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Abstract. In this paper we introduce the notion of parabolic-like mapping. Such an object is
similar to a polynomial-like mapping, but it has a parabolic external class, i.e. an external
map with a parabolic fixed point. We define the notion of parabolic-like mapping and
we study the dynamical properties of parabolic-like mappings. We prove a straightening
theorem for parabolic-like mappings which states that any parabolic-like mapping of
degree two is hybrid conjugate to a member of the family

Per1(1)=
{
[PA]

∣∣∣∣ PA(z)= z +
1
z
+ A, A ∈ C

}
,

a unique such member if the filled Julia set is connected.

1. Introduction
A polynomial-like map of degree d is a triple ( f,U ′,U ) where U ′ and U are open subsets
of C isomorphic to discs, U ′ is compactly contained in U , and f :U ′→U is a proper
degree d holomorphic map (see [DH]). A degree d polynomial-like map is determined
up to holomorphic conjugacy by its internal and external classes, that is, the (conjugacy
classes of the) maps which encode the dynamics of the polynomial-like map on the
filled Julia set and its complement. In particular, the external class consists of degree
d real-analytic orientation preserving and strictly expanding self-coverings of the unit
circle. The definition of a polynomial-like map captures the behavior of a polynomial
in a neighborhood of its filled Julia set. By changing the external class of a degree d
polynomial-like map to the external class of a degree d polynomial (see [DH]), a degree d
polynomial-like map can be straightened to a polynomial of the same degree.

In this paper we introduce a new object, a parabolic-like mapping, similar to but
different from a polynomial-like mapping. The similarity resides in the fact that a
parabolic-like map is a local concept, it is characterized by a filled Julia set and an external
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map, and the external map of a degree d parabolic-like mapping is a degree d real-analytic
orientation preserving self-covering of the unit circle. The difference resides in the fact that
a parabolic-like map has a parabolic fixed point with an attracting petal outside the filled
Julia set, and the external map of a parabolic-like mapping has a parabolic fixed point.

The aim of this paper is to extend the theory of polynomial-like mappings (in the
dynamical plane) to parabolic-like mappings. Let us give an example which illustrates
the class of maps we are considering. The map f1(z)= z2

+ 1/4 has a parabolic fixed
point at z = 1/2. Since the parabolic basin of attraction of the parabolic fixed point resides
in the interior of the filled Julia set, while the repelling direction resides on the Julia set and
outside of it, the external map of f1(z) is hyperbolic. The map f1(z) presents polynomial-
like restrictions. On the other hand, let us interchange the roles of the filled Julia set and
the closure of the basin of attraction of infinity for f1. In other words, let us conjugate
f1(z) by ι(z)= 1/z and obtain the map f2(z)= 4z2/(4+ z2), and let us define the closure
of the basin of attraction of the superattracting fixed point z = 0 to be the filled Julia set for
f2. The basin of attraction of the parabolic fixed point z = 2 now resides outside the filled
Julia set, and gives rise to an the external class with a parabolic fixed point. Appropriate
restrictions of the map f2 belong to the class of parabolic-like mappings.

As polynomial-like mappings are straightened to polynomials, we straighten degree-
two parabolic-like mappings to members of a model family of maps with a parabolic
external class. Our model family is the family of quadratic rational maps with a parabolic
fixed point of multiplier 1, normalized by fixing the parabolic fixed point to be infinity and
the critical points to be 1 and −1, this is

Per1(1)= {[PA] | PA(z)= z + 1/z + A, A ∈ C}.
All of the maps in Per1(1) have a completely invariant Fatou component3, namely the

parabolic basin of attraction of infinity. We define the filled Julia set for these maps as
K A = Ĉ \3

(note that for every A 6= 0, PA has a unique completely invariant Fatou component
3, hence K A is well defined, while for the map P0(z)= z + 1/z we need to make a
choice, after which the filled Julia set K0 is well defined). The external class of this
family is parabolic, and we prove in Proposition 4.2 that it is given by the class of
h2(z)= (3z2

+ 1)/(3+ z2).
In this paper we will first define parabolic-like maps and the filled Julia set of a

parabolic-like map. Then we will construct and discuss the external class in this setting.
Finally, we will prove that we can straighten every degree-two parabolic-like map to a
member of the family Per1(1), by replacing the external map of the parabolic-like map by
h2 (see Figures 1 and 2).

2. Preliminaries
In this paper we are studying restrictions of maps with a parabolic fixed point of multiplier
1. By a change of coordinates we can consider the parabolic fixed point to be at z = 0,
hence we will consider maps which locally have the form

f (z)= z(1+ azn
+ · · · ), n ≥ 1, a 6= 0.

The integer n is the degeneracy/parabolic multiplicity of the parabolic fixed point. In a
neighborhood of a parabolic fixed point of parabolic multiplicity n, there are n attracting
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FIGURE 1. Julia set of the map Ca(z)= z3
+ az2

+ z, a = i .

FIGURE 2. Julia set of the map P1(z)= z + 1/z + A, A = 1.
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petals, which alternate with n repelling petals (for the definition of petal see [Sh] or [M]).
We will denote the petals by 4. On each petal 4 there exists a conformal map which
conjugates the map f to a translation (see [Sh] or [M]). This map is called a Fatou
coordinate for the petal 4, and it is unique up to composition with a translation. We will
denote Fatou coordinates by φ. Often it is convenient to consider the quotient of a petal
4 under the equivalence relation identifying z and f (z) if both z and f (z) belong to 4.
This quotient manifold is called the Écalle cylinder, and it is conformally isomorphic to
the infinite cylinder C/Z (see [Sh] and [M]).

An almost complex structure σ on a domain U ⊂ C is a measurable field of infinitesimal
ellipses E on the tangent bundle over U (denoted by T U ). This is for almost every u ∈U
an ellipse Eu ⊂ TuU (defined up to scaling), with ratio of major to minor axes K (u)
such that the complex dilatation µ :U → D, where |µ(u)| = (K (u)− 1)/(K (u)+ 1) and
the argument of µ(u) is twice the argument of the major axes of Eu , is measurable. An
almost complex structure is bounded if ‖µ‖∞ < 1, and it is standard if σ = σ0 is a field
of circles. Given an ellipse field σ on U and a quasiconformal map φ : V →U , the
ellipse field φ∗σ on V given by {Tvφ−1(Eφ(v))⊂ TvV }v∈V is the pullback of σ under
φ. The pullback of the standard structure under a quasiconformal map is a bounded almost
complex structure, and the Measurable Riemann Mapping Theorem (stated below) shows
that a bounded almost complex structure is the pullback of the standard structure under
some quasiconformal map. For a proof of the Measurable Riemann Mapping Theorem
and an exhaustive discussion about almost complex structures, quasiconformal mappings
and quasisymmetric mappings, the reader is referred to [Ah] or, for a modern treatment,
to [Hu].

MEASURABLE RIEMANN MAPPING THEOREM. Let σ be a bounded almost complex
structure on a domain U ⊂ C. Then there exists a quasiconformal homeomorphism ϕ :

U → C such that
σ = ϕ∗σ0.

Notation. We will use the following notation:

Hl = {z ∈ C | Re(z) < 0},

Hr = {z ∈ C | Re(z) > 0}.

3. Definitions and statement of the Straightening Theorem
A parabolic-like map is an object introduced to extend the notion of polynomial-like maps
to maps with a parabolic external map. The domain of a parabolic-like map is not contained
in the range, and the set of points with infinite forward orbit is not contained in the
intersection of the domain and the range. This calls for a partition of the set of points
with infinite forward orbit into a filled Julia set compactly contained in both domain and
range and exterior attracting petals.

Definition 3.1. (Parabolic-like maps) A parabolic-like map of degree d ≥ 2 is a 4-tuple
( f,U ′,U, γ ) where:
• U ′ and U are open subsets of C, with U ′, U and U ∪U ′ isomorphic to a disc and

U ′ not contained in U ;
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FIGURE 3. On a parabolic-like map ( f,U ′,U, γ ) the arc γ divides U ′ and U into�′, 1′ and�, 1, respectively.
These sets are such that�′ is compactly contained in U ,�′ ⊂�, f :1′→1 is an isomorphism and1′ contains

at least one attracting fixed petal of the parabolic fixed point.

• f :U ′→U is a proper holomorphic map of degree d ≥ 2 with a parabolic fixed
point at z = z0 of multiplier 1;

• γ : [−1, 1] →U is an arc with γ (0)= z0, forward invariant under f , C1 on [−1, 0]
and on [0, 1], and such that

f (γ (t))= γ (dt) for all−
1
d
≤ t ≤

1
d
,

γ

([
1
d
, 1
)
∪

(
−1,−

1
d

])
⊆U \U ′, γ (±1) ∈ ∂U.

It resides in repelling petal(s) of z0 and it divides U ′ and U into �′, 1′ and �, 1
respectively, such that �′ ⊂⊂U (and �′ ⊂�), f :1′→1 is an isomorphism (see
Figure 3) and 1′ contains at least one attracting fixed petal of z0. We call the arc γ a
dividing arc.

