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Abstract. The Kadomtsev–Petviashvili equation is derived for two-dimensional
propagations of electrostatic solitons in unmagnetized dense pair-plasmas. The re-
ductive perturbation method is employed and two-dimensional electrostatic potential
hump structures are obtained. The conditions for a stable two-dimensional solitary
structure are discussed using energy consideration method. The numerical results
are also presented by considering the parameters for the outer layers of white
dwarfs/neutron stars.

1. Introduction
The study of quantum electron–positron plasmas has
become important due to its application in astrophys-
ical objects such as compact stars and in-future laser
plasma experiments (Haberland et al. 2001; Jung 2001;
Manfredi and Haas 2001; Marklund 2005; Shukla and
Eliasson 2010). The electrons and positrons are believed
to exist around astrophysical plasma situations such
as active galactic nuclei (AGN), quasars, neutron stars
or pulsar magnetospheres, etc. (Miller and Wiita 1987;
Iwamoto 1992; Zank and Greaves 1995; Reynolds et al.
1996; Hirotani et al. 1999). The dynamics of electron–
positron (e–p) plasma consisting of same mass but
oppositely charged particles is quite different from the
usual electron–ion (e–i) dynamics, in which both fast and
slow time scales exist. However, there is still a possibility
of the existence of some fraction of ions around the
atmosphere of astrophysical objects containing most of
e–p plasmas. The e–p plasma symmetry breaks in the
presence of ions and both fast and slow time scale
can occur in the dynamics of electron–positron–ion
(e–p–i) plasmas. In most of the astrophysical plasma
conditions, the electrons and positrons exist in relativistic
regimes and therefore most of the research work has
been investigated for relativistic e–p plasmas (Iwamoto
1989; Berezhiani et al. 1993 and references therein).
The classical study of collective behavior of e–p plas-
mas is also important to understand some aspects of
astrophysical plasma situations because e–p plasma ra-
diates effectively by emission of cyclotron radiations
and eventually it cools down due to loss of energy
from plasmas (Zank and Greaves 1995). The study
of quantum plasma becomes important when the de-
Broglie wave length associated with the charged particles
becomes of the order or greater than the inter-particle
distance of the system, and plasma behaves like a Fermi

gas and quantum mechanical effects play significant role
in the dynamics (Haas et al. 2003; Menfredi 2005; Ali
et al. 2007; Moslem et al. 2007). The study of quantum
e–p plasma remains in the non-relativisitic regime if
the Fermi energies of electron and positron are much
less than their rest mass energies, and this holds in our
present study.

The quantum hydrodynamic (QHD) model is a
useful approximation to study short-scale collective
phenomenon such as waves, instabilities and nonlinear
structures etc. in dense plasmas (Manfredi and Haas
2001; Haas et al. 2003; Menfredi 2005). The QHD
model generalizes the fluid model with the inclusion
of quantum statistical pressure and quantum diffraction
(also known as the Bohm potential) terms. The validity
of QHD is limited to those systems that are large
compared to the Fermi lengths of the species in the
system. The ion-acoustic solitary waves in quantum e–
p–i plasma have been studied (Hass et al. 2003; Ali et al.
2007; Moslem et al. 2007; Sabry et al. 2007; Haque and
Mahmood 2008; Khan et al. 2008; Jehan et al. 2009). It
is found that the presence of positron plays a significant
role in the formation of solitons in dense plasmas.
The low-frequency waves, such as ion-acoustic waves,
drift waves etc., have been studied in quantum e–p–i
plasmas with their application to neutron stars/pulsars
(Haque et al. 2008). However, the electrostatic fast
frequency wave on electron (or positron) dynamic scale
can also propagate in dense e–p–i plasmas in which
ions are assumed to be stationary. The one-dimensional
low and arbitrary amplitude nonlinear structures have
been studied in dense e–p–i plasmas (Misra et al. 2008;
Mahmmod et al. 2010).

