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This paper investigates the non-normal nature of premixed flame–acoustic interaction.
The thermoacoustic system is modelled using the acoustic equations for momentum
and energy, together with the equation for the evolution of the flame front obtained
from the kinematic G-equation. As the unsteady heat addition acts as a volumetric
source, the flame front is modelled as a distribution of monopole sources. Evolutions
of the system are characterized with a measure of energy due to fluctuations. In
addition to the acoustic energy, the energy due to fluctuations considered in the
present paper accounts for the energy of the monopole sources. The linearized
operator for this thermoacoustic system is non-normal, leading to non-orthogonality
of its eigenvectors. Non-orthogonal eigenvectors can cause transient growth even
when all the eigenvectors are decaying. Therefore, classical linear stability theory
cannot predict the finite-time transient growth observed in non-normal systems. In
the present model, the state space variables include the monopole source strengths
in addition to the acoustic variables. Inclusion of these variables in the state space
is essential to account for the transient growth due to non-normality. A parametric
study of the variation in transient growth due to change in parameters such as flame
location and flame angle is performed. In addition to projections along the acoustic
variables of velocity and pressure, the optimal initial condition for the self-evolving
system has significant projections along the strength of the monopole distribution.
Comparison of linear and corresponding nonlinear evolutions highlights the role of
transient growth in subcritical transition to instability. The notion of phase between
acoustic pressure and heat release rate as an indicator of stability is examined.
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1. Introduction
Stringent emission requirements drive operating conditions of premixed gas turbines

and combustors to the lean regime. However, lean premixed combustion has been
shown to be particularly susceptible to combustion instability (Annaswamy et al. 1997;
Lieuwen & Zinn 1998). Combustion instabilities can be defined as self-sustaining
oscillations which arise from the coupling between a flame and the acoustic field
in the combustor. Fluctuating heat release rate from combustion has long been
acknowledged as a source of sound (Lighthill 1952). The acoustic waves produced by
combustion can get reflected at the boundaries and again interact with the combustion
process to produce further unsteady heat release, thereby forming a feedback loop.

† Email address for correspondence: iitm.priya@gmail.com
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These interactions can occur due to modulations of the flame surface area (Boyer &
Quinard 1990), equivalence ratio (Lieuwen & Zinn 1998) or burn rate (Wu et al.
2003). These interactions can also occur indirectly through coherent vortical structures
(Poinsot et al. 1987). Many extensive review articles detail the approaches to modelling
(Markstein 1964; Coats 1996; Candel 2002; Lieuwen 2003) and controlling combus-
tion instabilities (McManus, Poinsot & Candel 1993; Dowling & Morgens 2005).

A simple model for the premixed flame can be obtained using a kinematic approach
to track the flame front evolution. Boyer & Quinard (1990) investigated the dynamics
of an anchored premixed flame in the linear regime using a kinematic front tracking
equation. Fleifil et al. (1996) developed a kinematic model for an axisymmetric
premixed flame stabilized in a tube subjected to one-dimensional acoustic excitation.
Fluctuations in the surface area of the flame were correlated with heat release rate
oscillations. The transfer function characteristics of the premixed flame front have
been determined analytically (Schuller, Durox & Candel 2003).

Dowling (1997) proposed a nonlinear model for the heat release response, which
saturates when the acoustic velocity amplitude at the flame holder approaches the
mean flow velocity. Lieuwen (2005) showed that the nonlinear effects were more
dominant for higher Strouhal numbers and flatter flames. Experimental investigations
of the nonlinear response of a ducted, conical, laminar premixed flame (Karimi et al.
2009) and an ensemble of anchored premixed flames (Noiray et al. 2006) subjected to
acoustic excitation of varying amplitudes were performed to characterize the transfer
function of the premixed flame. Noiray et al. (2008) used the amplitude-dependent
transfer functions to investigate the stability of the coupled thermoacoustic system
using the describing function approach.

These investigations were focused on describing the heat release rate characteristics
of the premixed flame in terms of a linear transfer function or a describing function.
The obtained response function for the flame is then used as the source in the acoustic
energy equation to evaluate the stability of the thermoacoustic system. In the above
frequency domain analysis, the transient response of the premixed flame to acoustic
velocity perturbations is not captured. However, transient effects can cause significant
change in the prediction of system dynamics (Mariappan & Sujith 2010). Therefore,
the model of a ducted premixed flame used to investigate thermoacoustic instability
must be capable of capturing transient effects.

