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Abstract

In this paper we investigate the link between the joint law of a d-dimensional random
vector and the law of some of its multivariate marginals. We introduce and focus on a
class of distributions, that we call projective, for which we give detailed properties. This
allows us to obtain necessary conditions for a given construction to be projective. We
illustrate our results by proposing some theoretical projective distributions, as elliptical
distributions or a new class of distribution having given bivariate margins. In the
case where the data does not necessarily correspond to a projective distribution, we
also explain how to build proper distributions while checking that the distance to the
prescribed projections is small enough.
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1. Introduction

Multivariate analysis is now a cornerstone in probability theory. Constructing multivariate
distributions from given marginals is mathematically interesting on its own, but also has a huge
impact in practical problems.

Letd > 1 be an integer, and let X1, . . ., X; be continuous random variables with cumulative
distribution functions (CDFs) F1, ..., Fy, respectively. Sklar’s theorem [36] states that the
joint distribution H of (X1, . .., Xy) can be written, for all (xq, ..., xq) € R, in the form

Hxy, ..., x0) =PIX1 <x1, ..., Xa <xq4]1 =C(F1(x1), . .., Fa(xq)),

where C is a copula function, i.e. the cumulative distribution function of a probability measure
on R? whose marginals are uniform on [0, 1]. Copula models are of particular interest because,
as seen from the previous equation, they separate the study of the margins and the study of the
dependence structure.

In this paper we want to investigate the link between the joint law of a d-dimensional

random vector and the law of its multivariate marginals. For any subset K = (ji, ..., ji) of
{1,...,d} with cardinal k, and any random vector X = (X1, ..., Xy), we will write Xx to
denote the random vector with values in RF given by (Xj,, ..., Xj,) and F the cumulative
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distribution function of Xx. We will abuse notation and call Fx a probability distribution on R¥.
Letn<2%bea positive integer, and let K1, . .., K,, be n subsets of {1, ..., d} with cardinals
kiy ..., kn.

A question that has been extensively studied in the literature is the following: given n
probability measures P, ..., P, such that P; is a probability measure on R¥, is it possible
to construct a probability measure F on R such that

Fx,=P; foreachi=1,...,n? (1.1)

The existence of such a measure F is not guaranteed. In the case where the subsets
{K;, i=1, ..., n} are disjoint, the product distribution guarantees its existence. We could also
try to extend the notion of Copula functions to the case of nonoverlapping multidimensional
marginals. Genest et al. [15] showed that this approach is useless, since it only allows modeling
of the product distribution. More precisely, they proved that if

Hxy, oo Xy Y1, o0 y) = CE (X, <oy Xim), GOy vy Ym))

defines a proper (m + n)-dimensional distribution function (with m + n > 3) for every F and G
with respective dimensions m and n, then C(u, v) = uv.

When the subsets {K;, i=1, ..., n} are not disjoint, an obvious necessary condition is that
the prescribed measures {P;, i=1, ..., n} have the same marginals on common subspaces.
But this condition is not sufficient: for instance, Kellerer [24] gave a necessary and sufficient
condition only involving the structure of the sets {K;, i=1,...,n}. We refer to [21] (in
particular, Chapters 3 and 4, and Sections 3.4.3-3.7, for some compatibility conditions) and
[8] and the references therein for further details and related problems, in particular extremal
distributions with fixed multidimensional marginals and related optimization problems.

The question of uniqueness is also tricky. In [16] it was proved that if w is a probability
measure on RY with a density f with respect to the Lebesgue measure, then there exists a
subset U of R? such that all the lower-dimensional projections of the uniform distribution on
U coincide with the lower-dimensional projections of w. This shows, at least in the case where
measures have a density, that there is, in general, no hope for uniqueness of a measure with
prescribed projections.

Possible explicit constructions of distribution functions F satisfying (1.1) have been given in
[6], [7], [10], [18], [19], [20], [25], [26], [27], [34], and [35] for overlapping or nonoverlapping
marginals.

All these constructions are very useful, in particular in statistics. Indeed, when the
dimension d is large, one can first estimate all the bivariate marginals, since fitting a two-
dimensional copula is doable, and then construct a valid d-dimensional vector having the
prescribed two-dimensional margins. One problem of this approach is that it may not provide
a unique d-dimensional distribution, but as pointed out in [21], one can then use entropy
maximization techniques to choose a distribution among all those that have the prescribed
marginals. By comparison, directly fitting the right copula in large dimension is however quite
difficult and often makes use of recent research developments (hierarchical, vine copulas,
or nested, see [4], [22], [29], including pair-copula constructions or copulas with prescribed
bivariate projections [1], [2], [9]).

The previously mentioned constructions all make use of the joint CDF or the joint density.
There are however other functions characterizing the joint distribution, for instance, the
characteristic function. We will call any such function a characterizing function. In this
paper we assume that a characterizing function m is given, and that there is a linear explicit
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decomposition of the characterizing function of the d-dimensional vector with respect to the
characterizing functions of certain of its multidimensional marginals (Definition 2.1). We will
say that a probability distribution satisfying Definition 2.1 is in a projective class. The main
result of this paper is a complete analysis of the coefficients appearing in a decomposition of a
projective class. Indeed, the distributions satisfying our Definition 2.1 are stable by projection,
in the sense that they are such that all their multidimensional marginals also satisfy the same
Definition 2.1. This allows us to give precise and simple necessary conditions for a sequence
of coefficients to generate a probability distribution on R¢ having fixed multidimensional
marginals and belonging to a projective class. In particular, a necessary condition is that
a matrix containing these coefficients is idempotent (Proposition 2.3). Note that the linear
form of the decomposition in a projective class is not as restrictive as one would initially
imagine, since one could first apply a bijective nonlinear transformation to a characterizing
function, and then obtain a linear relation in the form of (2.2). Stated otherwise, given a family
of probability distributions, if some linearity can be found in the expression of one of its
characterizing functions, then our approach allows us to exploit this linearity to construct mul-
tidimensional distributions. The case of elliptical random vectors effectively illustrates this last
point.

In Section 2 we define the projective class that we are going to work with, and in Section 3
we give and analyse examples of elements of this class. In Section 4 we also propose some
practical implementations.

2. Projective class of random vectors

2.1. Definitions

Let D={1,...,d}, teR? and denote by (D) the power set of D. Consider a random
vector X = (Xj)icp; for K € (D) a subset of D, we denote by Xx = (X;)iekx the subector of
X, and by tx = (t;)icx the subvector of ¢.

We assume the existence of a link between the joint distribution of X and the joint
distributions of its projections Xg. In general, this link could be derived from the characteristic
function of X, from its CDF, or from some other quantity. We thus define a function m for
which the link will be investigated.

We will denote by X4 the space of R%-valued random variables that we will work with
(with k < d). In the rest of the paper the quantities involved (and our constructions) will depend
only on the distributions of the random variables, and not on the random variables themselves.
Because it has no impact on our results, we will nonetheless use random variables.

Assumption 2.1. (Projective characterizing function.) We assume that there exists a function
m: R x Xg x P(D) — R such that, for any nonempty K € P (D),

() {m(t, X, K)},cpa characterizes the joint distribution of Xk, i.e. m(t, X, K)=m(t, Y,
K) for all t € RY if and only if Xk and Y g have the same distribution.

(ii) there exists a € R such that for all t € R, m(Pgt, X, D) =m(t, X, K), where

N L ifiek,
(Pg1)i = a ifi¢K. (2.1)

In the rest of the paper, to simplify notation, we will denote m(t, X, K) by m(¢, Xg).
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FIGURE 1: [llustration of a multivariate distribution in the dimension 7, knowing the marginal distribution
{3}, the bivariate projection {4, 7}, and the trivariate projections {1, 2, 7} and {4, 5, 6}. All subsets of these
projections also correspond to known marginal distributions.

Remark 2.1. Assumption 2.1(ii) implies that Pgt=(a,...,a)=:a€ RY and that m(t, X,
&) =m(a, X, @) for all #. For simplicity, we will write this quantity mq := m(a, X, &), or abuse
notation and write m(t, X o) = my.