The two-dimensional soliton solutions from the
Kadomtsev–Petviashvili (KD) equation have been in-
vestigated in plasmas (Das and Sen 1993; Das et al.
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1997; Duan 2002; Chakraborty and Das 2004; Masood
et al. 2009). The KP equation is a nonlinear partial
differential equation in two spatial (i.e. in horizontal
and transverse directions) and temporal coordinates,
which describes the evolution of nonlinear long waves
of small amplitude with slow dependence on transverse
coordinate. The KP soliton emerges in the asymptotic
description of such systems in which only the leading
order terms are retained and an asymptotic balance
between weak dispersion, quadratic nonlinearity and
diffraction is assumed.

In this manuscript we will study the two-dimensional
dynamics of degenerate electron and positron fluids,
while ions are considered to be stationary to neutralize
the plasma background only. The paper is organized
in the following way. In Sec. 2 we describe the math-
ematical model and set of governing equations of the
system. Using the reductive perturbation method, the
KP equation is derived for acoustic wave in degenerate
e–p–i plasmas in Sec. 3. In Sec. 4, the numerical plots
are presented by taking into account the parameters
of outer layers of white dwarfs/neutron stars (Moslem
et al. 2007). The conclusion is presented in Sec. 5.

2. Model
In this section, two-dimensional electrostatic solitons
are studied in unmagnetized quantum e–p plasmas in
the presence of stationary ions. The quantum fluids of
electron and positron are assumed to be dynamic while
ions are taken to be stationary. The continuity and
momentum equations for e–p plasmas are given by

∂nj

∂t
+ ∇.(njvj) = 0, (2.1)

∂vj
∂t

+ (vj .∇)vj =
qjE

m
− 1

mnj
∇pj +

�2

2m2
∇

(
1

√
nj

∇2√
nj

)
.

(2.2)
The Poisson equation is described as follows:

∇.E = 4πe(np − ne + ni0). (2.3)

The equilibrium is defined as

ni0 + np0 = ne0, (2.4)

where E is the electric field intensity, nj and vj (where
j = e, p) are perturbed densities and velocities of electron
and positron fluids, respectively and qj is the charge
(−e, e) on electron and positron. The mass ‘m’ of positron
and electron is the same. The equilibrium densities of
electrons, positrons and ions are ne0, np0 and ni0, res-
pectively. Here � is Planck’s constant divided by 2π,

pj = (mv2
Fj/5n

2
3

j0)n
5
3

j is the Fermi pressure of jth species,
the Fermi velocity and temperature of the species are
related as 1

2
mv2

Fj = kBTFj and the Fermi velocity of jth

species is defined as vFj =
√

2kBTFj/m. In a quantum
plasma, the Fermi temperature and equilibrium density

of jth species are related as kBTFj =
�2(3π2nj0)

2
3

2m
. The last

two terms in the momentum equation are quantum
terms, i.e. the Fermi pressure and the Bohm potential
terms of the jth species, which appears due to the
Fermi statistics and quantum tunneling effects in dense
plasmas.

Now assuming the wave propagation in two dimen-
sions, i.e., ∇ = (∂x, ∂y, 0), the normalized continuity and
momentum equations for electron quantum fluid in the
component form can be written as

∂ne

∂t
+

∂(nevex)

∂x
+

∂(nevey)

∂y
= 0, (2.5)

∂vex

∂t
+

(
vex

∂

∂x
+ vey

∂

∂y

)
vex =

∂Φ

∂x
− 1

5ne

∂n
5/3
e

∂x

+
H2

e

2

∂

∂x

[
1

√
ne

(
∂2

∂x2
+

∂2

∂y2

)
√
ne

]
, (2.6)

∂vey
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+

(
vex

∂

∂x
+ vey

∂
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)
vey =

∂Φ

∂y
− 1

5ne

∂n
5/3
e

∂y

+
H2

e

2

∂

∂y

[
1

√
ne

(
∂2

∂x2
+

∂2

∂y2

)
√
ne

]
. (2.7)

The normalized continuity and momentum equations
for positron quantum fluid in the component form can
be written as

∂np

∂t
+

∂(npvpx)

∂x
+

∂(npvpy)

∂y
= 0, (2.8)

