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SUMMARY
Visual simultaneous localization and mapping (VSLAM) is a relevant solution for vehicle localiza-
tion and mapping environments. However, it is computationally expensive because it demands large
computational effort, making it a non-real-time solution. The VSLAM systems that employ geomet-
ric reconstructions are based on the parallel processing paradigm developed in the Parallel Tracking
and Mapping (PTAM) algorithm. This type of system was created for processors that have exactly
two cores. The various SLAM methods based on the PTAM were also not designed to scale to all
the cores of modern processors nor to function as a distributed system. Therefore, we propose a
modification to the pipeline for the execution of well-known VSLAM systems so that they can be
scaled to all available processors during execution, thereby increasing their performance in terms of
processing time. We explain the principles behind this modification via a study of the threads in the
SLAM systems based on PTAM. We validate our results with experiments describing the behavior
of the original ORB-SLAM system and the modified version.
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1. Introduction
The implementation of software for mobile robots using a distributed approach allows an increase
in resources for data processing and storage and the integration of static equipment for remote soft-
ware execution using a virtually unlimited energy source. The possibilities of adding resources are
many, as are the benefits, and spread out over many areas, such as access to image libraries, maps,
trajectories, and data objects (big data) as well as access to on-demand parallel computing systems
for statistical analyses, learning, and trajectory planning. As long as they have the means to transmit
data, small and low-cost robots can have limitations in computational power, storage, and energy
source bypassing, allowing a significant improvement in their operation. On the other hand, in recent
years, general-purpose processors have increased the number of cores and threads available, thus
allowing the construction of robots with higher computational capacities without the need for data
transmission for remote processing.
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A common feature of the two examples of computational power augmentation cited in the previous
paragraph is the increase in resources for parallel computing, either through multiple machines or
the existence of multiple cores in the processors. Indeed, the availability of these resources does not
make them immediately available to the fullest through unmodified programs. As an example, visual
simultaneous localization and mapping (VSLAM) algorithms based on geometric reconstructions are
systems that can benefit when modified to run in parallel on the various cores of the same machine or
a weakly coupled system. However, these algorithms commonly do not scale to all available cores,
be they on the same processor or distributed over a local network.

The simultaneous localization and mapping (SLAM) problem is considered to be fundamen-
tal in terms of mobile robots and has therefore been thoroughly researched in recent years.1, 2 Its
importance rests, in part, on the need for automatic operation, as the robots may need a map of the
environment for construction. In addition, navigation can be done independently of GPS signals, thus
increasing a robot’s ability to operate automatically in shady areas such as mines and landslides.

SLAM has one variable, called VSLAM1, which uses images as an external information source.
Reference-based approaches extract points of interest when rendering the captured images. These
points are key in VSLAM systems built on visual odometry3, 4 that use motion prevention algo-
rithms, such as the five-point algorithm5 or dot algorithm,6 in the process of geometric reconstruction
and mapping. However, in addition to the application of motion, geometric reconstruction-based
SLAM systems typically have a map optimization step involving nonlinear adjustments of the three-
dimensional location of the reference points and robot pose.2, 7 This step takes place locally or all the
way through the navigation loop when a loop closure is detected. Loop closure detection is also a key
step in modern VSLAM systems8 and a way to implement the methods using bag of words2, where
the visual keywords are the descriptors. Performing all of these operations requires consideration
of computational resources (especially when implemented in embedded systems), as the operations
involve elaborate mathematical operations such as point-of-interest extractions, descriptor calcula-
tions, and pose and reference adjustments. In addition, they should run several times per second in
real-time applications. If the performance is not sufficient to attend to these requirements, the system
needs to move slowly so as not to lose a number of landmarks and produce an incomplete map.

Therefore, in this paper, we propose a solution to the slow-down problem which occurs when the
system needs to wait for the conclusion of the extraction of points of interest and calculations of the
descriptors in a VSLAM algorithm. Our contribution consists of:

• modifying the execution line responsible for tracking by moving the code that performs the image
processing to another execution line. Doing so turns the SLAM system into a scalable version in
terms of the number of processors in multiprocessors or multicomputer systems;

• decreasing the average time that the system requires for the completion of the pose estimations and
point processing for each image by adding the ability to perform multiple image-processing steps
in parallel, including point associations, pose adjustments, and also the processing of other images.
With this improvement, the system can move faster without increasing the number of tracking
failures caused by the low number of associations between points of interest in consecutive images.

2. Theoretical Foundations
Early implementations of VSLAM using indirect methods could not perform the adjustments of
poses and points and process more than one image at a same time because the vast majority of com-
puters had single-core processors. These systems had difficulty operating online because a significant
number of operations need to be performed between the capture and processing of two consecutive
images. The paradigm shift occurred with processors with more than one core and the publication of
Parallel Tracking and Mapping for Small AR Workspaces,9 describing the technique used in PTAM.
Its main contribution was the new approach used for the mapping and localization of tasks. In PTAM,
there are two lines of execution working in parallel, in which, succinctly, a line of execution is
responsible for the tracking of reference points in the images, and the other line is responsible for the
optimization of the position of the reference points and the camera poses in space. More specifically,

1There is an algorithm called vSLAM based on cameras, but that also uses a wheel odometer.
2A representation that attempts to characterize all of an image, or most of it, by summarizing a descriptor statistic for
all points of interest in each region.
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a line employs heuristics for point associations, performing the estimation of the expected position
of the points of interest in an image from the projection of the reference point employing the trans-
formation corresponding to the most recent displacement of the camera and the calibration matrix.
The other thread performs the nonlinear minimization of the reprojection error for the initial values
using a sliding window approach.