Notation. We can consider γ = γ+ ∪ γ−, where γ+ : [0, 1] →U , γ− : [0,−1] →U ,
γ±(0)= z0. Where it will be convenient (e.g. in the examples) we will refer to γ± instead
of γ .

3.1. Examples. (1) Consider the function h2(z)= (3z2
+ 1)/(3+ z2). This map has

critical points at z = 0 and at∞, and a parabolic fixed point at z = 1 of multiplier 1 and
parabolic multiplicity 2. The attracting directions of the parabolic fixed point are along
the real axis, while the repelling ones are perpendicular to the real axis. The repelling
petals 4+ and 4− intersect the unit circle and can be taken to be reflection symmetric
around the unit circle, since h2 is autoconjugate by the reflection T (z)= 1/z̄. Let φ± :
4±→Hl be Fatou coordinates. The image of the unit circle in the Fatou coordinate
planes are horizontal lines, which we can suppose coincide with R−, possibly changing the
normalizations of φ±. Choose ε > 0 and define U ′ = {z | |z|< 1+ ε}, and U = h2(U ′).
Let z± be intersection points of 4±, respectively, and ∂U . Thus, φ+(z+)= m+ with
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FIGURE 4. Construction of a degree-two parabolic-like map from the map (Ca(z)= z + az2
+ z3), for

a = i . The superattracting fixed point z = (−a −
√

a2 − 3)/3 is denoted by s, and the critical point
z = (−a +

√
a2 − 3)/3 in the basin of attraction of the parabolic fixed point is denoted by c.

Im(m+) < 0, and φ−(z−)= m− with Im(m−) > 0. Define the dividing arcs as

γ+ : [0, 1] →U , γ− : [0,−1] →U ,

t→ φ−1
+ (logd(t)+ m+), t→ φ−1

− (logd(−t)+ m−).

Then (h2,U ′,U, γ ) is a parabolic-like map of degree two.
(2) Let (Ca(z)= z + az2

+ z3), for a = i . This map has a superattracting fixed point
s at z = (−a −

√
a2 − 3)/3, a critical point c at z = (−a +

√
a2 − 3)/3 and a parabolic

fixed point at z = 0 with multiplier and parabolic multiplicity 1. Call A0 the immediate
basin of attraction of the parabolic fixed point. Then the critical point c belongs to A0. Let

ϕ :A0→ D be the Riemann map normalized by setting ϕ(c)= 0 and ϕ(z)
z→0
−→ 1, and let

ψ : D→A0 be its inverse. By the Carathéodory theorem the map ψ extends continuously
to S1. Note that ϕ ◦ f ◦ ψ = h2. Let w be an h2 periodic point in the first quadrant, such
that the hyperbolic geodesic γ̃ ∈ D connectingw andw separates the critical value z = 1/3
from the parabolic fixed point z = 1. Let U be the Jordan domain bounded by γ̂ = ψ(γ̃ ),
union the arcs up to potential level one of the external rays landing at ψ(w) and ψ(w),
together with the arc of the level-one equipotential connecting these two rays around s (see
Figure 4). Let U ′ be the connected component of f −1(U ) containing 0 and the dividing
arcs γ± be the fixed external rays landing at the parabolic fixed point 0 and parametrized
by potential. Then ( f,U ′,U, γ ) is a parabolic-like map of degree two (see Figure 4).
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(3) Let f (z)= z2
+ c, for c = (−1+ 3

√
3i)/8 (this is the map known as the ‘fat

rabbit’). Its third iterate f 3 has a parabolic fixed point at z = (−1+
√

3i)/4 of multiplier 1
and parabolic multiplicity 3. Let A0 be the component of the immediate basin of attraction
of the parabolic fixed point containing z = 0. Number the connected components of the
immediate attracting basin in the dynamical order (which here is the counterclockwise
direction around a). Let ϕ :A0→ D be the Riemann map, normalized by ϕ(0)= 0 and
ϕ(z)

z→a
−→ 1, and let ψ : D→A0 be its inverse. The map ψ extends continuously to S1,

and ϕ ◦ f 3
◦ ψ = h2. As above let w be a h2 periodic point in the first quadrant such that

the hyperbolic geodesic γ̃ connecting w and w separates the critical value z = 1/3 from
the parabolic fixed point z = 1. Define γ̂ = ψ(γ̃ ) and γ̂ ′ = f −1(γ̂ ) ∩A2. Let U be the
Jordan domain bounded by γ̂ union the arcs up to potential level one of the external rays
landing at ψ(w) and ψ(w) union γ̂ ′ union the arcs up to potential level one of the external
rays landing at f −1(ψ(w)) ∩A2 and f −1(ψ(w)) ∩A2, together with the two arcs of
the level-one equipotential connecting this four rays around the parabolic fixed point. Let
U ′ be the connected component of f −3(U ) containing (−1+

√
3i)/4 and the dividing

arcs γ+ and γ− be the external rays for angles 1/7 and 2/7 respectively parametrized by
potential. Then ( f 3,U ′,U, γ ) is a parabolic-like map of degree two (see Figure 5).

More generally, define λp/q = exp(2π i p/q) with p and q co-prime, cp/q = λp/q/2−
λ2

p/q/4 and consider fq = z2
+ cp/q . The map fq has a parabolic fixed point of multiplier

λp/q at z = λp/q/2, therefore f q has a parabolic fixed point of multiplier 1 and parabolic
multiplicity q.

Repeating the construction done above one can see that the map f q restricts to a degree-
two parabolic-like map.

Definition 3.2. Let ( f,U ′,U, γ ) be a parabolic-like map. We define the filled Julia set
K f of f as the set of points in U ′ that never leave (�′ ∪ γ±(0)) under iteration:

K f := {z ∈U ′ | ∀n ≥ 0, f n(z) ∈�′ ∪ γ±(0)}.

Remark 3.1. An equivalent definition for the filled Julia set of f is

K f =
⋂
n≥0

f −n(U \1).

The filled Julia set is a compact subset of U ∩U ′ and it is full (since it is the intersection
of topological discs).

As for polynomials, we define the Julia set of f as the boundary of the filled Julia set:

J f := ∂K f .

3.2. Motivations for the definition. A parabolic-like map can be seen as the union of
two different dynamical parts: a polynomial-like part (on �′) and a parabolic one (on 1′),
which are connected by the dividing arc γ .

The parabolic fixed point belongs to the interior of the domain of a parabolic-like map
in order to insure that the filled Julia set is compactly contained in the intersection of the
domain and the range. The dividing arc separates the exterior attracting petals from the
filled Julia set of the parabolic-like mapping, and for this reason the dividing arc is part of
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FIGURE 5. The third iterate of the map f = z2
+ c, for c = (−1+ 3

√
3i)/8, restricts to a degree-two parabolic-

like map.

the definition of parabolic-like mapping (note that we could have constructed the dividing
arc a posteriori by Fatou coordinates). The definition of parabolic-like map also guarantees
the existence of an annulus, U \�′, essential in defining the external class and to perform
the surgery which will give the Straightening Theorem.

There are many prospective definitions of a parabolic-like map. The one introduced
here is flexible enough to capture many interesting examples, and rigid enough to allow
for a viable theory.

3.3. Conjugacies and statement of the main result. We say that ( f,U ′1,U1, γ1) is a
parabolic-like restriction of ( f,U ′2,U2, γ2) if U ′1 ⊆U ′2 and ( f,U ′i ,Ui , γi ), i = 1, 2 are
parabolic-like maps with the same degree and filled Julia set.

Definition 3.3. (Conjugacy for parabolic-like mappings) We say that the parabolic-like
mappings ( f,U ′,U, γ f ) and (g, V ′, V, γg) are topologically conjugate if there exist
parabolic-like restrictions ( f, A′, A, γ f ) and (g, B ′, B, γg), and a homeomorphism ϕ :

A→ B such that ϕ(γ± f )= γ±g and

ϕ( f (z))= g(ϕ(z)) on �′A f
∪ γ f .

If moreover ϕ is quasiconformal (and ∂̄ϕ = 0 almost everywhere on K f ), we say that f
and g are quasiconformally (hybrid) conjugate.

A topological conjugacy between parabolic-like maps is a homeomorphism defined on
a neighborhood of the filled Julia set, which conjugates dynamics just on �′ ∪ γ . This
definition allows flexibility regarding the parabolic multiplicity of the parabolic fixed point.
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In this paper we will prove the following theorem.

STRAIGHTENING THEOREM. We have the following results.
(1) Every degree-two parabolic-like mapping ( f,U ′,U, γ f ) is hybrid equivalent to a

member of the family Per1(1).
(2) Moreover, if K f is connected, this member is unique.

Part 1 follows from Proposition 6.2 together with Theorem 6.3, while part 2 follows
from Proposition 6.5.