∂vpx

∂t
+

(
vpx

∂

∂x
+ vpy

∂

∂y

)
vpx = −∂Φ

∂x
− (1 − δ)2/3

5np

∂n
5/3
p

∂x

+
H2

p (1 − δ)1/3

2

∂

∂x

[
1

√
np

(
∂2

∂x2
+

∂2

∂y2

)
√
np

]
, (2.9)

∂vpy

∂t
+

(
vpx

∂

∂x
+ vpy

∂

∂y

)
vpy = −∂Φ

∂y
− (1 − δ)2/3

5np

∂n
5/3
p

∂y

+
H2

p (1 − δ)1/3

2

∂

∂y

[
1

√
np

(
∂2

∂x2
+

∂2

∂y2

)
√
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]
. (2.10)

The Poisson equation in the normalized form is given
by

∇2Φ = ne − np(1 − δ) − δ, (2.11)

where the electric field intensity is defined as E= − ∇ϕ
(where ϕ is the electrostatic potential). The normal-
ization t → tωpe, ∇ → ∇ λFe, nj → nj/nj0, vj →
vj/vFe and Φ →

(
eϕ/2kBTFe

)
have been defined, where

ωpj =
√

4πnj0e2/m and λFj =
√

2kBTFj/(4πnj0e2) are
plasma frequency and the Fermi length of the jth
species. The dimensionless parameters, such as ion to
electron equilibrium density ratio, i.e. δ = ni0

ne0
(where

0 � δ < 1 must hold) and the positron to electron Fermi
temperature ratio, i.e. σT =TFp/TFe = (1 − δ)2/3 have
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been defined. The quantum parameters for electron and
positron fluids are defined as He = �ωpe/(2kBTFe) and
Hp = �ωpp/(2kBTFp), respectively.

3. Nonlinear solution
In order to derive the KP equation for electrostatic po-
tential in quantum e–p–i plasmas, we define the stretch-
ing of independent variable (Das and Sen 1993; Das
et al. 1997; Duan 2002; Chakraborty and Das 2004;
Masood et al. 2009), such as

ξ = ε
1/2

(x − λt), η = εy, τ = ε
3/2

t,

where ε is a small (0<ε � 1) expansion parameter
characterizing the strength of nonlinearity and λ is the
phase velocity of wave normalized with the Fermi velo-
city of electron. Now using the reductive perturbation
method, we can expand the perturbed quantities about
their equilibrium values in the powers of ε as follows:

nj = 1 + εn
(1)
j + ε2n

(2)
j + ε3n

(3)
j ...,

vjx = εv
(1)
jx + ε2v

(2)
jx + ε3v

(3)
jx ...,

vjy = ε
3/2

v
(1)
jy + ε5/2v

(2)
jy + ε7/2v

(3)
jy ...,

Φ= εΦ(1) + ε2Φ(2) + ε3Φ(3).... (3.1)

Substituting perturbed quantities defined in (3.1) in
(2.5)–(2.11) and collecting terms of the lowest order(
∼ ε3/2

)
from continuity and the momentum equations

along x -direction and
(
ε2

)
order terms from momentum

equations along y-axis of electrons and positrons, re-
spectively, we obtain

n(1)
e =

3

(1 − 3λ2)
Φ(1), v(1)

ex =
3λ

(1 − 3λ2)
Φ(1),

∂v(1)
ey

∂ξ
= −1

λ

∂Φ(1)

∂η
+

1

3λ

∂n(1)
e

∂η
, (3.2)

n(1)
p = − 3

((1 − δ)2/3 − 3λ2)
Φ(1),

v(1)
px = − 3λ

((1 − δ)2/3 − 3λ2)
Φ(1),

∂v(1)
py

∂ξ
=

1

λ

∂Φ(1)

∂η
+

(1 − δ)2/3

3λ

∂n(1)
p

∂η
. (3.3)

The lowest order (∼ ε) term from the Poisson equation
gives

n(1)
e − (1 − δ)n(1)

p = 0. (3.4)

Now using the expressions of n(1)
e and n(1)

p from (3.2) and
(3.3) in (3.4), the linear phase speed of the acoustic wave
in e–p–i plasmas is obtained as follows:

λ =

√
(1 − δ) + (1 − δ)2/3

3(2 − δ)
. (3.5)

Now collecting the next higher order terms, i.e. (ε5/2)
from continuity and the momentum equation along x -
axis and (ε3) order term of momentum equation along
y-axis of electrons, we have

−λ∂ξn
(2)
e + ∂ξv

(2)
ex = f1, (3.6)

−λ∂ξv
(2)
ex − ∂ξΦ

(2) +
1

3
∂ξn

(2)
e = f2,

−λ∂ξv
(2)
ey − ∂ηΦ

(2) +
1

3
∂ηn

(2)
e = f3, (3.7)

where f1 = −∂τn
(1)
e −∂ξ(n

(1)
e v(1)

ex )−∂ηv
(1)
ey , f2 = −∂τv

(1)
ex −

v(1)
ex ∂ξv

(1)
ex + n

(1)
e

9
∂ξn

(1)
e +H2

e

4
∂3
ξn

(1)
e and f3 = −∂τv

(1)
ey −v(1)

ex ∂ξv
(1)
ey +

n
(1)
e

9
∂ηn

(1)
e + H2

e

4
∂η∂2

ξn
(1)
e have been defined.

Then collecting the next higher order terms, i.e. (ε5/2)
from continuity and the momentum equation along x -
axis and (ε3) order term of momentum equation along
y-axis of positrons we have

−λ∂ξn
(2)
p + ∂ξv

(2)
px = f4, (3.8)

−λ∂ξv
(2)
px + ∂ξΦ

(2) +
(1 − δ)2/3

3
∂ξn

(2)
p = f5,

−λ∂ξv
(2)
py + ∂ηΦ

(2) +
(1 − δ)2/3

3
∂ηn

(2)
p = f6, (3.9)

where f4 = − ∂τn
(1)
p − ∂ξ(n

(1)
p v(1)

px ) − ∂ηv
(1)
py , f5 = − ∂τv

(1)
px −

v(1)
px ∂ξv

(1)
px +

(1−δ)2/3n
(1)
p

9
∂ξn

(1)
p + H2

e

4
∂3
ξn

(1)
p and f6 = − ∂τv

(1)
py −

v(1)
px ∂ξv

(1)
py +

(1−δ)2/3n
(1)
p

9
∂ηn

(1)
p + H2

e

4
∂η∂2

ξn
(1)
p have been defined.

The relation between quantum parameters of electron
and positron fluids, i.e. Hp =He(1−δ)−1/6 has been used
in (2.9)–(2.10) to obtain (3.9).

However, the next higher order (ε2) terms of the
Poisson equation gives

n(2)
e − (1 − δ)n(2)

p = f7, (3.10)

where f7 = ∂2
ξΦ

(1) has been defined.
On solving (3.6)–(3.10), we find the expression after

some simplification as follows:

f1 +
f2

λ
+ f4 +

f5

λ
−

(
1 − 3λ2

3λ

)
∂ξf7 = 0, (3.11)

where (3.5) has been used to obtain the above relation.
Now using relations of fs and (3.2–3.10) in (3.11) and

after some simplification, we obtain the KP equation for
electrostatic waves in e–p–i quantum plasmas in terms
of electrostatic potential Φ(1) as follows:

∂ξ
(
∂τΦ + AΦ∂ξΦ + B∂3

ξΦ
)

+ C∂2
ηΦ = 0, (3.12)

where Φ(1) has been replaced by Φ, A is the coefficient
of nonlinearity and B and C are the coefficients of
weak dispersion and diffraction effects in the system,
respectively, defined as
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A =

(
(1 − δ)4/3 + 9λ4 − 6(1 − δ)2/3λ2

) (
1 − 27λ2

)
+

(
1 + 9λ4 − 6λ2

) (
(1 − δ)2/3 − 27λ2

)
6λ

(
1 − (1 − δ)2/3

) (
1 − 3λ2

) (
(1 − δ)2/3 − 3λ2

) ,

B =
9H2

e (1 − δ)
(
(1 − δ)2/3 − 3λ2

)
− 9H2

e (1 − δ)
(
1 − 3λ2

)
− 4 (1 − δ)