Remark 2.2. Such a function m always exists. Typically, m can be given by m(t, Xg) =
E[e'kXx], with a = 0 and mo = 1. Another example is m(t, Xx) = Fx(tx), the CDF of Xg, with
a= oo and mo = 1. A third example is m(t, Xx) = ¢! o Fx(tx), where ¢: Ry — [0, 1]is an
invertible Archimedean generator, with a = 400 and mg = 0. Direct transformations of these
functions, as entropy or survival functions, are also suitable characterizing functions.

Remark 2.3. Assumption 2.1(ii) states that to study the marginal distribution of X on the
subset K, it is enough to study the distribution of X, with the characterizing function m
restricted to Pkt. However, note that not every function characterizing the distribution of
random variables satisfies this assumption. Let us give an example of the potential function
(see [3]). Define the potential kernel v on R? as

vx) =—|x|, d=1, v(x)=—log x|, d=2, vx) = [x|7H2, d>3.
Then the potential Uy of a random vector X on R is defined by
Ux(1) =E[v(X — 1]

when the expectation exists. We have Uy = Uy if and only if X and Y have the same
distribution, but the potential function does not satisfy Assumption 2.1(ii).

We aim at defining the whole distribution of X using only some of its projections, i.e. using
only the laws of Xk for K € 4, where 4 is a given subset of J(D). For example, § can gather
some subsets of cardinal 3, their subsets, and some singletons, or 4 can gather only subsets
of cardinal 1, as in copula theory. We assume that 4§ is decreasing, in the sense that, for all
K CJ,J e 8 implies K € 4; knowing the distribution of a projection allows us to easily know
the distribution of every subvector. In the algebraic topology terminology, 4§ is a simplicial
complex [37]. Simplicial complexes can be represented using points, line segments, triangles,
and simplices in higher dimensions, which may ease the understanding of the projections and
the model (see Figure 1 for an illustration).

Definition 2.1. (Projective class.) Let 8 € (D) be decreasing. For a given characterizing
function m, we say that a random vector X € R belongs to the projective class Fp(4) if there
exist some real coefficients ax o, K C D, such that, for all € R4,

m(t, X)= Y ag pm(t, Xg). 2.2)
Kes
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We note that if a random vector X belongs to the projective class £ (4) then the set of
suitable coefficients {ag, o, K C D} satisfying (2.2) is not necessarily unique. Note also that if
D € 4, any d-dimensional random vector is in Fp(4), using for example, constant coefficients
ak.p equal to 1 if K =D and equal to O otherwise. This is quite natural, since the class
Fo(48) intends to define multivariate distributions that can be fully determined by some of
their projections. This is obviously the case when the initial joint distribution is already in 4.

The projective class explicitly depends on the set 4 of given projections. It also depends
implicitly on the choice of the characterizing function m, but for the sake of simplicity, it will
not be indexed by m. A distribution (e.g. a centered Gaussian distribution) can be projective
for a characterizing function m (e.g. the logarithm of the characteristic function), but not for
a characterizing function mj; (e.g. the cumulative distribution function). At last, note that a
priori, the coefficients ag o may also depend on the choice of the characterizing function m,
but for the sake of simplicity, they will not be indexed by m. We will show however that under
some simple conditions, one can find coefficients that do not depend on the choice of m (see
Remark 2.6).

It is not trivial to assess the compatibility conditions between arbitrary characterizing
functions of the projections; given arbitrary m(z, Xx) in (2.2), determining if the resulting
m(t, X) indeed corresponds to a characterizing function is difficult. As an example, if m
is a characteristic function, the verification may rely on known criteria such as Bochner’s
theorem or multivariate extensions of Pélya’s theorem. If m is a transformation of a cumulative
distribution function, the verification may rely on differentiation of this function using
chain rule differentiation and multivariate extensions of Faa Di Bruno’s formula. For known
projective families (see Section 3), the compatibility is ensured, but in practice (see Section 4)
it may rely on some numerical verifications. As in Section 1, we refer to [8], [21], and [24], for
supplementary material on the question of projections compatibility.

2.2. Properties

In this subsection we discuss several properties of projective distributions regarding
uniqueness, stability, and statistical inference. In particular, we provide explicit expressions
for the coefficients appearing in Definition 2.1, in the case of fixed projections up to a given
dimension.

Assuming that a distribution is projective, we give here a necessary and sufficient
condition ensuring the uniqueness of the coefficients {ax, p}kes, Which further implies that
the distribution characterized by (2.2) is unique. The condition relies on the given projections
m(t, Xg), K € 8.

Proposition 2.1. (Condition on the projections for uniqueness.) Define S:=4 if mg #0,
and S:= 8\ {@} if mo=0. Consider a finite set of points T C R%, and denote the matrix
Ms(T) := (m(t, XK))ieT Kes- Assume that the distribution of X is projective, and denote the
vector of coefficients o :== (ax, p)kes, then the following results hold.

(1) If there exists a set T with |T | = |S| such that the matrix Ms(T") is invertible, then o is
unique.

(1) If oo is unique then, for every set T of distinct points with |T | = |S|, the matrix Ms(T") is
invertible.

(iii) In particular, when 8 ={K C D, |K| <2} and mo =0, « is unique if there exists t € R4
such that, for all K € 8, my(t) =m(t, Xg) — Z]cK,J;&K m(t, Xj) > 0.
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Remark 2.4. The combination of (i) and (ii) above implies the following necessary and
sufficient condition for uniqueness: « is unique if and only if there exists a set T~ with |7 | = |§]
such that the matrix Mg(7") is invertible.

Proof of Proposition 2.1. 1t is clear that if my=0 then oy pm(t, Xz) =0 whatever the
value of az p. Multiplied by zero, this coefficient has no impact, we thus exclude it from
the analysis by setting S = 4 \ {@} in the case when my = 0. Let us show (i). Write the vector
mx(T) = (m(t, X));e7 . The main linear equality of (2.2) is

mx(T) =Ms(T )a (2.3)

so that when Ms(7") is invertible, & = [Ms(T)]™ ' mx(T) is uniquely determined.

To prove (ii), consider a set 7~ of distinct points with |7 | = |S|. Again, (2.2) can be written
as (2.3). This linear system of |S| equations admits either no solution, which is excluded by
the assumption that the distribution of X is projective, an infinite number of solutions, which is
excluded by the assumption that & is unique, or a unique solution, which is the only possible
case. This implies, by the Rouché—Capelli theorem, that the rank of the matrix Mg(J") is equal
to |S], or, equivalently, that this matrix is invertible.

For (iii), write S={Kj, ..., K}, set t € Rd, and set 7 = {tx, K € S}. Write P the matrix
with components P;; = 1 if K; C Kj or O otherwise. We can check that the component i, j of the
matrix Mg(7) is

(Ms(T))ij = m(tg;, Xk;) = m(t, Xk;nk;)-

For any set L, K = L if and only if K is a subset of L but not a strict subset of L; thus,

Ms(T)y= Y, mtXgp)— Y mt, Xg).

