
J. Fluid Mech. (2005), vol. 528, pp. 233–254. c© 2005 Cambridge University Press

doi:10.1017/S0022112004003295 Printed in the United Kingdom

233

Lattice-Boltzmann simulations
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results for the permeability and drag force
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We report on lattice-Boltzmann simulations of slow fluid flow past mono- and bi-
disperse random arrays of spheres. We have measured the drag force on the spheres for
a range of diameter ratios, mass fractions and packing fractions; in total, we studied 58
different parameter sets. Our simulation data for the permeability agrees well with
previous simulation results and the experimental findings. On the basis of our data
for the individual drag force, we have formulated new drag force relations for both
monodisperse and polydisperse systems, based on the Carman–Kozeny equations; the
average deviation of our binary simulation data with the new relation is less than 5%.
We expect that these new relations will significantly improve the numerical modelling
of gas–solid systems with polydisperse particles, in particular with respect to mixing
and segregation phenomena. For binary systems with large diameter ratios (1:4), the
individual drag force on a particle, as calculated from our relations, can differ by up to
a factor of five compared with predictions presently favoured in chemical engineering.

1. Introduction
Understanding, and hence predicting, the resistance behaviour of densely packed

solid particles to fluid flow has proved to be difficult. Even for the most simple model
systems (static, random arrays of monodisperse spheres) there is no definitive
consensus regarding the precise form of the drag force on the spheres (e.g. see
figure 1); little, if anything, is known about the drag force for systems which deviate
from the model conditions. Accurate drag force relations are, however, of great
practical importance. In particular, in chemical engineering, drag force relations are
widely used in the numerical models that predict the flow behaviour of gas and liquid
fluidized beds of granular material (van Swaaij 1985; Gidaspow 1994; Hoomans
et al. 1996; Kuipers & van Swaaij 1998). Such beds form an essential part of many
industrially important chemical reactors, of which the fluid catalytic cracking (FCC)
reactor is a prototypical example. In previous studies, it was found that the flow
behaviour of gas fluidized beds can be very sensitive to the precise functional form of
the drag force, in particular how it varies with the gas fraction (Li & Kuipers 2003).
To date, mainly empirical relations have been used, such as the Ergun (1952) and
Wen & Yu (1966) equations for monodisperse systems. Only recently, new drag force
relations were proposed by Koch and coworkers (Koch & Sangani 1999; Koch &
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Figure 1. Normalized drag force (multiplied by the porosity squared) as a function of the
packing fraction φ; the figure shows some well-known drag force relations, obtained from
experiment, theory and simulation.

Hill 2001; Hill, Koch & Ladd 2001a, b), based on accurate numerical data from
lattice-Boltzmann simulations. In these simulations, the flow field around the spheres
is calculated from a discretized version of the Boltzmann equation, with a grid that is
10–30 times smaller than the diameter of the spheres. A recent discrete particle study
by Bokkers, van Sint Annaland & Kuipers (2004) showed that, with respect to bubble
formation in fluidized beds, the drag relations derived from the lattice-Boltzmann
simulations yielded better agreement with the experimental observations than the
traditional Ergun and Wen & Yu correlations. Although these latter relations remain
the most widely used to date in chemical engineering, a consensus is growing that
relations such as those proposed by Koch and coworkers, do provide the most accurate
description for the interphase momentum transfer, at least for ideal systems, that is,
for monodisperse, homogeneous and static systems; in practical applications, however,
such ideal conditions are hardly ever encountered. In this paper, a first step is made
towards describing the drag force for non-ideal systems, where we want to investigate
the effect of polydispersity. We focus our studies on binary systems, although the
drag force relation that we propose here is derived for general polydisperse systems.
Koo & Sangani (2002) applied the effective medium theory to binary systems, and
found that the predictions for the individual drag force were in good agreement
with the results from multipole expansions methods. The theory was also found to
predict well the average hydrodynamic properties and conditionally averaged velocity
fields. The drawback of the effective medium theory, however, is that it requires the
cumbersome task of evaluating structure factors in the bidisperse suspensions. In
that respect, the lattice-Boltzmann simulations provide a more simple and direct way
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Lattice-Boltzmann simulations of low-Reynolds-number flow 235

of arriving at accurate results for the drag force, especially since binary systems are
not more difficult to simulate than monodisperse systems. In the simulations, we
consider only systems where the configuration of the particles is static. The effect of
the granular temperature on the drag force will be addressed in future publications.

The simulation method that we use is very similar to the method employed by Hill
et al. (2001a, b) to measure the drag force in monodisperse systems. In fact, we use
the same lattice-Boltzmann suspension code SUSP3D, developed by Ladd. We have
also performed extensive simulations on monodisperse systems because: (i) We want
to present the drag force for bidisperse systems in terms of a deviation from the
monodisperse drag force. Since these deviations can be rather small, we decided to
perform a new set of accurate simulations on monodisperse systems; on average, the
error margin on our data is a factor of two smaller compared to the data of Hill et al.
(2001a, b); we use this new data to formulate a new and more accurate drag force
correlation for monodisperse systems. (ii) A direct comparison of our binary data
with the monodisperse data of Hill et al. (2001a, b) could introduce some systematic
errors, since we measure the drag force in a different way, as will be discussed in
§ 3.3. (iii) Since we have rather large diameter ratios (up to 4:1), we are forced to use
relatively small particles in the simulations, in order to keep the computer time within
reasonable limits. For this reason, we also study the effect of particle size, relative to
the gridsize, on the drag force in monodisperse systems.

In the next section, we give a brief overview of drag force relations for monodisperse
and bidisperse system, in which we also suggest a new drag force relation for bidisperse
systems. This is followed by a more elaborate discussion of the simulation method; in
§ 4, we present our simulation results for both monodisperse and bidisperse systems,
and in the last section we summarize the most important results and present some
concluding remarks.

2. Overview of drag force relations
2.1. Definitions

We start by noting that there exists some ambiguity in the literature on the precise
definition of the drag force, in particular, as to whether the contribution of the pres-
sure gradient should be included. In order to avoid any confusion, and also to define
the notation for the remainder of the paper, we briefly describe the relation of the
drag force to the pressure drop. To this end, we consider a model system with a
total volume Vtot, which contains N monodisperse spheres (diameter d , volume V ),
randomly distributed over space, and fixed to their positions. An incompressible
continuum phase, characterized by a mass density ρ and shear viscosity µ, is flowing
through the bed at constant velocity u. In the remainder of the paper, we will denote
this continuum phase as gas, but the results are equally valid for particles suspended
in a liquid. The solid volume fraction φ and particle Reynolds number Re are defined
by

φ =
NV

Vtot

, Re =
ρ|U |d

µ
, U = (1 − φ)u, (1)

where U is the superficial gas velocity, defined as the gas velocity averaged over the
total volume of the system. Since the gas is flowing with constant velocity, the total
force on the gas should be zero, and thus:

−Vtot∇∇∇P − N Fg→s = 0, (2)
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with ∇P the pressure gradient across the volume, and Fg→s the total average force
that the gas exerts on each particle. There are two contributions to this force, namely,

Fg→s = Fd − V∇∇∇P . (3)

The first term is the drag force Fd , which results from the friction between the particle
and the gas at the surface of the particle, which is present whenever the difference
between gas- and particle-velocity is non-zero. The second term is the buoyancy-type
force due to the pressure gradient. Combining (2) and (3) gives:

Fd = −1 − φ

φ
V∇∇∇P . (4)

Note that in some literature (e.g. Hill et al. 2001a, b), the total force on the particle
Fg→s is defined as the drag force. From the analysis above, it follows that

Fg→s = Fd/(1 − φ), (5)

i.e. two definitions differ by a factor (1 − φ). In this paper, we define Fd as the drag
force, which is a common choice in chemical engineering (e.g. see Di Felice 1995);
this is because in the numerical models it is more natural to couple the force due to
the pressure gradient with the gravity-induced buoyancy force, rather than with the
drag force.