(
1 − 3λ2

) (
(1 − δ)2/3 − 3λ2

)
72λ (1 − δ)

(
1 − (1 − δ)2/3

) ,

C =

√
(1 − δ) + (1 − δ)2/3

12(2 − δ)
. (3.13)

There are two different approaches, i.e. the Tanh

method and the pseudo-potential approach to find a
solution to the KP equation (3.12). We have defined the
transformed coordinated ζ of the comoving frame such
that ζ = ξ+η−uτ, where u is the speed of the nonlinear
structure and using the boundary conditions, i.e. Φ → 0
and ∂ζΦ, ∂2

ζΦ, ∂3
ζΦ → 0 as ζ → ∞ for localized solution.

The analytical solution of the KP equation (3.12) is
derived using the Tanh method (the details are given in
Appendix A), which is given below as

Φ(ζ) =
12B

A

[
1 − tanh2(ξ + η − (4B + C) τ)

]
. (3.14)

The speed of the co-moving frame is related with the
weak dispersive and diffraction coefficients such as u=
(4B + C), which has been obtained using the boundary
conditions, i.e. as ζ → ∞, Φ(ζ) → 0 and tanh2(ζ) → 1.

The solution using the pseudo-potential approach
(whose details are described in Appendix B) is written
as

Φ = φm sec h2

(
ξ + η − uτ

W

)
, (3.15)

where maximum amplitude φm = 3(u−C)
A

and width W =√
4B/ (u − C) of the soliton has been defined. Here it

should be noted that both solutions have the same form
with same numerical results.

In quantum fluid the Fermi temperature and density
are related through the relation TFj ∝ (nj0)

2
3 (where

TFj and nj0 are the Fermi temperature and equilibrium
density of the jth species, respectively), therefore in
the presence of ions in quantum e–p–i plasmas TFe �=
TFp, i.e. (0<δ < 1) remains hold, which is a necessary
condition for the propagation of acoustic wave in e–p–i
dense plasmas.

4. Stability of KP solitons
The perturbation scheme (3.1) used to derive the KP
equation shows more slowness in y-axis. The variations
in y-axis shouldn’t be too weak, otherwise one will
simply obtain the Korteweg-de Vries (KdV) equation.
On the other hand, if these variations are too strong,
it will not be possible for a soliton-type solution to
exist. The stability of soliton, perpendicular to its direc-
tion of propagation, was first discussed by Kadomtsev
and Petviashvili (1970). Kako and Rowlands (1976)
have considered three distinct generalizations of the

KdV equation by considering three different types of
perturbation schemes to study the two-dimensional sta-
bility of ion-acoustic soliton. The authors have used
a perturbation scheme similar to (3.1), i.e. η= εy and
vy = ε3/2vy1 + ε5/2vy2 + · · ·, to describe the variations in
y-axis and have shown that the soliton solution is stable
against such perturbations.

In order to discuss the stability of the solution (3.15),
we use the method based on the energy consideration
(Krall and Travelpiece 1973). The nonlinear equation
(B2) leads to pseudo-potential (B3), which is given by

V (Φ) = − s

2B
Φ2 +

A

6B
Φ3, (4.1)

where s= (u − λ/2) has been defined. It is clear that
V (Φ) = 0, |dV (Φ)| /dΦ= 0 at |Φ| = 0. The necessary con-
ditions for a stable solitonic solution are

(i)
∣∣∣ d2V (Φ)

dΦ2

∣∣∣
Φ= 0

< 0,

(ii) a non-zero crossing point Φ=φm must exist such
that V (Φ=φm) = 0,

(iii) there must exist a Φ value between Φ= 0 and
Φ=φm to make V (Φ)< 0.
So according to condition (i), we find

d2V (Φ)

dΦ2
|Φ=0= − s

B
. (4.2)

Equation (4.2) demands that s/B should be positive for
the existence of soliton solution, which means s> 0 and
B> 0 or s< 0 and B< 0 holds, otherwise there will be
a shock wave. Since 0<δ < 1 holds, which shows that
λ> 0, and for a stable soliton solution we have,

u > C =
λ

2
. (4.3)

Therefore, s must be positive, which requires that B

should also be positive. The critical value of He in terms
of δ from stability condition B> 0 can be obtained as
follows:

He >

[
4

9

(1 − δ)
(
1 − (1 − δ)2/3

)
(2 − δ)2

]1/2

.

