
J. Fluid Mech. (2021), vol. 906, A17. © The Author(s), 2020.
Published by Cambridge University Press

906 A17-1

doi:10.1017/jfm.2020.805

Reconstruction of turbulent flow fields from
lidar measurements using large-eddy simulation

Pieter Bauweraerts1 and Johan Meyers1,†

1Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300A, B3001 Leuven, Belgium

(Received 10 January 2020; revised 14 August 2020; accepted 17 September 2020)

We investigate the reconstruction of a turbulent flow field in the atmospheric boundary
layer from a time series of lidar measurements, using large-eddy simulations (LES) and
a four-dimensional variational data assimilation algorithm. This leads to an optimisation
problem in which the error between measurements and simulations is minimised over
an observation time horizon. We also consider reconstruction based on a Taylor’s frozen
turbulence (TFT) model as a point of comparison. To evaluate the approach, we construct
a series of virtual lidar measurements from a fine-grid LES of a pressure-driven boundary
layer. The reconstruction uses LES on a coarser mesh and smaller domain, and results are
compared to the fine-grid reference. Two lidar scanning modes are considered: a classical
plan-position-indicator mode, which swipes the lidar beam in a horizontal plane, and a
three-dimensional pattern that is based on a Lissajous curve. We find that normalised
errors lie between 15 % and 25 % (error variance normalised by background variance)
in the scanning region, and increase to 100 % over a distance that is comparable to the
correlation length scale outside this scanning region. Moreover, LES outperforms TFT by
30 %–70 % depending on scanning mode and location.
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1. Introduction

Flow field measurements in the atmospheric boundary layer (ABL) have relevance for
a broad spectrum of applications, ranging from fundamental turbulent boundary-layer
research (Gal-Chen, Xu & Eberhard 1992; Menut et al. 1999), to analysing turbulent
wakes of wind turbines (Käsler et al. 2010; Iungo, Wu & Porté-Agel 2013; Rhodes &
Lundquist 2013) to air quality studies (Wakimoto & McElroy 1986), among others. Pulsed
light detection and ranging (lidar) sensors allow taking flow field measurements almost
simultaneously at multiple locations in space, at frequencies of around one Hertz, leading
to a vast amount of measurement data (Peña & Hasager 2011). However, lidar sensors are
limited to measuring the velocity component in the direction of the beam, the so called
line-of-sight wind speed.

Several techniques exist for transforming these raw data into velocity vectors. A first
category only deals with time-averaged flow statistics, based on the estimation of the
parameters of an analytical wind speed model (see e.g. Aitken et al. 2014; Borraccino
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et al. 2017). In a second approach, the instantaneous velocity is reconstructed but only at
discrete measurement points in space using simple algorithms to transform the measured
wind speeds to velocities, e.g. assuming horizontal homogeneity, and stationarity of the
velocity field between the measured points in combination with Doppler beam swinging
lidar scan mode (Lundquist et al. 2015), or assuming zero spanwise and vertical velocity
in combination with a spinning lidar (Simley et al. 2011; Mikkelsen et al. 2013; Schlipf,
Schlipf & Kühn 2013).

All the previous approaches ignore the spatial correlations of the turbulent flow
field, which are, e.g. known to extend up to 20 times the boundary-layer height in
the streamwise direction for neutrally stratified ABLs (Fang & Porté-Agel 2015). In
three-dimensional variational data assimilation (3D-Var), these correlations are taken into
account (Lorenc 1981); a similar method named linear stochastic estimation has been
simultaneously developed in the turbulence community (Adrian 1979; Adrian & Moin
1988). Recently, this has been applied to microscale flow fields (Krishnamurthy et al. 2013;
Bos, Giyanani & Bierbooms 2016; Dimitrov & Natarajan 2017). In these last studies, the
velocity correlation is modelled using a three-dimensional (3-D) homogeneous isotropic
turbulence spectral correlation tensor. This is often justified in the horizontal directions;
however, in boundary layers, the vertical direction shows strong anisotropic behaviour.
A method to incorporate the time series of measurements for nonlinear systems has been
independently and simultaneously developed in the geoscience and control community
and is known as four-dimensional variational data assimilation (4D-Var) (Lewis & Derber
1985; Le Dime & Talagrand 1986; Lorenc 1986; Talagrand & Courtier 1987) and nonlinear
moving horizon state estimation (Jang, Joseph & Mukai 1986), respectively in the two
communities. This methodology minimises a linear combination of the mismatch between
a time series of real and virtual observations, the model error, and the deviation from the
background distribution.

The combination of large-eddy simulations (LES) and 4D-Var with lidar data to retrieve
turbulent structures was first proposed in Lin, Chai & Sun (2001) conducting a series
of twin experiments. Later in a series of papers this methodology was applied to a field
measurement campaign, using two different lidars for reconstruction and validation of
the methodology (Chai & Lin 2003; Chai, Lin & Newsom 2004; Newsom & Banta 2004;
Newsom et al. 2005; Xia et al. 2008). To regularise the problem, a Laplacian-based penalty
term was used. Continuity was not strictly enforced but added as an additional penalty
term. The combination of 4D-Var with Taylor’s frozen turbulence (TFT) model was shown
in Raach et al. (2014), however, in this work, spatial regularisation was not included.

In the current work, LES-based reconstruction of turbulence from lidar measurements
is further investigated for the ABL, improving on the problem formulation. To this
end, regularisation of the problem is based on the background covariance tensor,
following a Bayesian inference framework. Moreover, we transform the problem into a
Karhunen–Loève (KL) basis (or proper orthogonal decomposition (POD) basis), which
is constructed from the covariance tensor. This leads to an unconstrained optimisation
problem, since the POD basis is by construction divergence free. Moreover, in this
case, the regularisation part of the optimisation problem generally leads to a better
conditioned optimisation problem (Haben, Lawless & Nichols 2011), which is known to
speed-up the convergence of the Limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) optimisation method, used in this study (Nocedal & Wright 2006, p. 180). We
further restrict ourselves to horizontally homogeneous flow, which allows for an efficient
computation and storage of the POD basis, since the modes correspond to Fourier modes
in horizontal directions. We test the methodology based on virtual lidar measurements
in fine-grid reference simulations, using a coarser LES reconstruction grid, as well as
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Reconstruction of turbulent flow fields 906 A17-3

Initial blind zone r0 436 m
Range gate width �r 105 m
Pulse length �p1/2 105 m
Number of range gates Nr 100
Maximum range rmax 10 831 m
Pulse repetition frequency fp 500 s−1

Sample frequency fs 5 s−1

Wavelength λ 2 μm
Beam waist d 9.4 cm

TABLE 1. Summary of the lidar parameters of a Lockheed Martin WindTracer
(Krishnamurthy et al. 2013).

a smaller domain. This allows us to perform detailed out-of-sample comparisons of the
reconstructed turbulence with the reference solution.

The paper is further organised as follows. In § 2, the lidar observation model is
described. Section 3 discusses the state estimation methodology. Subsequently, § 4
introduces the LES and TFT models used for the state estimation. The adjoint-based
optimisation methodology is discussed in § 5, and details of the case set-up are introduced
in § 6. Results are presented in § 7; conclusions and future outlook in § 8.

2. Lidar measurements

Lidar sensors measure the velocity component along the laser beam direction. Here, we
focus on pulsed lidar sensors, which measure the wind speed at different locations along
the beam simultaneously (Peña & Hasager 2011). An example is the Lockheed Martin
WindTracer (Krishnamurthy et al. 2013), which is considered in the current work as a
reference. This lidar has a range gate width of �r = 105 m, a pulse length, defined as the
full width at half-maximum, of �p1/2 = 105 m, an initial blind zone of r0 = 436 m and a
total of Nr = 100 range gates, see table 1 for a summary.

Consider a lidar system mounted at location xm (extension to multiple lidar systems is
straightforward, but not considered here), and a beam direction el(t) that follows a scanning
pattern in time. The lidar measurement locations then correspond to

x i(t) = xm + (r0 + �r(i − 1))el(t), i = 1, . . . , Nr. (2.1)

Due to the finite pulse, range gate width and sampling time, the space–time filtered wind
speed around x i is measured, oriented in the direction of the lidar beam. For a single
location, we can express (Banakh, Bodaruev & Smalikho 1997)

hn,i(u(x, t)) � 1
Ts

∫ tn

tn−1

∫
Ω

u(x, t) · el(t) G(Q(t)(x − x i(t))) dx dt, (2.2)

with u(x, t) the three-dimensional and time-dependent turbulent velocity field defined
on the domain Ω , hn,i the observation operator of the ith range gate collected at tn , the
end of the nth sampling interval [tn−1, tn], with tn = t0 + nTs, and 1/Ts = fs the sample
frequency. Further, G is the lidar filter kernel oriented in the direction of the lidar beam,
and Q a coordinate transformation between the reference coordinate system [e1, e2, e3], and
a coordinate system aligned with the beam such that el = Qe1. We bundle the observation
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906 A17-4 P. Bauweraerts and J. Meyers

operators of the different range gates at tn in a single operator hn = [hn,1, . . . , hn,Nr ]
∗, and

similarly for the observations yn � [yn,1, . . . , yn,Nr ]
∗, which differ by the measurement

error vn , so that yn = hn(u(x, t)) + vn .
The lidar filter kernel corresponds to a convolution of a box function with width the

range gate width �r, and a Gaussian filter kernel with width �p (Banakh et al. 1997;
Lundquist et al. 2015). Using x = [x1, x2, x3]∗, this corresponds to

G(x) = 1
2�p1/2

[
erf
(

x1 + �r/2
�p1/e

)
− erf

(
x1 − �r/2

�p1/e

)]
δ(x2)δ(x3), (2.3)

with δ the Dirac delta function and �p1/e = �p1/2/(2
√

log 2) the 1/e pulse width. We
note that in the direction perpendicular to the beam, a Gaussian filter could be used, with a
filter width that corresponds to the beam width. The maximum beam width occurs at rmax

and can be roughly estimated by λrmax/d = 23 cm (Frehlich, Hannon & Henderson 1998),
with λ the wavelength of the lidar and d the beam waist. Practical LES grid resolutions for
ABL simulations typically range from 2 to 60 m, such that for simplicity, the Gauss kernel
in perpendicular directions is approximated by a Dirac delta function.