Annaswamy et al. (1997) included the dynamics of premixed flame in the
investigation of active control of thermoacoustic instability. Furthermore, Dowling
(1999) used the front-tracking equation to model the evolution of a premixed flame in
the investigation of the thermoacoustic instability in a ducted premixed flame. The use
of an evolution equation to describe the premixed flame includes the transient effects,
and hence in the present investigation, this approach is adopted. The equations for
the acoustic field are evolved together with the front-tracking equation for the flame.

Annaswamy et al. (1997) also discussed the importance of linear coupling between
the Galerkin modes in model-based active control design of a ducted premixed flame.
They developed a thermoacoustic model for a bench-top premixed combustor and
demonstrated that the Galerkin modes were linearly coupled to the thermoacoustic
system, both in the presence and absence of an external actuator. It was also shown
that the response of the thermoacoustic system to external actuation depends strongly
on this linear coupling.

For classical acoustic boundary conditions (e.g. open or closed end) and in the
absence of heat addition (e.g. combustion), the eigenmodes in a resonator are normal.
Nicoud et al. (2007) have shown that the presence of a source of unsteady heat
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release and non-trivial boundary conditions can make the eigenmodes non-orthogonal.
Non-normality is a property of the operator governing the linear dynamics of a
system such that it does not commute with its adjoint (Schmid & Henningson 2001).
Non-normal systems have non-orthogonal eigenvectors and can exhibit transient
growth (i.e. finite time growth) even when eigenvalues indicate asymptotic stability.
Balasubramanian & Sujith (2008a) demonstrated that the presence of a fluctuating
heat source renders the resulting thermoacoustic system non-normal.

Subcritical bifurcation in thermoacoustic systems was first observed in solid rocket
motors (Bloomshield et al. 1997). This type of stability transition which is dependent
on the amplitude of initial condition is referred to as ‘triggering’ by the combustion
instability community (Wicker et al. 1996). A simple thermoacoustic system such as
the Rijke tube has been shown to display subcritical bifurcations both in numerical
simulations (Matveev 2003b; Subramanian et al. 2010) and in experiments (Matveev
2003b). Transient growth due to non-normality can play a significant role in causing
triggering from a small but finite-amplitude initial condition.

Triggering from a small-amplitude initial condition and shift in dominant mode
during evolution were demonstrated for a simplified model of a Rijke tube
(Balasubramanian & Sujith 2008b), for a ducted Burke–Schumann flame with infinite
rate chemistry (Balasubramanian & Sujith 2008a). Two possible routes to triggering,
one from a large-amplitude initial condition and the other from small but finite
amplitude which causes non-normal transient growth, were demonstrated for the case
of a solid rocket motor with homogeneous propellant (Mariappan & Sujith 2010). The
lowest initial energy required to trigger instability in a model for a horizontal Rijke
tube was determined using the optimization method of adjoint looping (Juniper 2010).

The energy due to fluctuations in a system forms a measure or norm to characterize
the transient growth in the system. Disturbance energy is the energy associated with
fluctuations superimposed over a base flow. It should account for contributions from
all the constituent phenomena in the system. Kinetic energy was chosen as the natural
measure to describe transient growth due to non-normality for incompressible fluid
flows (Schmid & Henningson 2001). However, there has been no such consensus on
the appropriate expression for disturbance energy for compressible reacting flows.

Chu (1964) derived the energy of a small disturbance in a viscous compressible
flow which included the energy due to entropy fluctuations in addition to the energy
due to pressure and velocity fluctuations. Morfey (1971) derived a measure for the
energy due to small fluctuations with an irrotational base flow. Myers (1991) relaxed
the restrictive assumptions regarding the nature of the base flow and perturbation
amplitude and derived a measure for disturbance energy in a general steady flow.
In addition to the classical acoustic energy, this measure accommodates the energy
associated with fluctuations in vorticity and entropy. In compressible flows, the spatial
average of the rate of pressure related work or compression work does not contribute
to the evolution of energy density (Mack 1969; Chagelishvili, Rogava & Segal 1994;
Farrell & Ioannou 2000). Myers’s measure for disturbance energy can be further
modified to account for this conservative nature of compression work (Bakas 2009).

Nicoud & Poinsot (2005) argued that the Rayleigh criterion gives an incomplete
description of the significant sources of fluctuating energy in a flow with combustion.
Giauque et al. (2006) extended the expression for disturbance energy from Myers
to incorporate species and heat release terms in the energy of fluctuations. In
addition to the expression for the acoustic energy, the energy measure chosen to
study the non-normal nature of thermoacoustic instability in solid rocket motors
included the entropy fluctuations within the propellant (Mariappan & Sujith 2010).
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Evidently, it is critical to define the energy in a disturbance depending on the system
under consideration. Therefore, there is a need to identify a measure to quantify the
disturbance energy in premixed flame–acoustic interaction.