KeS, KCKiNK; KeS, KGKiNK;

By assumption, for all K € 4, |K| <2. The following equality holds for |L| =1, since both
the left- and right- hand terms are equal to O in this case. The equality also holds for |L| =2,
because on the right-hand side, K € S, J C K, J # K implies that |J| = 1 and |K| =2,and K C L
with |K| = |L| =2 implies that K =L, i.e.

o omtXp= Y > omit X))

KeS, KGL KeS,KCcL JCK,J#K

Finally, for h € {1, ..., s}, as K}, C K; N K; if and only if Pp;Ppj =1,

Ms(TYg= Y. mg (D)= > Py-mi, 1) Py

Ky €S, K CKiNK; KeS

so that Mg(7') = P DP, where D is the diagonal matrix with diagonal {mx (1), K € S}. When
8 ={K C D, |K| <2}, up to arearrangement, P is an upper triangular matrix with ones on its
diagonal. Thus, det (P) = 1 and, finally, det (Ms(7)) = det (D). Under the assumption of (iii),
det (D) > 0 and the result holds. O

In the next proposition we prove the following projection stability property: if a random
vector belongs to the class £ (4) then any subvector also belongs to £ (&), and we compute
the corresponding coefficients.

https://doi.org/10.1017/apr.2019.14 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2019.14

Distributions given multidimensional marginals 493

Proposition 2.2. (Projection stability.) Let X be a d-dimensional random vector in Fgp(8),
with associated coefficients {ax. o, K € 8}. Then, for any nonempty L C D, the subvector X|,
belongs to F1(8), where for any nonempty subset J of L, a suitable set of associated coefficients
is given by

L= Y. oKD (2.4)
Ke$, KNL=J
which implies, in particular, that oy, =0 if J ¢ L.
Let dy be an integer such that 1 <dy <d. When 8§ ={K C D, |K| <dy}, and when the
coefficients {ay 1, J C L} depend only on the subsets cardinals, i.e. oy =g with j=1|J| €

{1,...,d}and £ =|L| €{0, ..., d}, then a suitable set of associated coefficients is given by
min (do.d—E+)
o= Y ( L _j)ak,d ifj < min (£, o). (2.5)

k=j
and aj ¢ = 0 otherwise.

Proof. First note that, due to the second assumption on m(t, X), we have m(t, Xgnr) =
m(Pgnrt, X) = m(PgPrt, X) =m(Prt, Xg). Thus, using (2.2), we have

m(t, Xp) =m(Prt, X)

= Z ag pm(Prt, Xg)
Kes

=Y ak.om(t, Xknw)
Kes

Z Z Ol[(’i)m(t, X)).

JCL Ked,KNL=J

By assumption, K € 8 implies that /=K NL e 4. Setting oy 1 = ZKE& Knl—J 9%K,» as in
(2.4), we finally obtain

m(t, X1) = Z aym(t, Xy);
JCL,Jes

hence, X belongs to F7.(48).

Finally, note that K N L =J ifand only if / C Land J C K and K N L C J. As a consequence,
if J ¢ L, the sum in (2.4) is empty and oy 1, = 0.

We now prove the second part of the proposition. When 4 = {K C D, |K| <dp}, we have,
using (2.4),

ayL= Z AK'UJ,D-
K'CD\L, |K'|=do—|J]|

Now, let j=1|J| and € =|L|. If j > ¢, it is clear that J/ ¢ L and o5, =0. As K’ C D \ L and
IK'| <dy — |J|, we get 0 < |K'| <min (dp —j, d — £). Thus, when J C L,

min (dy—j,d—¥)
L=y > axuo
k=0 K'CcD\L, |[K'|=k
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and if the coefficients oy 7, depend only on the cardinals,

min (dy—j,d—¥) min (do—j,d—{) d—1
I DD DI VE DR Gy T
k=0 K'CD\L, |K'|=k k=0
yielding the second result. (|

Remark 2.5. (Case of @.) Note that & necessarily belongs to 4. In the case where m(t, X &) #
0, (2.2) may involve a constant @y, o, and implies that ZKc;o,Keg ak,p = 1. In this case, it
becomes useful to determine the coefficients o . For any nonempty L, (2.4) becomes

wor= Y axo

KCD\L,Ke4

When L = &, (2.2) remains valid for £ = & if one defines g o = 1.

As previously noted, the coefficients g o and ax ; may depend on the choice of the
characterizing function m. However, one can check that using m(¢, X) = cm(t, X) for a positive
constant ¢ leads to m(t, X &) = cm(t, X ) and to unchanged coefficients ek, p = ok, -

Corollary 2.1. (Given projections up to dimension dy.) Let X be a d-dimensional random
vector in Fo(8). Assume that all projections of X are given up to a dimension dy, so that
8 ={K C®D, |K| <do}). Assume that the associated coefficients {c; 1, J C L} depend only
on the subsets cardinals, i.e. oy =aj with j=|J|€{l,...,d} and £=I|L|€{0, ..., d}.
Assume, furthermore, that oy i = 1 for all k < dy. Then the coefficients o, 4 can be obtained
recursively, using

*\ (d—dy+z
gz =1— ; ( ; )ai+d0_z,d (2:6)
for z=1,...,do, starting with og,q=1. In particular for 2 <dy <d, we get ogyq=1,
Qdp—1.a=—(d—dp), @ay—2.0=1+ 3(d—do+2)(d — do — 1).

When do>3, ag-34=1—(d—do+3){1—1d—do+2)1—%1d—do+1)). For
higher orders, one can check by induction that these coefficients do depend only on d — d,
but their expression is omitted here.

Proof. Under the assumption that o4 ;=1 for all k <dp, this follows directly from
Proposition 2.2, by writing (2.5) in the case where j = ¢ <dy, and setting i =k — j, j =dp — z.
We obtain a4, ¢ = 1 when z=0, and (2.6) when z > 1. O

Remark 2.6. (Explicit coefficients.) The fact that o x = 1 for all k <dy means that if we are
given a k-dimensional marginal, we do not try to retrieve it from the given lower-dimensional
marginals. Under this assumption, and under the assumption that the coefficients in the
projective decomposition depend only on the subsets cardinals, the previous corollary provides
a set of suitable coefficients {e;, ¢} which are explicitly given, independently of the choice of m.

The case where all bivariate projections are given is a very natural and interesting case. In
practical applications, bivariate projections can be graphically visualized, and the estimation of
the dependence structure among each pair of random variables is still tractable. The following
remark shows that in this case, under some simple conditions, the coefficients oy ; can be
computed explicitly.
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Remark 2.7. (Given bivariate projections.) Consider the same assumptions as in Corollary 2.1
and assume that all bivariate projections of a multivariate distribution are given, so that dy =2
and 8 = {J C D, |J| <2}. Then, for all nonempty L C D, we can reformulate (2.2) as

m(t, Xp)=aoumo— (LI =2) Y m@ X+ Y m@ X)), 2.7)
JCL, |J|=1 JCL, |J|=2

where apo=1, ape=1+ %Z(E —3), £>1 and where my=m(t, Xz) is defined in

Remark 2.1.

Let X € R? be a random vector in Fp(8). Since D = {1, ...,d} is a finite set, the set of
subsets of D is also finite, and we can define the following matrix, indexed by the subsets of
D:

A= (as,L)icD.LcD- (2.8)
We will write A_ 1 for the column vector relative to the subset L.
Proposition 2.3. The coefficients in the matrix A satisfy the following constraints.

(1) If the set of associated coefficients {oy 1} is unique then the matrix A defined in (2.8) is
idempotent, i.e. Az =A.

(ii) If, furthermore, the coefficients depend only on the subset’s cardinal, i.e. oy 1 = aj ¢ with
j=\J| and £ = |L|, we obtain, for 0 <j <€ <d,

min (dy,?)

t—j
Yje = Z < ) O kg -
o k=
=j
Now define s; ¢ Z=(§:§)Olj’g when j > 2. When j > 2, the above equation becomes
min (dg,?)
Sje= Z Sj kSk,€-
k=j

Proof. Let L C D, |L|> 1. From Proposition 2.2,

m(t, X1) = Z ag, m(t, Xi).
KCL,Ked

From Proposition 2.2, we also have m(z, Xx) = chK,Jeg ay gm(t, Xj), so that, finally,

m(t, X1) = Z Z oy ko pm(t, Xr)

KCcL,Ked$ JCK,Je4s

= Z Z ay xakg om(t, X;)

JCL,Jed KCL,Kes

as oy g =0if J ¢ K. Then, for all 7,

m(t, X1) = Z { Z al,K“K,L}m(I»XJ)

JCL,Jed * KCL,Ked

https://doi.org/10.1017/apr.2019.14 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2019.14

496 N. KAZI-TANI AND D. RULLIERE

so that, using the uniqueness of the set of coefficients {cy 1.},

oy L= E &J KAK L
KCL,Kes$

and, thus, A is idempotent.