3. State estimation approach

3.1. General methodology
Given an approximate state equation, the 4D-Var algorithm provides the best estimate of
the time-dependent state given a series of measurements. Here, we introduce the method,
mainly following ideas from Lorenc (1986), Courtier et al. (1998) and Jazwinski (2007),
adapting them to the context of lidar measurements and LES-based state models and
turbulent flows in the ABL.

Consider the (exact) space–time velocity field u(x, t), and an approximate state equation
(e.g. the LES equations). We then have

∂u
∂t

= f (u, p) + w, (3.1)

where f is a shorthand notation for the momentum balance in the approximate flow model,
w(x, t) is the model mismatch and p are additional parameters in the model set-up that are
known and do not need to be estimated (cf. §§ 3.2, and 4 for more details). We presume that
the state is divergence free (using the Boussinesq approximation for ABL flows), so that
∇ · u = 0, and also ∇ · w = 0. Further practical details on the state equation are discussed
in § 4.

Given a measurement series Y � [ y0, . . . , yNs
], a related series of states U �

[u0, . . . , uNs ] is considered. Since both the measurements and the state equation contain
errors (vn and w(x, t) respectively) that are unknown random variables, both Y and
U are statistical quantities. In order to avoid mathematical complexities related to the
fact that U is an element of an infinite-dimensional probability space (requiring the
use of probability measures), we will directly consider a finite-dimensional (discrete)
representation of U . We refer the reader to Stuart (2010) and Li (2015) for a more
formal derivation. In principle any type of discrete representation of U can be considered,
provided it sufficiently approximates the continuous functions ui (similar to a classical
discretisation of (3.1)). However, here, it will be very convenient to consider a truncated
KL decomposition. Given the mean of the velocity field U(x) = 〈u(x)〉, and its two-point
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Reconstruction of turbulent flow fields 906 A17-5

covariance Rij(x, x̆) = 〈u′
i(x)u′

j(x̆)〉 (with u′ = u − U), a truncated KL decomposition
corresponds to (Berkooz, Holmes & Lumley 1993)

u ≈ U(x) +
Nm∑
k=1

ak(t)λ
1/2
k ψ k(x) = U + ΨΛ1/2a, (3.2)

where, by construction, a(t) = [a1(t), . . . , aNm(t)]
ᵀ are uncorrelated random variables

with unit variance, and where λk are the eigenvalues of R (ordered such that λ1 ≥
λ2 ≥ · · · ), with Λ = diag(λ1, . . . , λNm) and ψ k are the eigenvectors of R with Ψ =
[ψ1, . . . ,ψNm

]. They are obtained by solving the following Fredholm eigenvalue problem:

1
|Ω|

∫
Ω

R(x, x̆)ψ k(x̆) dx̆ = λkψ k(x), (3.3)

where the eigenfunctions are normalised such that ‖ψ k(x)‖ = 1. Thus, the series of states
U is now fully represented by the series of KL coefficients A � [a0, . . . , aNs ]. We note,
that both U(x) and R(x, x̆) need to be known quantities, and refer to § 3.2 for further
details.

Full information on the statistical distribution of errors on the states A is now embedded
in the conditional probability density function p(A|Y ). Applying Bayes’ rule yields
p(A|Y ) = p(Y |A)p(A)/p(Y ). The best estimate of the states A is arbitrary; commonly used
criteria are (Rao & Rawlings 2002) the mean A� = 〈A|Y 〉, and the maximum a posteriori
(MAP) estimation

A� = arg maxA p(A|Y ) = arg maxA p(Y |A)p(A), (3.4)

where the proportionality factor 1/p(Y ) can be dropped, since it does not depend on A,
and thus does not affect the outcome A�. In this work we focus on the latter, since it leads
to a computationally tractable problem in large nonlinear systems. However, finding the
states A that maximise (3.4), leads to an optimisation problem over the full space–time
state space, that is very high-dimensional. Moreover, expressing p(A) = p(a0, . . . , aNs)
requires knowledge of the space–time correlation function of the bias w(x, t), which is
usually not straightforward.

Therefore, in an alternative approach, the modelled space–time velocity field ũ(x, t) is
considered, following from

∂ũ
∂t

= f (ũ, p), (3.5a)

ũ(x, t0) = u0(x), (3.5b)

where we introduce the tilde to explicitly denote the difference between the modelled
solution ũ(x, t), which follows from solving the deterministic (3.5a), and the exact
solution u(x, t) that can only be determined if the bias term w were exactly known in
(3.1). In the current work, we will either use the LES equations, or the TFT model for
(3.5a) (see § 4), and since the equation is deterministic, we also introduce the solution
operator Mt(u0(x)) � ũ(x, t). Further, since hn is a linear function, and using u0(x) =
U + ΨΛ1/2a0,

yn = hn(Mt(U + ΨΛ1/2a0)) + hn(ε(x, t)) + vn, (3.6)

with ε � u − ũ = u − Mt(u0). Note that, for linear systems, the error ε is simply a linear
transformation of the model bias w. However, since the statistics of w are not known, we
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906 A17-6 P. Bauweraerts and J. Meyers

consider the distribution of ζ n � hn(ε(x, t)) + vn , and use the strong assumption that ζ n
are independent and Gaussian distributed with same variance γ 2, which is further tuned
during the set-up of the optimisation problem (cf. below). We again consider the state
that maximises the conditional probability p(A|Y ) ∝ p(Y |A)p(A). First elaborating p(A)
yields

p(A) ∝ p(a0)

Ns∏
n=1

δ(ãn − an), (3.7)

with δ the Dirac delta function, and where ãn represents the projection of ũ(x, tn) =
Mtn (U + ΨΛ1/2a0) on the KL basis. This results from (3.5a) being a deterministic
equation, and allows us to formulate the MAP problem in terms of a0 only, which allows us
to drop the Dirac delta functions in the eventual optimisation problem. Further elaborating
p(Y |A), using the assumed distribution for ζn , leads to

p(Y |A) = p(Y |a0) ∝
Ns∏

n=1

exp
(

−‖ yn − hn(Mt(U + ΨΛ1/2a0))‖2

2γ 2

)
. (3.8)

Finally, in order to find an expression for p(a0), we presume that velocity fluctuations are
Gaussian distributed. Although turbulent velocity fluctuations are known to deviate from
a Gaussian distribution in turbulent boundary layers, it is a valid first-order approximation
(Meneveau & Marusic 2013). Since a0 follows from a linear combination of velocity fields,
it is also Gaussian distributed, and since the KL coefficients have zero mean (〈a0〉 = 0),
and are uncorrelated with unit variance 〈a0a∗

0〉 = I , this leads to

p(a0) ∝ exp
(− 1

2‖a0‖2) , (3.9)

where the proportionality factor can again be removed in the MAP optimisation problem.
Bringing all above assumptions together, and formulating the optimisation in terms

of − log[p(a0|Y )], which does not change the optimum, leads to (see e.g. Jazwinski 2007)

minimise
a0

J (a0) = 1
2
‖a0‖2 + 1

2γ 2

Ns∑
n=1

∥∥ yn − hn(Mt(U + ΨΛ1/2a0))
∥∥2

. (3.10)

We note that the value of γ 2 is at this point unknown – further selection is discussed
in § 6.3.2. The above problem can be interpreted as minimising the model–measurement
mismatch, given a regularisation ‖a0‖2/2, that is particularly important in areas where
no measurement information is given. The formulation based on a KL decomposition as
discussed above, leads to an optimisation problem that is often better conditioned (Haben
et al. 2011), since the Hessian of the regularisation term ‖a0‖2/2 is simply the identity
matrix, such that all eigenvalues are equal to one.

3.2. Formulation of an efficient Karhunen–Loève basis
In order to use the approach proposed in § 3.1, a KL basis for the wind-field distribution
is required. This can in principle be based on an ensemble of all possible wind fields
that occur in the ABL assembled over many years. However, acquiring the covariance
tensor for this would be non-trivial, and the resulting basis may require many modes for an
accurate parametrisation of all possible states. Therefore, we envisage a different approach,
in which the covariance tensor is parametrised depending on a number of background
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Reconstruction of turbulent flow fields 906 A17-7

parameters p (e.g. wind direction, friction velocity, surface roughness, Obukhov length,
Rossby number, etc.). These parameters are presumed to change slowly in time, and are
either given, or estimated using a different overarching algorithm.