In this paper the interaction of a longitudinal acoustic field in a duct with the
unsteady heat release from a laminar premixed flame is analysed. A low-Mach-number
laminar inviscid flow is assumed and the acoustic equations for momentum and
energy are used to describe the evolution of the acoustic field in the duct. All reaction
parameters are frozen by assuming a constant value for the laminar flame speed. An
axisymmetric wedge flame is modelled as a kinematic flame front which separates the
unburnt mixture and the products of combustion (Kerstein, Ashurst & Williams 1988).

The objective of this paper is to arrive at an expression for the energy due
to fluctuations and use it to characterize the non-normal nature of the premixed
flame–acoustic interaction. We investigate the effect of system parameters such as
flame location and flame angle on transient growth due to non-normality. We also
examine the possibility of subcritical transition to instability from a small yet finite-
amplitude initial condition. The organization of the rest of the paper is as follows.
In § 2 the G-equation governing the premixed flame model is discussed. Section 3
explains the governing equations which describe the acoustic field within the duct.
Section 4 explains the modelling of the flame front in terms of a distribution of
acoustic monopole sources. An expression for the total energy due to fluctuations in
a premixed flame–acoustic system is derived in § 5. The equations governing the linear
and nonlinear evolutions are described in § 6. Section 7 discusses the results and § 8
summarizes the important results.

2. Combustion model
The laminar premixed flame is modelled as a thin wrinkled interface which separates

the unburnt mixture and the burnt products of combustion (Kerstein et al. 1988).
In this kinematic approach, the governing differential equation for the dynamics of
premixed flame is given by the G-equation. The scalar variable G can be related to
the signed distance of the flame front from its unperturbed location ξ̃ ′(X̃) along the
direction Ỹ as shown in figure 1. The flame is along the axes (X̃, Ỹ ) stabilized in
a duct with purely axial velocity ũ along ỹ in the (x̃, ỹ) coordinate axes. The two
coordinate systems are related by the following transformations where α is the angle
which the unperturbed flame makes with the flow:

x̃ = X̃ sinα − ξ̃ ′ cosα and ỹ = X̃ cos α + ξ̃ ′ sinα. (2.1)

Both the coordinates axes are retained, since even when the acoustic field in the
duct is along the (x̃, ỹ) axis, the flame front is linearized about the (X̃, Ỹ ) axis. Using
the above transformations and decomposing the axial velocity into its mean and
perturbed values, the G-equation for the flame front can be rewritten as the front-
tracking equation (Fleifil et al. 1996). For the geometry of an axisymmetric wedge
flame stabilized on a wire adapted from Schuller et al. (2003), the front-tracking
equation in the flame fixed coordinate axes is as follows:

∂ξ̃ ′

∂t̃
+ (˜̄u + ũ′) cosα

∂ξ̃ ′

∂X̃
− (˜̄u + ũ′) sinα = −S̃L

√
1 +

(
∂ξ̃ ′

∂X̃

)2

. (2.2)

Here the tildes denote dimensional values and primes indicate fluctuating quantities.
Also, (˜̄u + ũ′) cosα is the component of axial velocity parallel to the flame front,
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Figure 1. Geometry of axisymmetric wedge flame stabilized on a wire. Here ξ̃ ′ is the
displacement of the instantaneous flame shape from the unperturbed flame shape, α is the
flame angle, SL is the laminar flame speed and ˜̄u is the mean flow.

(˜̄u + ũ′) sinα is the component of axial velocity perpendicular to the flame front and
S̃L is the laminar flame speed.

The effect of all reaction parameters is distilled into the laminar flame speed, which
is considered to be only a function of the equivalence ratio of the unburnt mixture.
A methane–air flame is considered and for a given equivalence ratio (φ) the laminar
flame speed (S̃L) is obtained using the following relation from You, Huang & Yang
(2005), where J =0.6079 m s−1:

S̃L(φ) = J (φ−2.554 exp[−7.31(φ − 1.23)2]). (2.3)

Equation (2.2) is nonlinear and describes the combustion response of a premixed
flame when subjected to a velocity perturbation. Linearizing it, the following equation
is obtained:

∂ξ̃ ′

∂t̃
= ũ′ sinα − ˜̄u cosα

∂ξ̃ ′

∂X̃
. (2.4)

The length scale used for non-dimensionalization is the length of the flame (b/sinα),
where b is the radius of the burner. The velocity scale chosen is the mean velocity of
the flow (ū). The time scale for non-dimensionalization is derived from the length and
velocity scales as shown in (2.5) to derive the non-dimensional time in the combustion
scale tc. The non-dimensional linear (2.6) and nonlinear (2.7) front-tracking equations
are obtained as follows:

y = ỹ sinα/b, ū = ˜̄u/˜̄u = 1, tc = t̃/(b/ū sinα), (2.5)