Let us now focus on the second part of the proposition. For a subset L C &D with cardinal
¢ and k < £, define [L]* :={K C L such that |K| = k}. Assume that when K C L the coefficients
ak,1, depend only on the cardinals k = |K| and £ = |L| of the considered sets, and assume that
agr=0if K ¢ 8, 1i.e. ax ¢ =0if k > dp. Then

m(t, X1) = Z ag,m(t, Xg)

KCL
min (dg, )
= Z are » mit, Xg)
Ke[LJ¥
min (dg,£) min (dg,k)
=Y @ ¥ { Y, o X e x»}
Ke[L] JelKY

Note that, by a simple combinatorial argument, for j <k,

Z Z m(t, XJ)—( _]> Z m(t, Xy),

Ke[Lk Je[KY Je[Ly

which entails that

min (dy,£) min (dy,k)

m(t, X)) = Z Z af, 00, k( j) Z m(t, X7).

k=0 j=0 JelLy

On the other hand, we have

min (dg,£)
m(t, X) = Z oo Y mit. X))
Je[Ly
so that, for all ¢, for all j <k,
min (dg,?) .
t—j
Gj.e = Z ( .)Olj,kak,z;
k=j k—j
=j

thus, the second result holds. O

Remark 2.8. Note that, due to the projection stability property of Proposition 2.2, any column
of the matrix A can be deduced from the last column by multiplication by a matrix with values
in{0, 1}, 1.e.A. | = P(L)A., D, Where the 24 % 24 matrix PV is defined by its components

(L)
PJ,K =

1 if/J=KNLandK € 3§,
0 otherwise,
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for J, K, L subsets of . Indeed, we have from Proposition 2.2,

(L)
oy L= Z oKD= Z P xok o.
Ke8.KNL=J Kes

Let us finish this section with a useful property of our construction for statistical inference.
Assume that we have at our disposal an independent and identically distributed sequence
(X1, ...,X,), where, for each i, X; € R4. The following proposition highlights the fact that
if we have estimators with good properties for the distribution of subvectors Xk, then these
properties are maintained for the estimator of the distribution of the whole vector X.

As in Definition 2.1, let 4 € (D) be decreasing. For any K in 4, assume that we can

construct an estimator 71,(f, Xg) of m(t, Xg) using the sample (X1, ..., X,) forr € R?. From
(2.2), a natural expression for an estimator 771, (¢, X) of the distribution of the whole vector X is
given by
it X) =Y ag,p ia(t, Xg). (2.9)
Kes

Proposition 2.4. (Unbiasedness and consistency.) The natural estimator given by (2.9)
preserves unbiasedness and consistency.

(1) 1If, for each K, my,(t, Xx) is unbiased then my(t, X) is also unbiased.
(i) If, for each K, m,(t, Xg) is consistent then m,(t, X) is also consistent.

Proof. Property (i) is obvious by the linearity in (2.2) and the linearity of expectation.

To prove property (ii), first suppose that, for each K, m,(z, Xx) converges in probability
to m(t, Xg) as n goes to oo. By Slutsky’s theorem, the vector (m, (1, Xk))kes converges in
probability to (m(t, Xk))kes, and by the continuous mapping theorem, any linear combination
of elements of (7,(t, Xg))kes converges in probability to the same linear combination of
elements of (m(t, Xx))kes, which is the desired result. Notice that we are able to use Slutsky’s
theorem, which is a statement about convergence in distribution, because all the limits are
towards real constant values. [

Remark 2.9. If a central limit theorem (CLT) is available for each mi,(t, Xx), then further
work is needed to obtain a CLT for 7, (¢, X) defined in (2.9). Indeed for K, K> € 8, K1 N K>
is not necessarily empty, which implies that the elements in the linear combination (2.9) are
dependent. A CLT for m,(t, X) is thus determined by the strength of this dependence.

3. Examples

3.1. Elliptical random vectors

Recall from [21] that d-dimensional elliptical distributions are characterized by the fact that
their characteristic function can be written in the following form: for any € R,

E[e’ XM = (/T 1)

for a given function ¢: Ry — R which is called the generator of the distribution, where p
is the mean of the vector X and ¥ is a nonnegative definite matrix. We assume here that the
generator ¢ does not depend on the dimension d of the random vector, i.e. that the elliptical
distribution is consistent in the sense of [23].
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One interesting feature of families of elliptical distributions is that they allow heavy tails,
while preserving some advantageous properties of multivariate Gaussian distributions. Indeed,
an elliptical distribution has a stochastic representation as a product of two independent
random elements: a univariate radial distribution and a uniform distribution on an ellipsoid (see
Chapter 2 of [12]). This representation makes possible the analysis of the density functions, the
moments, the conditional distributions, the symmetries, and the infinite-divisibility properties
of elliptical distributions (see [13]). Other than multivariate Gaussians, elliptical distributions
include the student -distributions, the symmetric generalized hyperbolic distribution, the
power exponential distributions, and the sub-Gaussian «-stable distributions among others.
Families of elliptical distributions are widely applied in statistics, in particular, in the area of
robust statistics, as a starting point for the development of the M-estimates of multivariate
location and scale (see Chapter 2 of [28]). It is also a rather standard family of distributions in
financial modelling: see [14] and the references therein. Thus, constructing a distribution with
given multivariate elliptical marginals is a useful and interesting problem, which we explore in
this subsection.

Let us first remark that, for a given generator ¢, when one considers a centered multivariate
elliptical distribution, the distribution is fully characterized by all components o;; of the matrix
%, that is, by all bivariate elliptical projections of the distribution (it does not mean that the
multivariate elliptical distribution is the only one having those projections).

It is thus quite natural to analyse, in the case of elliptical distributions, the links between
the matrix ¥ and a given set of submatrices X, ..., Xk, for Ki, ..., K, subsets of D =
{1, ..., d}. This is easier to do using the matrix ¥ rather than its inverse ¥ ~!. It thus seems
easier to work with characteristic functions or entropy (which are expressed using %) rather
than densities or cumulative distribution functions (which are expressed using £ ).

We will try to express the quantity 77 £ as a linear combination of products t; Yktg, where
K belongs to known projection indexes in 4.

Definition 3.1. (8-admissible sequence.) Let D C N, and let 4 be a decreasing subset of D.
A sequence of coefficients ax o, K € 4, is said to be $-admissible if, for all matrix X, for all 7,

1ot = Z ak.p - 1y TKIK, (3.1)
KCD,Kes

where X is the submatrix of X with indices in K.
The following lemma provides a characterization of such coefficients.
Lemma 3.1. (Characterization of $-admissible sequence.) Let dy € N be such that 2 < dy <

d, and assume that 8 ={K C D, |K| <dy}. Assume, furthermore, that, for any sets K, D,
ag,p =k, |0 A sequence ag = (i, q)k<d Of coefficients is §-admissible if and only if it can

be written
do
d—k d—2
al’d:_ZSkk—l and ak,d:Sk/<k_2)» k=2,...,d0, (3.2)
k=2
for some real values s>, - - -, Sq, such that s + ... + 54, = 1.
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In the particular case where the coefficients are deduced from only two given dimensions,
i.e. if there exists ko > 2 such that s; = 0 whenever i ¢ {1, ko}, we get a particular §-admissible
sequence

d — ko J 1
e =
ko —1 (k0—2)

oA g=— if k =ko and ax,q =0 otherwise, k=2, ..., dp.

Furthermore, when dy = 2, the only $-admissible sequence is
alg=—(d—2) and oayqa=1.

Proof. Assume that ez is $-admissible, and that ax o depend only on |K| and |D]. Let
(io, jo) € D2, i # jo- Isolating the coefficient t;, X;, j,#j, on both sides of (3.1), we obtain

do b ra—2
1= [{K: K C D, K| =k, {ig.jo) C K}lewa = ( )ak,d.

k=2 k=2 k=2

Denoting s; = ak,d(Z:g) for all k, we obtain ZZ():z sy = 1. Now considering the coefficient
tio Xig,iotip ON both sides of (3.1), we obtain

do do d—1
1= K:KC®D,|K|=k, ipeK}| = .
kleade CD, |K|=k, igeK}| = a1d+2< 1>ak,d

Now as s; = ozk,d(kiz) for all k,

do d ) do d
1_a1d+ZSk (i )—Oll,d-i-ZSkk
= (> k=2

Finally, using 1= Zk():z Sk, (3.2) holds. The remainder of the proof follows by a direct
application of this last equation. (]

A direct application of such an 4-admissible sequence is given in the following proposition.
As a consequence, the further defined distance to admissibility (see subsection 4.1) is always
0 for elliptical distributions.