In the limit of infinite dilution, and when inertial effects can be neglected, the drag
force takes the Stokes–Einstein form Fd = 3πµdU . It is therefore convenient to define
the dimensionless drag force

F =
Fd

3πµdU
, (6)

such that F → 1 in the limit φ → 0, Re → 0. We will use this representation of the
drag force in the remainder of the paper. It then follows that

(1 − φ)

φ
∇∇∇P = −18µU

F

d2
. (7)

Note that in chemical engineering, the drag force is traditionally described via a
friction coefficient β (e.g. see Gidaspow 1994). The relation between β and F is

β = 18µ(1 − φ)φ
F

d2
.

2.2. Drag force relations for monodisperse systems

A useful starting point for describing Stokes flow through a dense random array of
spheres is the Darcy equation:

∇∇∇P = − 1

κ
µU, (8)

which is a general relation for the pressure drop over a porous medium. In (8), κ is
defined as the permeability of the medium, which depends – in principle – on the
geometrical details of the system. In practice, however, the permeability is found to
be described well by the Carman–Kozeny approximation:

κ = (1 − φ)
r2
h

k
, (9)

where k is the Kozeny constant, whose value is usually found to be close to 5
(independent of the geometry), and rh is the hydraulic radius, defined as the ratio of
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the free volume to the ‘wetted area’. The basic idea behind this assumption is that
the medium can be considered as a system of channels of width rh; equation (9) then
follows from assuming a Poiseuille-type law for the pressure drop over the channels.
For monodisperse spheres,

rh =
1 − φ

6φ
d, (10)

which combined with (7) to (10) gives the Carman–Kozeny (CK) relation for the drag
force:

F = 2k
φ

(1 − φ)2
. (11)

For k =5, equation (11) is known as the Carman equation, for k = 4.167, equation
(11) represents the Re =0 limit of the Ergun equation (also known as the Blake–
Carman–Kozeny equation). One of the limitations of the CK relation is that it is
only valid for dense arrays, which is underlined by the fact that it does not have
the correct limit F → 1 for φ → 0. For that limit, Kim & Russel (1985) derived the
following expression for F :

F = (1 − φ)

[
1 +

3√
2

√
φ +

135

64
φ lnφ + 16.456φ + · · ·

]
, (12)

which was found to be in perfect agreement with the computer simulations by Ladd
(1990) and Hill et al. (2001a, b). Several attempts have been made to find expressions
for F valid over the entire solid fraction range. One of the earliest, obtained from
theory, is the well-known Brinkman equation:

F = (1 − φ)

(
1 + 3

4
φ

[
1 −

√
8

φ
− 3

])−1

. (13)

In the limit φ → 0, equation (13) is to lowest order in φ equivalent to (12). In the range
0.20 <φ < 0.50, the Brinkman equation predicts a drag force that is slightly lower
than the Carman equation, whereas for φ > 0.50, the Brinkman equation seriously
overpredicts the drag force, since it diverges at φ = 2/3. Koch & Sangani (1999)
proposed the following expression for the drag force:

F =




(1 − φ)
(
1 + 3√

2
φ1/2 + 135

64
φ lnφ + 16.14φ

)
1 + 0.681φ − 8.48φ2 + 8.16φ3

for φ < 0.4,

10
φ

(1 − φ)2
for φ > 0.4,

(14)

that is, for large volume fraction, F is given by the Carman relation, (11), whereas for
φ close to zero, F is equal to (12) to order φ. Equation (14) was found to be in good
agreement with the results from lattice-Boltzmann simulations. Finally, in chemical
engineering models of gas fluidized beds, the combination of the Ergun and Wen &
Yu equation have found widespread use:

F =




(1 − φ)−3.65(1 + 0.15Re0.687) (φ < 0.2),

150

18

φ

(1 − φ)2
+

1.75

18

Re

(1 − φ)2
(φ > 0.2).

(15)

As mentioned before, in the limit Re → 0, the Ergun equation is equal to the CK
relation, (11), with k = 150/36 = 4.167. The Ergun equation is based on experimental
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data for the pressure drop over fixed dense beds of spheres, whereas the Wen & Yu
equation is based on data for the terminal velocity of sedimenting spheres at different
porosities. In figure 1 we compare the various drag force relations that we have listed
in this section. It is clear that there are significant deviations between the various
predictions from theory, experiment and simulation.

2.3. Drag force relations for polydisperse systems

We next consider a polydisperse system, which contains Ni spheres of type i (diameter
di , volume Vi), with i = 1, 2, . . . , c. We define the normalized drag force Fi , the mass
fraction xi and the diameter fraction yi as

Fi =
Fd,i

3πµdiU
, xi =

φi

φ
, yi =

di

〈d〉 , (16)

with Fd,i the drag force on a particle of type i, φi = NiVi/Vtot the partial volume
fraction, and 〈d〉 the average diameter defined as

〈d〉 =

c∑
i=1

Nid
3
i

c∑
i=1

Nid
2
i

=

[
c∑

i=1

xi

di

]−1

. (17)

The relation between the pressure gradient and the drag force, as derived in § 2.1, can
be readily extended to polydisperse systems, and is equal to

(1 − φ)

φ
∇∇∇P = −18µU

[
c∑

i=1

xi

d2
i

Fi

]
= −18µU

〈F 〉
〈d〉2

, (18)

where, in the last step, we have cast it in the same form as the monodisperse relation
(7), with d replaced by 〈d〉, and F replaced by a weighted average drag force defined
by

〈F 〉 =

c∑
i=1

xi

y2
i

Fi. (19)

We next generalize the CK relations to polydisperse systems. It can easily be shown
that the hydraulic radius for such systems has the same form as (10), only with d

replaced by the average diameter 〈d〉. As a result, combining (8)–(10) with (18) gives

〈F 〉 = 2k
φ

(1 − φ)2
. (20)

Comparison with (11) shows that the average drag force for polydisperse systems,
as defined by (19), is equal to the monodisperse drag force, at least in the Carman–
Kozeny approximation:

〈F 〉 = F (φ), (21)

This approach, however, yields only an expression for the average drag force 〈F 〉,
and not for the individual force Fi on each type of particle. Although polydisperse
systems are frequently encountered in gas fluidized beds, at present rather ad hoc
modifications of the monodisperse relations are employed (Gidaspow 1994), where
d is simply replaced by di; that is, for low Reynolds numbers, the normalized drag
force Fi of the individual species is assumed to be equal to the normalized drag force
F of a monodisperse system at the same volume fraction. It can immediately be seen
from the definition (19), however, that Fi = F does not satisfy (21); to our knowledge,
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only one attempt has been made in literature to formulate an improved expression
for the individual drag force.