In the current manuscript, we focus in particular on neutral conditions, and simplify
the approach to that of estimating the wind field in a neutral pressure driven boundary
layer in equilibrium (the extension to Ekman layers should be straightforward, but is not
considered here). For this case, the relevant background parameters are given by p =
[u∗, z0, H, θ ], with u∗ the friction velocity, z0 the surface roughness, H the boundary-layer
height and θ the mean wind direction. We further assume that the boundary layer is fully
rough z0 � δν , with δν � ν/u∗ the viscous length scale (with ν the kinematic viscosity),
and that z0  H, i.e. the roughness is small compared to the boundary-layer height, which
is typically valid in open flat terrain. The mean velocity profile in the outer layer (z � z0,
with z � x3), is then given by (see e.g. Pope 2000)

U(x) = u∗
κ

(
log
(

z
z0

)
+ F

( z
H

))
Q3e1, (3.11)

with κ the von Kármán constant, z � x3, and F(z/H) an outer-layer velocity deficit
function, that in the classical picture of inner–outer separation, can be uniquely determined
from a single simulation. Further, Q3(θ) is a rotation matrix around around the
wall-normal direction that reorients the coordinate axes in the horizontal plane to a system
with main wind direction θ . Similarly, using outer-layer scaling arguments (Townsend
1980), and horizontal homogeneity, the covariance tensor can be expressed as

R(x, x̆) = u2
∗ Q3R+

(
x1 − x̆1

H
,

x2 − x̆2

H
,

x3

H
,

x̆3

H

)
Qᵀ

3 , (3.12)

with R+ the covariance normalised by friction velocity and boundary-layer height,
obtained in a system with the main wind direction oriented in the x1 direction. We note
that, as a result of outer-layer similarity, R+ will not depend on the surface roughness z0
(see e.g. Squire et al. 2016). Thus, R+ can be determined offline, e.g. from measurement
campaigns, or detailed simulations, and then be used to determine R for a wide range
of homogeneous terrain conditions, and wind speeds (given neutral conditions). In the
current work, we will determine R from a prior LES (see § 6.1).

It is easily shown that for horizontal homogeneous directions, as encountered
approximately in ABL flows, eigenfunctions simply correspond to Fourier modes
(Berkooz et al. 1993), such that ψk,m(x) = ψ̂k,m(x3) exp(i(k1x1 + k2x2)). Inserting this
expression in (3.3) and integrating over x1 and x2 gives

1
H

∫ H

0
R̂(k, x3, x̆3)ψ̂k,m(x̆3) dx̆3 = λ̂k,mψ̂k,m(x3), (3.13)

normalised such that ‖ψ̂k,m‖ = 1, where R̂ij(k, x3, x̆3) = 〈ûi(k, x3)û∗
j (k, x̆3)〉 is the

horizontal Fourier transform of the correlation tensor, with k = [k1, k2]ᵀ.
In order to further elaborate, consider velocity fields that are discretised in space

on a domain L1 × L2 × H. Consistent with our LES code (cf. § 4), we consider N1 ×
N2 × N3 grid points that are uniformly distributed, and a grid that is staggered in the
vertical direction for the u3 component, leading to N1N2(3N3 − 1) degrees of freedom.
Thus, wavenumbers in horizontal directions are integer multiples of k�

1 � 2π/L1,
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906 A17-8 P. Bauweraerts and J. Meyers

k�
2 � 2π/L2, with the cutoff wavenumber corresponding to kc � [π/�1,π/�2]ᵀ, with

�1 = L1/N1 and �2 = L2/N2. Given this set-up, (3.13) requires the solution of (N1N2)/4
eigenvalue problems (factor 1/4 because of symmetries), each of size (3N3 − 1) ×
(3N3 − 1). This allows an easier construction of higher-dimensional basis, compared to,
e.g. the snapshot POD method (Sirovich 1987), where the rank is limited to the number of
samples used for the determination of R̂. Further details on the computational set-up for
the computation of R can be found in § 6.1.

Expanding the velocity field using the POD eigenfunctions leads to

u′ =
∑
k,m

ck,mλ̂
1/2
k,mψk,m

=
∑

m

c0,mλ̂
1/2
0,mψ0,m + 2

∑
k+,m

λ̂
1/2
k,m(Re(ck,m)Re(ψk,m) − Im(ck,m)Im(ψk,m)), (3.14)

where in the second step the conjugate symmetry of R̂ is used. This transforms the complex
modes ψk,m to an equivalent set of real orthogonal modes, Re(ψk,m) and Im(ψk,m), by
adding together positive and corresponding negative wavenumbers. In this way conjugate
symmetry constraints in the optimisation problem are avoided. The wavenumber k+ is
chosen such that all coefficients are only used once, here we use k+ = k | (k1 > 0 or k1 =0,
k2 > 0). For k = 0 the modes are real, and therefore the complex coefficients are omitted.
Grouping all coefficients, eigenvalues and modes gives

â = [
c0,1 · · · √

2Re(ckc,3N3−1)
√

2Im(ckc,3N3−1)
]ᵀ

, (3.15a)

Λ̂ = diag
(
λ0,1 · · · λkc,3N3−1 λkc,3N3−1

)
, (3.15b)

Ψ̂ = [
ψ0,1 · · · √

2Re(ψkc,3N3−1) −√
2Im(ψkc,3N3−1)

]
, (3.15c)

where the scaling factor
√

2 is added such that ‖Ψ̂k‖ = 1, and 〈â2
k〉 = 1. Converting to a

basis using the Nm most energetic modes can be done by

a = SPâ, (3.16a)

Λ = SPΛ̂PᵀSᵀ, (3.16b)

Ψ = Ψ̂PᵀSᵀ, (3.16c)

where P represents a permutation matrix ordering the eigenvalues in descending order,
S = [I 0] is a selection matrix that removes all modes with order higher than Nm and I
is an identity matrix of size Nm × Nm. We note that it is required to select Nm ≤ N1N2
(2N3 − 1) + 1. This results from the fact that the velocity field is solenoidal. In the
discretised LES system (cf. next section), there are N1N2N3 − 1 independent continuity
constraints, and this leads to a subspace of N1N2N3 − 1 modes in the discrete POD basis
that are orthogonal to the solenoidal subspace, with eigenvalue zero.

4. Description of the state-space models

4.1. Large-eddy simulations
The main state-space model that we consider in the current work is based on LES of
a neutrally stable pressure driven boundary layer. We presume knowledge of the set-up
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Reconstruction of turbulent flow fields 906 A17-9

parameters p = [u∗, z0, H, θ ], and simply orient the simulation domain such that e1 = eθ .
The governing equations then correspond to

∂ũ
∂t

= −ũ · ∇ũ + u2
∗H−1e1 − 1

ρ
∇p̃ + ∇ · τ SGS, (4.1a)

0 = ∇ · ũ, (4.1b)

where ũ is the filtered velocity field, −ρu2
∗H−1e1 is the mean background pressure gradient

and p̃ is the remaining filtered pressure fluctuation. The deviatoric part of the subgrid-scale
stress tensor τSGS,ij − τSGS,kkδij/3 is modelled using the Smagorinsky model (Smagorinsky
1963) with Smagorinsky coefficient Cs = 0.14 in combination with wall damping (Mason
& Thomson 1992) with n = 1. The isotropic part τSGS,kkδij/3 is absorbed in the pressure.

In horizontal directions, we consider a computational domain that is sufficiently large
for boundary conditions not to influence the solution in the estimation region of interest,
so that periodic boundary conditions can be used, and boundary fields in space do not
need to be estimated. In the vertical direction, non-permeable slip boundary conditions
are used both along top and bottom walls. Along the bottom wall, this is supplemented
with a classical wall model (Moeng 1984), following the implementation proposed by
Bou-Zeid, Meneveau & Parlange (2005); see also Meyers (2011) for further details.

All state-space simulations are performed using our in-house LES code SP-Wind
(Meyers & Sagaut 2007; Munters, Meneveau & Meyers 2016), in which the above model
is implemented using a pseudospectral discretisation in the horizontal directions, and a
fourth-order energy conserving scheme in the vertical directions (Verstappen & Veldman
2003). For the time integration we use a fourth-order Runge–Kutta method, where the time
step is fixed, approximately corresponding to a Courant–Friedrichs–Lewy number of 0.4.

4.2. Taylor’s frozen turbulence model
As an alternative reference, we also consider the TFT model (Taylor 1938) as a
state-space model. It corresponds to ũ(x, t) = Mt(u0(x)) = u0(x − (t − t0)U∞e1), with
U∞ a characteristic convection speed, or equivalently in differential form

∂ũ
∂t

= −U∞e1 · ∇ũ. (4.2)

For U∞, we use the lidar mount-height velocity, which is simply estimated as U∞/u∗ =
κ−1 log(zm/z0), with zm the lidar mount height. The model is solved using the same time
integration and spatial discretisation scheme as the LES code. Only horizontal boundary
conditions are necessary, for which we also use periodicity.

5. Optimisation methodology and adjoint equations

For the optimisation problem (3.10) we use the Limited-memory Broyden–Fletcher–
Goldfarb–Shanno algorithm with bound constraints (L-BFGS-B) from (Byrd et al. 1995),
which is a quasi-Newton algorithm suitable for large-scale problems. The step length is
determined by the Moré–Thuente line-search algorithm (Moré & Thuente 1994).

