
J. Plasma Physics (2002), vol. 68, part 5, pp. 331–361. c© 2002 Cambridge University Press

DOI: 10.1017/S0022377802002052 Printed in the United Kingdom
331

On three-dimensional magnetosonic waves
in an isothermal atmosphere with

a horizontal magnetic field

L. M. B. C. CAMPOS, R. L. SALDANHA
and N. L. I SAEVA

Secção de Mecânica Aeroespacial, ISR, Instituto Superior Técnico,
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Abstract. Magnetosonic–gravity waves in an isothermal non-dissipative atmos-
phere, with a uniform horizontal external magnetic field have been considered in
the literature in two cases: (i) ‘one-dimensional’ magnetosonic–gravity waves, in
the case of zero horizontal wavenumber and (ii) ‘two-dimensional’ magnetosonic–
gravity waves, in which the horizontal wave vector lies in the plane of gravity
and the external magnetic field. In the present paper, an extension of case (i) is
considered that is distinct from case (ii). This case (iii) is that of magnetosonic–
gravity waves with a horizontal wave vector orthogonal to the plane of gravity
and the external magnetic field. Since the wave fields depend only on two spatial
coordinates and time, the problem could be called ‘two-and-half ’-dimensional. The
three-dimensional magnetosonic–gravity wave propagates a magnetic field pertur-
bation parallel to the external magnetic field, and velocity perturbations transverse
to it. Elimination for the vertical velocity perturbation leads to a second-order
wave equation, with four regular singularities. Three regular singularities specify
(a) the wave fields at high altitude, where there are two cut-off frequencies involving
the acoustic cut-off frequency; (b) the wave fields in the deep layers, where another
two cut-off frequencies appear, involving both the acoustic and gravity cut-off
frequencies; and (c) the transition between the two regimes, occurring across a
critical layer, where one solution of the wave equation vanishes and the other has a
logarithmic singularity in the amplitude and also a phase jump. The whole altitude
range can be covered using the three pairs of solutions of the wave equation, ob-
tained by expanding in Frobenius–Fuchs series about each regular singularity. The
power series solutions are used to plot the wave fields, for several values of the three
dimensionless parameters of the problem, namely the plasma β, frequency and
wavenumber. It is shown that the presence of a horizontal wave vector transverse
to the plane of gravity and the external magnetic field, can change the properties of
the waves significantly: first, the two cut-off frequencies may cease to exist, in which
case the full wave frequency spectrum can propagate; secondly, the critical layer
occurs at different altitudes for different frequencies, allowing gradual absorption
of the waves (e.g. in the solar transition region).
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1. Introduction
Magnetohydrodynamic (MHD) waves in a homogeneous, compressible, ionized fluid
consist [1–6] of a decoupled Alfvén mode [7–9] with perturbations transverse to the
wave vector and external magnetic field, plus two coupled, compressive slow and
fast modes, in the latter plane. In all cases, the dispersion relation, which is of third
degree for MHD waves and second degree for compressive MHD modes, can be
factorized to give roots corresponding to slow and fast modes. In the particular
case of a wave vector perpendicular to the external magnetic field, there is only
one compressive mode, namely a magnetosonic wave, for which the square of the
phase speed is the sum of squares of the sound and Alfvén speeds. In the case of a
magnetosonic–gravity wave, propagating vertically in an isothermal atmosphere,
with a uniform horizontal magnetic field [10, 11], the wave equation is similar to
that for acoustic–gravity waves [12, 13], adding again to the square of the sound
speed, the square of the Alfvén speed. This has led to the prediction [14–17] that the
same substitution would apply to the cut-off frequencies of acoustic–gravity waves.
In fact [11, 18–22], the cut-off frequencies for magnetosonic–gravity waves are
not affected by a horizontal external magnetic field. A vertical external magnetic
field [23–25] does not change either the acoustic or the gravity cut-off frequencies,
which are modified only for an oblique magnetic field [26–31], and depend on the
direction of the external magnetic field, but not on its strength. Magnetosonic waves
have recently been observed in the solar corona [32]. In the solar application, the
assumption of a horizontal magnetic field holds over an altitude range that is small
compared with the solar radius.
Concerning magnetosonic–gravity waves in an isothermal atmosphere with a

uniform horizontal magnetic field, three cases can be considered:

(i) the ‘one-dimensional’ case of vertical propagation, or zero horizontal wavenum-
ber [10], in which the solution is specified by hypergeometric functions of two
kinds [11], which show that the acoustic cut-off frequency is retained;

(ii) the ‘two-dimensional’ case, with a non-zero horizontal wave vector parallel
to the external magnetic field [18, 19], in which the solution is specified by
hypergeometric functions of the first kind, showing [20, 22] that both the
acoustic and gravity cut-offs are preserved;

(iii) the ‘three-dimensional’ case, considered in the present paper, in which the
horizontal wave vector is transverse to the external magnetic field (Fig. 1),
and several new features arise.

In this classification ‘three-dimensional’ is taken to mean that gravity g, the wave
vector k and the external magnetic field B are not coplanar, and thus span a three-
dimensional subspace. The wave fields will be assumed to depend on time and two
spatial coordinates in the plane of gravity and the wave vector; thus the problem is
‘two-dimensional’ in terms of coordinates. The combination of ‘three-dimensional’
in terms of wave (or dependent) variables, and ‘two-dimensional’ in terms of co-
ordinates (or independent variables) can be more accurately called ‘two-and-half-
dimensional’. The magnetosonic–gravity wave equation [14, 22, 33, 34] shows
(Sec. 2.1) that the only propagating variables are the velocity perturbations trans-
verse to the external magnetic field and the magnetic field perturbation along the
external magnetic field (Sec. 2.2). Elimination of the vertical velocity perturbation
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Figure 1.A three-dimensional magnetosonic–gravity wave, in an isothermal atmosphere, with
uniform gravity g (vertically downwards) and uniform horizontal external magnetic field B,
and with transverse horizontal wave vector k, propagates a magnetic field perturbation H
parallel to the external magnetic field B, and transverse velocity perturbations, with vertical
(W ) and horizontal (V ) components.

leads (Sec. 2) to a second-order wave equation, with (Sec. 2.3) four regular singu-
larities:

(a) three singularities correspond to the critical layer (Sec. 3.3) and wave fields
at high (Sec. 3.1) and low (Sec. 3.2) altitude, as in the one-dimensional case
(i) and two-dimensional case (ii), for which the solution is specified by Gaussian
hypergeometric functions [35–40];

(b) the fourth singularity, although it occurs for complex ‘altitude’, i.e. outside
the physical region, implies that the wave equation cannot be reduced to the
Gaussian hypergeometric type, and is in fact comparable in complexity to the
Lamé or Heun equations, which have four regular singularities [41–44].

The solutions around the three regular singularities cover the whole physical region
in all cases (Fig. 2), and allow the plotting of the wave fields (Figs 3–6), for several
values (Sec. 4) of plasma β and dimensionless frequency and horizontal wavenumber.
In the case of ‘2 1

2 -dimensional’ magnetosonic–gravity waves, there are two cut-
off frequencies – either above (Sec. 3.1) or below (Sec. 3.2) the critical layer; they
reduce to the acoustic cut-off frequency in the case of zero horizontal wavenumber,
corresponding to vertical or ‘one-dimensional’ waves [10, 11]. In the case of ‘21

2 -
dimensional’ waves, the two cut-off frequencies separate non-propagating waves at
intermediate frequencies, from propagating waves at low or high frequencies. The
leading term of the amplitude varies like the inverse square root of the mass density,
as for acoustic gravity waves, but only if the horizontal wavenumber is short; the
condition under which this ceases to hold depends on (Sec. 3.1) the acoustic cut-
off above the critical layer and also on the gravity cut-off below the critical layer
(Sec. 3.2). The transition between these two regimes occurs across a critical layer
(Sec. 3.3), where one solution of the wave equation vanishes and the other has a
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Figure 2. Since the magnetosonic–gravity wave equation has three regular singularities for
finite ζ, namely (i) at the deep layers ζ = 1, (ii) at high altitude ζ = 0 and (iii) at the critical
layer ζ = K2, depending on the value of ζ∗ ≡ K2, four cases can arise (Table 3), concerning
the solutions in powers of respectively (i) ζ, (ii) 1 − ζ and (iii) ζ − K2 needed to cover the
whole physical region 0 < ζ < 1, corresponding to the altitude range −∞ < z < +∞.