In the model by Patwardhan & Tien (1985), the individual drag force Fi is also
taken to be equal to the monodisperse drag force, but now at a volume fraction φ(i),
instead of the overall volume fraction φ, namely,

Fi(φ) = F
(
φ(i)

)
.

The underlying idea is that the effective porosity which a particle experiences is
primarily dominated by the distance to its neighbouring particles; for instance, if the
distance is larger, the flow profile is less disturbed, and thus the effective porosity that
the particle experiences is larger (thus φ(i) < φ). This distance is estimated by δ, which
is defined such that the volume of spheres with diameter di + δ is equal to the total
volume, namely,

c∑
i=1

Ni
1
6
π(di + δ)3 = Vtot. (22)

The effective packing fraction φ(i) of particles of type i is then estimated as the
packing fraction that a monodisperse system with d = di would have with the same
δ, which is given by

1

φ(i)
=

(
1 +

δ

di

)3

. (23)

The main difficulty of this approach lies in evaluating δ from (22). For monodisperse
systems, δ can be readily evaluated: δ = d[φ−1/3 −1]. Patwardhan & Tien approximate
the solution for polydisperse systems by

δ = davg

[
φ−1/3 − 1

]
, davg =

∑
i

xidi . (24)

However, this choice for davg seems to be ad hoc, and no justification is given. As we
will show in § 5, a significant improvement is achieved by using davg = 〈d〉. In fact, it
is possible to obtain the exact solution for δ – at least numerically – since (22) can
be cast in the form

1

φ
= 1 + 3

δ

〈d〉 + 3
δ2

〈d2〉 +
δ3

〈d3〉 , (25)

with 〈d〉 given by (17), and 〈d2〉, 〈d3〉 defined in a similar fashion:

〈d2〉 =

c∑
i=1

Nid
3
i

c∑
i=1

Nidi

=

[
c∑

i=1

xi

d2
i

]−1

, 〈d3〉 =

c∑
i=1

Nid
3
i

c∑
i=1

Ni

=

[
c∑

i=1

xi

d3
i

]−1

.

Note that if 〈dn〉 = 〈d〉n, the solution of (25) would indeed be given by (24), with
davg = 〈d〉. In § 4, we will compare the predictions of the Patwardhan & Tien model,
using different estimates for δ, with our simulation results. One of the drawbacks of
this approach is that it does not yield an explicit expression for Fi in terms of the
parameters xi and yi . In the next section, we will derive such an explicit expression.

2.4. A new drag force relation for polydisperse systems

One of the shortcomings of both the approximate expressions Fi(φ) = F (φ) and
Fi(φ) = F (φ(i)) is that these do not satisfy the basic relation (21). It is possible,
however, to formulate two relations which do satisfy (21), namely Fi(φ) = yiF (φ)
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and Fi = y2
i F (φ). The first solution would imply that Fi/Fj = di/dj , whereas the

second solution gives Fi/Fj = (di/dj )
2. Our lattice-Boltzmann simulations (which we

will discuss later in this paper) show that, for binary systems, Fi/Fj = (di/dj )
n with

1 <n < 2 (see figure 7), which suggests that we should try a general solution as a
linear combination:

Fi =
(
(1−f )yi + fy2

i

)
F (0 � f � 1). (26)

The unknown factor f may be determined from the limit di/dj → 0, ∀ j �= i, while φi

and φ are kept constant. In that limit, yi = xi , and therefore (26) reduces to

lim
di/dj →0

Fi = xi (1 − f + f xi) F. (27)

On the other hand, for this limit, we may consider a system where di is kept constant,
while all the other spheres of type j �= i grow infinitely large. From the point of view
of the type i spheres, this system is then effectively monodisperse, with the available
volume reduced by

∑
j �= i NjVj . Thus, in that limit, Fi is equal to the monodisperse

drag force at a modified packing fraction φ′:

lim
di/dj →0

Fi = 2k
φ′

(1 − φ′)2
, φ′ =

NiVi

V −
∑
j �=i

NjVj

=
φi

1 − φ + φi

.

Using (11), we obtain

lim
di/dj →0

Fi = xi (1 − φ + φxi) F.

Comparing with (27) gives f = φ. Note that from these expressions, it follows that
the permeability of the polydisperse system is given by

κ = 〈d〉2 1 − φ

18φF
= 〈d〉2 (1 − φ)3

36 kφ2
.

For binary systems, the limit d1/d2 → ∞ gives 〈d〉 = d2/x2, and thus

lim
d1/d2→∞

κ = d2
2

(1 − φ)3

36 kφ2
2

,

which is in agreement with the exact result from Sangani & Yao (1988) in the same
limit (see also § 2 of Thies-Weesie & Philipse 1994).

Up to this point, all derivations have been made within the framework of the
Carman–Kozeny approximation, which is valid for dense packings only. The final
assumption we now make is that the relation between Fi and F (and thus also
between 〈F 〉 and F ) is generally valid, i.e. that for the monodisperse drag force F

in (21) and (26), we can use the best possible fit (31), valid over the entire packing
fraction range. In § 4, we will test the validity of (26) using this assumption, by
comparing with the results from lattice-Boltzmann simulations. In the next section,
we will discuss this simulation method in detail.

3. Simulation method
The momentum exchange between the solid and the gas phase is completely

determined by the interaction of the gas phase with the surface of the solid phase;
for instance, the Stokes drag force Fd = 3πµdu on an isolated sphere follows from
the equations of hydrodynamics with ‘stick boundary’ conditions for the gas at the
solid surface. Therefore, it is essential that the numerical method describes the flow
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field at scales of at least one order smaller than the diameter of the spheres, so that
their surface can be adequately resolved. In this work, the lattice-Boltzmann method
is used to solve the equations of hydrodynamics, with stick boundary rules applied at
the surface of the solid phase. In the next section, we will briefly go over the essential
features of the method, followed by a more elaborate discussion of the measurement
procedure and the finite size effects.