3.4. Equivalence of parabolic-like mappings and Isotopy. Two parabolic-like maps are
equivalent, and we do not distinguish between them, if they have a common parabolic-
like restriction. Given a parabolic-like map ( f,U ′1,U1, γ1), the arc γ2 : [−1, 1] →U with
γ2(0)= γ1(0) is isotopic to γ1 if there exists a domain U ′2 ⊆U ′1 for which ( f,U ′i ,Ui , γi ),
i = 1, 2 have a common parabolic-like restriction.

LEMMA 3.1. Let ( f,U ′,U, γ ) be a parabolic-like map, and let γs : [−1, 1] →U be an
arc forward invariant under f , with γs(0)= γ (0) and C1 on [−1, 0] and [0,−1]. Then γs

and γ are isotopic if and only if their projections to Écalle cylinders are isotopic and the
isotopies are disjoint from the projections of the filled Julia set and the critical points.

Proof. Let us prove that, if the projections of γ and γs to Écalle cylinders are isotopic and
the isotopies are disjoint from the projections of the filled Julia set and the critical points,
then γs and γ are isotopic. The converse is trivial.

Let 4+ and 4− be repelling petals where γ+ and γ− respectively reside (note that
4+ and 4− may coincide). Then the quotient manifolds 4+/ f , 4−/ f are conformally
isomorphic to the bi-infinite cylinder. Call β the isomorphism between 4+/ f and C/Z,
and δ the isomorphism between 4−/ f and C/Z. Let

H+ : [0, 1] × C/Z→ C/Z

(s, t)→ H+(s, t),

H− : [0, 1] × C/Z→ C/Z

(s, t)→ H−(s, t),

be isotopies, disjoint from the projections of the filled Julia set and the critical points,
such that for every fixed s ∈ [0, 1], both H±(s, t) : C/Z→ C/Z are at least C1.
Set γs+[τ, dτ ] = β−1(H+(s, ·)) (where 0< τ ≤ 1/d) and γs−[d τ̂ , τ̂ ] = δ−1(H−(s, ·))
(where −1/d ≤ τ̂ < 0). Define γs by extending γs+ and γs− by the dynamics of f to
forward invariant curves in 4+ and 4− respectively (see Figure 6), i.e.
(1) γs+(dn t)= f n(γs+(t)), γs+(t/dn) = f (γs+(t))−n for all τ ≤ t ≤ dτ ;
(2) γs−(dn t)= f n(γs−(t)), γs−(t/dn) = f (γs−(t))−n for all d τ̂ ≤ t ≤ τ̂ ;
(3) γs(±1) ∈ ∂U and γs(0)= γ (0);
where f (γs)

−n is the branch which gives continuity. Then γs divides U and U ′ in �s, 1s

and �′s, 1
′
s respectively, and by construction �′s contains K f and all of the critical points

of ( f,U ′,U, γ ). Hence, ( f,U ′,U, γs) is a parabolic-like restriction of ( f,U ′,U, γ ), and
thus the arcs γ and γs are isotopic. �
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FIGURE 6. Construction of dividing arcs isotopic to γ .

Note that, by construction, if ( f,U ′,U, γ ) is a parabolic-like map and γs is isotopic to
γ , then the arc γ+s resides in the same petal as γ+ and the arc γ−s resides in the same petal
as γ−.

4. The external class of a parabolic-like map
In analogy with the polynomial-like setting, we want to associate to any degree d
parabolic-like map ( f,U ′,U, γ ), a degree d real-analytic map h f : S1

→ S1 with a
parabolic fixed point, unique up to conjugacy by a real-analytic diffeomorphism. We will
call h f an external map of f , and we will call [h f ] (its conjugacy class under real-analytic
diffeomorphisms) the external class of f .

4.1. Construction of an external map of a parabolic-like map f with connected Julia
set. The construction of an external map of a parabolic-like map with connected Julia
set follows the construction of an external map in [DH], up to the differences given by
the geometry of our setting. Let ( f,U ′,U, γ ) be a parabolic-like map of degree d with
connected filled Julia set K f . Then K f contains all of the critical points of f and, hence,
f :U ′ \ K f →U \ K f is a holomorphic degree d covering map. Let

α : Ĉ \ K f −→ Ĉ \ D (1)

be the Riemann map, normalized by α(∞)=∞ and α(γ (t))→ 1 as t→ 0. Write W ′ =
α(U ′ \ K f ) and W = α(U \ K f ) (see Figure 7) and define the map:

h+ := α ◦ f ◦ α−1
: W ′→W.

Then the map h+ is a holomorphic degree d covering. Let τ(z)= 1/z̄ denote the reflection
with respect to the unit circle, and define W− = τ(W ), W ′− = τ(W

′), W̃ =W ∪ S1
∪W−

and W̃ ′ =W ′ ∪ S1
∪W ′−. Applying the strong reflection principle with respect to S1 we

can extend analytically the map h+ :W ′→W to h : W̃ ′→ W̃ . Let h f be the restriction of
h to the unit circle, then the map h f : S1

→ S1 is an external map of f . An external map
of a parabolic-like map is defined up to a real-analytic diffeomorphism.

4.2. The general case. Let ( f,U ′,U, γ ) be a parabolic-like map of degree d . To deal
with the case where the filled Julia set is not connected, we will lean on the similar
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f

K

S

FIGURE 7. Construction of an external map in the case K f connected. We set W ′ = α(U ′ \ K f ),
W = α(U \ K f ) and h+ :W ′→W .

construction in the polynomial-like case. We construct annular Riemann surfaces T and
T ′ that will play the role of U ′ \ K f and U \ K f , respectively, and an analytic map
F : T → T ′ that will play the role of f .

Let V ≈ D be a full relatively compact connected subset of U containing�′, the critical
values of f and such that ( f, f −1(V ), V, γ ) (after rescaling γ , where rescaling an arc
means precomposing it with a scaling) is a parabolic-like restriction of ( f,U ′,U, γ ). Call
L = f −1(V ) ∩�′ and M = f −1(V ) ∩1′. Define X ′0 = (U ∪U ′) \ L , U0 =U \ V , A0 =

U ∩U ′ \ L , X0 =U \ L , A′0 =U ′ \ L and A′′0 =U ′ \ f −1(V ). Note that X0 is an annular
domain.

Let ρ0 : X1→ X0 be a degree d covering map for some Riemann surface X1, and define
V1 = ρ

−1
0 (V \ L). Define X ′′1 = X1 \ V1. The map f : A′′0→U0 is proper holomorphic of

degree d, and ρ0 : X ′′1 →U0 is a proper holomorphic map of degree d. Therefore, we can
choose π0 : A′′0→ X ′′1 , a lift of f : A′′0→U0 to ρ0 : X ′′1 →U0, and π0 is an isomorphism.
The subset 1 has d preimages under the map ρ0. Let us call 11 the preimage of 1 under
ρ0 such that11 ∩ π0(A′′0 ∩1

′) 6=∅. Since f :1′→1 is an isomorphism, we can extend
the map π0 to 1′. Let us call B ′1 = X ′′1 ∪11. Since π0(1

′
\ A′′0) ∩ X ′′1 =∅, the extension

π0 : A′0→ B ′1 is an isomorphism (see Figure 8). Let us call B1 = π0(A0). Define A′1 =
ρ−1

0 (A0) and f1 = π0 ◦ ρ0 : A′1→ B1. The map f1 is proper, holomorphic and of degree d
(see Figure 9). Indeed ρ0 : A′1→ A0 is a degree d covering by definition and π0 : A0→ B1

is an isomorphism because it is a restriction of an isomorphism. Define X ′1 = X1 \ π0(A′0 \
A0), then B1 ⊂ X ′1.

Let ρ1 : X2→ X ′1 be a degree d covering map for some Riemann surface X2, and call
B ′2 = ρ

−1
1 (B1). Define π1 : A′1→ B ′2 as a lift of f1 to ρ1. Then π1 is an isomorphism,

since f1 : A′1→ B1 is a degree d covering and ρ1 : B ′2→ B1 is a degree d covering as
well. Define A1 = A′1 ∩ X ′1 and B2 = π1(A1). Define A′2 = ρ

−1
1 (A1) and f2 = π1 ◦ ρ1 :

A′2→ B2. The map f2 is proper, holomorphic and of degree d, indeed ρ1 : A′2→ A1 is a
degree d covering and π1 : A1→ B2 is an isomorphism. Define X ′2 = X2 \ π1(A′1 \ A1),
then B2 ⊂ X ′2.
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U

Lf

M

V

FIGURE 8. Left: the colored outer annulus is U0 =U \ V , the colored inner annulus is A′0 =U ′ \ L . Right: the
colored annulus is B′1 = X ′′1 ∪11. The map π0 : A′0→ B′1 is an isomorphism.