Although the PTAM introduced important ideas, its design for application in systems of aug-
mented reality is a limiting factor for its use in the SLAM of large areas. Therefore, researchers
created the SLAM software using the ideas present in PTAM, and other techniques were added
for the purpose of mapping large areas while locating the camera in them. The Orb feature-based
SLAM (ORB-SLAM), ORB-SLAM2,10 Scalable framework for Visual Simultaneous Localization
and Mapping (ScaViSLAM),11 and Stereo Parallel Tracking and Mapping (S-PTAM)12 are examples
of this type of system. The ORB-SLAM and ORB-SLAM2 use several ideas from PTAM, adding,
among other improvements, the use of the ORB,13 (a point-of-interest extractor and descriptor with
low computational complexity14), along with support for the detection of loop closures employing
the bag-of-words approach as well as loop optimization.

The third SLAM software example based on visual odometry is the S-PTAM. It also extends the
ideas developed in PTAM regarding the tracking and parallel mapping strategy by adding a third
thread responsible for detecting loop closure in the trajectory. Additionally, the S-PTAM employs
two cameras for operation using stereo vision, allowing the creation of a map with measurements
close to the actual values, rather than being related to these actual values by a scale factor, and avoids
the initialization problems quite common in monocular systems.12

Finally, ScaViSLAM11 is a SLAM software that employs a double-window optimization scheme
and light constraints that the authors claim is superior to the active window approach and fixed
frames. However, ScaViSLAM maintains the organization that presents the front-end and back-end
division by also extending the basic ideas of PTAM.

By observing Figs. 1, 2, and 3 and the ScaViSLAM description, it can be seen that all of them
have a line of execution that is responsible for performing the tracking of points between successive
images, while a second line is responsible for the adjustment of a local map and, in the case of ORB-
SLAM2 and S-PTAM, a third line is responsible for loop-close detection. Thus, it is clear that these
systems employ a division in at least two lines of execution, then add a third for the loop closure
detection, followed by the optimization of the looping trajectory. The optimization process uses this
division because image capture can be time-consuming, thus preventing online operation.

Hence, we propose to increase the parallelization of tasks further by considering the processing
of the images. Since identifying points of interest and calculating descriptors can take a considerable
time in online operations, increasing the parallelization, along with pipeline operation, is expected to
increase the rate at which images are analyzed as well as the number of poses estimated per second.
An illustration of the new ORB-SLAM2 organization following the application of our proposal is
shown in Fig. 4.

3. Proposed Modifications
As previously stated, Figs. 1, 2, and 3 show that these systems have an extraction step for points
of interest, with descriptor calculations being done during image processing. The operations in the
execution line stay in two main groups, that is, the ones related to the extraction of the points of
interest and descriptor calculations, and the ones related to operations dealing with the association of
these points between successive images or other tasks, such as the decision to insert new keyframes.
Thus, during the normal operation of such a system, thread 1 continuously executes this sequence of
tasks, as shown in Fig. 5.

A relevant point to observe in Fig. 5 is that the thread responsible for the adjustment of poses and
points does not execute synchronously with the association step but at constant time intervals instead
(5 ms for PTAM and 3 ms for ORB-SLAM2). One of the results of the work of this second thread,
the optimized camera pose, is used in thread 1, characterizing the situation as a synchronization
problem between processes or threads. Thread 1 needs the camera pose for calculating the estimated
projection of the reference point in the image. In systems using quaternions or matrices for the
parameterization of the pose, the projection of reference points in images of calibrated cameras can be
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Fig. 1. Minimalist flowchart and organization of the threads in the PTAM. Based on ref. [9].

Fig. 2. Minimalist flowchart and organization of the threads in the ORB-SLAM2. Based on ref. [15].

found directly via x = X � p,16 thus decreasing the time required to associate dots between successive
images, provided the estimated camera pose is available. This method heuristically reduces the time
required for the point associations, allowing significantly more time to be spent on the calculation of
the points of interest and descriptors.
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Fig. 3. Minimalist flowchart and organization of the threads in S-PTAM. Based on ref. [12].

Fig. 4. Minimalist illustration of the sequence of operations performed by the ORB-SLAM2 after the
modification proposed in this work.

Figures 6 and 7 show that the time spent processing the points of interest is greater than the time
spent looking for associations between points in successive images. From this observation, the ques-
tion arises as to how to reduce the time that the system spends waiting for the conclusion extraction
of points of interest and calculation of the descriptors steps. Decreasing the number of calculated
points may not be a possible option, as doing so increases the chances of problems occurring during
the execution of the VSLAM algorithm, for example:

• impossibility of selecting good pairs of points when the difference between the first point selected
to complete the pair and the second candidate is low, indicating a high chance of the association
being wrong;17

• the loop closure detection algorithm using the bag of words uses the point of interest for the
recognition of previously visited places. The higher number of points of interest makes it less
likely that images from different locations will be considered as being from the same location;
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Fig. 5. Minimalist illustration of the sequence of operations performed by the two execution lines traditionally
implemented in a Visual SLAM system based on indirect methods and geometric reconstructions.

Fig. 6. Average times for the steps used in the association of points of interest between images, extraction
of those points of interest, and calculation of the descriptors, plus total average time between images. This
reference implementation of ORB-SLAM2 ran on a 7500U i7 processor.

m
s

Fig. 7. The outliers of the times for estimating poses and points in space. This reference implementation of
ORB-SLAM2 ran on a 7500U i7 processor.