logarithmic singularity for the amplitude and a phase jump. The existence of a
critical layer [45], is common to the two-dimensional (ii) and three-dimensional
(iii) linear, non-dissipative magnetosonic waves, whereas the one-dimensional case
(i) corresponds to a transition layer [11, 30, 22]. No critical layer occurs for other
non-dissipative magnetosonic–gravity waves; that is, Alfvén waves in an isothermal
atmosphere have no critical layer [11, 21, 46–51], nor do compressive modes in a
vertical or oblique magnetic field [22–25, 28, 29, 30, 52]. Critical layers do occur for
Alfvén–gravity waves in two cases: (a) in the presence of the Hall effect [53, 54], if
the ion gyrofrequency varies with altitude [55, 56]; (b) in the presence of viscous
and resistive dissipation [57–60], using exact solutions [21, 61–65]. Since Alfvén
waves are incompressible, they can be dissipated only by electrical resistance and
shear viscosity [66], whereas magnetosonic–gravity waves can also be dissipated
by bulk viscosity, and thermal conduction and radiation, leading to the existence
of one or two critical layers [67, 68]; these are extensions of the critical layers that
occur for dissipative acoustic–gravity waves [61–71].
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Figure 3. Modulus of the wave fields normalized to their value at the altitude of equal sound
and Alfvén speeds, plotted over the physical region 0 < ζ < 1 for fixed dimensionless
frequency Ω = 2 and three values of the dimensionless wavenumber K.
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Figure 4. Phase difference between altitude z and the altitude of equal sound and Alfvén
speeds, for an upward propagating wave (a downward-propagating wave has the same phase
with opposite sign), plotted over the physical region 0 < ζ < 1 for fixed dimensionless
frequency Ω = 2 and three values of the dimensionless wavenumber K.

One area in which there has been more progress in Alfvén–gravity than in
magnetosonic–gravity waves concerns solutions in a non-uniform external magnetic
field [72–77]. Magnetosonic–gravity waves have been invoked in connection with
heating of the solar chromosphere and corona [78–84], umbral oscillations [85–87]
and other phenomena [88–91]. In all of these applications of magnetosonic–gravity
waves to the solar atmosphere, it is assumed that Alfvén waves are decoupled at
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Figure 5. As in Fig. 3, but for fixed dimensionless wavenumber K = 2 and three values of
the dimensionless frequency Ω.
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Figure 6. As in Fig. 4, but for fixed dimensionless wavenumber K = 2 and three values of
the dimensionless frequency Ω.

a linear level from compressible slow and fast modes, as would be the case for
magneto-acoustic waves in a homogeneous medium; for example, the coupling of
Alfvén and compressible modes in an atmosphere has been studied as a nonlinear
effect [92, 93]. In fact, Alfvén and slow and fast modes do not couple linearly
in an atmosphere for ‘two-dimensional’ waves, for which gravity, the external
magnetic field and the horizontal wave vector lie on the same plane: in this case,
Alfvén waves have horizontal velocity perturbations that do not couple either to
stratification or to compressibility. In contrast, for ‘three-dimensional’ waves with
the horizontal wave vector, the external magnetic field and gravity not in the same
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plane, the Alfvén waves have a vertical velocity component, which couples to the
compressive modes through the stratification. The linear coupling of Alfvén waves
with compressive modes in an atmosphere is implied in some of the literature
[14, 22, 28, 29, 91], but, to the best of our knowledge, this is the first time that
this case has been addressed explicitly.

2. Wave equation for three-dimensional magnetosonic–gravity waves
The magnetosonic–gravity wave equation is considered, in an isothermal atmo-
sphere, with a horizontal uniform magnetic field (Sec. 2.1), allowing for a transverse
horizontal wave vector (Fig. 1). The propagating components of the velocity and
magnetic field perturbations are determined (Sec. 2.2), and by elimination between
them a second-order wave equation is obtained for the vertical velocity perturbation
spectrum. It can be put into dimensionless form, involving the plasma β and a
dimensionless frequency and wavenumber, allowing (Sec. 2.3) a discussion of cases
of propagating and evanescent waves, and also of the conditions in which a critical
layer exists.

2.1. Linear, non-dissipative magnetosonic–gravity wave equation

The linear, non-dissipative magnetosonic–gravity wave equation in an atmosphere,
not necessarily isothermal, with an external magnetic field B (possibly non-uniform
but steady), is [22 (with correction of misprints), 91]

∂2v
∂t2

− 1
ρ

∇ · (ρc2∇ · v) − 1
ρ

∇(ρg · v) +
g
ρ

∇ · (ρv)+
µ

4πρ
∇ {v · [B× (∇ × B)]}

− µ

4πρ
{B× [∇ × ∇ × (B× v)] + [∇ × (B× v)] × (∇ × B)} = 0, (1)

where v is the velocity perturbation, ρ the mean state density, c the sound speed, g
the acceleration due to gravity and µ is the magnetic permeability. In the case of
a uniform external magnetic field, this simplifies to [6, 14, 15, 34]

∂2v
∂t2

− c2∇(∇ · v) − ∇(v · g) − (γ − 1)g(∇ · v)

= A2[∇(∇ · v) − �(� · ∇)∇ · v− (� · ∇)∇(v · �) + (� · ∇)2v], (2)

where the equation of state of a perfect gas has been used, γ ≡ Cp/Cv denotes the
ratio of specific heats at constant pressure Cp and volume Cv, � is the unit vector
along the external magnetic field,

� =
B
B

, (3a)

and only the modulus of the external magnetic field appears in the Alfvén speed
A,

A2 ≡ µB2

4πρ
. (3b)

Denote by z the altitude, so that gravity is vertically downwards,

g = −gez, (4a)
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and assume the external magnetic field to be horizontal, i.e. aligned with the x axis.

� = ex. (4b)

In the case of an isothermal atmosphere,

T (z) = T0, (5a)

the sound speed is constant,

c = (γRT0)1/2 =
(

γp0

ρ0

)1/2

, (5b)

whereR denotes the gas constant. In this case, the background mass density decays
exponentially with altitude,

ρ(z) = ρ0 e−z/L, (6a)

on the scale height

L ≡ RT0

g
, (6b)

and thus the Alfvén speed (3b) increases exponentially with altitude twice the scale
height,

A(z) = a ez/2L, (7a)

from a value

a ≡ B

(
µ

4πρ0

)1/2

(7b)

at zero altitude.
Since the properties of the atmosphere vary only with altitude z, it is convenient

to use a Fourier decomposition in time and horizontal coordinate,

v(x, t) =
∫ ∫ +∞

−∞
V(z; k, ω) ei(ky−ωt) dk dω, (8)

corresponding to a plane wave exp[i(ky − ωt)], with amplitude V(z; k, ω) depending
on altitude; V is the velocity perturbation spectrum for a wave of frequency ω and
horizontal wavenumber k at altitude z. Note that a vertical wavenumber does not
exist, because the properties of the atmosphere depend on altitude, and the waves
cannot be sinusoidal in that direction. It is assumed that the horizontal wave vector
lies (Fig. 1) in the direction transverse to the magnetic field,

k = key, (9a)

and the usual three components of the velocity perturbation are considered,

V ≡ (U, V,W ). (9b)

In the literature on linear non-dissipative magnetosonic–gravity waves in an iso-
thermal atmosphere, with a uniform horizontal magnetic field, the wave vector
is taken to be parallel to the field, k ‖B [18, 19, 20], i.e. k = kex, leading to a
‘two-dimensional’ configuration. The present paper addresses the simplest ‘three-
dimensional’ configuration, namely (9a), corresponding to kx = 0 �= ky.