Proposition 3.1. (Elliptical distributions are projective.) Consider a d-dimensional random
vector X having elliptical distribution with mean w, matrix %, and invertible generator ¢.

Let D={1,...,d} and [DIF ={K C D, |K|=k}. Consider that all projections are given up
to a dimension dy, 2 <dy <d, so that 8§ ={K C D, |K|<dy}. Then, for any §-admissible
sequence otg = (1,4, - - - , Ady,d)s
bt = <Zakd Z zKEKtK>
Ke[DJ

holds, where Yk is the submatrix of X with indices in K. In other words, setting m(t, X) =
¢~ L(E[e!" K=y and 8 = (K C D, |K| <2}, we have

X e Fp(8).

In particular, when do = 2 (i.e. starting from all bivariate projections), the admissible sequence
isayg=—(d—2)and az 4 =1.
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Proof. By definition, for any $-admissible sequence, tTEtzzzoz | OkdD_Ke[ D]k 1y TKIK.
One can also check that the functions m are suitable characterizing functions satisfying Assum-
ption 2.1 with a =0 and my = ¢_1(1) = 0; hence, the result. O

Remark 3.1. (Matrix A in the elliptical case dy=2.) Consider the elliptical case with
do = 2. Then we get, by Lemma 3.1,

0 ifJ ¢ L,
ajp={—(L—2) iflJ|=1andJCL,
1 if |J|]=2and J C L.

In particular, if d =3 and D = {1, 2, 3}, the matrix A = (¢7.1.)jcD.L.cD 1S

1 0 0/0 0 0:—1
01 0:0 0 01—1
00 1.0 0 0 -1
A= 0 0o 0:1 0 0: 1 |, (3.3)
00 0/0 1 01! 1
00 0:0 0 111

where the seven rows and columns correspond to successive subsets of D:
{1}, {2}, {3}, {1, 2}, {1,3}, {2,3}, {1,2,3}.

As mp =0 in the elliptical case, it is not necessary to compute the coefficients «; 1 for J = &
or L =& (see Remark 2.5). One can easily check that we can apply Proposition 2.3 to deduce
that A is idempotent, which can also be verified by hand in this example.

Consider a centered elliptical random vector with zero mean and covariance matrix X. As
seen before, its distribution is thus projective, so that, for all t € R4,

tTZI e Z aK D * t;;EKtK, (3.4)

KCD,Kes

Let us denote by Dk the d x d diagonal matrix having 1s only at indices in K. We can write
{'St= zT< > aK,@(DK)TEDK)t

KCD, Kes

so that this holds for all 7 if and only if
T = Z ag, pExtp(Zk),
KCcD, Kes

where Extp(Zg) is the extension of the matrix Xk to the dimension d X d, i.e. the matrix
having components (Xg);; for all i,j€ K and O when i € K or j ¢ K. Now assume that, for
all K € 4, we have a given estimator flK of the covariance matrix of Xg. From the previous
equation, a natural estimator of the full covariance matrix X is defined as

S = Z aK,i)EXt:D(iK)-
KCD.Kes
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Now assume that classical estimators S are also available for any K C D, then we get the
following result: if, for all K € 4, X is the submatrix of X g for indices in K then

-~

/Z\:Ei)

This can be checked using (3.4), when choosing 7 the vector having 0 everywhere except for
two given components i and j.

In particular, consider for example a centered Gaussian random vector, if Sk are maximum
likelihood estimators, K C &, it is well known that they are directly proportional to the sample
covariance matrix, so that all ZK are submatrices of % D and, thus, S=3% o. This also holds
for many shrinkage estlmators On the contrary, when Sk are built by inverting an estimated
precision matrix, Spand & may differ. The study of all possible estimators of ¥ is however
outside of the scope of the present paper.

When the generator ¢ is unknown, another interesting perspective is to use the underlying
linearity of the projective class in order to build a nonparametric estimator of ¢.

3.2. Vectors built from bivariate distributions
Assume that a family () jep2 of probability measures on R? is given, for some

nonnegative parameters 6;, 6;, and 6; ; specific to each couple (i, j) € D?, and that each Wi
satisfies

wij(t, +00), (u, +00)) :=y (0t + Oju + 0; jtu), (t,u) e R, (3.5)

where ¥ is a given appropriate function.

Thanks to our previous results, we can construct a random variable X, with values in R4 s
such that the survival function of each subvector (X;, X;) is given by the right-hand side of
(3.5).

Let us first analyze the copula function associated to (X;, X;). To do so, assume that ¥ is
a decreasing bijection from Ry to (0, 1] such that ¥(0) =1 and that derivatives of i exist
up to the order d. Denote by 1! the inverse function of . Let = (1;, )€ Ri and S;(1) =
Y (0;t; + 0;t; + 6;t;t;). The one-dimensional survival functions are then given by S;(f) = ¥ (6;1;)
from which we obtain 6;t; = ¥ ~1(S;(¢)), so that finally

Sl-,-(r)=w(1/f HSi0) + v (Si0) + = G w—%s,»(r))w—l(sja))).

0;

Therefore, we can write
S;i(t) = Cs,(Si(1), S;(1),

where the survival copula Cg;; is given by

Csl.j(u,v)zl/f(l/f W+~ (V)+99

w‘ww‘(v)), w,v)el0, 1% (3.6)

Example 3.1. Examples of survival functions in the form of (3.5), or (3.7) in the d-
dimensional case, include the following particular cases.

(1) If ¥ (x) = exp (— x) then (3.6) reduces to

0j
CS,,(Mz, 1) = u;u;j eXp (— v In u; In u])
iYj
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which is the survival copula associated with Gumbel’s bivariate exponential distribution
(see [31, Copula (4.2.9)]).

(ii) In the case where ¢; ; = 0 for every (i, j) € D? and if the generator ¥ is d-monotone (see
Definition 3.2), we obtain a survival copula which is Archimedean with generator .
It is clear that in this specific case, the multivariate distribution in a higher dimension
will still have an Archimedean survival copula with the same generator, as it will appear
further in (3.7).

(iii) In the case where 6; ; =0 for every (i, j) € D? and all the coefficients 6; are equal, we
obtain the class of Schur constant vectors, studied for example in [32]. In that case,
the function v corresponds to the generator of the Schur constant vector, which has an
Archimedean survival copula in the bivariate case, whose generator is given by !

Let us now explicitly construct a distribution on Ri, with the given bivariate marginals.
Given the form (3.5) of these marginals, we choose the following characterizing function:

mt, X)=v "' (PIX; > t;, i€ D]).

With the assumptions we made for v, it is clear that the function m satisfies Assumption 2.1,
with constant a = 400 and mg = m(t, &) = 0. The function m is thus a suitable characterizing
function.

Now consider the decreasing set 8 ={J C D, |J| <2}, and assume that m belongs to
the class Fp(4) in Definition 2.1: each multivariate distribution is assumed here to depend
only on its bivariate projections. Assume furthermore that the associated coefficients o g in
Definition 2.1, J C K, depend only on cardinals j = |J| and k = |K]|, so that cty g = @ k.

Due to Remark 2.7, if a valid multivariate distribution belongs to the class (&) then its
survival function must take the form

FKa):w(—(k—z) o o mexp+ Y m(r,xn).

JCK, =1 JCK |J|=2

Note that m(z, X(;}) =6;t; and m(t, X{; j}) = 0;t; + 6;t; + 0; jtit;. Now using Z{i,j}cl( (Oit; +
thj) =(k—-1) Z{i}cK 0;t;, we obtain

Fi() = 1/f< INES 9i,jfilj)- (3.7)

{i}CcK {iJicK

Proposition 3.2 below shows that under some sufficient conditions this expression is a proper
multivariate survival function. This proposition makes use of the following definition of d-
monotony, as given in [30].