An important aspect of the quasi-Newton algorithm is the determination of the
gradient of the cost functional. Simply using finite differences to calculate the gradient
(using ∂J /∂a0,i ≈ (J (a0 + �aiei) − J (a0))/�ai, with �ai sufficiently small), is
computationally too expensive, as it requires Nm evaluations of the cost functional,
which in turn requires Nm solutions of the state equations (each time a LES). Also, a
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906 A17-10 P. Bauweraerts and J. Meyers

simple (forward) differentiation of the state equations, yielding the sensitivity of the flow
solutions to all possible perturbations in its initial condition, would require the solution
of Nm partial differential equations (PDE), i.e. the linearised LES equations. A better
alternative is the use of the adjoint equations. Rather than expressing the sensitivity of
the flow to perturbations in the initial condition, they express the possible origins of
perturbations to the cost functional, resulting in a so-called backward problem. Given the
adjoint solution, the gradient of the cost functional can be directly expressed, independent
of the number of directions Nm in the gradient. A more mathematically oriented summary
is provided in appendix A.

In the current work, we use the continuous adjoint approach. The derivation of the
continuous adjoint equations is quite standard, and not repeated here (see Bewley, Moin &
Temam (2001) and Goit & Meyers (2015) for respectively a derivation for direct numerical
simulation, and a derivation of the additional LES specific terms). The adjoint equations
can be summarised as

−∂ξ

∂t
= ũ · ∇ξ + ξ · ∇ũ + ∇ · τ ∗

SGS + 1
ρ

∇π +
Nr∑

i=1

f i, (5.1a)

∇ · ξ = 0. (5.1b)

Here, ξ and π are respectively the adjoint velocity and pressure variable, τ ∗
SGS is the adjoint

subgrid-scale model and f i is the adjoint forcing term connected to measurement i (see
appendix A for a derivation) given by

f i = 1
γ 2Ts

Ns∑
n=1

( yn,i − hn,i)G (Q(t)(x − xi(t))) el(t) H
(

Ts

2
− ∣∣t − tn−1/2

∣∣) , (5.2)

where H is the Heaviside function. The adjoint equations need to be integrated backwards
in time. The starting condition for the adjoint variables specified at the end of the
horizon is ξ(x, tf ) = 0 (see appendix A.2 for details). For the integration we use a
fourth-order discrete adjoint Runge–Kutta scheme (Hager 2000), which is consistent with
our forward time integration. The spatial boundary conditions correspond to periodicity
in the horizontal directions, and impermeability for the bottom and top of the domain in
combination with respectively an adjoint wall model at the bottom. Details are found in
Goit & Meyers (2015).

The adjoint TFT equations are very similar to the adjoint LES equations, i.e.

− ∂ξ

∂t
= U∞ · ∇ξ +

Nr∑
i=1

f i. (5.3)

These equations also have to be solved backwards in time with initial condition ξ 0 = 0 and
periodic boundary conditions in space. The forcing term f i is the same as the one used by
the adjoint LES (5.2).

Finally, both in case of LES and TFT, the sensitivity of the cost functional is given by
(see appendix A)

∂J

∂a0,i
= a0,i − λ1/2

i

∫
Ω

ψ i(x) · ξ(x, t0) dx. (5.4)

Thus, the gradient of the cost functional can be computed to all the variables at the cost
of one extra adjoint simulation, which has a similar form and computational cost as the
forward equations.
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FIGURE 1. Schematic plan view of the reference (a) and reconstruction (b) domain. (�,
purple): the lidar mount location, ( ): the centre of the range gates, ( ): the outer edge
of the scanning region in plan-position-indicator mode.

Reference domain
Domain size L1 × L2 × H 30 km × 5.4 km × 1 km
Grid size N1 × N2 × N3 2000 × 360 × 200
Cell size Δ1 × Δ2 × Δ3 15 m × 15 m × 5 m

Correlation domain
Domain size L1 × L2 × H 18 km × 5.4 km × 1 km
Grid size N1 × N2 × N3 1200 × 360 × 200
Cell size Δ1 × Δ2 × Δ3 15 m × 15 m × 5 m

Reconstruction domain
Domain size L1 × L2 × H 18 km × 5.4 km × 1 km
Grid size N1 × N2 × N3 360 × 108 × 60
Cell size Δ1 × Δ2 × Δ3 50 m × 50 m × 16.67 m

General simulation parameters
Roughness length z0 0.1 m
Friction velocity u∗ 0.5 m s−1

TABLE 2. Summary of the set-up parameters of the different simulations.

6. Case description

6.1. Simulation set-up
In the current work, a reference simulation is used to take virtual lidar measurements.
Afterwards, the reconstruction of the flow field is performed on a smaller domain with a
coarser mesh. Both domains are schematically represented on figure 1, and the details
are summarised in table 2 and further discussed below. The correlation matrix R is
determined as well using simulations (see further below for details). All simulations use
a boundary-layer height of H = 1 km and a surface roughness of z0 = 0.1 m, which is a
common overland value, and a friction velocity of u∗ = 0.5 m s−1, which leads to a wind
speed of approximately 8 m s−1 at 100 m.

For the reference simulation we use a relatively fine grid resolution of 0.015H ×
0.015H × 0.005H, combined with a long domain 30H × 5.4H × H to avoid spurious
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906 A17-12 P. Bauweraerts and J. Meyers

periodic correlations. In addition, the boundary conditions of the reference domain are
shifted over ds = H to ensure statistically homogeneous inflow, and avoid locking of
large-scale motions (see Munters et al. 2016, for details). The fringe region is located
between 15.5H and 14.5H upstream of the lidar mount, the distance between recycling
and fringe region is chosen as 3H, this is also visualised on figure 1. A spin-up period of
50H/u∗ is used, to ensure a statistical steady state has been reached, before virtual lidar
measurements are taken.

The optimisation domain is smaller than the reference domain, but should at least
encompass the region of influence of the time series of lidar measurements. Based on the
lidar set-up discussed in § 6.2 and the assimilation time horizon of 0.1H/u∗ (see § 6.3),
suitable domain dimensions are found to be 18H × 5.4H × H. Reconstruction of velocity
scales smaller than the lidar filter size is not possible, and therefore adding these scales is
not improving the reconstruction, and needlessly increases the computational complexity.
Therefore the grid is chosen to be 0.05H × 0.05H × 0.0167H. Note that by using a
different grid resolution for reference and reconstruction, a computational model error
is introduced, although admittedly, the error statistics with respect to real measurements
can be quite different (the use of real data is, however, not in the scope of the current
study).

The two-point covariance matrix R is found to be sensitive to the grid resolution
and is therefore computed on the same grid used for the reference simulation. The
domain is chosen as 18H × 5.4H × H – a trade-off between accuracy and reasonable
computational cost, caused by the long time averaging that is necessary to get sufficient
statistical convergence (see below). We note that the largest flow structures in an ABL, i.e.
streamwise streaks, are of the same scale as our domain. Therefore, we find that the far
correlations of the streamwise velocity component are influenced by the periodic boundary
conditions. This effect is briefly discussed in § 7.1. The simulation is spun up over a
period of 50H/u∗, and subsequentially sampled every 0.01H/u∗ over a time horizon of
100H/u∗, leading to 104 samples. Note that the equations are reflection symmetric with
respect to a streamwise–vertical plane, and therefore, we add the mirrored samples as
well. Finally, the two-point covariance tensor needs to be converted from the correlation
to the optimisation domain. This is performed in two steps, and is described in detail in
appendix C, first the covariance is interpolated to the coarse grid points, secondly, the rows
and columns are projected onto the solenoidal space, to assure this property is preserved
for the computation of the POD modes.

6.2. Lidar set-up
We perform the state estimation for two different lidar scanning modes. To keep the two
trajectories comparable, we use the same scanning period of Tp = 0.1H/u∗ = 200 s. The
lidar mount is located at xm = [0, 0, 0.1H] for both cases.

In a first case study, we set the virtual lidar in plan-position-indicator (PPI)
scanning mode with zero elevation angle, thus tracking a horizontal sweeping trajectory.
The direction of the beam is given by el(t) = Q3(φ(t))e1, such that Q(t) = Q3(t).
The azimuthal angle φ is given by φ(t) = �φTriag(t/Tp) + π, where Triag(t) �
1/πsin−1(sin(2πt)) is the triangle wave function with unit amplitude and period, such
that the lidar has a constant azimuthal angular velocity of |∂φ/∂t| = 2�φ/Tp. For the
azimuthal range �φ we take �φ = 2 sin−1(2H/rmax) (see figure 1).

In a second case study, we study a 3-D scanning pattern. First, we define a parametric
curve l(t), where we use l(t) = [1, A sin(ω2t − δ), B(sin(ω3t) + 1)], a special case of a
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Reconstruction of turbulent flow fields 906 A17-13

Optimisation method L-BFGS-B
Wolfe conditions c1, c2 10−4, 0.9
Hessian correction pairs m 8
L-BFGS iterations Nit 300
Optimisation time window T 0.1H/u∗

TABLE 3. Summary of the optimisation parameters.