2.2. Propagating components of velocity and magnetic field perturbations

From the magnetosonic–gravity wave equation (2), in the present configuration
given by (4) and (9a,b), it follows that the velocity perturbation along the external
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magnetic field does not propagate,

U = 0, (10a)

whereas the components (V,W ) transverse to the external magnetic field are gen-
erally coupled for k �= 0:

[ω2 − k2(c2 + A2)]V = ik[g W − (c2 + A2)W ′], (10b)

(c2 + A2)W ′′ − γgW ′ + ω2 W = ik[g(γ − 1)V − (c2 + A2)V ′]. (10c)

In the case where k = 0, the horizontal velocity perturbation does not propagate,
i.e. (10b) becomes

V = 0, (11a)

and the vertical velocity perturbation satisfies a second-order wave equation given
by (10c) with zero right-hand side, i.e.

(c2 + A2)W ′′ − γgW ′ + ω2W = 0, (11b)

which is solvable in terms of hypergeometric functions [11]. This solution shows that
the cut-off frequency for magnetosonic–gravity waves is the same as for acoustic–
gravity waves, i.e. it is not affected by the magnetic field [22]. The application of
a ‘dispersion relation’ to (11b) suggests that the cut-off frequency depends on the
magnetic field strength [14–17]. However, a dispersion relation cannot be written
for (11b), because the Alfvén speed depends on altitude, (7a). The Alfvén speed
could be made constant by choosing a non-uniform external magnetic field [33]
related to the mass density by B(z) ∼ [ρ(z)]1/2, but in this case the wave equation
(1) does not reduce to (2). The conclusion that a horizontal external magnetic field
does not change the cut-off frequencies also applies in the case of the horizontal
wave vector being parallel to the external magnetic field [18, 19, 20], and will be
shown subsequently to also hold in the present case where the horizontal wave
vector is transverse to the external magnetic field. A vertical external magnetic
field does not change the cut-off frequencies [23, 25], but an oblique magnetic field
does [30, 31].
The linearized induction equation:

∂h
∂t

= B(� · ∇)v− B�(∇ · v), (12a)

on substitution of the spectra of the velocity and magnetic field perturbations,
respectively, with amplitude V in (8) and H, yields

iωH = B�(W ′ + ikV ), (12b)

which shows that only the magnetic field perturbation along the external magnetic
field propagates:

Hy = 0 = Hz, (13a,b)

Hx = −i
B

ω
(W ′ + ikV ), (13c)

in contrast with the velocity perturbations (10a–c). In the case of zero horizontal
wavenumber, k = 0, (13c) simplifies to

Hx = −i
B

ω
W ′, (14)
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and only one component each of the velocity Vz ≡ W and magnetic field pertur-
bation Hx propagates, i.e. it is sufficient to solve (11b), and substitute the
solution into (14). In the case where k �= 0, the components of the velocity pertur-
bation transverse to the external magnetic field are coupled, (10b,c), and a single
magnetosonic–gravity wave equation can be obtained by eliminating between them.
Thus, it is sufficient to obtain a single wave equation for Vz ≡ W , and substitute its
solution into (10b) to determine Vy ≡ V and into (13c) to determine Hx, which are
the propagating components of the velocity and magnetic field perturbations (the
remaining three components (10a) and (13a,b) do not propagate). Since the external
magnetic field (3a), (4b) and wave vector (9a) are horizontal and perpendicular, it
could be argued that the transverse velocity component, which is vertical,W ≡ Vz,
can correspond to an Alfvén wave, which thereby couples to stratification and
compressibility. The other two propagating fields, namely the velocity perturbation
V =Vy along the wave vector (9a) and the magnetic field perturbationHx along the
external magnetic field (4b), correspond to the compressive, fast or magnetosonic
mode. Since there is no magnetic field perturbation transverse to the external
magnetic field, this property of Alfvén waves is not present. Thus, the present
problem concerns three-dimensional magnetosonic (or fast) waves with some prop-
erties suggesting coupling to an incomplete form of Alfvén waves. Since the slow
mode is not present, a second-order wave equation should be obtained, as shown
next; the appearance of a second-rather than fourth-order wave equation suggests
that the fast mode is not fully coupled to the Alfvén mode. From (8) and (10a), the
dilatation ∇ · V = ikV + W ′ is in general non-zero, so the waves are compressible;
this excludes pure Alfvén waves, and justifies the designation magnetosonic (or
magnetosonic–gravity) waves used henceforth.
The starting point to obtain a wave equation is (10b) in the form

αV = ik[gW − (c2 + A2)W ′] = ikδ, (15)

where

α ≡ ω2 − k2(c2 + A2), (16a)

δ ≡ gW − (c2 + A2)W ′. (16b)

Together with (10c), this allows all wave components to be expressed in terms of
the vertical velocity perturbation spectrum W , so that it is sufficient to eliminate
only for the latter, using

αV ′ = ikδ′ − α′V, (17a)

α′ = −2k2AA′, (17b)

δ′ = gW ′ − (c2 + A2)W ′′ − 2AA′W ′, (17c)

and noting that the acceleration due to gravity g and sound speed c are constant,
but the Alfvén speed A is not. Using (15) and (17a) to express V ′ in terms of W
and its derivatives yields

α2V ′ = ikαδ′ − α′αV = ik(αδ′ − α′δ). (18)

Substituting V and V ′ from (15) and (18) into (10c) yields

α2[(c2 + A2)W ′′ − γgW ′ + ω2W ] = −k2g(γ − 1)αδ + k2(c2 + A2)(αδ′ − α′δ), (19)
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which involves, from (16a,b) and (17b,c), only W and its derivatives, namely

ω2(c2 + A2)[ω2 − k2(c2 + A2)]W ′′ + [k2ω2(c2 + A2)(γg + 2AA′) − γg ω4]W ′

+ {ω2[ω2 − k2(c2 + A2)]2 + ω2k2g2(γ − 1)

− k4(c2 + A2)g[(γ − 1)g + 2A′A]}W = 0, (20)

is the wave equation for three-dimensional magnetosonic–gravity waves, which is
next put into dimensionless form. Before doing so, it is checked that this equation
describes magnetosonic waves as two simple particular decoupled cases. One case is
k = 0, when (20) simplifies to (11b) for vertical magnetosonic waves. The second case
concerns a homogeneous medium, for which the Alfvén speed is uniform (A′ = 0),
and stratification is suppressed by neglecting gravity (g = 0):

(c2 + A2)W ′′ + [ω2 − k2(c2 + A2)]W = 0. (21)

Acoustic waves cannot be eliminated by an incompressibility condition c → ∞,
because then the Alfvén speed would be omitted A2 � c2, and, to O(c2), the result
W ′′ − k2W = 0 would specify horizontal evanescence or divergence. Instead, the
low-plasma-β limit of the sound speed being small relative to the Alfvén speed
(c2 � A2) is taken, leading to

W ′′ +
(

ω2

A2
− k2

)
W = 0, (22)

which describes fast magnetoacoustic waves [94]. This corresponds to the fast MHD
mode in a low-β plasma being an Alfvén wave propagating in all directions [6]. The
derivation of (22) from (20) is less simple than that of (11b), because of the need to
exclude stratification and compressibility.

2.3. Role of plasma β and dimensionless frequency and wavenumber

Noting from (6b), (5b) and (7a) that

γg =
γRT0

L
=

c2

L
, (23)

2A′A = (A2)′ =
A2

L
, (24)

and substituting in the wave equation (20), the latter becomes(
1 + β−1ez/L

)[
1 − K2

(
1 + β−1ez/L

)]
L2W ′′ +

[
K2

(
1 + β−1ez/L

)2 − 1
]
LW ′

+
{

Ω2
[
1 − K2

(
1 + β−1ez/L

)2] +
(

K

γ

)2

(γ − 1)

− K4

γ

(
1 + β−1ez/L

) (
1 + β−1ez/L − 1

γ

) }
W = 0, (25)

and involves three dimensionless parameters, namely the plasma β, defined as the
ratio of squares of the sound and Alfvén speed at zero altitude,

β ≡ c2

a2
, (26a)
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the dimensionless frequency

Ω ≡ ωL

c
, (26b)

and the dimensionless inverse phase speed or dimensionless wavenumber

K ≡ kc

ω
.