Lf

M

FIGURE 9. The map f1 = π0 ◦ ρ0 : A′1→ B1 is proper holomorphic of degree d .

f1

f1

FIGURE 10. The map π1 : A′1→ B′2 is a lift of f1 to ρ1, and it is an isomorphism.
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Define recursively ρn−1 : Xn→ X ′n−1 for n > 1 as a holomorphic degree d covering
for some Riemann surface Xn and call B ′n = ρ

−1
n−1(Bn−1). Define recursively πn−1 :

A′n−1→ B ′n ⊂ Xn as a lift of fn−1 to ρn−1. Then πn−1 is an isomorphism. Define
An−1 = A′n−1 ∩ X ′n−1 and Bn = πn−1(An−1). Define A′n = ρ

−1
n−1(An−1) and fn = πn−1 ◦

ρn−1 : A′n→ Bn . Then all of the fn are proper holomorphic maps of degree d , indeed
ρn−1 : A′n→ An−1 are degree d coverings and πn−1 : An−1→ Bn are isomorphisms.
Define X ′n = Xn \ πn−1(A′n−1 \ An−1), then Bn ⊂ X ′n .

We define X ′ =
∐

n≥0 X ′n and X =
∐

n≥1 Xn (disjoint union). Let T ′ be the quotient
of X ′ by the equivalence relation identifying x ∈ A′n with x ′ = πn(x) ∈ Xn+1, and T be
the quotient of X by the same equivalence relation. Then T ′ is an annulus, since it is
constructed by identifying at each level an inner annulus Ai ⊂ X ′i with an outer annulus
Bi+1 ⊂ X ′i+1 in the next level. Similarly T is an annulus, since it is constructed by
identifying at each level an inner annulus A′i ⊂ X i with an outer annulus B ′i+1 ⊂ X i+1 in
the next level. Since for all i > 1, X ′i ⊂ X i , T ∪ T ′ = T ∪ X ′0/∼, which is an annulus
because X ′0 is an annulus, T is an annulus, and π0 identifies an inner annulus of X ′0
(which is A′0) with an outer annulus of X1 (which is B ′1). The covering maps ρn induce
a degree d holomorphic covering map F : T → T ′. Indeed, F is well defined, since
at each level fn = πn−1 ◦ ρn−1 by definition and πn is a lift of fn to ρn . Therefore,
ρn ◦ πn = fn = πn−1 ◦ ρn−1 and the following diagram commutes:

A′n
πn
−−−−→ B ′n+1yρn−1

yρn

An
πn−1
−−−−→ Bn

(2)

Finally, the map F is proper of degree d since by definition F|Xn = ρn−1 : Xn→ X ′n−1 is
a proper map (and F|X1 = ρ0 : X1→ X ′0 is proper onto its range, which is X0).

Now, let us construct an external map for f . Let m > 0 be the modulus of the annulus
T ∪ T ′. Let A ⊆ C be any annulus with inner boundary S1 and modulus m. Then there
exists an isomorphism

α : T ∪ T ′ −→ A (3)

with |α(z)| → 1 when z→ L and α(z)→ 1 when z→ z0 within1/∼ (where1/∼= {z |
∃ n : π−1

0 ◦ · · · ◦ π
−1
n−1 ◦ π

−1
n (z) ∈1 ∪1′}). Then we just have to repeat the construction

done for the case K f connected, with T and T ′ playing the role of U ′ \ K f and U \ K f ,
respectively, and F playing the role of f .

4.3. External equivalence.

Definition 4.1. Two parabolic-like maps ( f,U ′,U, γ f ) and (g, V ′, V, γg) are externally
equivalent if their external maps are conjugate by a real-analytic diffeomorphism, i.e. if
their external maps belong to the same external class.

Let ( f,U ′,U, γ f ) and (g, V ′, V, γg) be two parabolic-like mappings with connected
Julia sets. By the construction of an external map we gave (see §4.1), it is easy to see
that ( f,U ′,U, γ f ) and (g, V ′, V, γg) are externally equivalent if and only if there exist
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parabolic-like restrictions ( f, A′, A, γ f ) and (g, B ′, B, γg), and a biholomorphic map

ψ : (A ∪ A′) \ K f → (B ∪ B ′) \ Kg

such that ψ(γ± f )= γ±g and ψ ◦ f = g ◦ ψ on A′ \ K f . We call ψ an external
equivalence between f and g.

The following lemma shows that the situation is analogous also in the case where the
Julia sets are not connected.

LEMMA 4.1. Let ( fi ,U ′i ,Ui , γi ), i = 1, 2, be two parabolic-like mappings with
disconnected Julia sets. Let Wi ≈ D be a full relatively compact connected subset of Ui

containing �′i and the critical values of fi , and such that ( fi , f −1
i (Wi ), Wi , γi ) is a

parabolic-like restriction of ( fi , U ′i , Ui , γi ). Define L i := f −1
i (W i ) ∩�

′

i . Suppose

ϕ : (U1 ∪U ′1) \ L1→ (U2 ∪U ′2) \ L2

is a biholomorphic map such that ϕ ◦ f1 = f2 ◦ ϕ on U ′1 \ L1. Then ( f1,U ′1,U1, γ1) and
( f2,U ′2,U2, γ2) are externally equivalent, and we say that ϕ is an external equivalence
between them.

Proof. Let (Xn,i , ρ(n−1),i , π(n−1),i , fn,i )n≥1, i=1,2 be as in the construction of an external
map for a parabolic-like map with disconnected Julia set. Let us set ϕ0 = ϕ and define
recursively ϕn = ρ

−1
(n−1),2 ◦ ϕn−1 ◦ ρ(n−1),1 : Xn,1→ Xn,2. Then the following diagram

commutes:
X ′n,1 ⊂ Xn,1

ϕn
−−−−→ Xn,2 ⊃ X ′n,2yρ(n−1),1

yρ(n−1),2

X ′(n−1),1
ϕn−1
−−−−→ X ′(n−1),2

(4)

(for n = 0, ρ0,i : X1,i → X0,i ⊂ X ′0,i ). Then every ϕn : Xn,1→ Xn,2 thus defined is
an isomorphism and a conjugacy between fn,1 and fn,2, and the following diagram
commutes:

Xn,1 ⊃ A′n,1
fn,1
−−−−→ Bn,1 ⊂ X ′n,1yϕn

yϕn

Xn,2 ⊃ A′n,2
fn,2
−−−−→ Bn,2 ⊂ X ′n,2

(5)

Thus, the family of isomorphisms ϕn induces an isomorphism 8 : T1 ∪ T ′1→ T2 ∪ T ′2
compatible with dynamics (where Ti and T ′i , i = 1, 2, are as in the construction of an
external map for a parabolic-like map with disconnected Julia set), and so the external
maps of f1 and f2 are real-analytically conjugate. �

4.3.1. External map for the members of the family Per1(1). The filled Julia set K P of a
polynomial P : Ĉ→ Ĉ is defined as the complement of the basin of attraction of infinity,
which is a completely invariant Fatou component. For a degree d rational map R : Ĉ→ Ĉ
with a completely invariant Fatou component 3 we may define the filled Julia set as

K R = Ĉ \3.
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Note that a degree d map can have up to two completely invariant Fatou components
31, 32 (since a degree d map defined on the Riemann sphere has 2d − 2 critical points,
and a completely invariant Fatou component contains at least d − 1 critical points). In
the case R has precisely one completely invariant Fatou component 3, the filled Julia set
K R = Ĉ \3 is well defined. In the case R has two such components 31, 32, there are
two possibilities for the filled Julia set, hence we need to make a choice. After choosing a
completely invariant component 3∗, the filled Julia set K R = Ĉ \3∗ is well defined.

Every member of the family Per1(1) has a parabolic fixed point at ∞ with multiplier
1, and the basin of attraction of the parabolic fixed point is a completely invariant
Fatou component. For all the members of the family Per1(1) with A 6= 0 the parabolic
multiplicity of the parabolic fixed point is 1, hence all of these maps have precisely one
completely invariant Fatou component 3. Thus, for all of the members of the family
Per1(1) with A 6= 0 the filled Julia set K PA = Ĉ \3 is well defined. On the other hand,
since for the map P0(z)= z + 1/z the parabolic multiplicity of ∞ is 2, this map has
two completely invariant Fatou components, namely Hr and Hl . Since P0(z)= z + 1/z
is conformally conjugate to the map h2(z)= (3z2

+ 1)/(3+ z2) under the map ϕ(z)=
(z + 1)/(z − 1), for consistency with Example 1 in § 3.1 we consider K P0 =Hl = ϕ(D).

Let f : Ĉ→ Ĉ be a rational map of degree d. The map f has a parabolic-like restriction
if there exist open connected sets U and U ′ and a dividing arc γ such that ( f,U ′,U, γ )
is a parabolic-like map of some degree d ′ ≤ d . A parabolic-like restriction of a member
PA of the family Per1(1) has degree two, hence the filled Julia set K PA defined as above
coincides with the filled Julia set of the parabolic-like restriction of PA. Therefore, we
consider as external class of PA the external class of its parabolic-like restriction.

PROPOSITION 4.2. For every A ∈ C the external class of PA is given by the class
of h2(z)= (z2

+ (1/3))/(1+ (z2/3)).

