which the stated result follows immediately+ n
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Now we move to the proof of our main result+ Consider the appropriately scaled
OLS estimator ofp from ~2+11!, DT

21 [p 5 @DTR~X 'X!R'DT#21DTR~X 'Y!, where
DT 5 T21I S, R 5 @I S: 0S3p* # , X is the~T 2 p* 2 S! 3 ~S1 p*! matrix,

X 5 3
x0, p*1S

k xS02, p*1S
k x1, p*1S

a,k x1, p*1S
b,k J

x0, p*1S11
k xS02, p*1S11

k x1, p*1S11
a,k x1, p*1S11

b,k J

I I I I I

x0,T21
k xS02,T21

k x1,T21
a,k x1,T21

b,k J

J xS*, p*1S
a,k xS*, p*1S

b,k
DSxp*1S

k J DSxS11
k

J xS*, p*1S11
a,k xS*, p*1S11

b,k
DSxp*1S11

k J DSxS12
k

I I I I I I

J xS*,T21
a,k xS*,T21

b,k
DSxT21

k J DSxT2p*
k

4 ,
omitting the second column ifS is odd, andY 5 @DSxp*1S11

k , DSxp*1S12
k , + + + ,DSxT

k# ' +

Remark A.1. Using results from Jeganathan~1991! it is straightforward to show that
the off-diagonal elements ofDTR~X 'X!R'DT are all ofop~1!+ Moreover, notice that we
may considerDT

21 [p directly, because the matrixDT
* ~X 'X!DT

* , whereDT
* is a diagonal

~S1 p*! 3 ~S1 p*! matrix whose firstS leading diagonal elements areT21 and whose
remainingp* leading diagonal elements areT2102, is block diagonal between its upper
~S3 S! and lower~ p* 3 p*! blocks+

The following proposition, whose proof is given in Rodrigues and Taylor~2003!, gives
a convenient form for the OLSt0, tS02 ~S even!, tka and tk

b , k 5 1, + + + ,S*, statistics from
~2+11!, where [s2 is used to denote the usual OLS estimator ofs2 from ~2+11!, and, [
S1 p* 1 1+

PROPOSITION A+1+ TheOLS t-statistics from (2.11) can be written as

ti 5
T

[s
pi ~L i

k!102 1
di
*k

[s~L i
k!102 1 op~1!, i 5 0,S02 ~Seven!, (A.17)

tk
a 5

T

[s
pa, k~Lk

a,k!102 1
dk
*a,k

[s~Lk
a,k!102 1 op~1!, (A.18)

tk
b 5

T

[s
pb, k~Lk

b,k!102 1
dk
*b,k

[s~Lk
b,k!102 1 op~1!, (A.19)

k 5 1, + + +S*, where

L i
k 5

1

T 2 (
Sn1s5,

T

~xi,Sn1s21
k !2, (A.20)

Lk
a,k 5

1

T 2 (
Sn1s5,

T

~xk,Sn1s21
a,k !2, Lk

b,k 5
1

T 2 (
Sn1s5,

T

~xk,Sn1s21
b,k !2, (A.21)
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and

di
*k 5

1

T (
Sn1s5,

T

xi,Sn1s21
k «Sn1s, (A.22)

dk
*a,k 5

1

T (
Sn1s5,

T

xk,Sn1s21
a,k «Sn1s, dk

*b,k 5
1

T (
Sn1s5,

T

xk,Sn1s21
b,k «Sn1s+ (A.23)

The results stated for thet-statistics in~3+1!–~3+3! then follow directly from Proposi-
tion 2+1, Proposition A+1, Lemma A+3, and applications of the CMT+

Turning to theFk-statistics, k 5 1, + + + ,S*, observe from the asymptotic orthogonality

result ~see Remark A+1! that Fk 5 1
2
_@~tk

a!2 1 ~tk
b!2# 1 op~1!+ It therefore follows from

~3+2! and~3+3! and the CMT that, asN r `, on grouping terms, that

Fk n
1

2 Hc2~ak
*2 1 bk

*2! H~ak
2 1 bk

2!E
0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% drJ
1 cbk

*HakE
0

1

@ NJb, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 2 NJa, k,c
j ~r,l! d NJb, k,0

0 ~r,0!#

1 bkE
0

1

@ NJa, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 1 NJb, k,c
j ~r,l! d NJb, k,0

0 ~r,0!#J
1 H~ak

2 1 bk
2! HE

0

1

@ NJa, k,c
j ~r,l! d NJb, k,0

0 ~r,0! 2 NJb, k,c
j ~r,l! d NJa, k,0

0 ~r,0!#J2

1 ~ak
2 1 bk

2! HE
0

1

@ NJa, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 1 NJb, k,c
j ~r,l! d NJb, k,0

0 ~r,0!#J2J
3 H~ak

2 1 bk
2!E

0

1

$@ NJa, k,c
j ~r,l!# 2 1 @ NJb, k,c

j ~r,l!# 2% drJ21

1 cak
*HbkE

0

1

@ NJa, k,c
j ~r,l! d NJb, k,0

0 ~r,0! 2 NJb, k,c
j ~r,l! d NJa, k,0

0 ~r,0!#

1 akE
0

1

@ NJa, k,c
j ~r,l! d NJa, k,0

0 ~r,0! 1 NJb, k,c
j ~r,l! d NJb, k,0

0 ~r,0!#JJ ,
(A.24)

where ak
* and bk

* are as defined in Theorem 3+1+ Becausef~z! and, hence, c~z!
are power series functions inz, it is trivial to show that the following identities hold:
~ak
*2 1 bk

*2!~ak
2 1 bk

2! [ 1, bk
*ak 2 ak

*bk [ 0, andbk
*bk 1 ak

*ak [ 1+ Substituting these
identities into~A+24!, the stated result follows immediately+ The stated results for the
F1, + + + , @S02# andF0, + + + , @S02# statistics then follow directly using the asymptotic orthogonal-
ity result; cf+ Remark A+1+ n
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