It is clear that the wave equation (20) has a singularity when the coefficient of W ′′

vanishes, namely

ω2 = k2{c2 + [A(z∗)]2}, (27a)

A(z∗) =
(

ω2

k2
− c2

)1/2

, (27b)

i.e. there is a critical layer at an altitude[
A(z∗)

c

]2

=
1

K2
− 1, (28a)

z∗ = L log[β(1/K2 − 1)], (28b)

which is real forK2 < 1, i.e. the critical layer exists only if k2c2 < ω2, which implies
that the ‘local’ vertical ‘wavenumber’ for an acoustic wave

k̄2 =
(

ω2

c2
− k2

)
=

ω

c
(1 − K2)1/2 (29)

is real, i.e. acoustic waves can propagate under these conditions. Thus, the cri-
terion for the existence of a critical layer at real altitude for ‘21

2 -dimensional’
magnetosonic–gravity waves is that acoustic waves would propagate under the
same conditions.
The coefficients of the wave equation (25) are transformed from exponentials to

polynomials by the change of independent variable

1
ζ

= 1 + β−1ez/L = 1 +
[
A(z)

c

]2

, (30a)

W (z; k, ω) ≡ Φ(ζ;K,Ω), (30b)

which places the critical layer (28b) at the position

ζ∗ = K2. (31a)

Also, from (30a,b),

L
d

dz
= ζ(ζ − 1)

d

dζ
, (31b)

and the plasma β no longer appears in the wave equation:

0 = ζ2(ζ − 1)2(ζ − K2)Φ′′ + ζ(ζ − 1)2(ζ − 2K2)Φ′

+
{

−K2

(
Ω2 +

K2

γ

)
+

(
K2

γ

)2

ζ +
[
Ω2 +

(γ − 1)K2

γ2

]
ζ2

}
Φ, (32)
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Table 1. Singularities of the wave/differential equation.

Singularity ζ z Type

High altitude 0 ∞ Regular
Deep layers 1 −∞ Regular
Critical layer K2 z∗ Regular
Complex ∞ z∞ Regular

Table 2. Conditions for the existence of a critical layer.

Case I Case II Case III

Acoustic waves as a ‘reference’
Spectrum ω2 < k2c2 ω = ±kc ω2 > k2c2

Type of wave Vertically Propagating Propagating vertically
evanescent horizontally

Condition k̄ = i|k̄| (imaginary) k̄ = 0 (zero) k̄ = |k̄| (real)
Three-dimensional magnetosonic waves
Condition K2 > 1 K = ±1 K2 < 1
Critical layer Does not exist Exists at Exists in physical

boundary region
Altitude of z∗ complex z∗ = −∞ z∗ real
critical layer

which involves only the dimensionless frequency (26b) and the horizontal wavenum-
ber (26c). The wave equation (32) has four regular singularities, of which three
specify the asymptotic wave field at high altitude z → ∞ or ζ → 0 in (30a), or in
the deep layers z → −∞ or ζ → 1, and also the wave field in the neighbourhood
of the critical layer, (31a), (28b): see Table 1. The regular singularity for ζ = ∞
corresponds, (30a), to a ‘complex altitude’:

z∞ = L log β ± iπL, (33)

which implies that it is of no physical interest, since it occurs outside the real
altitude range −∞ < z < ∞, which is mapped by the change of variable (30a) into
the unit interval 0 < ζ < 1. This singularity is of no mathematical interest either,
because it does not limit the radius of convergence of the solutions around the other
three singularities in the finite part of the z plane, as shown next.
The critical layer (28b) ≡ (31a) lies in the physical region |ζ| < 1 if K2 < 1,

i.e. the local vertical wavenumber for acoustic waves (29) is real, corresponding
to vertically propagating acoustic waves (case III): see Table 2. In the case of
horizontally propagating acoustic waves k̄ = 0 (case II), in (29), the critical layer
lies at one end of the physical region |ζ| = 1, and in the case of vertically evanescent
acoustic waves (case I), it lies outside the physical region |ζ| > 1. Note that it is the
dispersion relation for ‘local’ acoustic waves that specifies whether magnetosonic–
gravity waves have a critical layer at real or imaginary altitude. Note that although
acoustic waves do not exist under the physical conditions indicated, they serve
as a ‘reference’ to indicate whether there is a critical layer for three-dimensional
magnetosonic–gravity waves, which do exist under the physical conditions stated.
The position of the critical layer is important for deciding which power series

solutions are needed to cover the whole physical region, e.g. if (cases I and II) the

https://doi.org/10.1017/S0022377802002052 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377802002052


344 L.M.B. C. Campos, R. L. Saldanha and N. L. Isaeva

Table 3. Combination of solutions needed to cover the physical region.

Case Fig. Critical layer at Expansions needed in powers of

I, II 2a ζ∗ = K2 � 1 ζ or 1 − ζ
IIIA 2b ζ∗ = K2 > 1

2
ζ and ζ − K2

IIIB 2c ζ∗ = K2 = 1
2

ζ − K2

IIIC 2d ζ∗ = K2 < 1
2

1 − ζ and ζ − K2

critical layer ζ∗ = K2 � 1 does not lie inside the physical region 0 < ζ < 1, then an
expansion either in powers of ζ or 1 − ζ will cover the whole physical region (Table 3
and Fig. 2a). If the critical layer lies in the physical region (case III), then an
expansion in powers of ζ − K2 = ζ − ζ∗, will cover the physical region 0 < ζ < 1
only (case IIIB) if ζ∗ = 1

2 (Table 3 and Fig. 2c). Otherwise, if ζ∗ �= 1
2 , depending on

whether ζ∗ > 1
2 (case IIIA) or ζ∗ < 1

2 (case IIIC), then, in order to cover the whole
physical region, an expansion in powers of ζ (Table 3 and Fig. 2b) or 1 − ζ (Table 3
and Fig. 2d), respectively, is also needed.

3. Wave fields in the neighbourhood of the three regular singularities
The solutions of the wave equation in powers of ζ, 1 − ζ and ζ − K2 cover the
whole physical region, and specify the wave fields as follows: (Sec. 3.1) asymp-
totically at high altitude, where the constant magnetic pressure dominates the
decaying gas pressure, so that the cut-off frequency for acoustic waves is involved;
(Sec. 3.2) asymptotically in the deep layers of the atmosphere, where the increas-
ing gas pressure dominates the magnetic pressure, so that the cut-off frequency
for gravity waves is also involved; (Sec. 3.3) in the neighbourhood of the critical
layer, where the transition between the predominance of gas and magnetic pres-
sures occurs, and one wave component is singular, whereas the other has a phase
jump.