∂ξ ′

∂tc
= u′ sinα − cosα

(
∂ξ ′

∂X

)
, (2.6)

∂ξ ′

∂tc
= (1 + u′) sinα − (1 + u′) cosα

(
∂ξ ′

∂X

)
− sinα

√
1 +

(
∂ξ ′

∂X

)2

. (2.7)

The above equations are first order in time and space and therefore require an initial
condition and a boundary condition for their solution. The flame is assumed to be
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anchored at the base and the other end is left free to move. The resulting system can
be evolved from a prescribed initial condition using a numerical integration scheme.

The shape function ξ ′(X, t) is smooth for small amplitude perturbations in the
linear regime. Therefore, in the linear regime, the gradient term is expanded using
a first-order backward-difference formula. However, the shape function ξ ′(X, t) can
become significantly distorted and can even display a discontinuity in slope at high
perturbation amplitudes (Dowling 1999). Therefore, it becomes necessary to calculate
the spatial derivative of the shape function to high accuracy using a high-resolution
method. The high-resolution scheme used to capture the highly oscillatory solution
of the G-equation is the weighted essentially non-oscillatory (WENO) scheme of the
third order (Jiang & Shu 1996; Schuller et al. 2003). The implementation details
are given in Appendix A. The above formulation enables us to achieve fifth-order
accuracy in smooth regions and third-order accuracy in the discontinuous regions for
the spatial derivative of the flame shape.

The flame front area is calculated for the geometry of the flame front from its
instantaneous position for nonlinear and linearized equations as per the geometry of
the flame front. For the geometry of an axisymmetric wedge flame stabilized on a wire,
as given in figure 1, the flame shape at the unperturbed state can be approximated
by an inverted cone. The nonlinear and linear expressions for the total surface area
of the perturbed flame front are given as follows:

nonlinear : A(tc) = 2π

∫ X=1

X=0

(X sinα − ξ ′ cos α)

√
1 +

(
∂ξ ′

∂X

)2

dX, (2.8)

linear : A(tc) = 2π

∫ X=1

X=0

(X sinα − ξ ′ cos α) dX. (2.9)

The linear relation for the change in the surface area of the flame due to change in
the flame shape is obtained with the relation (2.9). Dimensionally, this relation can
be written as

Ã(tc) =
2πb2

sin2 α

∫ X=1

X=0

(X sinα − ξ ′ cos α) dX. (2.10)

The unperturbed flame shape is obtained from the above relation when ξ ′ = 0 such

that the dimensional surface area of the unperturbed flame ˜̄A(tc) is given by the
following expression:

˜̄A(tc) =
2πb2

sin2 α

∫ X=1

X=0

X sin α dX =
πb2

sinα
. (2.11)

Retaining the expression with the integral and subtracting it from the expression
for the total surface area of the flame given in (2.10), we obtain the linear expression
for the fluctuating surface area as

Ã′(tc) =
−2πb2 cos α

sin2 α

∫ X=1

X=0

ξ ′ dX. (2.12)

Following the kinematic flame model of Fleifil et al. (1996) with constant flame
speed and no equivalence ratio fluctuations, the evolution of heat release fluctuations

imitates the evolution of the area ratio such that ˙̃q ′/˙̄̃q = Ã′/ ˜̄A, or as given below:

˙̃q = ˙̄̃q + ˙̃q ′ = ρ0SL�qR( ˜̄A + Ã′). (2.13)
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Figure 2. Geometry of the coupled system with an axisymmetric wedge flame stabilized on a
wire. Here L is the length of the duct, (b/a) is the ratio of burner to duct radius and ỹf is the
flame location along the length of the duct.

Here, ρ0 is the density of the unburnt mixture in kgm−3, SL is the laminar flame
speed in m s−1 and �qR is the heat released per unit mass of the mixture in J kg−1 at
equivalence ratio φ and is obtained for a methane–air mixture from You et al. (2005)
as follows:

�qR(φ) =

⎧⎪⎪⎨
⎪⎪⎩

2.9125 × 106φ

1 + 0.05825φ
, φ � 1

2.9125 × 106

1 + 0.05825φ
, φ > 1

, J kg−1. (2.14)

The fluctuating part of the dimensional heat release rate can be calculated from the
fluctuating surface area using the relation given in (2.13) for a specified equivalence
ratio. Thus,