Definition 3.2. (d-monotone function.) A real function f is called d—monotone in (a, b),
where a, b € R and d > 2, if it is differentiable there up to the order d — 2 and the derivatives
satisfy

(- DD >0, k=0,1,...,d—2,

for any x € (a, b) and further if (— 1)?-2fd=2) jg nonincreasing and convex in (a, b). Ford =1,
f is called 1-monotone in (a, b) if it is nonnegative and nonincreasing over (a, b).
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Proposition 3.2. The following three conditions ensure that, for any fixed subset K of size
k :=|K|, Fx(t) is a proper multivariate survival function:

(i) v and its derivatives goes fast enough to zero: for every n<k—1,
limy—s 400 XY@ (x) =0

(i1) v is k-monotone;
(iii) for all distinct i, jin K, 0; j € [0, 0,00y ],

where

Py k= inf
v xR+, r<k/2, rodd "

1 <k— 2r—|—2>
and  yrr=— .
r

Y =) 2

For example, if |[K|=k=3 and ¢¥(x)=exp(—x), then ¢ is a k—monotone function
satlsfymg condition (i) and (ii). It also satisfies (iii) with coefficient py x = 3, and the function
Fx defined in (3.7) is a valid multivariate survival function if 6; j=<0i0;/3 foralli,jeK.

Proof. We have

Fx(=y (Z Oti+ Y ,,m/) =Y (1),

{ilcK {i,j}cK
with
0@ = Z Biti + Z 0; jtit;.
{ilck {ijicK
Let us consider without loss of generality K = {1, ..., k} and = (1, . . ., tx). Let us define

k

a _
_(_ 1)k
fi) = (= D 5= it

If fx is a nonnegative function whose integral is 1, then it will be the density of a random
vector, and Fx(7) will be a proper multivariate CDF.

Positivity. Let us first establish conditions under which fx is a nonnegative function. The
multivariate Faa Di Bruno’s formula gives us

518l
=1k Yy [T 222

3.8)
wellg Berm HJEB atj

where [k is the set of all partitions of K, B € m means that B runs through all nonempty
blocks of a considered partition 7. In the following, we will write 82Q(t) /0tg = 00(t)/01;0t
and 0p = 0; j, where B = {i, j}.

Note that 3'"8'Q(¢) is 0 when |B| > 3. Thus, the only partitions 7 involved in the calculation
contain blocks of 1 or 2 elements only. Hereafter, we denote by IT) the partitions in Ilg that
contain exactly » distinct blocks of size 2. For a partition 7w € I, these r blocks will be denoted

by BT, ..., BT. Such a partition 7 € IT} contains r blocks of size 2 and k — 2r blocks of size
1, so that |7T| — r. Thus, we obtain (w1th the convention ]_[l =D
Lk/2]
9 Q(t) 90(1)
n=( 1k &= :
==Y >y (Q())]_[ . I1 %
r=0 melly B; ]eK\UiBf
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If ¥ is k-monotone, ¥ *~") = (— DE=7|y*=")| and setting N = {0, ..., [k/2]},

r 9 9
k0= [ 0w H( Q(t)) [ ?,(4[)-
jeK\UBr

reNg melly B;
We can write fx(f) = ZreNk &(r). Assume that all 6; >0 and 6;; >0, i, j € K. Under this
assumption, we can check that, when r is even, £(r) > 0. As a consequence,
dYEm= Y EM+EC-DIL
reNg reNg,r odd
Let us try to simplify £(r) 4+ &(r — 1). First remark that, for » > 1,

<k> (k —2(r— 1))/ 277k
2 2 k— 2! /!

and |TT}| = )/k,rln;(_lL with v, = (1/7)(k_22r+2)'

Let us write £(r) = Znel’[;{ Z(B1, ..., BY). The term &£(r — 1) can be written as
> BT Bp=y. Y «B.....B]),
nel‘lf{l melly
and, thus,

Er)+Er—1)= Y [(B].....B) =y «(B}..... Bl )]

.
welly

As a consequence, a sufficient condition to ensure that fx(¢) > 0 is that, for any B = {i, j}, any
odd r, and any ¢,

P00, gy 4+ 1 iy 22D 220
dtg dt; Btj
Thus yielding the sufﬁ01ent condition to ensure the positivity of fx(x).
Absolute continuity. Let us now check if the integral of fx is summing to 1. If so, Fx would
be a valid absolutely continuous distribution, without a singular component. First assume that,
for all integers n <k — 1,

lim xy®(x) =

xX—+00
Recall that F(u) = ¥ (Q(ui, . . ., ux)). We now make use of the multivariate Faa Di Bruno’s
formula as in (3.8). Seen as a function of u,, the derivative of Fx(u) with respect to
Up+1, - - -, Up Can be written as a sum of terms w(i)(aun + b)P(u,), where P is a polynomial
of degree at most 1 and a, b some real values. Thus, under assumption (i), for any u € R¥ and

all integers n <k — 1,
k—n

lim a—FK(u) =0.

Un—>+00 QU4 - - - Ol
As a consequence, we can show by recursion that in this case,

+o00 +00

FK(I],.. tk)—/ / FK(u1,...,Mk)duk~~du1.

Using the fact that Fk(0, ..., 0)= 1, we conclude that the derivative function fx 1s nonnegative
and is integrating to 1 on the whole domain Rﬁ_. Under chosen assumptions, it thus defines a
proper probability measure and F is a valid multivariate survival function. (]
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4. Practical implementation

4.1. Distance to admissibility

We have seen several examples of projective distributions that can be used in practice, as
elliptically contoured distributions or distributions satisfying (3.7). In the following, we show
that the method is also applicable in situations where the data does not necessarily come from
a projective distribution.

In practice, it can naturally happen that the multivariate distribution of a considered data
is not projective. In such a case, the resulting multivariate function F, obtained from the
characterizing function and from multivariate projections by (2.2), may not be a proper CDF.
However, by construction, this function has exactly the prescribed multivariate margins.

It is quite a usual problem that estimators do not always satisfy all the required constraints.
Among many examples include an empirical copula is not a copula [11], some Kaplan—-Meier
estimated distributions are defective [33], some estimated quantiles do not satisfy monotonicity
[5], some nested copulas do not satisfy C-measure positivity on all hyperrectangles [17], [29],
etc. Here the obtained F, even when it is increasing on each component, may not satisfy the
positivity of its cross derivatives. In this section we approximate the function F that we obtain
by an admissible CDF.

We show hereafter that, even in the case where the resulting function F is not a CDF, we can
find a proper CDF F that is close to F in some sense and such that its projections are close
to the prescribed ones. Furthermore, we will see in numerical illustrations that the maximal
distance between F and F* can be easily estimated, and that it is very small in some considered
applications.

In the following we denote [—oo, x] = {(s1, ..., Sqg): 1 <X, ..., Sq < x4} for any vector
x=0i,...,x) € R

Proposition 4.1. (Maximal admissibility distance.) Let D C R? and denote Dy=D N
[—o0, x]. Consider a function F: D — [0, 1], and assume that there exists a function f : RY —
R such that, for any x€ D, F(x)= f Py f(s)ds. Assume, furthermore, that f of(s)ds=1.

Denote D™ ={se D, f(s) <0} and A = fD_ |f(s)| ds. Then there exists a function F*: D —
[0, 1] such that

(i) FT: D — [0, 1] is a proper multivariate CDF;
(i) dgs(F, FN) < A/(1+ A);
(iii) forany K C {1, ...,d}, dgs(Fk, Fz) <A/(1+A),

where Fg(x) = F(Pkx), F;("(x) =FT(Pkx), and Pgx=(p1,...,pq), with pi=x; if i €K,
Di = 400 otherwise, as defined in (2.1). Here dxs(F, G) =sup,. ¢ |F(x) — G(x)| denotes the
Kolmogorov—Smirnov distance between two functions F and G. Such a function F¥ is given by

Frn= / [T dx,
D

where fT(x) = (1/(1 + A)f(x) ifxe€ D\ D~ and fT(x) =0 otherwise.