3.1. Asymptotic wave field at high altitude

Since the change of variable (30a) maps ‘infinite’ altitude z → ∞ to the origin
ζ → 0, the wave field above the critical layer is specified by a power series in ζ,
and, besides, since ζ = 0 is a regular singularity of the differential equation (32),
the solution exists as a Frobenius–Fuchs expansion:

Φσ(ζ) =
∞∑

n=0

an(σ)ζn+σ (|ζ| � 1, K2 ≡ ζ∗), (34)

with coefficients an(σ) and σ to be determined (Sec. 4). The index σ alone specifies
the leading term of the wave field, (30a,b), at high altitude:

ζ ∼ βe−z/L, Φσ(ζ) ∼ ζσ ∼ e−σz/L (z � z∗). (35a,b)

The index σ can be determined by taking the lowest powers of ζ in the coefficients
of Φ, Φ′ and Φ′′ in the wave equation (32), namely

ζ2Φ′′ + 2ζΦ′ +
(

Ω2 +
K2

γ

)
Φ = 0 (ζ → 0). (36)
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This is an Euler equation with power solutions of the type (35b), with exponent σ
satisfying

σ(σ − 1) + 2σ + Ω2 +
K2

γ
= 0, (37a)

which will be shown (Sec. 4) to coincide with the indicial equation:

σ2 + σ + Ω2 +
K2

γ
= 0, (37b)

the roots of which are given by

σ± = −1
2

±
(

1
4

− Ω2 − K2

γ

)1/2

, (38)

and will be discussed next.
The indices (38) have a real part − 1

2 , corresponding, (35b), to acoustic–gravity
waves:

σ± = − 1
2 ± ik+L. (39a)

The imaginary part involves the effective vertical wavenumber, defined by

k+ ≡ ω

c

[(
1 −

ω2
+

ω2

)(
1 − ω2

−
ω2

)]1/2

, (39b)

where the cut-off frequencies are specified by

ω2
± ≡ ω2

a

2

[
1 ±

(
1 − 64k2L2

γ

)1/2
]
, (40a)

in terms of the acoustic cut-off frequency

ωa ≡ c

2L
. (40b)

For frequencies far above the acoustic cut-off ω2 � ω2
a, and hence far above ω±,

namely ω2 � ω2
+, the effective vertical wavenumber (39b) simplifies to k+∼ ω/c.

In general, it is real above the upper cut-off (ω > ω+) and below the lower cut-
off (ω < ω−), i.e. in these two ranges there are propagating waves. The effective
vertical wavenumber vanishes (k+ = 0) at both cut-off frequencies (ω = ω±), and
in between (ω− < ω < ω+) is imaginary, showing that only evanescent waves exist
in this range of frequencies. In the low-wavenumber limit kL → 0, of the cut-off
frequencies (40a), only one remains (ω− → 0, ω+ → ωa), and it coincides with the
acoustic cut-off frequency (40b), i.e. the waves propagate above the acoustic cut-off
frequency (ω > ωa) and are evanescent below (ω < ωa). The cut-off frequencies
(40a) remain real if k2L2 < 1

64γ, which is equivalent to

1
8γ1/2 > kL = KΩ =

KωL

c
=

Kω

2ωa
, (41)

where (26b,c) have been used. If this condition is not met, it is simpler to calculate
the indices from (38), and the real part will no longer always be − 1

2 .
It can be confirmed that ω± given by (40a,b) are the cut-off frequencies, by

considering the following three cases.

(i) At either of the two cut-off frequencies, the exponents (39a) coincide

σ± = − 1
2 (ω = ω±) (42)
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and the two components of the wave field,

Φ+(ζ) ∼ ζ−1/2, Φ−(ζ) ∼ ζ−1/2 log ζ, (43)

correspond to a vertical velocity perturbation, (30b) and (35a),

W+(z) ∼ ez/2L, W−(z) ∼ ez/Lz

L
(z → ∞), (44)

which grows exponentially with altitude as the inverse square root of the mass
density (6a), ez/2L ∼ [ρ(z)]−1/2 as is the case for acoustic–gravity waves.

(ii) Between the cut-off frequencies, the exponents (39a) are real and distinct,

σ± = − 1
2 ± |k+|L (ω− < ω < ω+), (45a)

corresponding to non-propagating waves:

W±(z) ∼ ez/2L exp(∓|k+|z) (z → ∞). (45b)

(iii) Above the upper cut-off frequency and below the lower cut-off frequency, the
exponents (39a) are complex-conjugate,

σ± = − 1
2 ± i|k+|L (ω > ω+ or ω < ω−) (46a)

corresponding to propagating wave fields,

W±(z) ∼ ez/2L exp(∓i|k+|L). (46b)

In these three cases, it has been assumed that kL < 1
8γ1/2, so that the cut-off

frequencies (40a) remain real. Otherwise, if kL � 1
8γ1/2, it is preferable to calculate

the indices directly from (38), and the asymptotic wave field (35b) scales as

W±(z) ∼ exp
[

−Re(σ±)z
L

]
exp

[
−i
Im(σ±)z

L

]
(z → ∞), (47)

so that the real part determines the amplitude and the imaginary part determines
the phase. Whereas the leading term of (35b) specifies the asymptotic wave field
at high altitude (z → ∞), the whole series (34) is needed to specify the wave field
exactly at finite altitude above the critical layer (z > z∗). The atmospheric region
below the critical layer is considered next.

3.2. Initial wave field in the deep layers of the atmosphere

In the deep layers of the atmosphere (z → −∞), since ζ → 1 in (30a), this suggests
the following change of independent variable:

ξ = 1 − ζ, (48a)

Φ(ζ;K,Ω) = Ψ(ξ;K,Ω), (48b)

which transforms the differential equation (32) to give

ξ2(1 − ξ)2(1 − K2 − ξ)Ψ′′ − ξ2(1 − ξ)(1 − 2K2 − ξ)Ψ′

+
{

(1 − K2)
[
Ω2 +

(γ − 1)K2

γ2

]
− ξ

[
2Ω2 +

(
K

γ

)2

(2γ + K2 − 2)
]

+ ξ2

[
Ω2 +

(γ − 1)K2

γ2

] }
Ψ = 0. (49)
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Since ζ = 1 or ξ = 0 by (32) is a regular singularity, (49) has solutions as Frobenius–
Fuchs series:

Ψ(ξ) =
∞∑

n=0

bn(ϑ)ξn+ϑ =
∞∑

n=0

bn(ϑ)(1 − ζ)n+ϑ (|ξ| < 1, |1 − K2|), (50)

where the coefficients satisfy the recurrence relation

(1 − K2)
[
(n + ϑ)(n + ϑ − 1) + Ω2 +

(γ − 1)K2

γ2

]
bn(ϑ) = O(bn−1, bn−2, bn−3).

(51)

It is sufficient to write explicitly just the coefficient b0(ϑ), because this is all that
is needed to specify the indicial equation

ϑ(ϑ − 1) + Ω2 +
(γ − 1)K2

γ2
= 0 (n = 0) (52)

at low altitude, which can be compared with the high-altitude case (37a,b).
In the deep layers of the atmosphere, the variable (48a) scales as

ξ ∼ β−1ez/L (z → −∞) (53a)

and the wave field (50) scales as

Ψ(ξ) ∼ ξϑ ∼ eϑz ∼ eϑz/L, (53b)

where the index ϑ is given by the roots of

ϑ2 − ϑ + Ω2 +
(γ − 1)K2

γ
= 0, (54)

namely

ϑ± =
1
2

±
[
1
4

− Ω2 − (γ − 1)K2

γ2

]1/2

, (55)

in comparison with the high-altitude case (38). Similarly, the indices can be written
as

ϑ± = 1
2 ± ik−L, (56a)

where the effective vertical wavenumber is given by

k− ≡ ω

c

{[
1 −

(
ω+

ω

)2 ][
1 −

(
ω−

ω

)2 ]}1/2

, (56b)

in terms of the cut-off frequencies ω±,

(ω±)2 ≡ ω2
a

2

{
1 ±

[
1 − 64k2L2(γ − 1)

γ2

]1/2
}

, (57)

which involve the acoustic cut-off frequency (40b). For much higher frequencies
ω2 � ω2

a, so that ω2 � (ω±)2, the effective wavenumber (56b) reduces to k− ∼ ω/c.
It is real for ω > ω+ and ω < ω−, corresponding to propagating waves; it is imaginary
for ω− < ω < ω+ corresponding to evanescent waves; and it vanishes at ω±. The
cut-off frequencies (57) are real for

1
8

>
kL

γ
(γ − 1)1/2 =

kL2ωg

c
=

kL

2
ωg

ωa
, (58a)
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where (40b) has been used and the gravity cut-off frequency is defined by

ωg ≡ c(γ − 1)1/2

Lγ
. (58b)

Thus, the cut-off frequencies below the critical layer are specified, from (57) and
(58b), by

(ω±)2 =
ω2

a

2

{
1 ±

[
1 −

(
4kLωg

ωa

)2 ]1/2
}
, (59)

and are real if the condition (58a) is met. If this condition is not met, it is simpler
to calculate the indices from (55), and in general Re(ϑ±) �= 1

2 .
In order to confirm that (59) are cut-off frequencies, the following three cases are

considered.