3.1. Lattice-Boltzmann model

A general overview of lattice-Boltzmann methods can be found in Chen & Doolen
(1998) and Succi (2001), amongst others. An elaborate description of the specific
method that we have used, including the modelling of the solid–gas boundary, can be
found in the overview papers by Ladd (1993a, b) and Ladd & Verberg (2001). Here,
we will discuss the method only briefly in general terms. The lattice-Boltzmann model
is basically a finite-difference scheme for solving the Boltzmann equation. In its most
simple form, the finite-difference scheme reads:

f (v, r + vδt, t + δt) − f (v, r, t) = −δt

τ
(f (v, r, t) − f eq(v, r, t)) (28)

where f is the single particle distribution function, which is equivalent to the gas
density in the six-dimensional velocity-coordinate space, and f eq represents the equili-
brium distribution. In (28), the position r and velocity v are discrete, i.e. the possible
positions are restricted to the sites of a lattice, and thus the possible velocities are
vectors connecting nearest neighbour sites of this lattice. Note that (28) represents
a propagation, followed by a relaxation to the equilibrium distribution, which is the
ensemble average effect of gas particle collisions. From the single-particle distribution
function, the hydrodynamic variables of interest – the local gas density ρ and velocity
u – are obtained by taking the zeroth and first moment:

ρ(r, t) =
∑

v

f (v, r, t), ρ(r, t)u(r, t) =
∑

v

vf (v, r, t). (29)

The zeroth moment of (28) directly yields the conservation of mass equation. The
first moment of (28) will give an equation that is to order δt2 equivalent to the
Navier–Stokes equation of an incompressible gas, with a viscosity given in terms of
the relaxation time τ . One of the advantages of the LB model over other finite-
difference models for gas flow, is that boundary conditions can be modelled in a very
simple way. In particular, non-static boundaries, even with an irregular shape, are not
more costly to simulate than straight static boundaries. A particularly efficient and
simple way to enforce stick boundary rules was introduced by Ladd (1993a, b). First,
the boundary nodes are identified. They are defined as the points halfway between
any pair of neighbouring lattice sites, of which one is located inside the sphere, and
the other one outside the sphere. For a static particle, the boundary rule is simply
that a distribution moving such that it would cross the boundary, bounces back at
the boundary node; from (29), it then follows that this will result in a zero average
velocity at the boundary node. For moving and rotating particles, the rules involve
some simple modifications of the bounce back rule, depending on the local boundary
velocity. For details we refer to Ladd (1993a, b) and Ladd & Verberg (2001). The
total change in gas momentum due to the boundary rule at all the boundary nodes
on a single sphere is then equal to the −Fg→s , with Fg → s the total force that the
gas exerts on the sphere, from which the drag force Fd can be obtained directly (see
§ 2.1).
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3.2. Simulation set-up

For a description of the simulation set-up, we restrict ourselves to monodisperse
systems. There are some small modifications to this procedure in the case of a binary
system, which we will discuss in § 4. All quantities are defined in lattice-Boltzmann
units, that is, length is in units of the nearest neighbour lattice distance δl, and time in
units of simulation time step δt . Thus, all values listed below for diameters, velocities
and viscosities are in units of δl, δl/δt and δl2/δt , respectively. For the monodisperse
simulations, N = 54 particles with a diameter d (typically between 8 and 25 lattice
spacings) are distributed randomly in a box of nx × ny × nz lattice sites, by means of
a standard Monte Carlo procedure for hard spheres. The size of the box is chosen
such that φsim = Nπd3/(6nxnynz) is as close as possible to the desired packing fraction
φ, where the deviation with φsim is in any case smaller than 0.005. Subsequently, the
result for the drag force is then extrapolated to exactly φ by a second-order Taylor
expansion using the best theoretical estimate from § 2. Periodic boundary conditions
are used. Note that d is slightly different from the diameter do that is used to set
up the boundary nodes as described in the previous section. We will come back to
this point in § 3.3. All spheres are set to move with the same constant velocity vsim

in an arbitrary direction, so that the array of spheres moves as a static configuration
through the system. The force Fg → s,i that the LB gas exerts on each particle i is
recorded in time, but not actually applied to the particle, so that it keeps moving with
the same velocity. It is therefore necessary to apply a uniform force to the gas, which
balances the total force that the particles exert on the gas phase, so that the total net
momentum of the system is zero. This force will thus induce a backflow velocity u
for the gas phase, such that

φVρsv
sim + (1 − φ)Vρu = 0,

with ρs, ρ the density of the solid and gas phase, respectively; we set ρs = ρ, so that
the backflow force gives the superficial velocity of the gas in a frame of reference
where the particles are static as equal to

U = (1 − φ)(u − vsim) = −vsim.

Typically, after some 50 000 time steps, a steady state is obtained where the average
force on a particle

∑
i Fg→s,i/N is found to fluctuate around a plateau value F̄g→s .

The normalized drag force as defined in § 2 is then obtained by (see (5) and (6)):

F =
(1 − φ)F̄g→s

−3πµdvsim
. (30)

In almost all simulations, the kinematic viscosity ν = µ/ρ is set to ν = 0.0008333.
The final estimate for the drag force and its standard deviation, is obtained from the
average over 10–30 independent simulations, where we varied both the configuration
and the direction of the particle velocity; for the bidisperse simulations, we averaged
over 5–10 independent configurations. In all cases, the magnitude of the velocity was
such that the particle Reynolds number was smaller then 0.2; a few simulations have
been performed with Re =1. We found that extrapolation of the drag force to Re2 = 0
was indistinguishable from the Re = 0.2 result, with respect to the error margin in
the data. Therefore, the simulations are performed under effectively zero-Reynolds-
number conditions.

The traditional method of obtaining the drag force in these types of simulation
is by inducing a gas flow via a pressure gradient, whilst keeping the solid particles
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fixed to their positions. Such a pressure gradient can be generated either by applying
the appropriate boundary conditions or by applying a uniform body force. The
drawback of this method is that, apart from the drag force, the gas velocity also
has to be measured, which introduces additional fluctuations in the final estimate.
By contrast, in expression (30), all quantities except F̄g→s are set in the simulations.
A second advantage is that if the particles move on the lattice, the boundary node
configuration is fluctuating rather than static, which will diminish the artefacts due to
the surface discretization, in particular since the effective diameter (see next section)
is also obtained for a non-static boundary node configuration.

3.3. Finite size effects

As with any method that uses discretization, the effect of the grid size on the final
result should be investigated. One effect of the lattice is that the actual diameter of
the spheres is not a priori known, since the surface is represented by a set of lattice
sites closest to some target diameter do, which is not necessarily equal to the true
hydrodynamic diameter d . As suggested by Ladd (1993a, b), can obtain an estimate
for d by a calibration experiment which involves measuring the drag force on a single
sphere (with boundary nodes set by d0), in a dilute system with periodic boundary
conditions, by the method described in the previous section. The theoretical expression
for the drag force on a sphere in a dilute cubic array is given by Hashimoto (1959):

Fd = 3πµdU(1 − φ)
[
1 − 1.7601φ1/3 + φ − 1.5593φ2 + O(φ3)

]−1
,

from which the diameter d can then be obtained. In general, it is found that d is larger
than do, depending on the viscosity. Values for d are provided with the SUSP3D code
up to do = 16.4. We have performed the calibration also for do = 24.4 and do = 32.4,
with the kinematic viscosity equal to 0.0008333. A best fit in the range 4 <do < 33 is
given by

d

do

= 1 +
1

1.17 + 0.85do

.