• when using the Random Sample Consensus (RANSAC) algorithm18 in the camera motion estima-
tion step, a lower probability of incorrect associations between points causes the number of tests
required for a specified certainty to be found via a smaller set of free outliers.19 The extraction
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Fig. 8. A minimalist illustration of the sequence of operations performed when there are three threads available
– threads 1 and 2 perform the extraction of points of interest and the calculations of the descriptors, respectively,
and the third thread performs the association of points and the adjustments of poses and points.

of a small number of points of interest can prohibit a good selection of associations between free
outliers;

• even if the association algorithm guarantees a low probability of incorrect associations, some
of these points may be on the same plane. In this case, the motion estimation algorithm will
fail22 because the linear system that has been formed does not have a unique solution.17 Thus, the
calculation of the minimum number of retries used by RANSAC returns a value below what is
required. One way to lessen the chance of the occurrence of this problem is to use many points
scattered throughout the image.

Thus, another approach is desirable for decreasing the time that the system spends waiting for
the conclusion of the extraction of points of interest and calculation of the descriptors steps, one
that leaves decreasing the number of points of interest to the latter option. The proposed solution
(Figs. 4 and 8) consists of modifying the execution line responsible for tracking, that is, moving the
code that performs the image processing to another line. The goal is to decrease the average time
that the system requires for the completion of the pose estimation and point processing for each
image by adding the ability to perform point associations and pose adjustments in parallel while
also processing other images. In order to accomplish this task, we have modified the sequence of
operations in Fig. 5 so that they are performed in a pipeline with at least two lines of execution. In
this approach, the system does not have to wait for the association to begin processing the next image
via completing the extraction of points of interest and calculations of the descriptors. In parallel, in
thread 3, the associations of points of interest and adjustments of poses and points are made when
adding a new keyframe.

The implementation of this solution uses a software mechanism to distribute the images or parts
of images to be run on the same machine or connected over a network. The data distribution uses
the Message Passing Interface (MPI)23 for communication. When sending a message, the imple-
mentation does not wait for confirmation of receipt. Only when sending a new message to the same
process is most recently sent data verified. A queue of available processes on the sender (thread 1)
manages the destinations of messages, and an RB tree is used to organize the received messages on
the processes (thread 4) responsible for data block reassembly. The data blocks contain the positions
of points of interest and their descriptors. The objective is to minimize the wait time when sending
a message and maximize the computation time.24 Figure 9 illustrates the processes for four images
and two processing threads (threads 2 and 3).
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Fig. 9. Timeline for the image distribution to threads 2 and 3 and points of interest and descriptors to thread 4.

Fig. 10. Illustration of the hardware organization for experiment 2.

Fig. 11. Illustration of the hardware organization for experiment 3.

4. Methods and Experiments
The objective of the experiments is to see if a version of ORB-SLAM2 with the proposed modifica-
tions uses a shorter time for the estimation of poses while keeping the number of tracking losses and
the RMS error value low. Hence, we evaluated the original system and modified versions using the
KITTI dataset21 (as it is a framework accepted as a reference by researchers for the quality evaluation
of VSLAM algorithms).

The unmodified version of ORB-SLAM2 is described in the figures as a reference for comparison
in all results. Both the ORB-SLAM2 and the modified version use the g2o optimization engine, the
difference being the distribution of the image-processing tasks employed in the modified version.
This new version is tested using three test cases, which are

1 the entire system was run on a single machine, and scaling was to all available processor threads
on that machine. In this case, the execution environment was identical to that of the ORB-SLAM2
reference implementation. In the experiment, a notebook with an Intel i7 7500U processor and 16
GB RAM was used;

2 extractions of points of interest and calculations of descriptors was performed on another machine
with a performance similar to that of the machine performing the adjustments of poses and points
(Fig. 10). In this case, the system scaled to all available processor threads on this other machine
(four threads);

3 extractions of points of interest and calculations of descriptors were run on other machines with
lower performances than those responsible for adjusting poses and points. In this case, the system
scaled to all available threads on these weaker CPUs (4 threads on each CPU, totaling 16).

The experiments employing a distributed execution (2 and 3) were performed using the setups
in Figs. 10 and 11. In experiment 2, communication was accomplished through a Gigabit Ethernet
network, while, in experiment 3, the transmission used the same switch but a Base 100 Ethernet
network configuration, as Raspberry Pi 3 only supports the Base 100 Ethernet network.

When running, the modified system sends the images to the auxiliary processors that calculate the
points of interest and their descriptors. The experiments were repeated for various combinations of
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Table I. Transmission rates in the experiment using Raspberry PI.

Incoming Outgoing

1 Intel NIC-1 ARM NIC-No divisions-Intel NIC 2.09 Mbit/s 7.59 Mbit/s
1 Intel NIC-1 ARM NIC-No divisions-ARM NIC 7.31 Mbit/s 2.13 Mbit/s
1 Intel NIC-4 ARM NIC-No divisions-Intel NIC 15.25 Mbit/s 54.39 Mbit/s
1 Intel NIC-4 ARM NIC-No divisions-ARM NIC 14.77 Mbit/s 4.29 Mbit/s
1 Intel NIC-4 ARM NIC-16 divisions-Intel NIC 12.94 Mbit/s 369.49 Mbit/s
1 Intel NIC-4 ARM NIC-16 divisions-ARM NIC 90.94 Mbit/s 3.68 Mbit/s

image divisions. Starting with sessions using unmodified images, experiment 2 was repeated until
the images were processed into two rows and two columns. In the latter case, different processors
handled different parts of the same frame at the same time. Experiment 3 was repeated, in the same
way as in experiment 2, until the maximum image divisions consisted of two rows and eight columns.