3-D Lissajous curve, in which A and B respectively control the horizontal and vertical
extents of the trajectory, and the ratio of angular speeds ω3/ω2 and the phase δ control the
shape of the curve. The construction is such that the lidar does not scan lower than the
lidar mount height. The lidar direction is given by el(t) = Q3(π)l(t)/‖l(t)‖. For this study
we respectively take A = tan(�φ/2), which is easily verified to lead to the same spanwise
extent as the sweeping lidar, and B = tan �θ with �θ = sin−1(0.8H/rmax), which gives a
maximum scanning altitude of 0.9H. Further, ω2 = 4π/Tp, ω3 = 3/2ω2, and δ = π/2.

6.3. Optimisation set-up

The time horizon of the optimisation T � tf − t0 is chosen equal to a single scanning
period of the lidar Tp. Long horizons lead to large gradients due to the chaotic behaviour
of turbulence. Moreover, since we do not explicitly include model errors, and optimally
match ũ to the measurements, ũ and u will diverge to the point where new measurements
do not contribute to the reconstruction.

All modes with positive eigenvalues are taken into the POD basis, such that we optimise
over the full space of solenoidal velocity fields. The number of modes corresponds to
Nm = N1N2(2N3 − 1) + 1, which is obtained by subtracting the number of independent
continuity constraints N1N2N3 − 1 from the total degrees of freedom N1N2(3N3 − 1). In
table 3 the most important optimisation parameters are summarised. For the optimisation,
we use 8 Hessian correction pairs for the L-BFGS-B method. For the Wolfe condition
parameters we take c1 = 10−4 and c2 = 0.9, which are standard values selected for
quasi-Newton methods (Nocedal & Wright 2006). In the following sections we elaborate
further on the convergence and stopping criteria for the optimisation, and on the tuning of
the variance γ 2 of to the model–measurement uncertainty.

6.3.1. Adjoint gradient calculation and optimisation convergence
In this section we discuss general properties of the optimisation. As a test case we use

the PPI-scanning mode in combination with the LES reconstruction model. We use γ 2 =
1 m2 s−2 for the model–measurement uncertainty (this is further elaborated in § 6.3.2).

First of all, the streamwise component of the adjoint field is given in figure 2. The
field gives a representation of the sensitivity of the cost function to a local perturbation
in velocity and the propagated effect through the Navier–Stokes equations. The adjoint
field is clearly seen to originate from the lidar measurement locations, due to the forcing
term of the adjoint equations being a convolution of the mismatch between the observed
and simulated lidar measurements with the lidar filter kernel. The adjoint velocity field
propagates upstream due to the reverse sign of the convection term. Note that for a large
part of the domain, the adjoint field remains (almost) zero, which indicates that flow
information in this region does not influence the measurements. The accuracy of the
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FIGURE 2. The streamwise component of the adjoint velocity field ξ1 at tf − 0.1H/u∗ (a) and
tf − 0.7H/u∗ (b) in an x1–x2 plane cross-section at x3 = 0.1H. (�, purple): lidar mount location,
( ): the centre of the range gates, ( ): the outer edge of the scanning region.
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FIGURE 3. (a) The cost function with (•, orange): Jo, (•, green): Jb, (•, blue): J = Jo +
Jb, (•, black): additional line search iteration. (b) Magnitude of the gradient as a function of
the number of PDE evaluations.

adjoint gradient is also verified by comparing against a finite-difference evaluation for a
few selected perturbation directions. We find that the relative error of the gradient remains
smaller than 0.1 % for the selected cases. More details are provided in appendix B.

All optimisations are started from an initial guess a0 = 0. The convergence history of
the PPI case with γ 2 = 1 m2 s−2 is shown in figure 3. Figure 3(a) shows the evolution of
the cost function as a function of the number of PDE evaluations (LES or adjoint) during
the optimisation. For sake of analysis, we split the cost function (see (3.10)) into two parts,
i.e. J = Jb + Jo, with

Jb = 1
2‖a0‖2, Jo = 1

2γ 2

Nm∑
n=1

∥∥ yn − hn(Mt(U + ΨΛ1/2a0))
∥∥2

. (6.1a,b)

The first represents the background variability (of the initial condition), and acts as a
regularisation term, while the second represents the variability of the observation–model
mismatch. Both are shown in the convergence history in figure 3 as well.

Each outer optimisation iteration requires a simulation of the forward and adjoint
equations, and an additional line search in case the Wolfe conditions are not satisfied
(see § 5 for further details). The latter is found to only happen in 15 occasions, so that the
number of total PDE simulations (shown in the horizontal axes in figure 3) is to a good
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FIGURE 4. Pareto front for the optimisation using the LES model, between the regularisation
part of the cost function Jb and the model–observation mismatch γ 2Jo. The annotations at the
markers denote different variances γ 2 of the combined model and measurement uncertainty.

approximation twice the number of iterations. Figure 3(b) shows the Euclidean (L2) norm
of the gradient vector ∇J . Since the optimisation problem is unconstrained, a (local)
optimum will correspond to ∇J = 0. Given the accuracy of the gradient, which is found
to be O(10−3) (see appendix B), we see that the gradient converges up to a relative value
of 2 × 10−3.

An additional point of interest is the computational cost of the reconstruction. All
simulations are performed on the Breniac supercomputer of the Flemish supercomputer
centre using six computational nodes. Each node consists of two Intel Xeon E5-2680 v4
CPUs and 256 GB of RAM. The nodes are interconnected by an Enhanced Data Rate
Infiniband network. The wall times for evaluating the forward and adjoint equations for
the LES-based state-space model take respectively 35 s and 55 s, which leads to a total
optimisation time of approximately 7.5 h (given 300 iterations).

6.3.2. Tuning of the combined model–measurement uncertainty
In this section the unknown variance γ 2 of the model–measurement mismatch,

introduced in § 3.1, is tuned. The regularisation term of the cost function Jb controls the
complexity of the solution, while γ 2Jo represents the differences between the simulated
and observed measurements. By controlling the parameter γ 2, the relative trust in the
model–measurement accuracy is adjusted. In order to obtain a reasonable value of γ 2,
we solve the optimisation problem (3.10) for a wide range of γ 2. Note that for each γ 2,
a different optimal initial condition u�

0 and as a consequence combination of γ 2J �
o and

J �
b is obtained. These can be plotted together, i.e. [γ 2J �

o (γ 2),J �
b (γ 2)], and form the

so-called Pareto front. Since, this procedure is computationally intensive, we only consider
the PPI scanning mode combined with the LES model. In figure 4 the results are shown.
It is clearly seen that below γ 2 = 1 m2 s−2 there is almost no decrease in γ 2Jo while
the complexity of the solution increases significantly, which is an indication of overfitting.
Therefore we use γ 2 = 1 m2 s−2. Note that this value is expected to increase when using
a lower fidelity model, such as the TFT model and is expected to vary for different
scanning modes. Nevertheless, given the relatively low sensitivity of the performance
of the reconstruction to this parameter, we also used it for the TFT model and for the
Lissajous scanning mode.
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7. Results

7.1. Covariance matrix and POD modes
We start by showing the structure of the covariance tensor. To this end, we visualise the
correlation tensor, which is defined as

Cij(x, x̆) = Rij(x, x̆)

(Rii(x, x)Rjj(x̆, x̆))1/2
, (7.1)

and is an often-used non-dimensionalised version of the covariance tensor (see e.g. Sillero,
Jiménez & Moser 2014; Jiménez 2018). Figure 5 visualises different cross-sections of
the diagonal components (C11, C22, C33) of the correlation tensor for reference point
x̆ = [0, 0, L3/4]. Figure 5(a–c) visualises C11, which consists of a central inclined positive
lobe laterally surrounded by two negative correlated lobes. The streamwise velocity
component of the tensor C11(x, x̆), has been studied in Fang & Porté-Agel (2015), but
almost exclusively for 1-D streamwise and spanwise variations of x − x̆. In this work, a
similar decay of C11(x, x̆) was found for the streamwise direction of C11(x, x ± 5He1) =
0.1. Note that, in this work, additional anti-correlations were observed upstream (between
−30H and −10H) and downstream (between 10H and 30H). However, our domain size
is too small to observe this phenomenon. Moreover, an influence of periodic boundary
conditions exists and leads to an overestimation of the correlation near the edges of the
domain. The correlation of the spanwise velocity component C22 has a main lobe, which
has a steeper inclination angle compared to C11, and has vertically situated anti-correlated
side lobes. Finally, the vertical velocity component correlation C33 has a relatively narrow
main lobe in the spanwise direction. In contrast with the other components, no significant
anti-correlated lobes are found.

7.2. Turbulent flow field reconstruction
We now discuss the reconstruction of velocity fields from lidar observations. We first
focus on reconstructions using the LES model, and make a qualitative comparison with
the solutions from the reference field. Subsequently, a more quantitative error analysis
is presented that also includes results of the TFT model (i.e. see figure 10, and related
discussion at the end of the current section).