Hence, the stability of the KP soliton of acoustic wave
in quantum pair plasma is associated with δ.
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Figure 1. (Colour online) The two-dimensional electrostatic
potential hump structure is shown for electron density
ne0 = 1028 cm−3 and ion density ni0 = 0.2 × 1028 cm−3, δ = 0.2,
C = 0.277 for u= 0.28.
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Figure 2. (Colour online) The two-dimensional electrostatic
potential hump structure is shown for electron density
ne0 = 1028 cm−3 and ion density ni0 = 0.3 × 1028 cm−3, δ = 0.3,
C = 0.270 for u= 0.28.

5. Numerical solutions
In this section, the numerical solutions of two-
dimensional propagation of soliton in dense magnetized
e–p–i plasmas are obtained using (3.15). The parameters
of the outside layers of white dwarf/neutron star (a
compact star) have been used for numerical studies
such as magnetic field B0 ∼ 109 − 1012 Gauss , the
minimum electron–positron density n0e,p ∼ 1028 cm−3

(on which pair annihilation effects in dense plasmas can
be ignored) and temperature on its surface ranges from
8000−40, 000 K (Ali et al. 2007; Moslem et al. 2007). The
two-dimensional electrostatic potential hump structures
are obtained in the presence of stationary ions in e–
p unmagnetized quantum plasmas. In Fig. 1, the two-
dimensional soliton is plotted for electron and ion densit-
ies ne0 = 1028 cm−3 and ni0 = 0.2×1028 cm−3, respectively.
The Fermi temperatures of electron, positron and ion at
such densities are turned out to be TFe = 1.96 × 108 K,
TFp = 1.69 × 108 K and TFi = 3.65 × 104 K, respectively.

The quantum parameters for electrons and positrons at
these densities are He = 0.1097 and Hp = 0.1139, while
the Fermi lengths are λFe = 1.36×10−9 cm , λFp = 1.44×
10−9 cm and plasma frequencies are of the order of
1018sec−1, respectively. The average particle distance (d)
at these densities is of the order of 10−10 cm for each of
the species. Therefore, λFj � d holds to study collective
effects in quantum plasmas. The two-dimensional soliton
is plotted in Fig. 2 for ion density ni0 = 0.3 × 1028

cm−3 and for same electron density as described in
Fig. 1. The Fermi temperatures of positron and ion
at such densities are turned out to be TFp = 1.54 × 108

K and TFi = 4.79 × 104 K, respectively. It is found that
wave amplitude and width of the nonlinear structure
are increased with increase in ion density (or decrease
in positron density) in unmagnetized quantum e–p–
i plasmas. The Figs 1 and 2 are plotted on those
parameters for which stability condition of the two-
dimensional soliton remains hold, i.e. u>C and B> 0.
The Fermi temperatures of the jth species TFj for
plasma densities in the outer layers of white dwarfs
are turned out to be greater than system temperature,
i.e. T = 8, 000 K, i.e. TFj�T , so that the study of
quantum effects becomes important for e–p–i plasmas
around white dwarfs or compact stars.

6. Conclusion
To conclude, we have studied the two-dimensional elec-
trostatic waves in unmagnetized quantum electron–
positron plasmas in the presence of ions, which are as-
sumed to be stationary to neutralize plasma background
only. The KP equation is derived for two-dimensional
propagation of nonlinear acoustic waves in quantum e–
p plasmas. It is found that the presence of stationary
ions in dense e–p plasmas are necessary for propaga-
tion of these solitons. Increase in ion concentration in
dense e–p plasmas increases the amplitude and width
of soliton. From stability analysis it is shown that
the soliton solution is stable against the variations in
transverse direction. The conditions for stable soliton
via pseudo-potential approach have also been discussed.
Our findings are general and may be applicable in the
outer layers of compact stars such as white dwarfs,
neutron stars, magnetars etc., where dense e–p plasmas
exist.
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Appendix A. Tanh method for the solution
of the KP equation.