Proof. Since the maps P0(z)= z + 1/z and h2(z)= (3z2
+ 1)/(3+ z2) are conformally

conjugate, in order to prove that h2 is an external map of PA, it is sufficient to prove that
P0 is externally equivalent to PA, for A ∈ C. Let40 be an attracting petal of P0 containing
the critical value z = 2, and let φ0 :4

0
→Hr be the incoming Fatou coordinates of P0

normalized by φ0(2)= 1. Let 4A be an attracting petal of the parabolic fixed point∞ of
PA and let φA :4

A
→Hr be the incoming Fatou coordinates of PA with φA(2+ A)= 1.

We call the critical point in the boundary of the maximal domain which is sent univalently
to the right half-plane by φA the first critical point attracted to the parabolic fixed point
∞. Replacing A by −A if necessary, we can assume that z = 1 is the first critical point
attracted by the parabolic fixed point∞.

Let us construct an external equivalence between P0 and PA first in the case K PA is
connected. The map η := φ−1

A ◦ φ0 :4
0
→4A is a conformal conjugacy between P0 and

PA on 40. Defining 40
−n, n > 0 as the connected component of P−n

0 (40) containing 40,
and 4A

−n , n > 0 as the connected component of P−n
A (4A) containing 4A, we can lift the

map η to ηn :4
0
−n→4A

−n . Since K PA is connected, by iterated lifting of η we obtain a
conformal conjugacy η : Ĉ \ K P0 → Ĉ \ K PA between P0 and PA.

In the case K PA is not connected the map η is a conformal conjugacy between P0 and
PA on the region delimited by the Fatou equipotential passing through z = 1. We are now
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going to construct parabolic-like restrictions (P0,U ′0,U0, γ0) and (PA,U ′A,UA, γA) of the
maps P0 and PA, respectively, and extend the map η to an external equivalence between
them. The critical point z = 1 is the first attracted by infinity for both the maps P0 and
PA, so it cannot belong to the domains U ′0, U ′A of their parabolic-like restrictions but
it may belong to the codomains U0, UA, while the critical point z =−1 belongs to �′0
and �′A. Let us denote by φ̂A and φ̂0 the Fatou coordinates of PA and P0, respectively
(normalized by φ̂A(2+ A)= 1 and φ̂0(2)= 1), extended to the whole basin of attraction
of∞ by iterated lifting. The maps φ̂A and φ̂0 have univalent inverse branches

ψA : C \ {z = x + iy | x < 0 ∧ y ∈ [0, Im(φ̂A(−2+ A))]} → 4̂A

and ψ0 : C \ R−→ 4̂0, respectively, and the map

η = ψA ◦ φ̂0 : ψ
−1
0 (C \ {z = x + iy | x < 0 ∧ y ∈ [0, Im(φ̂A(−2+ A))]})→ 4̂A

is a biholomorphic extension of η conjugating dynamics. Choose r >max{1+
Im(φ̂A(A − 2)), 2} and z0, r < z0 < r + 1 such that A − 2 /∈ φ−1

A (D(z0, r)). Then for
r < r ′ < z0 with r ′ sufficiently close to r we have A − 2 /∈ φ−1

A (D(z0, r ′)). Let γ̃+, γ̃−
be horizontal lines, symmetric with respect to the real axis, starting at −∞ and landing
at ∂D(z0, r), such that the point φ̂A(A − 2) is contained in the strip between them
(see Figure 11) and they do not leave the disc T−1(D(z0, r)) (where T−1(D(z0, r))
is the disc of radius r and center z1 = z0 − 1) after having entered into it. Define
U0 = (φ

−1
0 (D(z0, r))c, U ′0 = P−1

0 (U0), γ+0 = ψ0(γ̃+), and γ−0 = ψ0(γ̃−). In the same
way define UA = (φ

−1
A (D(z0, r))c, U ′A = P−1

A (UA), γ+A = ψA(γ̃+), and γ−A = ψA(γ̃−).
Then the parabolic-like restriction of P0 we consider is (P0,U ′0,U0, γ+0 , γ−0 ), and the
parabolic-like restriction of PA we consider is (PA,U ′A,UA, γ+A , γ−A ). Note that, by
construction, the map η is a conformal conjugacy between P0 and PA on 1′0. In order to
obtain an external equivalence we need η to be defined on a fundamental annulus. Define
D0 = φ

−1
0 (D(z0, r ′)), D′0 = P−1

0 (D0), DA = φ
−1
A (D(z0, r ′)), and D′A = P−1

A (DA) (see
Figure 12). Since D0 and DA belong to the regions delimited by the Fatou equipotential
passing through z = 1, the restriction η : D0→ DA is a holomorphic conjugacy between
P0 and PA. Since −2 /∈ D0 and −2+ A /∈ DA, the restrictions P0 : D′0 \ {1} → D0 \ {2}
and PA : D′A \ {1} → DA \ {2+ A} are degree two coverings. Hence, we can lift the map
η to η : D′0 \ {1} → D′A \ {1}. Finally, we obtain a biholomorphic map η : D′0 ∪1

′

0→

D′A ∪1
′

A which conjugates dynamics.
Define V0 = (D0)

c and VA = (DA)
c, and consequently L =�′0 \ D′0 and M =

�′A \ D′A. The sets V0 and VA are compactly contained in U0 and UA, respectively,
containing�′0 (which contains the critical value−2) and�′A and the critical value−2+ A,
respectively, and such that P0 : (D

′

0)
c
→ (D0)

c and PA : (D
′

A)
c
→ (D A)

c are parabolic-
like restrictions of (P0,U0,U ′0, γ0) and (PA,UA,U ′A, γA), respectively, and the map
η : (U0 ∪U ′0) \ L→ (UA ∪U ′A) \ M is a biholomorphic conjugacy between P0 and PA.
Therefore, the result follows by Lemma 4.1. �

4.4. Properties of external maps. Let ( f,U ′,U, γ ) be a parabolic-like map of degree d,
and let h f be a representative of its external class. The map h f : S1

→ S1 is by construction
real-analytic, symmetric with respect to the unit circle, and it has a parabolic fixed point
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FIGURE 11. The construction of parabolic-like restrictions of P0 and PA . In the picture we are assuming the
critical value z =−2+ A in �A \�

′
A . In this case the critical value z =−2+ A belongs to the attracting

petal 4A .

z1 of multiplier 1 and even parabolic multiplicity 2n (where n is the number of petals of
z0 outside K f ). Let α be an isomorphism which defines h f . Hence, h f inherits via α
dividing arcs γh f+ := α(γ+ \ {z0}) ∪ {z1} and γh f− := α(γ− \ {z0}) ∪ {z1}, which divide
W ′f \ D and W f \ D into �′W , 1

′

W and �W , 1W , respectively, such that h f :1
′

W →1W

is an isomorphism and 1′W contains at least one attracting fixed petal of z1. Note that
�′W is not compactly contained in W (since they share the inner boundary), and that γh f+

and γh f− form a positive angle (since there is at least one attracting fixed petal of z1 in
1W ; we prove in [L] that this angle is π ). Moreover, we prove in [L, Theorem 2.3.3] that
there exists ĥ ∈ [h f ] such that for all z ∈ S1, |ĥ(z)| ≥ 1, and the equality holds only at the
parabolic fixed point.

5. Parabolic external maps
So far we have considered external maps only in relation to parabolic-like maps (and
members of the family Per1(1)). We now want to separate these two concepts, and then
consider external maps as maps of the unit circle to itself with some specific properties,
without referring to a particular parabolic-like map. In order to do so we need to give an
abstract definition of external map, which endows it with all of the properties it would
have, if it would have been constructed from a parabolic-like map.
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21

1

0

0

0

FIGURE 12. The construction of the external equivalence η between the parabolic-like restriction of P0 and the
parabolic-like restriction of PA . For r < r ′, D(z0, r)⊂⊂ D(z0, r ′) and T−1(D(z0, r))⊂⊂ T−1(D(z0, r ′)). In

the picture we are assuming the critical value z =−2+ A in �A \�
′
A .

Definition 5.1. (Parabolic external map) Let h : S1
→ S1 be a degree d orientation-

preserving real-analytic and metrically expanding (i.e. |h′(z)| ≥ 1) map. We say that h is a
parabolic external map, if there exists a unique z = z∗ such that h(z∗)= z∗ and h′(z∗)= 1,
and |h′(z)|> 1 for all z 6= z∗.

The multiplicity of z∗ as parabolic fixed point of h is even (since the map h is symmetric
with respect to the unit circle). As h is metrically expanding, the repelling petals of z∗
intersect the unit circle. Let h :W ′→W be an extension which is a degree d covering
(where W = {z : e−ε < |z|< eε} for an ε > 0, and W ′ = h−1(W )). We define a dividing
arc for h to be an arc γ̃ : [−1, 1] →W \ D, forward invariant under h, C1 on [−1, 0] and
[0,−1], residing in the union of the repelling petals which intersect the unit circle and
such that

h(γ̃ (t))= γ̃ (dt) for all −
1
d
≤ t ≤

1
d
,

γ̃

([
1
d
, 1
)
∪

(
−1,−

1
d

])
⊆W \W ′, γ̃ (±1) ∈ ∂W.
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Remark 5.1. A dividing arc for a parabolic external map can be constructed by taking
preimages of horizontal lines by repelling Fatou coordinates defined on (disjoint) repelling
petals intersecting the unit circle.