The following metrics were evaluated for these experiments:

• tracking failures: the number of tracking failures indicates the times that the map is broken. A
small number of tracking failures is desirable;

• average time for pose estimation: the average time that the system needs to estimate the pose of
the camera in the space. A shorter average time for pose estimation is desirable;

• pose estimation time dispersion: this metric indicates how the time needed for pose estimation is
distributed. A low dispersion is desirable;

• CPU usage: the CPU usage on the processor responsible for pose adjustment. With low CPU
usage, a unique machine can run more processes responsible for pose adjustment;

• RMS error: the map RMS error is the metric used to indicate the map quality

5. Results and Discussion
Three experiments were executed to verify the performance of the ORB-SLAM2 VSLAM system
when modified according to the improvements proposed in this work. In all of them, we used a
parallelization method for task distribution and the messaging paradigm. The images were either
distributed to the process in a whole fashion or divided into several smaller images for distribution.
The software library used in the distribution was OpenMPI.25 As for the test data, the experiments
use the monochrome image sequence 00 of the KITTI dataset.20, 21

Therefore, the first experiment examined the performance when the whole system runs entirely on
a single computer. In the second set of experiments, the objective was an investigation of how the sys-
tem scales when executed in a distributed fashion in machines with similar performance. The third
set of experiments was used to investigate the performance when a mixed configuration, in which
a higher-performance machine made the adjustments of poses and points, and several machines
of smaller capacity were used to perform the extraction of points of interest and calculations of
descriptors, was employed.

As for bandwidth requirements, it is essential to note that there are two distinct cases. The first
case involves the transmission of images to the system if it is located in a different location than
the capture equipment. The second case involves the communication between the nodes involved
in the processing of the images. The first case’s requirements are the same as those for a video
transmission system, with a bandwidth of 5 Mbps being sufficient for 30 frames per second of Full-
HD video encoded using the standard for H.264 video compression. The second case’s requirements
involve the transmission of images, or part of images, between the CPUs responsible for extracting
the points of interest and calculating the descriptors. In this case, as the images are already decoded,
the required bandwidth grows considerably, so a network must connect the CPUs using at least 100
Mbps bandwidth. For example, the rates for video transmission are presented in Table I for the
experiment using Raspberry PI.

5.1. Performance using the single-computer approach
Here, we investigate whether the modifications improve the performance in a direct comparison
with ORB-SLAM2 on the same machine. For the reference version of ORB-SLAM2, the tests were
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Fig. 12. The number of tracking failures when the whole system is running on a single machine. The number of
processes corresponds to those responsible for extracting the points of interest and calculating the descriptors.

Fig. 13. Time needed for the estimation of the pose when the whole system is running on a single machine.
Even with the machine running more processes than the number of processor cores, the system performed better
than the original ORB-SLAM2 version in all tested cases.

performed under a processing limitation of 10 images per second as well as without this limitation,
allowing the system to run at the highest possible speed in the machine in which it executes. The first
notable observation is that, without the limitation of 10 frames per second, tracking failures occur in
all mapping attempts using the unmodified version of the ORB-SLAM2. So, we decided to use only
the version with the time restriction because when tracking failures occur, the final quality of the map
is compromised. The results obtained for the tracking failure metric are displayed in Fig. 12.

The second metric is the average time for the estimation of the camera pose and positioning of
the reference points (see Fig. 13). In this case, the objective is to see if the system with the proposed
modifications can estimate the poses and reference points in less time than the original system.

The third metric applied is the system’s CPU usage (see Fig. 14). This metric is directly related to
energy consumption.

According to the graph in Fig. 15, when not running more processes or threads than the number
of cores available, the system has a lower CPU usage than the original ORB-SLAM2 version.
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Fig. 14. Boxplot diagram for pose estimation when the entire system is running on a single machine. Even with
the machine running more processes than the number of processor cores, the system performed better than the
original ORB-SLAM2 version in all tested cases.

Fig. 15. Boxplot diagram of CPU usage when the whole system is running on a single machine.

The fourth metric is the first in the group that describes the qualitative and quantitative map
analysis. The reference map for the trajectory, that is, the map obtained with the ORB-SLAM2 refer-
ence implementation, and the three maps generated by the version with the proposed modifications
(varying only the number of divisions in an image) are displayed. We chose these settings because
they correspond to the situations in which the best results for the three modification situations were
obtained for the previous metrics when compared with the original version. As for the results, the
map presented in Fig. 16 shows that all versions of the system have a positioning error that sometimes
becomes very noticeable. This error is cumulative and is caused by noise in the measurements and
the inability to estimate the cameras pose accurately. The error propagates in a decreasing fashion
only when the system detects a loop closure and performs the bundle adjustment over the entire loop
path. In terms of straight lines, the cumulative error causes an extension or shortening of the lines.
In terms of curves, the error causes an increasing or decreasing difference in the aperture angle and

https://doi.org/10.1017/S0263574720000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000697


760 Distributed approach for geometric reconstruction-based VSLAM

Fig. 16. Map comparison between the reference values for the pose (in blue), calculated using the reference
implementation of the ORB-SLAM2 and the modified implementation. The entire system was run on a single
machine.

deviations in the camera pose. All maps generated by the modified system have a shape similar to
that of the original map. However, there are places where they are further from the reference than the
original ORB-SLAM2 map and closer on others.

Finally, Table II displays the number of tracking failures together with the RMS errors for all runs
performed on the same machine. The values in the table show that when the number of tracking
failures is greater than zero, the RMS error generally is very high. In the cases in which this situation
does not occur, a tracking failure occurred at the beginning of the mapping.