Note that this calibration is performed for low volume fractions, and therefore only
concerns the direct linear dependence of the drag force on d; in other words, it ensures
that the correct value for d is used in the factor 3πµdU by which the measured drag
force is normalized. However, the drag force also depends indirectly on the diameter,
since d sets the volume fraction; from the Carman–Kozeny relations, it follows that
for dense systems (say around φ = 0.5) an increase of 1% in d will result in an increase
of almost 10% in F . A related problem for dense systems is that with relatively small
particle diameters there will be insufficient lattice points in the gaps between the
spheres to accurately describe the gas flow. A reasonable estimate for the average
pore diameter is given by the hydraulic radius rh = d(1−φ)/6φ; note that this implies
that, for example, at packing φ =0.5, a diameter of d = 6 will lead to, on average,
a single lattice point between the spheres. For these reasons, we have performed
simulations with diameters do = 9.6, 12.4, 16.4 and 24.4, for packing fractions 0.5 and
0.7. As shown in figure 2 (for φ = 0.5) and figure 3 (for φ = 0.7), the drag force is
clearly dependent on the average number of grid points in the pore, and found to scale
roughly as 1/r2

h . In figures 2 and 3, the solid squares represent our lattice-Boltzmann
data for a viscosity ν = 0.0008333; The star represents the data from Hill et al.
(2001a, b). From figures 2 and 3, it follows that the values for F obtained with the
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0 0.1 0.2 0.3 0.4

1/rh
2

19

20

21

22

23

24

F

Figure 2. Normalized drag force as a function of 1/r2
h , where rh is roughly equal to the

number of grid points in between the spheres. The solid and open squares are for viscosities
ν = 0.0008333 and ν = 0.1667, respectively. The star represents the lattice-Boltzmann data of
Hill et al. (2001a, b). The intersection of the dashed line with the y-axis represents the best
estimate for the drag force. The packing fraction for this system was equal to φ = 0.5.

0 0.1 0.2

1/rh
2

6.5

7.0

7.5

8.0

8.5

F

Figure 3. As figure 2, but for packing fraction φ = 0.3.

largest diameters (do = 24.4 and 16.2 for φ =0.5 and 0.3, respectively), corresponding
to about 5 grid points per pore, still have a small but significant deviation from the
extrapolated value at rh = ∞. Therefore, for each packing fraction we have performed
simulations for two different values of rh, where the final value for the drag force is
obtained from the linear extrapolation of F vs. r−2

h to r−2
h =0. In the lattice-Boltzmann

simulations reported by Hill et al. (2001a, b), rh is typically around 4 to 5 grid points
for the dense systems.
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Figure 4. Simulation results for the drag force in a binary system as a function of 1/r2
h . The

squares represent the data for the average drag force (19); the circles represent the data for the
individual drag force F1 on the particles with diameter d1. Overall packing fraction, viscosity
and diameter ratio are equal to φ = 0.5, ν = 0.0008333, and d1/d2 = 0.5, respectively.

In principle, the normalized drag force should not depend on the viscosity of the
gas. In figures 2 and 3, the open squares represent the result from simulations with a
viscosity that is 200 times larger (ν = 0.1667), where we also increased the velocity of
the particles by a factor of 200, to a value of 0.001, so that the Reynolds number is
not changed. Note that this value for the velocity is still sufficiently small compared
to the speed of sound cs =

√
0.5. There are significant deviations between the two sets

of results, however, the values extrapolated to rh = ∞ are in good agreement. We have
performed all simulations reported in § § 4 and 5 with the smallest viscosity.

For binary systems, the finite size effects are similar to those in monodisperse
systems. In figure 4, we show both the normalized drag force F1 on particles of
type 1, and the average drag force 〈F 〉 defined by (19), for a system with d1/d2 = 0.5,
equal mass fractions, and an overall packing fraction φ = 0.5. Again, we find that the
drag force scales as 1/r2

h; therefore also in our binary simulations, we have collected
data for two different sets of particle diameters, were the final value is the linear
extrapolation of F to r−2

h = 0.

4. Simulation results
4.1. Monodisperse systems

In table 1, we give the results from our lattice-Boltzmann simulations for the drag
force in a random array of monodisperse spheres, measured via the procedure outlined
in § 3. In table 1, ksim represents the Kozeny constant that would correspond to the
measured drag force, i.e. ksim = F (1−φ)2/(2φ). We find that for dense systems, its value
is very close to the experimental value of 5. In figure 5, we compare our simulation
results (square symbols) with two other sets of numerical data from literature. In
figure 5, the triangles represent the data of Ladd (1990), obtained via a multipole
expansion of the force density on the surface of the spheres, where the fluid motion
is described by the Stokes equations. The circles represent the lattice-Boltzmann data
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φ F �F ksim

0.10 2.44 0.04 9.90
0.20 4.25 0.07 6.80
0.30 7.22 0.06 5.90
0.35 8.90 0.14 5.37
0.40 11.97 0.12 5.39
0.45 15.45 0.13 5.19
0.50 20.10 0.22 5.03
0.55 27.40 0.24 5.04
0.60 38.85 0.33 5.18

Table 1. Results from the lattice-Boltzmann simulations for the normalized drag force F in
monodisperse arrays of spheres at packing fraction φ; �F is an estimate for the error in F ,
and ksim is the Kozeny constant as calculated from the simulation data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
φ

1.0

2.0

3.0

4.0

5.0

6.0

7.0

F
(φ

 –
 1

)2

equation (31)
Carman 
Koch & Sangani
simulation (this work)
simulation (Ladd)
simulation (Hill et al.)

Figure 5. Normalized drag force (multiplied by the porosity squared) as a function of the
packing fraction φ. The symbols represent the simulation data, from this work (squares), Ladd
(1990) (triangles), and Hill et al. (2001a, b)(circles). The triangle symbol at φ =0.61 represents
data taken from Kang & Sangani (1994). The black line represents the best fit (31) to all
simulation data. Also shown are the correlations by Carman (grey line) and Koch & Sangani
(dashed line).

of Hill et al. (2001a, b). We find that our data are in very good agreement with Ladd’s
results, and consistent with the results of Hill et al. (2001a, b). Note that the latter
data suffer from somewhat more scattering, in particular for higher packing fractions,
which could be caused by insufficient sampling. In our simulations, we found that
for densely packed systems, the individual results for each configuration can be very
different, owing to the limited number of particles. Rather than increasing the number
of particles, we decided to obtain data for more independent configurations and flow
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Figure 6. Example of a binary configuration of 24 large spheres and 192 small spheres;
for this system φ = 0.5, d2/d1 = 0.5 and φ1/φ2 = 1. Note that in the simulations, periodic
boundary conditions are employed in all directions.

directions (30 in total), and in the final average omitted all data that were outside 2.5
times the standard deviation, as calculated from the initial average. The solid line in
figure 5 is our best fit to all simulation data, which takes the following simple form:

F (φ) = 10
φ

(1 − φ)2
+ (1 − φ)2(1 + 1.5

√
φ), (31)

i.e. the Carman equation with a term added in order to have the correct limiting
behaviour for φ → 0. The largest deviation of this fit with either the present lattice-
Boltzmann data and Ladd’s multipole expansion data is 3%; about the same margin
of error is found with the multipole expansion data by Mo & Sangani 1994. Since
all these data sets are obtained by two completely independent simulation methods,
we claim that (31) represents the true drag force for random arrays of monodisperse
spheres to within 3%, and probably less. For comparison, in figure 5 we also show
the Carman equation (grey line), and the fit (14) proposed by Koch & Sangani (1999)
(dashed line). For a comparison with the other predictions from § 2.2, we refer to
figure 1, which is drawn on the same scale as figure 5.