In figure 6, a comparison between the reconstructed velocity fluctuations ũ′ and
the reference velocity fluctuations u′ is visualised for the PPI lidar scanning mode.
Cross-sections of the streamwise velocity are shown at the start (t = t0) and end (t = tf )
of the observation time window. For the horizontal cross-sections (figure 6e–h), in general
a good correspondence between ũ′ and u′ is found within the scanned area. We also
observe that for the initial and final field, fluctuations in an area upstream and downstream
of the scanning region, are also estimated. This is explained by convective transport of
flow information out of the measurement area during the measurements. Beyond this
convective transport of flow information, additional upstream information is provided due
to the relatively long u1 correlations in streamwise direction. For the vertical cross-section
(figure 6a–d), direct flow field observations are only available at z = 0.1H. Due to the
lack of mean transport in the vertical direction, additional information is only available
due to the regularisation term, and the spatial coherence introduced by the LES model.
Nevertheless, it is seen that the large-scale motions are reconstructed in the vertical plane.
Since smaller-scale eddies have shorter correlation lengths and turnover times, they are
only reconstructed within the scanning region. Outside the scanning region, small-scale
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FIGURE 5. Visualisation of the two-point correlation Cij(x, x̆) with reference point x̆ =
[0, 0, L3/4], (b,e,h) the contour lines of the horizontal x1–x2 cross-section at x3 = L3/4, (a,d,g)
the x1–x3 cross-section at x2 = 0 and (c, f,i) the x2–x3 cross-section at x1 = 0. Panels (a–c),
(d– f ) and (g–i) respectively represent the C11, C22 and C33 components. The contour lines are
drawn for Cij = [−0.1, −0.05, 0.05, 0.1, 0.3]. ( ): C > 0, ( , red): C < 0.

turbulent structures are fully decorrelated from the measurements and, therefore, the MAP
estimation for these scales will correspond to the maximum of the prior, which is simply
zero.

Figure 7 shows a comparison between reconstructed hn and reference yn measurements.
We note that the optimisation problem effectively minimises this difference. Thus, as
may be expected, the trends are well represented by the reconstructed measurements.
We note that the observation operator hn ensures that the reconstructed observations and
the reference measurements contain the same scale information. Thus both signals as a
function of time for a fixed range gate number (figure 7e–h) transform from relatively
smooth close to the sensor location to more irregular further away due to the larger distance
covered by the range gate.

Next, we focus on the reconstructed velocity field along lines in the streamwise and
spanwise directions, respectively, at time t = t0 + T/4, at different heights. To this end,
figure 8 compares the reconstructed velocity field to the reference field. At this moment,
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FIGURE 6. Streamwise component of the velocity field fluctuations in the x2 = 0 (a–d) and
x3 = 0.1H (e–h) plane. (a,c,e,g) The reconstructed field ũ1, (b,d, f,h) reference velocity u1,
(a,b,e, f ) t = t0, (c,d,g,h): t = tf . (�, purple): lidar mount location, ( ): the centre of the
range gates, ( ): the outer edge of the scanning region.

the lidar is in a spanwise extremum position. We first focus on the lines being in the
lidar plane. It is observed that the streamwise velocity component u1 is well reconstructed,
except for the smallest scales. This is expected, since the lidar observations themselves are
spatially filtered, while the LES reconstruction mesh is also coarser than the reference
(the importance of this effect is further quantified below in figure 10). When looking
outside the scanning region, we see a smooth transition to the mean velocity. Looking
at the streamwise and wall-normal components, the quality of the reconstruction appears
somewhat lower, though the main trends are still recovered. However, when quantifying
the errors in more detail (see below), we find that errors in absolute value are of the
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FIGURE 7. Reconstructed hn,i ( , blue) and reference yn,i ( , orange) measurements
(a–d) for sample numbers n = 1, n = 0.25Ns, n = 0.5Ns and n = Ns respectively and (e–h) for
range gates i = 1, i = 0.25Nr, i = 0.5Nr and i = Nr.

same order of magnitude for the three components, indicating that the reconstruction is
of similar quality for all three directions, even though the lidar only measures along its
line of sight, which is dominantly oriented along the u1 direction. When comparing the
reconstructed and the reference velocity field outside the scanning plane, we observe that
the reconstructed field tends more and more to the mean with increasing height, and the
error between the two increases consequently. Again, a quantitative evaluation of errors is
further addressed in figure 10.

In figure 9 the velocity field reconstruction for the Lissajous scanning mode is shown.
Three spanwise–vertical planes are shown at t = t0 comparing reconstructed to reference
velocity field. The dashed line shows the trajectory of the intersect of these planes with the
lidar beam during the complete time horizon. The further away the plane is from the lidar
mount, the more spatially extended the trajectory becomes in the spanwise and vertical
directions. As further quantified below, quality of reconstruction along the height of the
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FIGURE 8. The streamwise (a,b), spanwise (c,d) and wall-normal (e, f ) velocity components at
t = ti + T/4. (a,c,e) Along lines in the streamwise direction at different heights h, i.e. (x1, 0, h)
with h = [0.1, 0.2, 0.4, 0.8]H; (b,d, f ) along lines in the spanwise direction 8H upstream of the
mount point, i.e. (−8H, x2, h), at the same set of heights h. ( , blue): reconstructed velocity
ũ, ( , orange): reference velocity u.
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FIGURE 9. Cross-section at x1 = −10H (a,b), x1 = −5H (c,d) and x1 = 0 (e, f ) of the
streamwise component of the velocity field at t = t0. (a,c,e) The reconstructed velocity field ũ1,
(b,d, f ) reference velocity field u1, ( ): the intersection of the lidar beam with the respective
plane for the complete time horizon.

boundary layer is a lot better is for this scanning pattern, since direct measurements are
available up to 0.9H.

In order to quantify errors in more detail, we define the error on the MAP estimation
of the streamwise component as ε1(x, t) = I f

c ◦ ũ1(x, t) − u1(x, t), where u1 the fine-grid
reference velocity, ũ1 is the reconstructed velocity, and I f

c is a coarse-to-fine interpolation
operator, for which we use a combination of linear interpolation in the vertical direction
and spectral interpolation (i.e. zero padding in Fourier space) in the horizontal directions.
We introduce the error variance averaged over a horizontal region of interest Γ as
Var[ε1(z, t)] = 〈(ε1)

2〉Γ . To this end, we select a horizontal region that is located inside
the lidar observation area. To avoid boundary effects on the error, we omit regions
that are less than one convective distance U∞T away from the scanning boundaries,
and use Γ (z) = Q3(π)[r cos(φ) + U∞T, r sin(φ), z] with r ∈ [r0, rmax − 2U∞T], φ ∈
[−�φ/2,�φ/2] (see also § 6.2). Similar to Var[ε1(z, t)], the error variances for the
velocity components in the spanwise and wall-normal directions are also introduced.
Finally, since lidars effectively measure a filtered velocity field, we also construct
errors based on a filtered reference velocity field. To this end, we filter the fine-grid
LES field using a streamwise cutoff filter with kc = π/(�p2 + �r2)1/2, with �p2 =
3/(2 log 2)�p2

1/2 roughly approximating the lidar filter kernel (2.3).
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FIGURE 10. (a,c,e) Normalised error variances as function of height. (b,d, f ) Evolution of
error variances over the time window, evaluated at height z = 0.1H. (a,b) Streamwise velocity
component; (c,d) spanwise velocity component; (e, f ) vertical velocity component. (blue):
reconstruction based on LES; (orange): reconstruction based on TFT; (black): background
variance. (�): PPI scanning mode; (◦): Lissajous scanning mode; (�): background variance.
( ): error with respect to unfiltered reference; ( ): error with respect to filtered
reference.

An overview of the normalised error variance is shown in figure 10 for reconstruction
with an LES model, and as point of comparison also for reconstruction with the TFT
model. Errors based on unfiltered and filtered reference fields are shown, and results for
both the PPI and Lissajous scanning modes are included. As an additional reference, we
also show, per component in figure 10, the background variance 〈u′2

i 〉Γ , which is the error
obtained by predicting with the mean velocity profile. This is the best estimate without or
far away from any measurements.

First of all, it is observed in figure 10 that both scanning trajectories give good results
at lidar mount height, though the PPI mode slightly outperforms the Lissajous mode, with
a variance of the u1 component that is on average only 15 % of the background variance,
compared to 25 % for the Lissajous mode. The best results are obtained in the middle of the
assimilation window, and the normalised error variance progressively increases towards
the bounds. When looking at higher altitudes, the Lissajous mode clearly outperforms the
PPI mode, with an average normalised error variance of 25 % in the region z from 0.1
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to 0.9, compared to 55 % for the PPI mode. Moreover, in the lidar scanning region, the
variance of errors in u1 is of the same order than those of errors in u2, and u3 (in absolute
value). This indicates that the estimation distributes the errors evenly in all directions.
However, since in boundary layers, the background variance of u′

1 is much larger than that
of u′

2, and u′
3, the relative error of the reconstruction in the x1 direction is much lower.

This explains, the better matching of the u′
1 signal in figure 8 (which is simply larger

in amplitude than the other components). Finally, it is also found that LES consistently
outperforms TFT, for example for the PPI scanning mode at lidar mount height, the error
variance is 24 % an increase by 60 % compared to the LES. The maximum error of the
TFT model in the scanning region is 35 %, which is an increase by 70 % compared to the
LES case.

8. Conclusion

In the current study we investigated reconstructing turbulent flow field from lidar
measurements by using a 4D-Var approach in combination with a LES model. The problem
was regularised using the background covariance tensor, and reformulated using a POD
basis. This allowed the elimination of the continuity constraint, and also led to a better
conditioned formulation. Moreover, we used horizontal homogeneity of boundary layers
to efficiently construct and represent the POD basis. In order to test the methodology, we
constructed virtual lidar measurements from a fine-grid pressure-driven boundary layer,
and reconstructed the turbulent flow field using LES on a coarser mesh. This allowed
for a detailed error analysis. Different lidar scanning modes were investigated, and a
comparison with a TFT model was also included. Overall, LES based reconstruction
was quite effective. Inside the general lidar scanning region, we found that errors in the
streamwise velocity fluctuation lie between 15 % and 25 % (error variance normalised by
background variance). Moreover, LES outperformed TFT by 30 %–70 %. In the spanwise
and wall-normal directions, the reconstruction quality was the same in absolute value,
but worse in relative value, since in turbulent boundary layers the streamwise background
variability is substantially higher than spanwise and wall-normal variability.