Proof. Let F(x) = [ f*(x)dx, where f* is defined in the proposition, and let D : =D \
D~ for simplicity. First, f~ is nonnegative and using [ f(x) dx =1, we obtain [ f*(x)dx=
1, so that fT is a proper PDF and (i) holds.
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When A > 0, define «(x) € [0, 1] by
f,@m,@* ()1 dx
S f)l dx

and «(x) = 0 otherwise. Note that a(x) is such that f DND- f(x)dx = —a(x)A, and

et ey s, )
F (X)—lJrA Dxn@+f(x)dx_l+A DXf(X)dx m@_f(}f)dx :

From this, we obtain F(x) — FT(x) = (A /(1 + A)(F(x) — a(x)). As sup, ¢ |[F(x) —a(x)| <1,
(ii) holds for this specific function F.

As (ii) holds, |F(x) — F*(x)] < A/(1 + A) for any x € D, and, in particular, for any x' =
Pgkx, so that (iii) holds. U

Note that A =fD_ lf(s)|ds = —fD_f(s) ds=—(1— fD+f(s) ds) = fD+f(S) ds — 1, so that
f prf(s)ds =1+ A. As a consequence, we can define the failure ratio

R—fD— f(olds A
e Flds 1T+ A7

a(x) =

4.1)

which bounds the errors in Proposition 4.1. This ratio can easily be estimated by a discrete
approximation of each integral, using classical techniques which avoid any normalization of
the integrals.

In the case where m(t, X) = ¢ o F(t), where ¢ is a bijection from (0, 1] to R*, we obtain

Fri)=g¢~" ( Y ar-go FJ(IJ))-

JCL,Jes

In this case if ¢, ¢! and all given projections Fg are differentiable up to a sufficient order,
then applying chain differentiation rules and multivariate Faa Di Bruno’s formula, we can show
that F satisfies the assumptions of Proposition 4.1.

We note that, in practice, depending on the application, and when A is small, we may use F
instead of F*, as the expression of F does not require computation of an integral. In particular,
some sampling procedures like MCMC may be easily adapted to the function F instead of F™.
In the latter case, the produced sample has by definition a valid multivariate CDF.

4.2. Numerical illustration on a real data set

In the following we give an example on a real data set. First, we illustrate a natural fit
procedure on a trivariate data, by adjusting each marginal distribution, and then each copula.
Second, we show that the proposed construction allows us to build a valid trivariate cumulative
distribution with projections close enough to each of the prescribed ones.

4.2.1. Marginals and copulas fit. The purpose here is to provide reasonable univariate and
bivariate fits using standard tools, without distorting the data, in order to illustrate the flexibility
of our result and its applicability to some usual data. Surely, better fits can be proposed, but are
outside the scope of the present paper.

We have obtained best univariate fits using classical existing tools in R software, and in
particular the package fitdistrplus. Best copulas were obtained by the package VineCopula.
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(a) CDF margin F, (b) CDF margin F, (c) CDF margin F;

FIGURE 2: Univariate margins fits: empirical CDF (discontinuous line) and fitted CDF (continuous line)
obtained by R software package fitdistrplus.

1.0
1.0 2
05 0.5 0
0.0 0.0 -2
-0.5 | 4
-0.5
-1.0 -6
-15 -10 . -8

i . i . I b il 8 .
(a) Copula C}, (b) Copula Cy5 (c) Copula Cy,
FIGURE 3: Copula fits: pseudo observations scatterplot and heatmap of the copula log-density, obtained

by R software package VineCopula.

We present here the results obtained for the data LifeCycleSavings from the standard R
software library datasets. We have used the first three columns of this data. We do not detail
the data here, as the purpose here is just to build a parametric fit on a multivariate data, with
given projections.

The marginal fits obtained for the considered data are gathered in Figure 2. One can see
that, independently of our method, the fits with usual tools may be sensitive to multimodality
of the data. The copula fit illustrations are presented in Figure 3. All univariate and bivariate
fits are summarized in Table 1.

TABLE 1: Fits obtained for the considered dataset, obtained by R software packages fitdistrplus and
VineCopula. Parametric expressions of the fits are those indicated in these packages.

Object Parametric fit

Fi norm(9.671, 4.435376 534 185 12)

F> weibull(4.483 565 871 569 89, 38.603816962 111 1)
F3 weibull(1.898 639 544 002 89, 2.594 687 972 112 36)
Ci2 Rotated BB8 90 degrees(— 6, —0.396616316431917)
Ci3 BBS8(6, 0.316 859224 873 494)

Co3 Rotated BB8 270 degrees(— 6, —0.857 389 852 442 906)
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—— Estimated failure ratio R
“é 0.057- - Distance to empirical CDF 0.05 o
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FIGURE 4: Estimated failure ratio R (solid line) and distance § to empirical CDF (dashed line), as a
function of the parameter 6.

Concerning both the CDF and the copulas, they exhibit quite different shapes, as it usually
happens on many datasets. It thus seems particularly challenging to propose a trivariate
function having exactly those fitted univariate and bivariate margins. In the next paragraph
we show how to build such a function, using the method proposed in this paper.

4.2.2. Trivariate fit with prescribed bivariate projections. For more flexibility, we consider
here a one-parameter class of characterizing functions, in the sense of Definition 2.1. As the
given bivariate fits rely here on copulas, it is easier to deal with multivariate CDF or survival
functions. The considered class is a parametric transformation of multivariate CDF:

m(t, X1) = @g[Fx, (t1)].

For the link function ¢y, we have chosen some parametric monotone functions such that
@p(1) =0, detailed hereafter. We can check that in this case mg=m(t, X g) = @o(Fx( + o0,
..., +00))=0 as defined in Remark 2.1. Using the proposed method and the result in
Remark 2.7, when |L| =3 and with 77 € R3, we obtain a fitted trivariate function, denoted
Fy,

F9<zL>=¢9‘[—<|L|—2> > wFx, e+ Y w(&ﬂu»}.

JCL,J|=1 JCL|J|=2

Note that for some specific link functions and margins, theoretically valid distributions with
this shape are given in Proposition 3.2.

As it was easier to use classical expressions with known parametric inverse functions, we
have used specific link functions ¢y. We have considered strictly positive and decreasing
functions @g: [0, 1]— R of Table 4.1 of [31], that are also known to be Archimedean
generators. We have tried the six first strict generators of [31, Table 4.1] (respectively, Clayton,
AMH, Gumbel, Frank, Joe, and Hougaard generators). Then, we have selected the generator
and its parameter that was minimizing the estimation of the failure ratio R=A /(1 + A) in
(4.1). The parameter 6 is thus used to reduce the maximal distance between the obtained
function Fy and a proper multivariate CDF Fy T, as detailed in Proposition 4.1. We also
compared the trivariate function Fy and the empirical trivariate CDF Fepp of the data, by
computing the average absolute error § = (1 /n)Z:-’: 1 1Fo(xi) — Femp(x;)|, where x1, . . ., x,, are
the points in the dataset. In Figure 4 we show the different values of the estimated failure
ratio R and the distance § with the empirical CDF. The ratio R was estimated by replacing the
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FIGURE 5: Values of the fitted function Fy (solid line) and the empirical CDF Femp (dotted line), on
several points of a diagonal line m + a(M — m) in R, as a function of the abscissa a.

integrals by sums over a regular grid of 1000 points between minimal and maximal values of
each component of the dataset. Whereas the average absolute error § is quite stable on this
data, the failure ratio R is sensitive to the choice of the parameter 6. We verify hereafter that
the results are not too sensitive to the grid used for the estimation.

Finally, the results for this dataset, using the Hougaard generator ¢y given by (4.2.9) in
Table 4.1 of [31], are gathered in the following table:

Dataset (columns) Link function ¢y (parameter ) Estimation of R Distance &

LifeCycleSavings(1,2,3)  (4.2.9) Hougaard (9 = 0.768) 0.000 872 0.0332

For the estimation of R, using a more precise grid of 64000 points, in the extended domain
[0.9m, 1.1M], where m and M are the componentwise minimum and maximum of the points in
the data, we obtained quite similar results, i.e. an estimated R equal to 0.000 984 at 6 = 0.766.
Notice that it is usual that some compatibility conditions can only be verified numerically over
a grid of points; see [21, p. 75].