(i) At one of the cut-off frequencies, the exponents (56a,b) coincide,

ϑ± = 1
2 (ω = ω±), (60)

and the wave fields

Ψ+(ξ) ∼ ξ1/2, Ψ−(ξ) ∼ ξ1/2 log ξ, (61)

or alternatively

W+(z) ∼ ez/2L, W−(z) ∼ z

L
ez/2L (z → −∞), (62a,b)

decay exponentially with decreasing altitude, as for an acoustic–gravity wave,
i.e. with the inverse square root of the mass density.

(ii) Above the upper cut-off frequency and below the lower cut-off frequency, the
exponents (56a,b) are complex-conjugate,

ϑ± = 1
2 ± i|k−|L (ω > ω+ or ω < ω−), (63a)

corresponding to propagating waves,

W±(z) ∼ ez/2L exp(±i|k−|z) (z → −∞). (63b)

(iii) Between the cut-off frequencies, the exponents (56a,b) are real and distinct,

ϑ± = 1
2 ± |k−|L (ω− < ω < ω+), (64)

corresponding to non-propagating waves,

W±(z) ∼ ez/2L exp(±|k−|z) (z → −∞). (65)

These three cases assume that the condition (58a) is met. If it is not, then it is
simpler to calculate the indices from (55), and the wave field (53b) scales as

W ±(z) ∼ exp
[
Re(ϑ±)z

L

]
exp

[
i
Im(ϑ±)z

L

]
, (66)

showing that the real part determines the amplitude and the imaginary part de-
termine the phase. The exact wave fields are given by the full series (50) below the
critical layer (z < z∗).
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3.3. Wave fields in the neighbourhood of the critical level

When the critical layer exists, K2 � 1 (Table 2), neither the high-altitude solution
(34), for |ζ| < K2, nor the low-altitude solution (50), for |1 − ζ| < |1 − K2|, hold
near the critical layer (31a), and the wave fields in its neighbourhood are specified
by the following change of variable:

η ≡ ζ − K2, (67a)

Φ(ζ;K,Ω) ≡ F (η;K,Ω). (67b)

This transforms the wave equation (32) to

0 = η(η + K2)2(η + K2 − 1)2F ′′ + (η2 − K4)(η + K2 − 1)2F ′

+
{

−(1 − K2)K2

(
Ω2 +

K2

γ

)
+ ηK2

[
2Ω2 +

(2γ − 1)K2

γ2

]

+ η2

[
Ω2 +

(γ − 1)K2

γ2

] }
F. (68)

Since ζ = K2 or η = 0 is a regular singularity of the differential equation (32) or
(68), a solution exists as a Frobenius–Fuchs series:

Fµ(η) =
∞∑

n=0

dn(µ)ηn+µ, (69)

whose coefficients satisfy the recurrence relation

[(n + µ)2 − 1]K4(K2 − 1)2dn+1(µ) = O(dn, dn−1, dn−2, dn−3), (70)

where only the terms needed to specify the indicial equation

µ(µ − 2)d0(µ) = 0 (n = −1) (71)

have been written. This equation has roots µ = 0 and 2.
The higher index µ = 2 corresponds to a solution that vanishes at the critical

layer:

F2(η) =
∞∑

n=0

dn(2)ηn+2 = O(η2). (72)

Recalling (67a), (31a) and (30a),

η =
1

1 + β−1ez/L
− 1

1 + β−1ez∗/L
, (73)

which leads to

η =
β−1(ez∗/L − ez/L)

(1 + β−1ez∗/L)(1 + β−1ez/L)
. (74)

In the neighbourhood of the critical layer, this scales as

η ∼ K2(1 − K2)(z∗ − z)
L

((z∗ − z)2 � L2), (75)
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and thus, (67b), (30b) and (72), the wave field vanishes as the square of the distance
from the critical layer, divided by the scale height:

W−2(z) ∼
(

z∗ − z

L

)2

(z → z∗). (76)

The lower index differs from the higher one by an integer, and thus it is necessary
to examine the recurrence relation (70) for the coefficients of the solution (69) of
the differential equation (68) to the next order,

[(n + µ)2 − 1]K4(K2 − 1)2dn+1(µ)

+ K2(K2 − 1)
{

Ω2 +
K2

γ
− 2K2(n + µ)[1 − (2K2 − 1)(n + µ + 1)]

}
dn(µ)

= O(dn−1, dn−2, dn−3), (77)

so as to go one step beyond the indicial equation (71):

(µ2 − 1)K2(K2 − 1)d1(µ)+
{

Ω2 +
K2

γ
− 2K2µ[1 − (µ + 1)(2K2 − 1)]

}
d0(µ) = 0,

(n = 0). (78)

For the index µ = 2, it follows from (78) that d1(2) is determined by d0(2), and
likewise for dn(2) with n = 2, 3, . . . . For the lower index µ = 0, it follows from (78)
that d1(0) is determined from d0(0), but (77) with n = 1 and µ = 0 implies that
0 · d2(0) �= 0 so that d2(0) = ∞. It is well known that in this case, a second solution
is obtained [35, 95] by taking the limit

F0(η) = lim
µ→0

∂

∂µ
Fµ(η) = lim

µ→0

∂

∂µ

∞∑
n=0

dn(µ)ηµ+n, (79)

and involves a logarithmic term

F0(η) = log η
∞∑

n=0

dn(0)ηn +
∞∑

n=0

d′
n(0)ηn. (80)

Thus the wave field has a logarithmic singularity at the critical layer:

W0(z) ∼ d′
0(0) + d0(0) log

(
z∗ − z

L

)
(z → z∗) (81)

and the logarithmic term also causes a phase jump.
Since the critical layer lies in the physical region for K2 < 1 (Table 2), the logar-

ithmic term in (81) is

log η ∼ log
(

z∗ − z

L

)
= log

(
|z∗ − z|

L

)
−

{
0 (z < z∗), (82a)

ϑπ (z > z∗), (82b)

where the phase is determined by the sign of Im(η), which is the same as the sign
of Im(K2), with K given by (26c):

η = K2

(
ζ

K2
− 1

)
= K2

(
1 + β−1ez∗/L

1 + β−1ez/L
− 1

)
. (83)
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There are two possibilities.

(i) If the frequency is given a small positive imaginary part,

ω = ω̄ + iδ, (84a)

corresponding to slow growth in time,

e−iωt = e−iω̄tetδ, (84b)

then

K2 =
(

kc

ω

)2

=
(

kc

ω̄

)2 (
1 − 2iδ

ω̄

)
(85)

has a negative imaginary part, Im(K2) < 0, justifying the presence of −iπ in
(82b).

(ii) If the horizontal wavenumber is given a small negative imaginary part,

k = k̄ − iϑ, (86a)

corresponding to slow spatial growth,

eiky = eik̄yeνy, (86b)

then

K2 =
(

kc

ω

)2

=
(

kc

ω

)2 (
1 − 2iϑ

k̄

)
(87)

again has a negative imaginary part, Im(K2) < 0, leading once more to the
presence of −iπ in (82b).

4. Effects of dimensionless frequency and horizontal wavenumber
on waveforms
In cases I and II (Table 2), in which the critical layer does not lie inside the physical
regionK2 � 1, the solution (34) covers the whole physical region, and its coefficients
satisfy a recurrence relation, obtained by substitution into (32):

K2[(n + σ)(n + σ + 1) + Ω2 + K2lc2/γ]an(σ)

=
{

(n + σ − 1)[1 + 4K2 + (1 + 2K2)(n + σ − 2)] +
K4

γ2

}
an−1(σ)

−
{

(n + σ − 2)[2(1 + K2) + (2 + K2)(n + σ − 3)] − Ω2 −
(

K

γ

)2

(γ − 1)

}

× an−2(σ) + (n + σ − 3)2an−3(σ). (88)

Setting n = 0 yields the indicial equation[
σ(σ + 1) + Ω2 +

K2

γ

]
a0(σ) = 0, (89)
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Table 4. Values of dimensionless parameters for plots of wave fields.