The results show that the system presented a real decrease in the time spent on the estimation of
poses and points. In this experiment, this result is evident when using only one processor core for
this purpose. In this case, the machine doing the estimates is saturated due to the use of the other
cores in the other SLAM tasks. In the following experiments, the extraction of points of interest and
calculations of descriptors is performed on different machines, while the rest of the SLAM system
runs on a single machine.

5.2. Performance of the homogeneous distributed approach
In the second experiment, the first metric presented is the number of tracking failures. The graph
in Fig. 17 shows that, in all configurations where the image is not split between processes, there
are no tracking failures. Furthermore, in Figs. 18 and 19, the time used in the estimation of the
pose obtained in the second experiment is presented. It can be seen that the system presents a better
average performance than the original version. It is notable that the average time for the estimation
of the pose and points decreases as the number of processes increases, as the system is exhibiting
asymptotically horizontal behavior.

Figure 20 shows the CPU usage for the machine responsible for the execution of the pose estima-
tion. These values are much lower than those in Fig. 15. Hence, when another machine performs the
extraction of points of interest and calculations of descriptors, a bit more than a core is required for
the association and optimization steps. This reduced requirement is an indicator that a single machine
can adjust multiple maps at the same time while using a bit more than one processor core per map.
The results obtained for the maps, shown in Fig. 21, are very similar to those of the first experiment,
with the trajectories close to that produced as a result of the execution of the original ORB-SLAM2.
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Table II. The tracking failures and RMS errors (m’s) when the entire system is executed on the same machine.

Iteration ORB-SLAM2 1P-1L-1C 1P-2L-1C 1P-2L-2C 2P-1L-1C 2P-2L-1C 2P-2L-2C 3P-1L-1C 3P-2L-1C 3P-2L-2C 4P-1L-1C 4P-2L-1C 4P-2L-2C

1 0-9.23 0-10.08 0-10.27 0-12.11 0-9.26 0-9.08 0-11.28 0-9.73 1-48.51 0-9.29 0-10.99 0-10.00 0-7.96
2 0-10.45 0-10.08 0-10.53 0-11.83 0-6.38 0-6.17 0-11.83 0-9.02 0-10.31 0-8.95 0-9.59 0-7.79 1-52.55
3 0-9.73 0-11.18 0-11.10 2-53.07 0-9.04 0-11.57 0-14.11 0-10.16 0-8.39 0-13.18 0-7.45 0-7.67 0-12.39
4 0-11.21 0-10.85 0-9.99 0-11.01 0-10.51 0-7.96 2-52.76 2-51.73 0-7.89 0-8.63 0-10.09 0-10.96 1-26.85
5 1-47.26 0-9.57 0-6.75 1-51.99 0-11.99 0-7.05 0-10.10 0-9.70 0-7.95 0-13.76 0-15.85 0-9.99 0-10.25
6 0-11.24 0-9.92 0-9.57 0-15.98 0-10.06 0-8.77 0-10.93 0-12.64 0-6.50 0-13.11 0-11.35 0-10.40 0-10.10
7 0-9.14 0-14.64 0-11.91 0-11.15 0-9.36 0-6.69 0-9.19 0-9.59 0-42.93 0-13.17 0-10.17 0-9.61 2-49.50
8 0-9.63 0-8.22 2-49.74 0-12.23 0-11.25 0-8.91 2-52.23 0-9.43 0-10.64 0-12.57 0-10.18 1-8.31 2-78.87
9 0-8.05 0-10.52 0-11.30 0-11.32 0-12.73 0-9.63 0-18.45 2-52.49 0-8.82 1-7.55 0-21.28 0-11.10 0-8.13
10 0-10.04 0-9.07 0-8.25 1-51.63 0-10.63 0-7.30 0-10.10 1-47.23 0-8.89 0-12.36 0-10.23 0-8.29 0-12.28
11 0-8.01 0-10.62 0-8.10 0-12.64 0-9.13 0-9.00 0-10.79 1-52.02 0-7.80 0-11.89 0-9.10 0-9.12 0-10.02
12 0-9.23 0-9.71 0-7.04 0-14.50 1-58.65 0-8.91 0-14.69 0-12.34 0-9.66 0-9.66 0-9.30 0-7.14 0-12.92
13 0-10.08 0-10.20 0-9.03 0-11.63 0-10.25 0-11.64 0-12.65 0-6.51 0-8.86 2-50.30 0-8.42 0-8.92 0-13.90
14 0-9.46 0-8.98 0-8.60 0-14.97 0-10.78 0-6.98 0-11.97 0-9.68 2-49.48 0-10.01 0-9.02 0-9.42 0-14.08
15 0-9.17 0-8.18 0-9.22 2-49.99 1-47.57 0-9.32 1-53.33 0-12.27 0-9.48 1-52.72 0-8.97 0-27.07 0-11.97
16 2-51.69 0-10.56 2-50.64 2-51.36 0-10.16 0-11.95 0-9.33 0-11.11 0-8.59 0-11.17 0-7.70 0-8.14 1-30.27
17 0-9.45 1-48.83 0-10.01 0-10.98 0-12.50 0-9.79 0-11.22 0-19.53 0-8.85 0-11.64 2-52.94 2-49.19 0-10.38
18 0-10.30 0-10.23 0-10.22 0-13.67 0-9.22 0-12.47 0-10.04 1-24.05 0-7.64 0-10.48 0-8.38 0-6.26 2-50.22
19 0-9.24 0-9.60 0-10.41 0-7.84 1-10.16 3-48.92 0-11.38 0-8.84 0-8.69 0-8.57 0-10.31 0-7.52 0-13.29
20 0-10.27 0-11.52 0-10.15 0-13.08 0-12.89 0-7.27 3-59.44 0-7.88 0-8.05 0-10.00 0-8.62 0-9.36 0-11.93
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Fig. 17. The number of tracking failures when the extraction of points of interest and calculation of descriptors
is performed on another machine using an i7 3517U processor and communication over the Gigabit Ethernet
network.