The dividing arc divides W ′ \ D and W \ D into �′W , 1
′

W and �W , 1W , respectively.
The restriction h :1′W →1W is an isomorphism and 1′W contains at least an attracting
fixed petal of z∗. We prove in [L, Lemma 2.3.9] that there exists a range W̃ for an extension
h : W̃ ′→ W̃ degree d covering such that �W̃ \�

′

W̃
is a topological quadrilateral.

Therefore, external maps constructed from parabolic-like mappings and parabolic external
maps are equivalent concepts.

Remarks 5.2. We make the following remarks.
• For clarity of exposition we consider in this paper parabolic-like maps with external

map having exactly one parabolic fixed point (Cf. Definition 3.1). This concept
naturally generalizes to maps with external maps having several parabolic fixed
points. A general parabolic-like map has as many pairs of dividing arcs γ± (which
divide U and U ′ in �, 11, 12, . . . , 1n and �′, 1′1, 1

′

2, . . . , 1
′
n , respectively) as

the number of parabolic fixed points.
• Moreover, this concept generalizes in a similar way to maps with external maps

having several parabolic periodic orbits. An external map for such an object is an
orientation-preserving real-analytic and metrically expanding map h : S1

→ S1 with
h′(z∗)= 1 for every z∗ belonging to a parabolic cycle and |h′(z)|> 1 for all of the
other points of the unit circle.

Definition 5.3. A degree d covering extension h :W ′→W of a parabolic external map
h : S1

→ S1 is an extension to some neighborhood W = {z | e−ε < |z|< eε} for an ε > 0,
and W ′ = h−1(W ) such that the map h :W ′→W is a degree d covering and there exists
a dividing arc γ̃ which divides W ′ \ D, W \ D into �′W , 1

′

W and �W , 1W , respectively,
such that �W \�

′

W is a topological quadrilateral.

The concept of parabolic-like restriction naturally applies to parabolic external maps
(h : Ŵ ′→ Ŵ is a parabolic-like restriction of h :W ′→W if they are both degree d
covering extension of the same parabolic external map and Ŵ ⊆W ). Let γ be a dividing
arc for some parabolic external map. We say that γs : [−1, 1] → C \ D is isotopic to γ
if their projections to Écalle cylinders are isotopic and the isotopies are disjoint from the
projections of the unit circle. From the definitions of dividing arc and isotopy of arcs for
parabolic external maps is easy to see that dividing arcs for the same external map are
isotopic.

PROPOSITION 5.4. Let hi : S1
→ S1, i = 1, 2 be parabolic external maps of the same

degree d, hi :W ′i →Wi degree d covering extensions, and γi dividing arcs. Then the
following statements hold.
(1) Let γs : [−1, 1] → C \ D be a forward invariant arc for h1, isotopic to γ1, and C1

on [−1, 0] and [0, 1]. Then (possibly after rescaling) γs is a dividing arc for h1.
(2) Assume γi+ and γi− are constructed by taking preimages of the same periodic curves

by repelling Fatou coordinates φi+ and φi− (defined on disjoint repelling petals
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intersecting the unit circle) of hi . Then the map φ−1
2 ◦ φ1 : γ1→ γ2 defined as

φ−1
2 ◦ φ1(z)=

{
φ−1

2+ ◦ φ1+ on γ1+,

φ−1
2− ◦ φ1− on γ1−,

is a quasisymmetric conjugacy between h1|γ1 and h2|γ2 .

Proof. Property (1) comes from the definition of isotopy in the parabolic external maps
setting and a similar argument as in the proof of Lemma 3.1. Let us prove property
(2). In the following, i = 1, 2. Let 4i+ and 4i− be repelling petals where γi+ and γi−

respectively reside (so 4i+ and 4i− intersect the unit circle), and let φi+ :4i+→Hl

and φi− :4i−→Hl be repelling Fatou coordinates. Then there exist γ+ and γ−,
1-periodic curves in Hl bounded from above and below, such that γi+ = φ

−1
i+ (γ+)

and γi− = φ
−1
i− (γ−). The map φ−1

2 ◦ φ1 : γ1→ γ2 is clearly a conjugacy between h1|γ1

and h2|γ2 . Let us prove that this map is quasisymmetric. To fix the notation let us
assume the multiplicity of zi as parabolic fixed point of hi is 2ni . By an iterative local
change of coordinates applied to eliminate lower-order terms one by one, we obtain
conformal diffeomorphisms gi which conjugate hi to the map z→ z(1+ z2ni + cz4ni +

O(z6ni )) on 4i±. Since the forward invariant arcs γi± reside in the repelling petals
4i±, it suffices to consider hi (z)= z(1+ z2ni + cz4ni + O(z6ni )). The map Ii (z)=
−1/(2ni z2ni ) conjugates hi to h∗i (z)= z + 1+ ĉi (1/z)+ O(1/z2). Shishikura proved in
[Sh] that Fatou coordinates which conjugate the map h∗i to T (z)= z + 1 on Ii (4i±) take
the form 8i±(z)= z − ĉi log(z)+ ci± + o(1). Therefore, φi± =8i± ◦ Ii , and we can
write

γi+ = (8i+ ◦ Ii )
−1(γ+){i=1,2},

γi− = (8i− ◦ Ii )
−1(γ−){i=1,2},

γi
hi

−−−−→ γiyIi

yIi

Hl
h∗i

−−−−→ Hly8i

y8i

Hl
T

−−−−→ Hl

(6)

Call γ ∗i+ = Ii (γi+), γ ∗i− =−Ii (γi−) and γ ∗i = γ
∗

i+ ∪∞∪ γ
∗

i−. The map Îi : γi → γ ∗i :

Îi (z)=

{
Ii (z) on γi+,

−Ii (z) on γi−,

is quasisymmetric on a neighborhood of 0. Define γ̂ = γ+ ∪∞∪−γ−, and the map 8̂i :

γ ∗i → γ̂ as follows:

8̂i (z)=

{
8i+(z) on γ ∗i+,

−8i−(−z) on γ ∗i−.

The map 8̂i is the restriction to γ ∗i \∞ of a conformal map. Again by Shishikura [Sh]
the maps 8i+, 8i− have derivatives 8′i± = 1+ o(1), hence the map 8̂i : γ

∗

i → γ̂ is a
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diffeomorphism (one may take 1/x as a chart). The map 8̂i ◦ Îi : γi → γ̂ conjugates
the map hi to the map T+(z)= z + 1 on γi+, and to the map T−(z)= z − 1 on γi−.
Hence, φ−1

2 ◦ φ1 = (8̂2 ◦ Î2)
−1
◦ (8̂1 ◦ Î1) : γ1→ γ2. The map 8̂−1

2 is a diffeomorphism
because it has the same analytic expression as 8̂2, and therefore the map 8̂−1

2 ◦ 8̂1

is a diffeomorphism. Since the map Îi is quasisymmetric on a neighborhood of 0, the
inverses are quasisymmetric on a neighborhood of∞. Hence the composition φ−1

2 ◦ φ1 =

Î2
−1
◦ 8̂−1

2 ◦ 8̂1 ◦ Î1 : γ1→ γ2 is quasisymmetric. �

6. The Straightening Theorem
Definition 6.1. Let ( f,U ′,U, γ f ) and (g, V ′, V, γg) be two parabolic-like mappings. We
say that f and g are holomorphically equivalent if there exist parabolic-like restrictions
( f, A′, A, γ f ) and (g, B ′, B, γg), and a biholomorphic map ϕ : (A ∪ A′)→ (B ∪ B ′)
such that ϕ(γ± f )= γ±g and

ϕ( f (z))= g(ϕ(z)) on A′.

PROPOSITION 6.2. A degree-two parabolic-like map is holomorphically conjugate to a
member of the family Per1(1) if and only if its external class is given by the class of h2.

Proof. By Proposition 4.2, the external class of every member of the family Per1(1) is
given by the class of h2, hence a parabolic-like map holomorphically conjugate to a
member of the family Per1(1) has external map in the class of h2. Let us prove that
a degree-two parabolic-like map g : V ′→ V with external map h2 is holomorphically
conjugate to a member of the family Per1(1). Let ψ be an external equivalence between
the maps g and h2. Let S be the Riemann surface obtained by gluing V ∪ V ′ and Ĉ \ D,
by the equivalence relation identifying z to ψ(z), i.e.

S = (V ∪ V ′)
∐
(Ĉ \ D)/z ∼ ψ(z).

By the Uniformization Theorem, S is isomorphic to the Riemann sphere. Consider the
map

g̃(z)=

{
g on V ′,

h2 on Ĉ \ D.