4.2. Bidisperse systems

In the bidisperse simulations, the total number of particles ranged from 64 to
1000, depending on the composition and diameter ratio. A typical example of a
configuration, obtained via a standard Monte Carlo procedure for binary hard spheres,
is shown in figure 6. A particular problem with the large diameter ratios that we
studied (up to 1:4) was that the number of large spheres becomes very low. The
system sizes that we studied were, in any case, such that there are at least 12
large particles present. In table 2, we show the final results for the normalized drag
force (16) for a range of packing fractions, diameter ratios and mass fractions. The
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φ
d1

d2

φ1 F1 F2

〈F 〉
F

ksim φ
d1

d2

φ1 F1 F2

〈F 〉
F

ksim

0.10 0.500 0.050 2.11 3.63 1.11 10.9 0.50 0.250 0.253 10.71 112.51 1.09 5.6
0.10 0.700 0.051 2.16 2.90 1.02 10.0 0.50 0.250 0.126 6.65 59.27 1.12 5.8

0.50 0.333 0.377 15.71 106.63 1.03 5.3
0.25 0.500 0.188 4.81 12.05 1.05 6.4 0.50 0.333 0.253 11.44 74.57 1.07 5.5
0.25 0.500 0.124 3.98 9.29 1.03 6.3 0.50 0.333 0.125 7.38 43.09 1.06 5.4
0.25 0.500 0.062 3.33 7.09 1.02 6.2 0.50 0.500 0.450 18.67 61.84 0.99 5.1
0.25 0.607 0.188 4.88 9.18 1.02 6.2 0.50 0.500 0.375 17.37 56.40 1.05 5.4
0.25 0.607 0.123 4.43 8.37 1.08 6.6 0.50 0.500 0.250 12.98 40.47 1.00 5.1
0.25 0.607 0.062 3.60 6.53 1.00 6.1 0.50 0.500 0.125 10.27 31.05 1.05 5.4
0.25 0.607 0.046 3.64 6.40 1.04 6.3 0.50 0.500 0.050 8.46 24.52 1.03 5.3
0.25 0.700 0.187 5.03 7.81 1.02 6.2 0.50 0.500 0.025 7.23 21.24 0.96 4.9
0.25 0.700 0.127 4.49 7.04 1.01 6.2 0.50 0.607 0.375 17.60 40.92 1.02 5.2
0.25 0.700 0.064 4.19 6.14 1.01 6.2 0.50 0.607 0.249 14.26 32.48 0.99 5.1

0.50 0.607 0.123 11.65 25.34 0.97 5.0
0.35 0.500 0.174 6.31 17.02 1.04 5.7 0.50 0.607 0.092 10.95 24.59 0.99 5.1
0.35 0.700 0.178 7.54 12.24 1.03 5.6 0.50 0.700 0.374 18.20 33.24 1.01 5.2

0.50 0.700 0.254 15.44 27.46 0.97 5.0
0.40 0.250 0.203 7.23 62.34 1.19 6.3 0.50 0.700 0.128 12.93 24.41 0.99 5.1
0.40 0.250 0.101 4.67 33.72 1.21 6.4
0.40 0.333 0.301 9.29 55.96 1.04 5.5 0.60 0.500 0.300 23.04 76.87 0.99 5.0
0.40 0.333 0.202 6.98 37.69 1.06 5.6 0.60 0.607 0.110 19.49 44.95 0.98 4.9
0.40 0.333 0.100 5.14 25.26 1.15 6.1 0.60 0.700 0.304 27.93 50.81 0.96 4.9
0.40 0.500 0.300 9.86 29.34 1.02 5.4
0.40 0.500 0.199 8.15 23.33 1.05 5.6
0.40 0.500 0.099 6.47 16.57 1.03 5.5
0.40 0.607 0.300 9.84 21.54 0.97 5.2
0.40 0.607 0.197 8.78 18.14 1.02 5.4
0.40 0.607 0.073 6.80 13.33 0.97 5.1
0.40 0.700 0.299 10.20 17.41 0.97 5.2
0.40 0.700 0.203 9.05 15.08 0.96 5.1
0.40 0.700 0.102 8.38 13.62 1.00 5.3

Table 2. Results from the lattice-Boltzmann simulations for the normalized drag force F1 and
F2 in a bidisperse arrays of spheres; the system parameters that have been varied are the
packing fraction φ, the diameter ratio d1/d2 and the volume fraction φ1 of the small spheres.
〈F 〉/F is the average drag force (see (19)) divided by the monodisperse drag force at the same
φ, and ksim the Kozeny constant as calculated from the average drag force.

subscripts ‘1’ and ‘2’ refer to the small and the large spheres, respectively. In the last
two columns, we show the average properties as calculated from the data in the first
five columns. In table 2, 〈F 〉/F is the average drag force (19), divided by the best
fit to the monodisperse drag force at the same φ, given by (31). It shows that our
central assumption (21), that is, the average drag force equals the monodisperse drag
force at the same φ, is indeed reasonably valid; in fact, if we disregard the data for
the most extreme diameter ratio (1:4), the agreement is within about 10%, and in
most cases of the order of 5%. The fact that the systems with large diameter ratios
conform less well to the assumption (21), which was based on the Carman–Kozeny
analysis, could have several reasons. First, the number of large spheres in these
systems it very small, so the measured drag force is expected to depend very much
on the actual configuration, where we averaged over only five different configuration.
A second reason could be that the Carman–Kozeny analysis is not valid for large
diameter ratios. Indeed, table 2 seems to indicate that the average drag force for large
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diameter ratios is systematically larger than the monodisperse drag force. Clearly,
more accurate simulations (larger systems and more configurations) are desirable, but
at present prohibitively expensive.

The last column in table 2 is shown in order to make contact with the experimental
results for the resistance behaviour of binary systems from the literature, which
are mainly presented in terms of a permeability and the corresponding Kozeny
constant. In table 2, ksim represents the Kozeny constant derived from the simulation
data under the assumption that the Carman–Kozeny relation is strictly valid, i.e.
ksim = 〈F 〉(1 − φ)2/(2φ). We find that on approaching closed packing, ksim tends to
settle at a value of 5, which was also found in the monodisperse systems; of course,
this observation is completely consistent with the fact that 〈F 〉/F approaches 1. We
found an average value k =5.36 for the data in the range 0.30 <φ < 0.60, which is
in extremely good agreement with the experimental result k = 5.34 by Fand et al.
(1987). It is also consistent with the experimental results by Coulson, as reported
in the original paper by Carman (1937). For bidisperse mixtures, Coulson found
Kozeny constants in the range 5.0–5.9. Thies-Weesie & Philipse (1994) studied the
flow of cyclohexane through silica sphere packings for several sphere size and mixture
compositions. They found that the Carman–Kozeny type scaling was valid, but report
a much lower value for the Kozeny constant: k = 4.0. Maier et al. (1999) used the
lattice-Boltzmann method to simulate systems comparable to those of Thies-Weesie &
Philipse, and report slightly higher values for the Kozeny constant k =4.7–5.3. Two
possible explanations for the difference with the Thies-Weesie & Philipse data were
given: the porosity in the experiments may have decreased during sintering after the
measurement, or there could have been some local ordering near the walls.