Fig. 18. The average time for pose estimation when the process responsible for the extraction of points of interest
and calculating descriptors executes using a distributed approach on a machine with an i7 3517U processor.

As in the first experiment, Table III shows the number of tracking failures and RMS error for each
iteration performed. Again, the RMS error is high when tracking failures exist, except for the cases in
which it occurs at the beginning of the mapping. The measurements shows that is possible to imple-
ment a VSLAM system with distributed processing that is able to operate in an online fashion when
the machines used in the extraction of points of interest and optimization of poses and positions of
the reference points have a similar processing capacities and communicate via a high-speed network.
The number of estimated poses per second is a function of the number of processors employed in
the system, although the function exhibits asymptotically horizontal behavior, as shown in Fig. 18.
This behavior indicates a lower limit for the time necessary for pose estimation since the horizontal
asymptote has a value close to that obtained in Fig. 13 for the first experiment. It is also noticeable
that, contrary to the first experiment, the system tends to decrease the time for pose estimation when
adding new processors. This decreasing of the time indicates that the poor results for more than one
process observed in the first experiment are due to the saturation of processes competing for the pro-
cessor cores. As for the resulting map, the overlapping drawings show that the map quality is quite
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Fig. 19. The boxplot of the average time for the estimation of the poses and positions of the reference points
when the processes responsible for the extraction of points of interest and descriptor calculations executes on
another machine with a performance similar to that of the machine responsible for the adjustment of poses and
point positions.

Fig. 20. CPU usage when the system executes using a distributed approach on machines with similar processing
power.

similar, displaying slightly better results for some cases (as we can see in Table III) than the original
system exhibited.

5.3. Performance of the heterogeneous distributed approach
The objective of the third experiment is to evaluate if it is possible to perform the SLAM in an online
and distributed fashion when using lower-performance processors – in the extraction of points of
interest and calculations of descriptors – compared to the processor responsible for the adjustment of
poses and points. In this case, the computer equipped with the i7 7500U processor divides and dis-
tribute the images and reassembles the blocks of points of interest and descriptors as well as performs
the associations and optimizations of the poses and reference point positions. For the execution of
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Table III. The tracking failures and RMS errors (m’s) for processes running on the 3517U i7 processor.

Iteration ORB-SLAM2 1P-1L-1C 1P-2L-1C 1P-2L-2C 2P-1L-1C 2P-2L-1C 2P-2L-2C 3P-1L-1C 3P-2L-1C 3P-2L-2C 4P-1L-1C 4P-2L-1C 4P-2L-2C

1 0-9.23 0-10.43 0-7.08 1-49.56 0-9.09 0-10.23 0-10.62 0-10.56 0-9.20 0-15.63 0-7.68 0-10.66 0-21.38
2 0-10.45 0-28.88 0-11.19 0-11.39 0-11.15 0-12.50 0-9.09 0-9.78 0-7.24 0-14.13 0-17.54 0-9.41 1-111.80
3 0-9.73 0-11.27 0-9.40 2-50.57 0-8.71 0-7.08 0-10.21 0-8.13 0-15.57 0-10.81 0-9.88 0-10.91 0-14.79
4 0-11.21 0-9.44 0-8.32 0-11.29 0-9.84 0-7.80 0-15.87 0-9.46 1-76.81 0-13.31 0-8.47 0-9.33 0-11.98
5 1-47.26 0-9.90 0-7.98 1-51.60 0-10.11 0-6.13 0-14.72 0-7.92 0-8.55 1-53.22 0-8.10 0-11.62 0-9.19
6 0-11.24 0-8.79 0-9.28 0-11.52 0-10.56 0-11.02 2-51.12 0-7.65 0-14.65 0-9.40 0-9.66 0-9.43 1-49.61
7 0-9.14 0-9.85 0-8.63 0-7.88 0-9.73 0-9.05 0-11.88 0-8.90 0-8.65 0-9.90 0-10.12 0-8.21 1-52.33
8 0-9.63 0-9.64 0-8.26 0-11.29 0-10.07 0-8.44 0-11.38 0-7.96 0-8.68 0-13.23 0-7.23 0-9.90 0-13.02
9 0-8.05 0-10.22 0-8.76 2-49.88 0-9.65 2-10.92 0-11.84 0-13.10 0-10.56 0-9.83 0-8.86 0-10.29 1-50.58
10 0-10.04 0-9.68 0-9.43 0-11.80 0-9.11 0-9.94 0-10.22 0-10.56 0-9.91 0-11.97 0-10.59 0-11.67 0-13.91
11 0-8.01 0-9.79 0-7.13 0-11.84 0-7.26 0-6.38 0-10.17 0-9.18 0-9.30 0-7.84 0-9.72 0-8.88 0-12.25
12 0-9.23 0-8.61 0-9.55 0-10.84 0-10.03 0-6.85 2-51.46 0-9.02 0-8.12 0-11.73 0-9.10 0-8.21 0-11.34
13 0-10.08 0-8.76 0-8.46 2-52.15 0-10.04 0-9.73 0-11.71 0-7.77 0-9.89 1-51.61 0-11.36 0-8.19 0-9.43
14 0-9.46 0-9.07 0-10.61 0-14.71 0-9.02 0-11.08 0-9.66 0-13.83 3-48.41 0-10.61 0-7.59 0-7.40 0-9.86
15 0-9.17 0-9.10 0-9.10 0-12.24 0-11.54 0-6.32 2-54.82 0-6.14 0-6.54 2-51.76 0-9.54 0-10.52 0-8.03
16 2-51.69 0-9.66 0-10.63 1-51.39 0-15.83 0-6.58 0-11.81 0-9.49 0-10.00 0-13.28 0-10.29 0-6.80 0-12.25
17 0-9.45 0-10.42 0-8.81 2-50.51 0-9.60 0-8.60 0-10.81 0-8.95 0-8.75 0-11.38 0-8.37 0-10.23 0-12.55
18 0-10.30 0-8.32 0-8.51 0-16.53 0-10.60 0-7.90 1-51.67 0-8.14 0-9.85 0-6.23 0-8.47 1-50.00 1-50.29
19 0-9.24 0-8.31 0-8.62 2-51.40 0-10.07 0-6.47 0-9.30 0-11.38 0-7.33 0-9.33 0-11.49 0-9.77 0-12.29
20 0-10.27 0-9.49 0-9.88 2-49.94 0-26.43 0-9.15 0-15.67 0-10.49 0-11.65 0-11.62 0-11.82 0-10.20 1-51.63
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Fig. 21. Comparison of the reference map, that is, the ORB-SLAM2 original version map, and maps created
using the modified version of the system running point extraction and descriptor calculation on an i7 3517U i7
processor communicating over Gigabit Ethernet.