The solution of nonlinear partial differential equation,
i.e. the KP equation (3.12) is obtained using the well-
known Tanh method (Malfliet 1992). The traveling wave
solution requires the transformation defined as
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ζ = ξ + η − uτ. Now integrating once and using the
boundary conditions, i.e. Φ → 0, ∂ζΦ, ∂

2
ζΦ , ∂3

ζΦ → 0, we
have

− (u − C)
∂Φ

∂ζ
+ AΦ

∂Φ

∂ζ
+ B

∂3Φ

∂ζ3
= 0. (A 1)

After using the transformation, the partial differen-
tial equation becomes an ordinary differential equation.
Now we have to introduce a new independent variable
Y = tanh ζ. The corresponding derivatives are given as

∂

∂ζ
= (1 − Y 2)

∂

∂Y
,

∂2

∂ζ2
= (1 − Y 2)

∂

∂Y

(
(1 − Y 2)

∂

∂Y

)
,

∂3

∂ζ3
= (1 − Y 2)

∂

∂Y

[
(1 − Y 2)

∂

∂Y

(
(1 − Y 2)

∂

∂Y

)]
.

Now we must look for solution in terms of Y . Since
there is no general procedure for the solution, therefore
the solution is defined in terms of the following series
expansion, which is described as

Φ(Y ) =

M∑
s=0

asY
s. (A 2)

A balancing procedure determines degree M of power
series in which the linear term of the highest order
is balanced by the nonlinear term. Using expression
described in (A2) in (A1), then balancing of these terms
leads to 2M + 1=M + 3, which gives M = 2. Therefore,
the series expansion can be written as

Φ(Y ) = a0 + a1Y + a2Y
2, (A 3)

which gives

− (u − C)
∂Φ

∂ζ
= − (u − C) a1 − 2 (u − C) a2Y

+ (u − C) a1Y
2 + 2 (u − C) a2Y

3,

(A 4)

A Φ
∂Φ

∂ζ
=A

[
a0a1 +

(
2a0a2 + a2

1

)
Y

+ (3a1a2 − a0a1)Y
2 +

(
2a2

2 − a2
1 − 2a0a2

)
Y 3

− 3a1a2Y
4 − 2a2

2Y
5
]
, (A 5)

B
∂3Φ

∂ζ3
= − 2a1B − 16a2BY + 8a1BY

2 + 40a2BY
3

− 6a1BY
4 − 24a2BY

5. (A 6)

Using these expressions in (A1) and comparing the terms
with coefficients from the highest powers of Y ′s and
after solving the set of equations obtained from different
powers of Y ′s we have

a0 =
8B

A
+

(u − C)

A
, a1 = 0 a2 = −12B

A
,

Φ(ζ) =
8B

A
+

(u − C)

A
− 12B

A
tanh2(ξ + η − uτ). (A 7)

Appendix B. Pseudo-potential approach
The solution to (3.12) can also be obtained using the
pseudo-potential approach. Using the transformation
ζ = ξ + η − uτ and integrating twice with boundary
conditions, i.e. Φ → 0, ∂ζΦ, ∂

2
ζΦ , ∂3

ζΦ → 0 for localized
solution, we have

− (u − C)Φ +
A

2
Φ2 + B

∂2Φ

∂ζ2
= 0. (B1)

Multiplying the above relation with ∂Φ
∂ζ

and integrating
it using the boundary conditions defined above, we have

1

2

(
∂Φ

∂ζ

)2

+ V (Φ) = 0, (B2)

where pseudo-potential is defined as

V (Φ) = − (u − C)

2B
Φ2 +

A

6B
Φ3. (B3)

Using (B3) in (B2) and after integration, we obtained

Φ = φm sec h2

(
ζ

W

)
, (B4)

where φm is the amplitude and W is the width of the
nonlinear structure.
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