Since the map h2 is an external map of g, the map g̃ is holomorphic. Let ϕ̂ : S→ Ĉ be
an isomorphism that sends the parabolic fixed point of g̃ to infinity, the critical point of g̃
to z =−1, and the preimage of the parabolic fixed point of g̃ to z = 0. Define P2 = ϕ̂ ◦

g̃ ◦ ϕ̂ −1
: Ĉ→ Ĉ. The map P2 is a degree two holomorphic map defined on the Riemann

sphere, so it is a quadratic rational function. By construction it has a parabolic fixed point
of multiplier 1 at z =∞ with preimage z = 0, and it has a critical point at z =−1. Hence,
P2 belongs to the family Per1(1). �

THEOREM 6.3. Let ( f,U ′,U, γ f ) be a parabolic-like mapping of some degree d > 1,
and h : S1

→ S1 be a parabolic external map of the same degree d. Then there exists a
parabolic-like mapping (g, V ′, V, γg) which is hybrid equivalent to f and whose external
class is [h].
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Throughout this proof we assume, in order to simplify the notation, U and U ′ with C1

boundaries (if U and U ′ do not have C1 boundaries we consider a parabolic-like restriction
of ( f,U ′,U, γ f ) with C1 boundaries).

Let h : S1
→ S1 be a parabolic external map of degree d > 1, z∗ be its parabolic fixed

point and h :W ′ −→W be a degree d covering extension. Define B =W ∪ D and B ′ =
W ′ ∪ D. We are going to construct now a dividing arc γ̃ : [−1, 1] → B \ D for h, such that
on γ̃ the dynamics of h is conjugate to the dynamics of f .

Let h f be an external map of f , z1 its parabolic fixed point, h f :W ′f →W f a degree
d covering extension and α an external equivalence between f and h f . The dividing arcs
γh f± are tangent to S1 at the parabolic fixed point z1, and they divide W f and W ′f in
1W , �W and 1′W , �

′

W , respectively (see § 4.4).
Let 4h f± be repelling petals for the parabolic fixed point z1 which intersect the unit

circle and φ± :4h f±→Hl be Fatou coordinates. On the other hand, let 4h± be repelling
petals for the parabolic fixed point z∗ of h which intersect the unit circle and φ̃± :4h±→

Hl be Fatou coordinates. Define

γ̃+ = φ̃
−1
+ (φh f+(γh f+))

and
γ̃− = φ̃

−1
− (φh f−(γh f−)).

The arc γ̃ = γ̃+ ∪ γ̃− is (possibly after rescaling) a dividing arc for h. It divides the set B
into �B and 1B (with D⊂�B) and the set B ′ into �′B and 1′B (with D⊂�′B). Define
the map φ̃−1

◦ φh f : γh f → γ̃ as follows:

φ̃−1
◦ φh f (z)=

{
φ̃−1
+ ◦ φh f+ on γh f+,

φ̃−1
− ◦ φh f− on γh f−.

By Proposition 5.4(2) the map φ̃−1
◦ φh f is a quasisymmetric conjugacy between h f |γh f

and h|γ̃ . Let z0 be the parabolic fixed point of f , and define the map ψ : γ f → γ̃ as
follows:

ψ(z)=


φ̃−1
+ ◦ φh f+ ◦ α on γ f+ \ {z0},

φ̃−1
− ◦ φh f− ◦ α on γ f− \ {z0},

z∗ on z0.

The map ψ : γ f → γ̃ is an orientation-preserving homeomorphism, real-analytic on γ f \

{z0}, which conjugates the dynamics of f and h. Let ψ0 : ∂U → ∂B be an orientation-
preserving C1-diffeomorphism coinciding with ψ on γ f ∩ ∂U (it exists because both U
and B have smooth boundaries).

CLAIM 6.1. There exists a quasiconformal map81 :1→1B which extends to ψ on γ f ,
and to ψ0 on ∂U ∩ ∂1.

Proof. It is sufficient to construct a quasiconformal map81W :1W →1B which extends
to φ̃−1

◦ φh f on γh f and to ψ0 ◦ α
−1 on α(∂U ∩ ∂1). Then we will set 81 =81W ◦ α.

The set ∂1W is a quasicircle, since it is a piecewise C1 closed curve with non-zero
interior angles. Indeed, γh f+ and γh f− form a positive angle since they are separated
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by at least one attracting petal, and we can assume the angles between γh f and ∂W f

to be positive (we may take parabolic-like restrictions). The same argument shows that
∂1B is a quasicircle. Let 8 f :1W → D and 8h :1B→ D be Riemann maps, and let
9 f : D→1W and 9h : D→1B be their inverse maps. By the Carathéodory theorem the
maps 9 f and 9h extend continuously to the boundaries, and since ∂1W and ∂1B are
quasicircles, the restrictions 9 f : S1

→ ∂1W and 9h : S1
→ ∂1B are quasisymmetric.

Define the map 8̃0 : S1
→ S1 as follows:

8̃0(z)=

{
9−1

h ◦ φ̃
−1
◦ φh f ◦9 f on 9−1

f (γh f ),

9−1
h ◦ ψ0 ◦ α

−1
◦9 f on 9−1

f (∂1W ∪ ∂W f ).

The map 8̃0 : S1
→ S1 is quasisymmetric, because the extensions of 9h and 9 f to the

unit circle are quasisymmetric, α is conformal, the map ψ0 is a C1-diffeomorphism and
by Proposition 5.4(2) the map φ̃−1

◦ φh f : γh f → γ̃ is quasisymmetric. Hence, it extends
by the Douady–Earle extension (see [DE]) to a quasiconformal map φ̃0 : D→ D which
is a real-analytic diffeomorphism on D. Thus, 81W :=9h ◦ φ̃0 ◦8 f is a quasiconformal
map between 1W and 1B , which is a real-analytic diffeomorphism on 1W , and which
coincides with φ̃−1

◦ φh f on γh f and with ψ0 ◦ α
−1 on α(∂U ∩ ∂1). �

Let us define 1̃B = h(1B ∩1
′

B), B̃ =�B ∪ γ̃ ∪ 1̃B , B̃ ′ = h−1(B̃), �̃′B =�
′

B ∩ B̃ ′,
1̃′B =1

′

B ∩ B̃ ′. On the other hand define 1̃=8−1
1 (1̃B), 1̃′ =8−1

1 (1̃′B), Ũ = (� ∪
γ f ∪ 1̃)⊂U . Consider

f̃ (z)=

{
8−1
1 ◦ h ◦81 on 1̃′,

f on �′ ∪ γ f .

Define Ũ ′ = f̃ −1(Ũ ), and �̃′ = Ũ ′ ∩�′. The map f̃ : Ũ ′→ Ũ is a degree d proper
and quasiregular map which coincides with f on (�̃′ ∪ γ f )⊂ (�

′
∪ γ f ). Define Û ′ =

f −1(Ũ ), 1̂′ =1′ ∩ Û ′ and �̂′ =�′ ∩ Û ′. Then ( f, Û ′, Ũ , γ f ) is a parabolic-like

restriction of ( f,U ′,U, γ f ), and �̂′ = �̃′. Set Q f =� \ �̃′, and Qh =�B \ �̃′B . Let
ψ0 : ∂Ũ → ∂ B̃ be an orientation-preserving C1-diffeomorphism coinciding with ψ0 on
∂�, and let ψ1 : ∂Ũ ′→ ∂ B̃ ′ be a lift of ψ0 ◦ f̃ to h.

CLAIM 6.2. There exists a homeomorphism ψ̃ :U \ �̃→ B \ �̃B quasiconformal on U \
(�̃ ∪ {z0}) such that the almost complex structure σ defined as

σ(z)=


σ0 on K f ,

σ1 = ψ̃
∗(σ0) on U \ �̃,

( f̃ n)∗σ1 on f̃ −n(Ũ \ �̃),

is bounded and f̃ -invariant.
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Proof. Let us start by constructing a quasiconformal map 9Q between Q f and Qh which
agrees with ψ on γ f , with ψ0 on ∂U and with ψ1 on ∂Ũ ′. The sets ∂Q f and ∂Qh are
quasicircles, since they are piecewise C1 closed curves with non-zero interior angles. Let
ϕ f : Q f → D and ϕh : Qh→ D be Riemann maps, and let ψ f : D→ Q f and ψh : D→
Qh be their inverses. By the Carathéodory theorem ψ f and ψh extend continuously to the
boundaries, and since ∂Q f and ∂Qh are quasicircles, ψ f

|S1 and ψh
|S1 are quasisymmetric.

Hence, the map 8̂0 : S1
→ S1 defined as

8̂0(z)=


ψ−1

h ◦ ψ+ ◦ ψ f on ψ−1
f (γ f+),

ψ−1
h ◦ ψ0 ◦ ψ f on ψ−1

f (Q f ∩ ∂U ),

ψ−1
h ◦ ψ− ◦ ψ f on ψ−1

f (γ f−),

ψ−1
h ◦ ψ1 ◦ ψ f on ψ−1

f (Q f ∩ ∂Ũ ′),

is quasisymmetric, and it extends (see [DE]) to a quasiconformal map ϕ̂0 : D→ D which is
a real-analytic diffeomorphism on D. Finally, the map 9Q :=: ψh ◦ ϕ̂0 ◦ ψ

−1
f : Q f → Qh

is a quasiconformal map which coincides with ψ on γ f , with ψ0 on ∂U and with ψ1 on
∂Ũ ′. Moreover, the map 9Q is a real-analytic diffeomorphism on Q f .