Fig. 22. Number of tracking failures for the system using a distributed approach involving lower-performing
ARM processors.

the processes responsible for the extraction of the points and calculation of descriptors, we use ARM
Cortex-A53 1.2 GHz processors instantiated in a SoC Broadcom BCM2837.

This setup was designed to examine how the system behaves when scaling for a higher number
of available cores in the network and how this impacts the metrics used. In ARM processors, up to 4
processes (one in each core) are executed, with the image being divided from 1 into 16 parts using
the pattern 1, 2, 4, 6, 8, 10, 12, 14, then 16, where the first division is into two lines and all the
rest are divisions into columns. The number of ARM cores varies from 1 to 16, and communication
is through a 100 Mbps Ethernet network. The metrics are the same as the previous experiments,
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Fig. 23. The average time for the estimation of the pose when running the distributed system on several
processors with lower performance.

Fig. 24. The boxplot diagram of the average time for the estimation of the pose when using the system
distributed across several processors with lower performance.

starting with the number of tracking failures. The results for this first metric can be seen in Fig. 22,
and, according to this Figure, the distributed form system shows fewer tracking failures than the
reference system as long as the images sustain a maximum of four divisions. This result reinforces
that of the second experiment, illustrated in Fig. 17, where the rounds that did not employ divisions
of the images did not exhibit tracking failures.

Furthermore, we notice in Figs. 23 and 24 that the average time decreases with the increase in the
number of processes, as indicated initially by Figs. 18 and 19 of the second experiment.

The graph in Fig. 25 examines the CPU use metric for the process responsible for the adjustments
of poses and positioning of the reference points. In this figure, there is a significant decrease in the
average value when compared to the values obtained for the reference implementation. The results
for this graph are similar to those for the graph in Fig. 20, which indicated that the same processor
can be used to perform the adjustment of several trajectories at the same time if the extraction of
points of interest and calculations of descriptors execute in another set of processors. Hence, it is
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Fig. 25. The CPU usage for point extraction and descriptor calculations executed on lower-performance
processors.

Fig. 26. Comparison of the trajectory obtained for the distributed system running on lower-performance
processors.

possible to build a low-cost system that is scalable to produce the same quality in final maps as a
system that is executed entirely in a single machine of higher performance.

As for the map obtained, Fig. 26 presents the results containing the trajectory of the original
ORB-SLAM2 trajectory, and the trajectories obtained with 1, 2, 3, and 16 processes executing the
extraction of points of interest and calculations of the descriptors. This figure shows that that the
trajectories for multiple are very close to that of the original implementation.

https://doi.org/10.1017/S0263574720000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000697


768 Distributed approach for geometric reconstruction-based VSLAM

Table IV displays the tracking failures and RMS errors for all iterations performed in the third
experiment. From the results presented in the table, as the number of divisions of the image grows,
the tracking failures increase significantly, causing a considerable increase in the RMS error. This
behavior occurs regardless of the number of processes used.

From the results observed for the metrics used in the third experiment, it is possible that the
creation of a distributed SLAM system in which processors with different architectures and process-
ing capacities are used, as can be seen from the maps in Fig. 26. In addition, the results indicate
that higher-performance machines can be reserved for adjusting more than one system at the same
time while using cheaper machines for point extraction and descriptor calculation. The graph in Fig.
23 shows proves this point via two ARM processors achieving the same performance as a system
running on the i7 processor.

6. Conclusion and Future Work
In this work, we verified the hypothesis that increasing the number of camera poses and positions of
the points in space estimated per second by modifying the basic paradigm of VSLAM systems based
on indirect methods and geometric reconstruction was possible. The experiments showed that when
the number of processes used is less than or equal to the number of available processor cores, be
they local or remote, the system constructed to verify the hypothesis works correctly and increases
its performance as the number of processors increases, according to the metrics used. However, an
asymptotic limit exists for the maximum performance. Beyond this limit, there are no perceived
benefits in increasing the number of processes in the system.