Ω = 2; K = 2;
Wave field K = 1, 2, 5 Ω = 1, 2, 5

|G| ≡ |G±| Fig. 3 Fig. 5

arg(G) = ± arg(G±) Fig. 4 Fig. 6

which coincides with (37b), and has roots (38) corresponding to the solutions

Φ±(ζ) =
∞∑

n=0

an(σ±)ζn+σ± . (90)

The complete wave field is given by

Φ(ζ) = C+Φ+(ζ) + C−Φ−(ζ), a0(σ±) = 1, (91)

where C± replace a0(σ±) as arbitrary constants. They are determined from bound-
ary conditions. For example, specifying the wave field at two altitudes, or its scaling
at high altitude (Sec. 3.1), low altitude (Sec. 3.2) or in the neighbourhood of the
critical layer (Sec. 3.3).
The plotting over the physical region concerns both wave fields:

G±(ζ) ≡ Φ±(ζ)
Φ±( 1

2 )
(0 � ζ < 1), (92a,b)

normalized to their value at the altitude corresponding to ζ = 1
2 in (30a), for which

the sound and Alfvén speeds are equal, A(z2) = c:

z2 = 2L log
(

c

a

)
= L log β, (93)

where the plasma β was introduced in (26a). The choice K � 1 ensures that the
critical layer is outside the physical region, andK is given three values (Table 4), and
Ω is also given three values. The adiabatic exponent γ = 5

3 is taken for a monatomic
gas, such as ionized hydrogen in the solar corona. Of the three dimensionless
parameters (26a–c) specifying the propagation of three-dimensional magnetosonic–
gravity waves in an isothermal atmosphere with a horizontal magnetic field, the
plasma β (26a) is included in the variable (30a), which replaces altitude; thus, in
the Table 4, only the dimensionless frequency (26b) and dimensionless horizontal
wavenumber (26c) are specified. The values chosen in Table 4 imply that the indices
(38) are complex-conjugate, and hence, from (88), so are the coefficients an(σ±) in
the solutions (90):

(σ+)∗ = σ−, (94a)

[an(σ+)]∗ = an(σ−), (94b)

[Φ+(ζ)]∗ = Φ−(ζ). (94c)

Thus the wave fields (92a,b) to be plotted are complex-conjugates, G(ζ) ≡ G+

(ζ) = [G−(ζ)]∗, i.e. they have the same modulus or amplitude,

|G(ζ)| ≡ |G+(ζ)| = |G−(ζ)|, (95a)
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and opposite phases

arg[G(ζ)] = arg[G+(ζ)] = −arg[G−(ζ)], (95b)

so that it is sufficient to plot |G| and arg(G) in each figure.
When interpreting Figs 3–6, it should be borne in mind that ζ is (30a) plotted

on a logarithmic scale

log ζ = − log(1 + β−1ez/L) ∼ log β − z

L

for large altitude z � L log β ≡ z1 or small ζ � 1, so that in this case it becomes a
linear function of altitude z divided by the scale height L. The range 10−2 � ζ � 1
extends from ζa = 1 at altitude za = −∞ to ζb = 10−2 at altitude z2 = z1 + 4.60L;
for example, for β = 1, this extends from −∞ up to an altitude of about five scale
heights, z2 = 4.6L. Note that if the dimensionless altitude z/L was used as an
ordinate, then there would be a third parameter, namely the plasma β from (26a);
the latter is included in the modified altitude variable ζ in (30a), leaving only two
parametersΩ andK in (26b,c), of which the latter alone specifies, through (31a), the
location of the critical layer. The other advantage of using ζ rather than z is that an
infinite altitude range −∞ < z < z2 corresponds to a finite interval −2 < log ζ < 0.
There is a correspondence (30a) between the original z and modified ζ altitude
variables:

z = z1 + L log
(

1
ζ

− 1
)

, (96a)

z1 ≡ L log β; (96b)

for example, for the range of values of the ordinate in Figs 3–6, this correspondence
is as follows:

ζ = 1 0.5 0.1 0.05 0.01
z = −∞ z1 z1 + 2.20L z1 + 2.94L z1 + 4.60L.

(97)

The amplitude of the wave fields (95a) increases with altitude more rapidly for
shorter dimensionless horizontal wavenumber K, as can be seen in Fig. 3, where
K is given three values, and the dimensionless frequency is kept fixed at Ω = 2.
Keeping the dimensionless wavenumber fixed at K = 2 and giving three values to
the dimensionless frequency, it can be seen from Fig. 5 that the growth of wave
amplitude with altitude is slightly larger for higher dimensionless frequency, but
the effect is much weaker than that of increasing the dimensionless horizontal
wavenumber. Concerning the phase, it has opposite signs for the two wave fields
(95b), i.e. one (G+) corresponds to upward propagation, and the other (G−) to
downward propagation. The variation of phase with altitude is more rapid for in-
creasing dimensionless horizontal wavenumber (Fig. 4) and increasing dimensionless
frequency (Fig. 6), with the latter having a slightly more profound effect. This
contrasts with the amplitude growth with altitude, which was mostly affected by
increasing dimensionless horizontal wavenumber (Fig. 3), and was not too sensitive
to dimensionless frequency. The critical layer corresponds through (31a) to ζ = K2,
and thus lies in the physical region 0 < ζ < 1 only if K < 1. The plots in Figs 3–6
concern cases (K � 1) in which the critical layer does not exist. The properties
of the wave fields at the critical layer (Sec. 3.3) when the horizontal wavenum-
ber is orthogonal to the horizontal external magnetic field are broadly similar to
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the well-known case when they are parallel [18, 19, 20]. The common instance
is the case of zero wavenumber [10, 11], when there is a transition layer where
the wave field is not singular; across this transition layer, the magnetosonic–gravity
wave evolves gradually from an ‘almost-acoustic’ wave dominated by the gas pres-
sure to an ‘almost-longitudinal hydromagnetic’ wave dominated by the magnetic
pressure [22, 91]. The main difference in the present case of a wave vector not in the
plane of gravity and the external magnetic field is that the magnetosonic–gravity
wave couples to some properties of the Alfvén–gravity wave, with significant impli-
cations, for example, as for the solar atmosphere, which are discussed qualitatively
next.

5. Discussion
It has been argued in the literature for about a quarter of a century that compressive
MHD modes in an atmosphere (e.g. in the solar case) cannot transport significant
energy over several scale heights because propagation is possible only above the
cut-off frequency ωb = (c2 +a2)1/2/2L and there is not enough energy in this range
of the spectrum. Actually, the cut-off frequency for magnetosonic–gravity waves
in a horizontal magnetic field is the same as for acoustic–gravity waves, namely
ωa = c/2L, also assuming that the horizontal wave vector lies in the plane of gravity
and the external magnetic field [18, 20]. In the case of a vertical external magnetic
field, there is no cut-off frequency [23, 25]. These two extremes are particular cases
of [31] the cut-off frequency ωc = (c/2L) cos θ for an external magnetic field making
an angle θ to the vertical, i.e. ωc = 0 for a vertical magnetic field (θ = 0), and ωc =
c/2L = ωa for a horizontal external magnetic field (θ = 1

2π). For an oblique external
magnetic field (0 < θ < 1

2π), the cut-off frequency for compressive (slow and fast)
magnetosonic–gravity waves is lower than the acoustic–gravity wave cut-off (ωc <
c/2L ≡ ωa), allowing propagation of a larger part of the spectrum. All of these
results, appearing in the literature on linear, non-dissipative magnetosonic–gravity
waves in an isothermal atmosphere assume that the direction of stratification (or
gravity g), the external magnetic field B and the horizontal wave vector k lie in the
same plane, k · (B× g) = 0, in which case the Alfvén mode is decoupled from slow
and fast waves.
The observation that Alfvén waves can couple linearly to slow and fast modes in

an atmosphere is implicit or explicit in some of the literature, for example.