In the current work, we studied a pressure driven boundary layer as a proxy for a
neutral ABL. In reality, effects related to the Ekman spiral (changing wind direction with
height), and the capping inversion and free-atmosphere stratification can play an important
role in the mean velocity profile. Moreover, near-wall stratification has strong effects on
turbulence, requiring the use of correlation tensors that depend on the stratification regime.
For homogeneous terrains (offshore, grassland, . . .), such tensors can be precomputed
and parametrised against classical similarity scaling numbers (e.g. based on Richardson
number, Rossby number, . . .). However, accurate measurements or estimations of the
driving conditions (friction velocity, boundary-layer height, Obukhov length, . . .) will
be necessary for the methodology to work (i.e. for the neutral case, to rescale R+ to R;
see § 3.2). In this context, the effect of bias in the driving conditions on reconstruction
efficiency needs to be further investigated. These are important directions for future
research.

A further working assumption in the current work, was the use of horizontal
homogeneity for the construction of a POD basis in combination with an outer-scaling
argument for scaling independent from surface roughness. In reality, effects of
inhomogeneity in terrain can have an effect on the outer region of the ABL, and
further research needs to investigate whether an imperfect (based on homogeneity
assumptions), but efficient POD basis remains effective when terrain features (e.g. wind
turbines, buildings) are introduced. Other directions of research may include the use of

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

80
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.805


906 A17-24 P. Bauweraerts and J. Meyers

homogeneous modes, augmented with a relatively small number of non-homogeneous
modes to better represent complex terrain. Moreover, the explicit inclusion of model
uncertainties (Trémolet 2006), may also further improve the methodology.

Finally, lidar technology keeps evolving, allowing for faster scans over larger areas.
Other sources of measurements with different levels of reliability may also be available,
e.g. from drones, met masts, or supervisory control and data acquisition systems in wind
farms. Combining these data in a single Bayesian inference framework to optimally
reconstruct atmospheric data is an interesting topic for further research. Moreover, some
measurement devices such as, e.g. lidar, drones, allow for flexible scanning patterns, that
can be optimised to maximise the information obtained from the data, which is also an
interesting future research topic.
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Appendix A. Derivation and validation of the adjoint gradient

In this appendix, we derive the adjoint equations for the calculation of the gradient
of the cost function J (a0) to the control variables a0. For the derivation we use a
Lagrangian approach (see e.g. Borzi & Schulz 2011), similar to the approach by Goit
& Meyers (2015) to which we refer for further details. To this end, we first reformulate the
optimisation problem (3.10) by removing the explicit solution operator Mt, and instead
explicitly adding the state-space constraints, leading to

minimise
a0,ũ,p

J (a0, ũ) = 1
2
‖a0‖2 + 1

2γ 2

Nm∑
n=1

∥∥ yn − hn (ũ(x, t))
∥∥2

,

subject to
∂ũ
∂t

+ ũ · ∇ũ − u2
∗H−1e1 + 1

ρ
∇p̃ − ∇ · τ SGS = 0,

∇ · ũ = 0,

ũ(x, t0) − ΨΛ1/2a0 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)

We note that by construction,J (a0) = J (a0,Mt(u0)). For ease of notation the state
variables and the adjoint variables are grouped together and respectively given by
q = [ũ, p̃] and q∗ = [ξ ,π,χ ]. In an analogous way we group together the state-space
constraints B(a0, q) = [N m,N c,C], which are respectively the momentum, continuity
equations and the constraint for the initial condition. The Lagrangian of the above problem
is now defined as L (a0, q, q∗) � J (a0, q) + (q∗,B(a0, q)) and is given by

L (a0, q, q∗) = 1
2
‖a0‖2 + 1

2γ 2

Ns∑
n=1

‖ yn − hn(ũ(x, t))‖
︸ ︷︷ ︸

J

+
∫ tf

t0

∫
Ω

ξ ·
(

∂ũ
∂t

+ ũ · ∇ũ − u2
∗He1 + 1

ρ
∇p̃ − ∇ · τ SGS

)
dxdt︸ ︷︷ ︸

(ξ ,N m)
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+
∫ tf

t0

∫
Ω

π (∇ · ũ) dxdt︸ ︷︷ ︸
(π,N c)

+
∫

Ω

χ · (ũ(x, t0) − ΨΛa0) dx︸ ︷︷ ︸
(χ ,C)

. (A 2)

It can be shown (see e.g. Tröltzsch 2010) that, if the adjoint variables are chosen such that
Lq(δq) = 0 and the state-space constraints B(a0, q) = 0 are satisfied, then Ja0(δa0) =
La0(δa0). Here, we use the Riesz representation theorem to relate gradients to derivatives
(see e.g. Borzi & Schulz 2011), for example for the cost function this gives

Ja0(δa0) � d
dα

J (a0 + αδa0)

∣∣∣∣
α=0

= (∇J , δa0
)
. (A 3)

Further elaborating Lq(δq) = 0 gives

Lq(δq) =
(

∂J
∂ũ

, δũ
)

+
(
ξ ,

∂N m

∂ũ
δũ
)

+
(
ξ ,

∂N m

∂ p̃
δp̃
)

+
(

π,
∂N c

∂ũ
δũ
)

+
(
χ ,

∂C
∂ũ

δũ
)

= 0, (A 4)

where the terms that are trivially zero are left out. Partial integration of the terms
(ξ , [∂N m

/∂ũ]δũ) and (π, [∂N c
/∂ũ]δũ), and (ξ , [∂N m

/∂ p̃]δp̃) respectively lead to the
unforced adjoint momentum equation and adjoint continuity equation. This is a standard
derivation: the result and derivation of the partial integration of the convective terms
can be found in Bewley et al. (2001). The terms that are specific to the LES equations,
consisting of the subgrid-scale and wall-stress models, are found in Goit & Meyers (2015).
The remaining non-zero terms will be discussed in the subsequent sections.

A.1. Adjoint contribution of the observations
Linearisation of the cost function to ũ gives(

∂J
∂ũ

, δũ
)

=
∫ tf

t0

∫
Ω

1
γ 2Ts

Nr∑
i=1

Ns∑
n=1

( yn,i − hn,i)

× Gl (Q(t)(x − x i(t))) el(t) H
(

Ts

2
− ∣∣t − tn− 1

2

∣∣) · δũ dxdt

=
(

Nr∑
i=1

f i, δũ

)
, (A 5)

which leads to the forcing term f i for each lidar measurement in the adjoint momentum
equations (5.1).

A.2. Adjoint contribution of POD constraints
Linearisation of (χ ,C) to ũ gives(

χ ,
∂C
∂ũ

δũ
)

=
∫

Ω

χ · δũ(x, t0) dx. (A 6)

The only other contribution at t0 comes from the term [∂δũ/∂t, ξ ] from the linearised
momentum equation, and the combination of both needs to reduce to zero. This can be
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Model u ũ (∇J , δa0)FD (∇J , δa0)AD

∣∣∣∣ (∇J , δa0)FD − (∇J , δa0)AD

(∇J , δa0)FD

∣∣∣∣
LES L T 4.6018 × 104 4.6031 × 104 8.6 × 10−4

LES T T 5.6341 × 104 5.6390 × 104 2.8 × 10−4

TFT L T 4.1162 × 104 4.1162 × 104 1.6 × 10−8

TFT T T 5.0161 × 104 5.0161 × 104 2.7 × 10−8

TABLE 4. Comparison of the adjoint and finite-difference gradient, for LES and TFT models,
using different initial states; ‘L’ and ‘T’ are respectively abbreviations for laminar and turbulent
initial flow conditions.

further elaborated by partial integration∫ tf

t0

∫
Ω

ξ · ∂δũ
∂t

dxdt =
∫

Ω

ξ · δũ dx

∣∣∣∣tf
t0

−
∫ tf

t0

∫
Ω

∂ξ

∂t
· δũ dxdt. (A 7)

The second term contributes to the adjoint momentum equations. The first term evaluated
at tf can be eliminated if ξ(x, tf ) = 0 is used as starting condition for the adjoint equations.
The first term evaluated at t0 combined with (A 6) can be eliminated if χ(x) = ξ(x, t0).

A.3. Derivation of the adjoint gradient
The linearisation of the reduced cost function J to the control variables a0, is given by

Ja0(δa0) = La0(δa0) = a0 · δa0 −
∫

Ω

χ · ΨΛ1/2δa0 dx, (A 8)

provided that Lq(δq) = 0 and B(a0, q) = 0. The partial derivative to the ith mode
is readily identified as ∂J /∂a0,i = a0,i − λ1/2

i

∫
Ω
ξ(x, t0) · ψ i dx (for which χ(x) =

ξ(x, t0) was also used).