When using the system with groups of computers with lower performance realizing the extraction
of points of interest and calculations of descriptors, the resulting map has the same quality as the
one created by the system when using only machines of the same type. This result shows that the
software is suitable for a scalable, low-cost system.

The number of tracking failures metric shows that the division of images is not a good strategy
since points of interest lying on the edge of the division of the image are destroyed. Thus, when using
this approach, in order to keep the number of tracking failures low, the points lying on edge should
be taken into account using, for example, a repeated edge when splitting the images.

As for the trajectories registered in the maps, a small drift exists when compared with the original
ORB-SLAM2 version. The drift is possibly caused by the change in the keyframe insertion logic.
One approach to solving this issue might be something like double-window optimization, such as
that proposed by Strasdat et al.11 in ScaViSLAM. It is also possible to exploit the time that the
system for the optimization of poses and points remains idle due to the random delay that can occur
with the delivery of data over the network. For doing so, a second optimization window can be used
that inserts more keyframes into the process. This approach looks to be a good strategy for improving
results, and we intend to explore it in future work.

Regarding the operation of the system in the cloud, it must be taken into account that this work
does not analyze in any manner the times necessary for the transmission of the images to the cloud.
Thus, the conclusions are valid for the distribution and processing of the images on a local network.
For systems utilizing remote processing, it is necessary to have a transmission link with enough
bandwidth to transmit the encoded images captured by the cameras such that the final quality of the
map is not impacted by the remote image processing. The required bandwidth is the same as that
for a video upload in terms of the frame rate, resolution, and codification used in the application of
the VSLAM system. This required bandwidth is different from the bandwidth for the transmission
of decoded images between CPUs in the system evaluated in these experiments. Additionally, based
on the results of the second and third experiments, the system shows considerable improvements in
the times necessary for estimation as long as there are resources for parallel processing on several
machines. This result is encouraging because the availability of this type of resource is one of the
hallmarks of modern cloud infrastructure systems.

Finally, after the conclusion of the experiments, it was noted that the heuristic used in the addition
of keyframes is very restrictive because it completely ignores the existence of time intervals between
images. This heuristic does make the system more robust by reducing the number of tracking failures,
but it wastes time slots that could be used to improve map optimization.
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Table IV. The tracking failures and RMS errors (m’s) for processes running on lower-performance processors. In this table, the value for the execution
of the reference implementation is in the upper left corner.

0-9.23 1L-1C 2L-1C 2L-2C 2L-3C 2L-4C 2L-5C 2L-6C 2L-7C 2L-8C

1P 0-9.61 0-8.29 0-9.30 0-8.14 0-13.35 2-69.24 3-483.28 4-481.29 2-481.65
2P 0-8.85 0-10.08 0-9.05 0-8.47 0-13.19 2-78.22 4-484.76 3-481.51 3-481.35
3P 0-13.54 0-8.40 0-12.06 0-8.85 0-13.75 4-92.06 3-481.86 2-481.81 2-480.86
4P 2-52.00 1-47.50 0-12.43 4-26.21 0-11.37 2-69.31 3-484.52 3-481.50 4-482.13
5P 1-46.69 2-49.73 2-49.58 2-25.01 0-18.22 8-92.64 4-484.00 3-483.09 3-481.14
6P 0-10.19 0-8.83 2-28.29 3-26.21 0-10.29 3-92.27 3-485.12 3-480.04 3-481.80
7P 0-8.84 0-7.73 0-12.59 0-11.97 0-8.26 3-69.71 4-484.66 3-480.53 3-482.15
8P 0-10.49 0-9.91 1-51.85 1-44.92 0-12.62 4-90.61 4-485.61 2-481.83 3-481.93
9P 0-7.87 0-6.04 0-10.11 1-53.65 0-7.34 3-68.74 3-482.81 2-479.93 5-481.15
10P 0-7.24 0-8.94 1-51.26 0-11.33 0-11.78 3-69.81 4-483.23 3-482.05 2-481.77
11P 0-10.77 0-7.03 0-10.36 2-25.14 0-14.99 5-93.37 4-488.40 2-482.20 4-479.60
12P 0-10.39 0-9.33 0-17.72 1-59.08 3-57.41 3-68.96 5-483.66 2-482.56 2-482.37
13P 0-10.21 0-7.00 0-13.07 1-25.04 1-26.65 1-71.34 3-483.70 3-482.35 3-481.36
14P 0-24.96 0-10.44 0-13.35 4-26.98 0-14.35 2-71.54 3-484.54 3-482.65 2-480.32
15P 0-10.31 0-7.84 1-48.84 4-61.70 0-10.68 3-70.89 5-484.89 2-482.69 4-480.18
16P 0-10.19 0-7.29 0-12.30 2-21.35 0-10.09 4-90.14 3-489.67 3-480.17 4-480.68
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Among the problems with our approach, the most notable is the increased number of tracking
losses as the number of image divisions increases. These losses occur because splitting an images
can destroy points of interest that are on the edges of the image. A possible solution is the use of
an overlapping margins when cutting pictures, which then repeats on neighboring patches. Thus,
after reassembling the descriptors, the system may discard overlapping points of interest, and several
descriptors equivalent to those of an entire image will be available, making tracking losses more
unlikely.

In future work, we intend to implement additional heuristics and a mechanism for the adjustment
of poses and points while taking these observations into account. We also intend to add overlapping
margins in image division to try to alleviate the tracking loss problem.
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