The final conclusion on the basis of our data, and the experimental findings, is
that if a Carman–Kozeny scaling for the permeability is assumed, the value for the
Kozeny ‘constant’ will roughly increase from 5.0 to 6.0 on loosening the packing from
φ = 0.5 to 0.3. This implies that the scaling itself is not strictly valid, as was found
in the monodisperse systems. Nevertheless, the Carman–Kozeny relation remains a
very useful description for both mono- and bidisperse systems, when a value of k = 5
is adopted (i.e. the Carman equation), and subsequently a correction term for higher
porosities is included, see (31).

Thus far, the discussion is concerned with the average drag force on the particles,
which is sufficient to predict the permeability and thereby the pressure drop over
the system, see (18). However, in the chemical engineering models of gas–solid flow,
the individual drag force on the small and large particles is required. As discussed
in § 2.3, at present the assumption is made that the non-normalized drag force Fd,i

scales with di . This ad hoc assumption has not yet been tested, since no numerical
and experimental data were available for individual drag force, apart from some very
recent data by Koo & Sangani (2002). The approximation Fd,i ∼ di implies that the
ratio of the normalized drag force F2/F1 = 1, independent of the diameter ratio. In
figure 7, we show F2/F1 vs. d2/d1, calculated from the simulation results of table 2.
The figure indicates that F2/F1 = (d2/d1)

n, with n in between 1 and 2. On the basis of
this, and from the fact that 〈F 〉 ≈ F (φ), we propose the following expression for Fi

(see § 2.4):

Fi(φ, yi) =
(
(1 − φ)yi + φ y2

i

)
F (φ), yi =

di

〈d〉 , (32)

with F (φ) given by (31). In figure 8, we plot our simulation data for Fi , normalized
by F (φ), against (1 − φ)yi + φy2

i . The solid line represent Fi/F according to (32).
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Figure 7. Log–log plot of the force ratio as function of the diameter ratio.

For the smaller spheres (yi < 1.4), we find very good agreement, and some small but
systematic deviations for the larger spheres, similar to what was observed for the
average drag force. If the most extreme systems (d1/d2 = 0.25 and 0.33, and φ =0.1)
are not taken into account, then the correlation (32) describes the data on average
within 4%, with a maximum deviation of 14%, where we stress that this level of
agreement is achieved without the use of any adjustable parameter. By including a
single fit parameter, namely the coefficient of an additional term (1 − φ)y3

i in (32), a
reasonable agreement with the data for all diameter ratios and packing fractions can
be obtained:

Fi(φ, yi) =
(
(1 − φ)yi + φy2

i + 0.064(1 − φ)y3
i

)
F (φ). (33)

Note that by including a term y3
i , the average drag force 〈F 〉 as calculated from Fi

will no longer be equal to the monodisperse drag force F , but slightly larger for
larger diameters, in accordance with the data in table 2. The maximum deviation of
the data in table 2 with (33) is 16%, where the average deviation is 5% (see also
figure 9). To our knowledge, the only accurate data in literature on the individual
drag force is by Koo & Sangani (2002), who used a multipole expansion for two size
ratios (0.5 and 0.7) and two packing fractions (0.1 and 0.35); their data, indicated by
the plus symbols in figure 8, is in good agreement with our data, and (32).

Finally, we want to test how the predictions for the individual drag force from
the Patwardhan & Tien (PT) model (see § 3.3) compare to the predictions from (33).
In figure 9, we show the relative deviation of the simulation data for Fi with the
various predictions; for details we refer to the figure caption. We find that (33) and
the PT model with the exact δ describe the numerical data equally well, where the
relative deviations seem to be opposite. It should be noted that in the original paper,
Patwardhan & Tien propose to use a mean distance δ given by (24), which is found
to give deviations of more than 100% (not shown in the figure).

5. Summary and conclusions
We want to summarize this work by restating the most important results, which

is also useful for quick reference. For monodisperse systems in the limit of zero
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Figure 8. Individual drag force Fi divided by the drag force F of a monodisperse system at
the same φ, as a function of (1 − φ)yi + φy2

i . The circles represent the simulation data from
table 2, the plus symbols the simulation results from Koo & Sangani (2002); the solid line is
the theoretical prediction given by (32). Note that assumption Fi = F , which is used in many
numerical models, differs by up to a factor of 5 with the simulation data.

Reynolds number, we propose the following expression for normalized drag force F

defined by (6):

F (φ) = 10
φ

(1 − φ)2
+ (1 − φ)2(1 + 1.5

√
φ), (34)

which corresponds to a pressure drop per unit length:

∇Pmono = −µU
d2

[
180

φ2

(1 − φ)3
+ 18φ(1 − φ)(1 + 1.5

√
φ)

]
.

Equation (34) is found to be in excellent agreement (deviation smaller than 3%) with
the simulation data of Ladd (1990), Mo & Sangani (1994), Kang & Sangani (1994)
and this work, over the entire range of packing fractions.

For polydisperse systems, we propose the following expression for the normalized
drag force Fi as defined by (16):

Fi(φ, yi) =
(
(1 − φ)yi + φy2

i + 0.064(1 − φ)y3
i

)
F (φ), yi =

di

〈d〉 , (35)

with F (φ) given by (34) and 〈d〉 defined in (17). The individual drag force is thus
equal to the monodisperse normalized drag force, multiplied by a correction term
that is dependent only on the diameter fraction yi and the packing fraction φ. The
corresponding pressure drop per unit length is equal to

∇Ppoly = ∇Pmono

d2

〈d〉2

(
1 − 0.064(1 − φ)

∑
i

xiyi

)
. (36)
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Figure 9. Relative deviation (percentage) of the simulation data for the individual drag force
Fi . The circles represent the deviation with the PT model for δ = 〈d〉(φ−1/3 − 1) (open circles),
and for the exact δ, solved from (25) (solid circles); the star symbols are the deviation of the
simulation data with (33).

The average deviation of (35) with the simulation results in the range 0.1 � φ � 0.6
is less than 5%; by comparison, the assumption that Fi =F , which is primarily used
for the numerical models of gas–solid flow, is out by a factor of 1.75 (on average) for
diameter ratios 1:2, and a factor of 3.2 (on average) for diameter ratios 1:4. The only
other model in the literature that includes a correction to the monodisperse drag force
in the case of polydisperse particles is from Patwardhan & Tien. In its original form,
deviations of more than 100% with the simulation data are found. An improvement
is made when in the model davg is replaced by 〈d〉. As in (35), the correction can then
be shown to depend only on the diameter fraction yi

Fi(φ, yi) = F

((
1 +

φ−1/3 − 1

yi

)−3)
.

which was found to be accurate within 30%. However, the Patwardhan & Tien model
can achieve the same level of accuracy as (35) by solving a cubic equation, involving
higher-order moments of di . Clearly, for practical applications, (35) will be far more
convenient to use.