We can check that the estimated admissibility of the fitted function Fy is very good so that,
in practice, as we can see in Figures 5 and 6, it may be unnecessary to compute the proper
CDF Fy™ of Proposition 4.1. Indeed, the numerical approximations involved by numerical
differentiation or integration may be greater to the maximal distance A and the failure ratio
R<A.

Values of the fitted function on given bivariate projections correspond exactly, by con-
struction, to the prescribed ones so that it is useless to draw these values. We can instead
compute the values of the fitted function for a set of points belonging to a one-dimensional or
a two-dimensional diagonal hyperplane. The considered data has 3 columns. For each column
i in {1, 2, 3}, denote m; the minimal observed value in this column, over all observations,
and M; the maximal observed value. Let m = (my, mp, m3) and M = (M, M>, M3) (so that
the cube [m, M] contains all observations of the dataset). Let us also define the two points
A= (Ml, my, M3) and B = (ml, Mz, M3).
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Fitted CDF on a diagonal projection Value1 o Empirical CDF on a diagonal projection Value
0.8 0.8
0.6 0.6
0.4 04
0.2 0.2
(a) Fitted function 00 (b) Two-dimensional diagonal projection 00

FIGURE 6: Level curves of the fitted function Fy (left panel) and the empirical CDF Femyp (right panel),
on several points of the diagonal plane m + a(A — m) 4+ b(B — m), as a function of the abscissa a and the
ordinate b (right panel).

Suppose that the true distribution of the data set is given by the law of a vector (X1, X3, X3),
and suppose that we are interested in estimating the CDF of the univariate random variable

Xi—my Xp—my X3—m3
Z :=max s , .
My —my My —my M3 —m3

In Figure 5 we have drawn the estimated CDF of Z coming from our construction and using
PlZ <a]l =P[X| <mj +aMy —my), ..., X3 <m3 + a(M3z — m3)]. More precisely, the figure
shows the values of the function Fy that we constructed, evaluated at several points of a
diagonal m + a(M — m), for different values of a. Despite that the fit is not perfect compared
to the empirical values (the fits of the bivariate projections in Figure 2 were not perfect either),
we observe that the estimated univariate CDF behaves normally (starting from O up to 1 and
increasing).

Along the same lines, on the right panel of Figure 6, we have drawn values of the fitted
function Fy for points belonging to a plane m + a(A — m) + b(B — m), for different values of a
and b (left panel), the empirical counterpart is also drawn (right panel).

We can check that, again, the fitted function behaves normally and is increasing over
each component. The admissibility problem can arise even for functions increasing on each
components, with values in [0, 1], as this requirement is not sufficient to define a CDF having
positive cross derivatives.

At last, we have conducted the same analysis on other datasets of the R Software library
datasets. Results are gathered in Table 3. For some datasets (stackloss, rock), the estimated
values of R are not negligible and more investigations are needed, i.e. change in the bivariate
projections, in the one-parameter link function ¢y, or in the characterizing function m. For
other datasets, we obtain very good numerical results, with sometimes estimated ratios R
of order 107, and the MathAchieve dataset also leads to a very good global fit of the
trivariate distribution. In our experiments we did not use the (tedious) parametric expressions
of the bivariate projections density, but instead some numerical differentiation. As a result, the
distance between the proper CDF F* in Proposition 4.1 and the obtained fitted function would
probably be comparable to the numerical errors induced by the numerical differentiation, so
that we did not build this proper CDF. We have presented here a detailed procedure for a
specific one-parameter class of characterizing functions. Introducing more parameters would
logically result in smaller ratios R.
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TABLE 3: Final estimated failure ratio R and distance § to empirical for different datasets or for different

considered columns. Results are sorted by estimated ratio R. Details of each bivariate fit are omitted

here. The horizontal dashed lines highlight the previously detailed case study. The horizontal plain line
separates the cases with estimated failure ratio greater than 0.05.

Dataset (columns) Link function ¢y (parameter )  Estimation of R Distance §
MathAchieve(4,5,6) (4.2.1) Clayton (0 = 1.10) 0.000003 92 0.006 324 558
LifeCycleSavings(1,3,5) (4.2.5) Frank (9 = 2.15) 0.000 136078 0.075 148513
LifeCycleSavings(2,3,5)  (4.2.9) Hougaard (6 = 0.66) 0.000243 695 0.071234939
LifeCycleSavings(1,2,5)  (4.2.9) Hougaard (6 = 0.96) 0.000365772 0.068 639313

" LifeCycleSavings(1,2,3) ~ (4.2.9) Hougaard (6 = 0.768) ~ 0.000872 00332

airquality(1,2,4) (4.2.1) Clayton (0 = 0.61)  0.003274217  0.026502691
airquality(1,3,4) (4.2.5) Frank (9 = —3.57) 0.022312892 0.010637131
mtcars(1,5,6) (4.2.5) Frank (9 = —5.55) 0.032730639 0.026 896 243
mtcars(3,4,6) (4.2.4) Gumbel (8 = 5.95) 0.033 680629 0.034 147215
swiss(1,2,3) (4.2.9) Hougaard (9 = 1.12) 0.056 176 129 0.013 166 825
trees(1,2,3) (4.2.1) Clayton (8 = 1.24) 0.058231572 0.021 837067
stackloss(2,3,4) (4.2.5) Frank (0 = 3.14) 0.076 542 359 0.037 345426
rock(1,2,3) (4.2.6) Joe (6 = 1.00) 0.099751 509 0.028 614 845

The proposed method cannot guarantee that the final fitted multivariate function F does not
correspond to a signed measure. However, as a conclusion of this numerical investigation, the
following advantages are of practical utility.

e The obtained fitted distribution has exactly the prescribed projections, by construction.

e The Kolmogorov—Smirnov distance between the final fitted function and a proper CDF
is bounded by a quantity R that can be estimated, and is small in our experiments. Thus,
the fitted function can be directly used for many practical applications.

e One can build a proper CDF from the final fitted function. In such a case, the projections
of this proper CDF are at maximal distance R from the prescribed ones.

5. Conclusion

In this paper wee have considered specific multivariate distributions, belonging to a class
which was called projective. They rely on a linear link between some functional of the
considered distribution and their multivariate margins. The choice of a linear link is not as
restrictive as one would initially imagine, since it covers a variety of classical distributions
from elliptical distributions to some natural survival models, as presented in Section 3.

In theory, for these distributions the compatibility between given multivariate margins and
multivariate distribution is automatically ensured, by definition, and the coefficients linking
multivariate margins with the whole distribution are easily obtained using, for example,
Proposition 2.2, (2.6), and (2.7).

In practice, when dealing with a given dataset, one possibility is to use class projective
distributions, as those described in Section 3 (elliptical distributions, specific survival model,
etc.), and estimate its parameters. This way fitted projections are necessarily compatible
with each other, and the admissibility is ensured for the resulting multivariate construction
having prescribed projections. However, the fitted projections are then modeled by the same
parametric family of functions.
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Another possibility is to assume the validity of the linearity assumption for some charac-
terizing functions belonging to a set of functions, as described in Section 4. In this case, given
a data, fitted multivariate marginals, and a chosen characterizing function m, the coefficients
and the expression of the candidate function for the whole multivariate distribution are easily
obtained. This allows a huge variety of fitted projections. It remains to verify whether the fitted
function with prescribed projections is a valid distribution, as done theoretically in Section 3.2
(but it involves many chain rule differentiations) or numerically in Section 4.2. In the latter
case, it is always possible to build a proper multivariate CDF while controlling the distance to
the prescribed projections, as detailed in Section 4.1.

At last, other characterizing functions can be tried, eventually relying on several parameters.
This way one can theoretically build new classes of projective distributions, or try to satisfy, at
least numerically, the validity of the fitted functions on some data.
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