Define the homeomorphism ψ̃ :U \ �̃→ B \ �̃B quasiconformal on U \ (�̃ ∪ {z0})

as follows:

ψ̃(z)=



ψ on γ f ,

ψ0 on ∂U,

ψ1 on ∂�̃′ ∩ ∂Ũ ′,

9Q on Q f ,

81 on 1.

Therefore, the almost complex structure

σ(z)=


σ0 on K f ,

σ1 = ψ̃
∗(σ0) on U \ �̃′,

( f̃ n)∗σ1 on f̃ −n(Ũ \ �̃),

is bounded and f̃ -invariant. �

By the measurable mapping theorem, there exists a quasiconformal map ϕ :U → C
such that ϕ∗σ0 = σ . Let

g := ϕ ◦ f̃ ◦ ϕ−1
: ϕ(Ũ ′)→ ϕ(Ũ ).

Let us call V ′ = ϕ(Ũ ′), V = ϕ(Ũ ), γg+ = ϕ(γ f+) and γg− = ϕ(γ f−). Then (g, V ′, V, γg)
is a parabolic-like map hybrid equivalent to f . Indeed, since f̃

|�̃′∪γ f
= f , �̂= �̃

and ( f, Û ′, Ũ , γ f ) is a parabolic-like restriction of ( f,U ′,U, γ f ), the map ϕ is a
quasiconformal conjugacy between f and g, and ϕ∗σ0 = σ0 on K f by construction.

If K f is connected, define the quasiconformal map ψ̂ :U \ K f → B \ D as follows:

ψ̂(z)=

{
ψ̃ on U \ (�̃′ ∪ {z0}),

h−n
◦ ψ̃ ◦ f̃ n on f̃ −n(Ũ \ �̃′).
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Then the quasiconformal map ψ = ψ̂ ◦ ϕ−1
: (V ∪ V ′) \ Kg→ B \ D is an external

equivalence between g and h, since by construction on V ′ \ Kg ψ ◦ g = h ◦ ψ , and ψ
is holomorphic (indeed (ψ̂ ◦ ϕ−1)∗σ0 = σ0).

If K f is not connected, let V f ≈ D be a full relatively compact connected subset of Ũ ,

containing �̃′, the critical values of f̃ and such that ( f, f −1(V f ), V f , γ f ) is a parabolic-

like restriction of ( f, Û ′, Ũ , γ f ). Call L = f̃ −1(V f ) ∩ �̃′. Define the map ψ̂ :U \ L→
B \ D as follows:

ψ̂(z)=

{
ψ̃ on U \ (�̃′ ∪ {z0}),

h−1
◦ ψ̃ ◦ f̃ on f̃ −1(Ũ \ �̃′) \ L .

Let Vg ≈ D be a full relatively compact connected subset of V containing �
′

g , the
critical values of g and such that (g, g−1(Vg), Vg, γg) is a parabolic-like restriction of
(g, V, V ′, γg). Call M = g−1(V g) ∩�

′

g . Then the map ψ = ψ̂ ◦ ϕ−1
: (V ∪ V ′) \ M→

B \ D is an external equivalence between g and h (cf. Lemma 4.1).

6.1. Unicity.

PROPOSITION 6.4. Let f :U ′→U and g : V ′ −→ V be two parabolic-like mappings of
degree d with connected Julia sets. If they are hybrid and externally equivalent, then they
are holomorphically equivalent.

Proof. Let ϕ : A→ B be a hybrid equivalence between f and g, and ψ : (A1 ∪ A′1) \
K f → (B1 ∪ B ′1) \ Kg an external equivalence between f and g. Let h : W̃ ′→ W̃ be
an external map of f constructed from the Riemann map α : Ĉ \ K f → Ĉ \ D. Let A f

be a topological disc compactly contained in (A1 ∪ A′1) ∩ A and such that Bϕ = ϕ(A f )

is compactly contained in (B1 ∪ B ′1), and Bψo = ψ(A f \ K f ) is compactly contained in
B. Set Wβ = α ◦ ψ

−1(Bϕ \ Kg). The map β = α ◦ ψ−1
: Bϕ \ Kg→Wβ restricts to an

external equivalence between g and h.
Define Bψ = Bψo ∪ Kg and the map 8 : A f → Bψ as

8(z)=

{
ϕ on K f ,

ψ on A f \ K f .

By construction, the map 8 : A f → Bψ conjugates the maps f and g conformally on
A f \ K f and quasiconformally with ∂8= 0 on K f . We want to prove that the map 8
is holomorphic. Owing to the Rickmann lemma, it is enough to prove that the map 8 is
continuous (for a proof of the Rickmann lemma we refer the reader to [DH, Lemma 2,
p. 303]).

LEMMA 6.1. (Rickmann) Let U ⊂ C be open, K ⊂U be compact, ϕ :U → C and 8 :
U → C be two maps which are homeomorphisms onto their images. Suppose that ϕ is
quasiconformal, that 8 is quasiconformal on U \ K and that 8= ϕ on K . Then 8 is
quasiconformal and D8= Dϕ almost everywhere on K .

Let us show that the map 8 is continuous. Define W f = h(h−1(α(A f \ K f )) ∩

α(A f \ K f ))⊂ α(A f \ K f ) and W ′f = h−1(W f ). The restriction h :W ′f →W f is proper
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holomorphic and of degree d. The map χ := β ◦ ϕ ◦ α−1
:W ′f →Wβ is a quasiconformal

homeomorphism (into its image) which autoconjugates h on �′W ∪ γh \ {γh(0)}.
Setting τ(z)= 1/z̄, W̃ ′f =W ′f ∪ S

1
∪ τ(W ′f ), W̃β =Wβ ∪ S1

∪ τ(Wβ), and applying
the strong reflection principle with respect to the unit circle, we obtain a quasiconformal
homeomorphism (into its image) χ̃ : W̃ ′f → W̃β , which autoconjugates h on �̃′W . Thus, the
restriction χ̃ : S1

→ S1 is a quasisymmetric autoconjugacy of h on the unit circle. Since
the preimages of the parabolic fixed point z = 1 are dense in S1, an autoconjugacy of h on
the unit circle is the identity. Therefore, χ̃ |S1= Id.

Since the map χ̃ : W̃ ′f → W̃β is a quasiconformal homeomorphism which coincides
with the identity on S1, the hyperbolic distance between a point near S1 and its image is
uniformly bounded, i.e. there exists M > 0 and r > 1 such that

for all z, 1< |z|< r, dW ′f
(z, β ◦ ϕ ◦ α−1(z))≤ M.

Since α and β are isometries, we obtain

dA f \K f (β
−1
◦ α(z), ϕ(z))≤ M for z /∈ K f , z in a neighborhood of K f .

Then β−1
◦ α(z) and ϕ(z) converge to the same value as z converges to J f , i.e. β−1

◦ α

extends continuously to J f by β−1
◦ α(z)= ϕ(z), z ∈ J f . Thus 8 is continuous, and this

completes the proof. �

PROPOSITION 6.5. If PA = z + 1/z + A and PA′ = z + 1/z + A′ are hybrid conjugate
and K A is connected, then they are holomorphically conjugate, i.e. A2

= (A′)2.

Proof. Since K A and K A′ are connected, the external conjugacies between PA and PA′ ,
respectively, and h2 can be extended to the discs Ĉ \ K A and Ĉ \ K A′ (see Proposition 4.2),
i.e. there exist holomorphic conjugacies α : Ĉ \ K A→ Ĉ \ D and β : Ĉ \ K A→ Ĉ \ D
between PA and PA′ , respectively, and h2. Therefore, β−1

◦ α : Ĉ \ K A′→ Ĉ \ K A′ is a
holomorphic conjugacy between PA and PA′ .

Let ( f,U ′,U, γ f ) and (g, V ′, V, γg) be parabolic-like restrictions of PA and PA′ ,
respectively, and let ϕ : A→ B be a hybrid equivalence between them. Define the map
8 : Ĉ→ Ĉ as follows:

8(z)=

{
ϕ on K A,

β−1
◦ α on Ĉ \ K A.

The proof of Proposition 6.4 shows that the map 8 : Ĉ→ Ĉ is holomorphic, hence it
is a Möbius transformation. Since 8 conjugates PA and PA′ , it fixes the parabolic fixed
point z =∞ and its preimage z = 0, and it can fix or interchange the critical points z = 1
and z =−1. Hence, either8 is the identity or8(z) is the map z→−z. Therefore, [PA] =

{PA, P−A}, and finally A2
= (A′)2. �
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