Appendix B. Adjoint gradient validation

In this appendix we compare the adjoint gradient, with finite differences. The
finite-difference approximation of the Gâteaux derivative is given by

(∇J , δa0
) ≈ J (a0 + αδa0) − J (a0)

α
, (B 1)

where α is a factor which controls the step size. α = 10−6 is found as a trade-off between
nonlinear effects (∝ α2) and the finite precision arithmetic by which the calculations are
performed, starting to dominate at very small α. The gradient is validated for both a
laminar and turbulent initial velocity field u0 of the reconstruction model. Since validating
for all the components of the gradient ∇J would be too time consuming, we use the
steepest descent direction δa0 = ∇J /‖∇J ‖ obtained from the adjoint approach for
the evaluation of the finite-difference method (B 1), and compare results only for this
direction.

The results are shown in table 4 for the PPI scanning mode, and are similar for the
Lissajous scanning mode. The relative precision for the gradient is around 10−3 for the
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LES and 10−8 for the TFT model. The difference is explained by the differences in spatial
discretisation errors, which are significantly larger for the nonlinear terms of the LES,
compared to the TFT. Single components of the gradient have also been used, with similar
results but are not further reported here.

Appendix C. Interpolation and projection of the two-point covariance tensor

We start by introducing the vertically discretised streamwise velocity vector in Fourier
space û1(k) = [û1(k, zref

1 ), . . . , û1(k, zref
Nref

z
)], with zref

i the vertical location of the ith cell
centre. This is repeated for the spanwise and vertical velocities, where the latter component
is defined on locations 1/2, . . . , Nz − 1/2, due to the staggered discretisation in the
vertical direction. The velocity can be transformed to physical space by the definition of
the Fourier transform

ui(x, y) = ûi(k) exp(i(kx x + ky y)), (C 1)

where u1(x, y) = [u1(x, y, zref
1 ), . . . , u1(x, y, zref

Nref
z

)] is defined in analogy to û1(k). We
define the discretised two-point covariance matrix on the reference grid as

Aref (x − x̆, y − y̆) =
∑

|k|≤kref
c

Â
ref

(k) exp(i(kx(x − x̆) + ky( y − y̆))), (C 2)

with

Aref (x − x̆, y − y̆) =
⎡
⎣Aref

11 Aref
12 Aref

13

Aref
21 Aref

22 Aref
23

Aref
31 Aref

32 Aref
33

⎤
⎦ and Â

ref
(k) =

⎡
⎢⎣Â

ref
11 Â

ref
12 Â

ref
13

Â
ref
21 Â

ref
22 Â

ref
23

Â
ref
31 Â

ref
32 Â

ref
33

⎤
⎥⎦ ,

(C 3a,b)

where the block matrices Aref
qr (x − x̆, y − y̆) = 〈uq(x, y)uᵀ

r (x̆, y̆)〉 and Â
ref
qr (k) =

〈ûq(k)û∗
r (k)〉 (where the superscript ∗ denotes the Hermitian transpose) are introduced

representing the two-point covariance between the velocity components q and r. It is easily
verified that the two-point covariance is by construction symmetric, which translates in
Fourier space to Â

ref
(k) = Â

ref ,∗
(k), and solenoidal, i.e.

∂Aref
1,j

∂x
+ ∂Aref

2,j

∂y
+ DzA

ref
3,j = 0, or D̂

ref
(k)Â

ref
(k) = 0, (C 4)

with Dref
z the discrete vertical derivative operator, and D̂

ref
(k) = [ikx I, iky I, Dref

z ] the
divergence operator for mode k.

The restriction from the reference grid to the optimisation grid, respectively denoted
with superscripts ‘ref ’ and ‘opt’, is now performed in two steps. First, in the horizontal
directions, the wavenumbers |k| > kc are omitted, which is equivalent with a cutoff filter.
Second, for the vertical directions, we use linear interpolation. Using B̂

opt
(k) to denote the
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restricted tensor, we use (e.g. elaborated for B̂13)

B̂
opt
13,ij(k) =

∑
m,l

tri

(
zopt

i − zref
m

�
ref
3

)
tri

(
z̆opt

j+1/2 − z̆ref
l+1/2

�
ref
3

)
Â

ml,ref
13 (k), (C 5)

with tri(x) � max(1 − |x |, 0) the triangle function, where summation over m, l
corresponds to summation over all vertical locations on the reference grid.

However, the interpolated covariance operator is in general not solenoidal, i.e.
D̂

opt
B̂

opt
/= 0. To resolve this, we start by defining the Hilbert–Schmidt norm of the

two-point covariance tensor

‖A‖2 = 1
L2

x L2
y

∫ Lx

0

∫ Lx

0

∫ Ly

0

∫ Ly

0

∥∥∥∥∥∑|k|≤kc

Â(k) exp(i(kx(x − x̆) + ky( y − y̆))

∥∥∥∥∥
2

dxdx̆dydy̆

=
∑

|k|≤kc

‖Â(k)‖2 =
∑

|k|≤kc

Âij(k)Â
∗
ij(k), (C 6)

which is a direct consequence of Parseval’s theorem. The closest two-point covariance
tensor Aopt, that is conjugate symmetric and solenoidal on the optimisation grid (Aopt) can
then be found as

minimise
Â

opt

∑
|k|≤kopt

c

1
2‖Â

opt
(k) − B̂

opt
(k)‖2,

subject to D̂
opt
ik (k)Â

opt
kj (k) = 0, Â

opt
ij (k) = Â

opt,∗
ji (k), Â

opt
ij (k) = Â

opt,∗
ij (−k) ∀i, j, k,

⎫⎪⎬
⎪⎭

(C 7)

where the last constraint enforces Â
opt

to be strictly real. Since, Â
opt
ij (k) = Â

opt,∗
ij (−k),

only half of the wavenumbers need to be considered. The contributions of the remaining
wavenumbers are independent, and therefore the optimisation can be performed per
wavenumber k.

To continue, for notational simplicity the explicit k dependence of the matrices, and
the ‘opt’ superscript are further omitted. In order to find the optimum, we construct the
Lagrangian

L = 1
2(Âij − B̂ij)(Â

∗
ij − B̂

∗
ij) + Re(Λkj)Re(D̂kiÂij) − Im(Λkj)Im(D̂kiÂij)

+ Re(Γij)Re(Âij − Â
∗
ji) − Im(Γij)Im(Âij − Â

∗
ji), (C 8)

where Λij and Γij are respectively the Lagrangian multipliers for the divergence and
conjugate symmetry constraint. We note that, the sign of the complex constraints can
be freely chosen; the minus sign will be convenient for further notation. Since (C 7) is
a quadratic program, a sufficient condition for optimality is given by

∂L

∂Re(Âij)
= Re(Âij − B̂ij + ΛkjD̂ki + Γij − Γji) = 0, (C 9)

∂L

∂Im(Âij)
= Im(Âij − B̂ij − ΛkjD̂ki + Γij − Γ ∗

ji ) = 0, (C 10)
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or equivalently in matrix form

Â − B̂ + D̂
∗
Λ+ Γ − Γ ∗ = 0. (C 11)

The values of the Lagrange multipliers are found by enforcing the constraints. By using
the conjugate symmetry, Â = Â

∗
, we find an expression for Γ − Γ ∗,

Γ − Γ ∗ = 1
2(B̂ − B̂

∗ +Λ∗D̂ − D̂
∗
Λ). (C 12)

Subsequently substituting into (C 11), gives

Â − B̂ − 1
2(B̂ + B̂

∗
) + 1

2(Λ
∗D̂ + D̂

∗
Λ) = 0. (C 13)

Using the continuity equation D̂Â = 0 in (C 13), and some additional tedious but
straightforward algebraic manipulations, we further find

Λ∗D̂ + D̂
∗
Λ = 1

2(B̂ + B̂
∗
) − 1

2(I − D̂
∗
(D̂D̂

∗
)−1D̂)(B̂ + B̂

∗
)(I − D̂(D̂D̂

∗
)−1D̂

∗
). (C 14)

Inserting (C 14) in (C 13) finally leads to an expression for Â,

Â = 1
2(I − D̂

∗
(D̂D̂

∗
)−1D̂)(B̂ + B̂

∗
)(I − D̂(D̂D̂

∗
)−1D̂

∗
). (C 15)

Here, the operator I − D̂
∗
(D̂D̂

∗
)−1D̂ represents the orthogonal projection on the solenoidal

space.
The left and right projections on the solenoidal space are in practice computed

sequentially. The left projection L̂ � (I − D̂
∗
(D̂D̂

∗
)−1D̂)(B̂ + B̂

∗
)/2, for example, can be

found by first solving

− D̂D̂
∗
X = − 1

2 D̂(B̂ + B̂
∗
), (C 16)

for X , where −D̂
∗

is the definition of the discrete gradient, such that −D̂D̂
∗ = −(k2

x +
k2

y)I − DzD∗
z is the definition of a discrete Laplacian (see Verstappen & Veldman (2003)

for further details), and X is a potential. Note that this procedure is similar to the one for
obtaining the pressure gradient with a pressure-correction approach. The left projected
part of the two-point covariance is then given by

L̂ � 1
2(I − D̂

∗
(D̂D̂

∗
)−1D̂)(B̂ + B̂

∗
) = 1

2(B̂ + B̂
∗
) − D̂

∗
X . (C 17)

The right projection Â = L̂(I − D̂(D̂D̂
∗
)−1D̂

∗
) is computed afterwards in completely

analogous way.
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