(i) The local dispersion relation for magnetosonic–gravity waves [15] shows that
Alfvén waves couple to slow and fast modes if the horizontal wave vector has
a component k⊥ �= 0 out of the plane of B and g.

(ii) The second-order vector equation for magnetosonic–gravity waves can be elim-
inated generally [28] as a sixth-order scalar wave equation, implying that, in
general, all three modes (Alfvén, slow and fast) are coupled.

(iii) It has been mentioned explicitly [22] that the condition k · (B× g) = 0 allows
decoupling of the slow and fast modes from Alfvén waves in an atmosphere.

It is well known that for magnetosonic waves in a homogeneous medium, Alfvén
waves are always decoupled from slow and fast modes at a linear level, even in the
presence of viscous and resistive dissipation [66]; their coupling is a nonlinear effect.
This nonlinear coupling has also been considered for MHD waves in an atmosphere
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[92, 93]. However, in an atmosphere, linear coupling of Alfvén waves to slow and
fast modes is also possible.
The cause of linear coupling or decoupling of Alfvén waves and compressive

MHD modes in homogeneous media and atmospheres can be readily understood
with the help of diagrams. In the simplest case I of magneto-acoustic waves in
a homogeneous medium, there are only two vectors, the external magnetic field
B and the wave vector k, which have arbitrary directions (Fig. 7a); the velocity
(and magnetic field) perturbations of compressible (slow and fast) modes lie in
the plane of k and B and hence are decoupled from Alfvén waves, which have
perturbations transverse to k and B. In the case of magneto-acoustic gravity waves
in an atmosphere there is a third direction, namely that of stratification, identified
with the direction of the gravitational field g; besides, in this case, there exists only
a horizontal wave vector k, transverse to the direction of stratification (k · g = 0),
since sinusoidal oscillations cannot exist in the vertical direction, owing to the
non-uniform wave speed. In case II, when k, g and B are coplanar (Fig. 7b), the
Alfvén waves have horizontal perturbations orthogonal to this plane, and thus do
not couple to stratification or compressive modes, whose perturbations lie in the
plane of k, g, and B. In the general case III when k and B do not lie in a vertical
plane, the velocity perturbation of the Alfvén waves, which is transverse to k and
B, has (Fig. 7c) a vertical component, which couples through the stratification to
the compressive slow and fast modes.
To the best of our knowledge, this paper contains the first solution of the wave

equation for linear, non-dissipative magnetosonic–gravity waves in which k, g and B
are not coplanar. The simplest three-dimensional (or ‘2 1

2 -dimensional’) configuration
was chosen (Fig. 1), with the three vectors forming an orthogonal triad (4a,b).
In spite of the ‘simple’ geometry, the scalar wave equation has four singularities,
compared, in the case of coplanar k, g and B, with (i) two singularities for a non-
horizontal magnetic field (namely altitude plus or minus infinity) and (ii) three
singularities for a horizontal magnetic field, because there is a critical layer in
this case. In case (ii), the scalar wave equation is of second order, and since it
has three regular singularities, the solution can be obtained in terms of Gaussian
hypergeometric functions [18, 19, 20]. In the present case, the scalar wave equation
(32) is also of second order, but it has a fourth singularity due to the three-
dimensional effect. Since the wave equation in the present case of three-dimensional
magnetosonic–gravity waves has four singularities, its solution could at best be
obtained in terms of Lamé [41, 43] or Heun [42, 44] functions. It is simpler to
solve the scalar wave equation (32) using the Frobenius–Fuchs method directly
[35, 41, 43, 95], and this leads to cut-off frequencies that are distinct at high and
low altitude ((40a) and (59), respectively). They simplify to the acoustic cut-off if
the component of the horizontal wave vector orthogonal to the plane of g and B
is zero (k = 0); if k is small ((41) at high altitude and (58a) at low altitude), the
cut-off frequencies differ from the acoustic cut-off frequency. For larger k, there
are no real cut-off frequencies to hinder wave propagation.
The above results have significant implications concerning energy transport by

waves in an atmosphere, since they remove several of the constraints on the energy
flux, for example those associated with cut-off frequencies or decoupled modes.
The coupling of Alfvén and compressive modes shows that it is not possible to
exclude one in isolation; the presence of Alfvén waves will generally imply the
presence of compressive modes as well. The absence of cut-off frequencies will allow

https://doi.org/10.1017/S0022377802002052 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377802002052


356 L.M.B. C. Campos, R. L. Saldanha and N. L. Isaeva

(a) z

Alfvén

y

Slow & fast

B k

x

(b) z

Alfvén

y

Slow & fast

B

k

x

g

(c) z

Alfvén

y

Slow & fast

B

k

x

g

Figure 7. Cases of linear decoupling or coupling of Alfvén waves with compressive (slow
and fast) modes: (a) decoupling for magneto-acoustic waves in a homogeneous medium for
arbitrary direction of the wave vector k and the external magnetic field B; (b) decoupling
for magneto-acoustic gravity waves in an atmosphere stratified in the direction of gravity g,
if the horizontal wave vector k lies in the plane of g and B; (c) coupling for magneto-acoustic
gravity waves with the three vectors not coplanar (k · (g× B) �= 0).
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Table 5.Wave period for occurrence of a critical layer.

Chromosphere: Transition region: Corona:
T = 5 × 103K, T = 1 × 105K 1.8 × 106K
c = 8.3 × 105 cm s−1 c = 3.7 × 106 cm s−1 1.6 × 107 cm s−1

Flux tube 1.2 × 10 s 2.7 s 0.63 s
(λ = 107 cm)

Granule 3.6 × 103 s 8.1 × 102 s 1.9 × 102 s
(λ = 3 × 109 cm)

Supergranule 3.6 × 104 s 8.1 × 103 s 1.9 × 103 s
(λ = 3 × 1010 cm)

energy propagation over the full frequency spectrum. Another important result is
the occurrence of a critical layer, where wave reflection and/or absorption can occur,
at an altitude such that K∗ = 1 in (26c) or ω∗ = k∗c. Thus, the wave period for
which a critical layer occurs,

τ∗ =
2π

ω∗
=

2π

kc
=

λ

c
, (98)

is indicated in Table 5 for sound speeds c corresponding to temperatures T in the
solar chromosphere, transition region and corona, and for wavelengths λ corres-
ponding to the scales of a flux tube, granule and supergranule.
It is clear that a critical layer would occur in the chromosphere for large scales

only for long periods; however, in the transition region and corona, there is a critical
layer for most of the spectrum 30–8000 s where solar energy is concentrated in the
form of hydromagnetic waves.
Earlier studies of magnetosonic–gravity waves in an atmosphere have assumed –

in most cases implicitly rather than explicitly – that gravity, the external magnetic
field and the horizontal wave vector are coplanar; this is an unnatural restriction (for
example, there is no obvious reason why the horizontal wave vector should always
lie in the plane of gravity and the magnetic field in the case of the solar atmosphere).
The consideration of general geometries, with non-coplanar gravity, external mag-
netic field and wave vector implies coupling of all three MHD modes: Alfvén, slow
and fast. It follows that energy transport and dissipation by hydromagnetic waves
can be enhanced in three ways: (i) by removing cut-off frequencies, which apply to
slow and fast modes when decoupled from Alfvén waves; (ii) by adding to viscous
and resistive dissipation of Alfvén modes, the thermal conductive and radiative
damping of the coupled compressive modes; (iii) by causing the occurrence of
critical layers, where waves can be absorbed, at different altitudes for different
wave frequencies, for most of the energy spectrum of hydromagnetic waves in the
solar atmosphere.
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