We finally note that the expressions of § 2.4 are derived for a general polydisperse
system, and we therefore expect (35) and (36) to be valid for those systems as
well, although this should be tested in computer simulations; in the case where
the polydisperse system is characterized by Gaussian-type size distribution of the
diameters around d̄ , with a width σ , the average diameter 〈d〉 can be readily evaluated:

〈d〉 =
3σ 2d̄ + d̄3

σ 2 + d̄2
. (37)
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It has been argued that the discrepancy of the empirical Ergun equation (coefficient
150) with the numerical results (coefficient 180) can be attributed partly to the fact
that the experimental systems were not strictly monodisperse. Inserting (37) into (36),
and neglecting the term y3

i (which can be done safely if the diameter ratio is less than
two) gives

∇Ppoly = ∇Pmono

(
(σ/d)2 + 1

3(σ/d)2 + 1

)2

.

It then follows that a polydispersity of about 22% (i.e. σ/d = 0.22), is sufficient to
reduce the pressure gradient by 0.833 ≈ 150/180. However, other factors, such as
inhomogeneity, might also play a role. This will be the subject of a future line of
work, where we intend to move away gradually from the ideal situation of static
homogeneous systems, towards the non-ideal situations as encountered in fluidized
beds. Apart from inhomogeneity, the role of granular temperature will also be studied
in detail.

We would like to thank Anthony Ladd for many useful discussions, and for
allowing us to use his lattice-Boltzmann suspension code SUSP3D. This work is
part of the research program of the ‘Stichting voor Fundamenteel Onderzoek der
Materie (FOM)’, which is financially supported by the ‘Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO)’.

REFERENCES

Bokkers, G. A., van Sint Annaland, M. & Kuipers, J. A. M. 2004 Mixing and segregation in a
bidisperse gas–solid fluidised bed: a numerical and experimental study. Powder Technol. in
press.

Carman, P. C. 1937 Fluid flow through granular beds. Trans. Inst. Chem. Engng 15, 150.

Chen, S. & Doolen, G. D. 1998 Lattice-Boltzmann method for fluid flow. Annu. Rev. Fluid Mech.
30, 329.

Di Felice, R. 1995 Hydrodynamics of liquid fluidisation. Chem. Engng Sci. 50, 1213.

Ergun, S. 1952 Fluid flow through packed columns. Chem. Engng Proc. 48, 89.

Fand, R. M., Kim, B. Y. K., Lam, A. C. C. & Pan, R. T. 1987 Resistance of the flow of fluids
through simple and complex porous media whose matrices are composed of randomly packed
spheres. Trans. ASME I: J. Fluids Engng 109, 268.

Gidaspow, D. 1994 Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions.
Academic.

Hashimoto, H. 1959 On the periodic fundamental solutions of the Stokes equation and their
application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317.

Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001a The first effects of fluid inertia on flows in ordered
and random arrays of spheres. J. Fluid Mech. 448, 213.

Hill, R. J., Koch, D. L. & Ladd, A. J. C. 2001b Moderate-Reynolds-number flows in ordered and
random arrays of spheres. J. Fluid Mech. 448, 243.

Hoomans, B. P. B., Kuipers, J. A. M., Briels, W. J. & van Swaaij, W. P. M. 1996 Discrete particle
simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard
sphere approach. Chem. Engng Sci. 51, 99.

Kang, S.-Y. & Sangani, A. S. 1994 Electrokinetic properties of suspensions of colloidal particles
with thin, polarized double layers. J. Colloid Interface Sci. 165, 195.

Kim, S. & Russel, W. B. 1985 Modeling of porous media by renormalization of the Stokes equation.
J. Fluid Mech. 154, 269.

Koch, D. L. & Hill, R. J. 2001 Inertial effects in suspension and porous media flow. Annu. Rev.
Fluid Mech. 33, 619.

Koch, D. L. & Sangani, A. S. 1999 Particle pressure and marginal stability limits for homogeneous
monodisperse gas fluidized bed: kinetic theory and numerical simulations. J. Fluid Mech. 400,
229.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003295


254 M. A. van der Hoef, R. Beetstra and J. A. M. Kuipers

Koo, S. & Sangani, A. S. 2002 Effective-medium theories for predicting hydrodynamic transport
properties of bidisperse suspensions. Phys. Fluids 14, 3522.

Kuipers, J. A. M. & van Swaaij, W. P. M. 1998 Computational fluid dynamics applied to chemical
reaction engineering. Adv. Chem. Engng 24, 227.

Ladd, A. J. C. 1990 Hydrodynamic transport coefficients of random dispersions of hard spheres.
J. Chem. Phys. 93, 3484.

Ladd, A. J. C. 1993a Numerical simulations of particulate suspensions via a discretized Boltzmann
equation. Part 1. Theoretical Foundation. J. Fluid Mech. 271, 285.

Ladd, A. J. C. 1993b Numerical simulations of particulate suspensions via a discretized Boltzmann
equation. Part 2. Numerical results. J. Fluid Mech. 271, 311.

Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle fluid suspensions.
J. Stat. Phys. 104, 1191.

Li, J. & Kuipers, J. A. M. 2003 Gas–particle interactions in dense gas-fluidized beds. Chem. Engng
Sci. 58, 711.

Maier, R. S., Kroll, D. M., Davis, H. T. & Bernard, R. S. 1999 Simulation of flow in bidisperse
spheres packings. J. Colloid Interface Sci. 217, 341.

Mo, G. & Sangani, A. S. 1994 A method for computing Stokes flow interactions among spherical
objects and its application to suspensions of drops and porous particles. Phys. Fluids 6, 1637.

Patwardhan, V. S. & Tien, C. 1985 Sedimentation and liquid fluidization of solid particles of
different sizes and density. Chem. Engng Sci. 40, 1051.

Sangani, A. S. & Yao, C. 1988 Bulk thermal-conductivity of composites with spherical inclusions.
J. Appl. Phys. 63, 1334.

Schiller, L. & Nauman, A. 1935 A drag coefficient correlation. V.D.I. Zeitung 77, 318.

Succi, S. 2001 The Lattice-Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon.

van Swaaij, W. P. M. 1985 Chemical Reactors. In Fluidization (ed. J. F. Davidson & R. Clift).
Academic.

Thies-Weesie, D. M. E. & Philipse, A. P. 1994 Liquid permeation of bidisperse colloidal hard-sphere
packings and the Kozeny relation. J. Colloid Interface Sci. 162, 470.

Wen, C. Y. & Yu, Y. H. 1966 Mechanics of fluidization. AIChE J. 62, 100.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

04
00

32
95

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112004003295