˙̃q ′ = ρ0SL�qRÃ′(t) =
−2π cos α ρ0SL�qRb2

sin2 α

∫ X=1

X=0

ξ ′ dX. (2.15)

3. Model for the coupled thermoacoustic system
The coupled thermoacoustic system considered here is given in figure 2. It consists

of the acoustic field within a duct open at both ends and a compact premixed flame
located within it. A laminar inviscid flow with Mach number (M) approaching zero
is assumed (Nicoud & Wieczorek 2009). In order to simplify the analysis, a constant
density assumption is made such that the mean density (ρ̃0) and the speed of sound
in the unburnt mixture (c̃0) are assumed to be constant throughout the duct. The
flame is treated as a compact source and the heat release rate distribution along the
duct can be represented by a Dirac delta function. The location of the flame is the
point of attachment of the flame front to the anchoring wire, i.e. at ỹ = ỹf .

The acoustic wave propagation on either side of the compact source within the
duct can be assumed to be linear even when the nonlinear dependence of the heat
release rate on velocity fluctuations is retained. This is because the amplitudes of
the acoustic pressure fluctuations in the present thermoacoustic system are not
significant enough to introduce nonlinear gas-dynamic effects (Dowling 1997). Below
the cut-on frequency, only the axial modes of sound propagate in the duct. Therefore,
the acoustic quantities are assumed to vary only axially. The one-dimensional
acoustic equations for momentum and energy in the limit of M → 0 are used in
the present analysis. They are given, along with the scales of non-dimensionalization
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(Balasubramanian & Sujith 2008a), as follows:

ya = ỹ/L, u = ũ/ū, t = t̃ c0/L, p = p̃/p̄, q̇ ′
f = ˙̃q ′

f /ρ0c
3
0, δ = Lδ̃, (3.1)

γM
∂u′

∂t
+

∂p′

∂ya

= 0, (3.2)

∂p′

∂t
+ γM

∂u′

∂ya

= (γ − 1)
˙̃q ′

f

ρ0c
3
0

δ(ya − yf a), (3.3)

where γ is the ratio of specific heats, p′ is the non-dimensional acoustic pressure,
u′ is the non-dimensional acoustic velocity, ˙̃q ′

f is the heat release rate fluctuations
averaged over the cross-sectional area of the duct, L is the duct length and the
compact heat source is represented by the Dirac delta function δ(ya − yf a). In this
paper, the superscript tilde denotes dimensional quantities and quantities without
tilde are non-dimensional. The subscript ‘a’ denotes that the variable has been
non-dimensionalized with respect to the acoustic scale.

The heat release rate fluctuation averaged over the cross-sectional area of the duct
(ÃCS = πa2) is given as ˙̃q ′

f = ˙̃q ′/ÃCS . Therefore, the expression for the fluctuating heat
release rate per unit area for the linearized model can be written using (2.15) as

˙̃q ′
f =

ρ0SL�qRÃ′(t)

ÃCS

= −2 cotα ρ0SL�qR

(
b2

a2 sinα

)∫ X=1

X=0

ξ ′ dX. (3.4)

Defining the constant Ω = −(L/ρ0c
3
0)(2 cot αρ0SL�qR)(b2/a2 sin α), the equation for

the non-dimensional heat release rate fluctuations per unit area of the duct can be
written as follows:

q̇ ′
f =

(
L

ρ0c
3
0

)
˙̃q ′

f = Ω

∫ X=1

X=0

ξ ′ dX. (3.5)

Implementing the Galerkin technique for the acoustic field, the acoustic equations
for momentum and energy are converted into a set of ordinary differential equations
(Meirovitch 1967; Zinn & Lores 1971). The appropriate basis functions which satisfy
the boundary conditions for the acoustic field within a duct open at both ends are
chosen as follows:

u′ =

N∑
j=1

cos (jπya) ηj (t) and p′ = −
N∑

j=1

γM

jπ
sin (jπya) η̇j (t). (3.6)

A mode-dependent damping is introduced as given by Matveev (2003a) in the
acoustic energy equation, where the expression for the damping coefficient (ζj ) is
given by

ζj =
1

2π

(
c1j + c2

√
1

j

)
. (3.7)

Here, c1 is representative of the losses due to radiation from the open ends and c2

represents the acoustic boundary layer losses (Sterling & Zukoski 1991). The resulting
system of ordinary differential equations which describes the evolution of the acoustic
field for the system with damping is as follows:

dηj

dt
= jπ

(
η̇j

jπ

)
, (3.8)

d

dt

(
η̇j

jπ

)
= −jπηj − 2ζj jπ

(
η̇j

jπ

)
− 2(γ − 1)

γM
q̇ ′

f (t) sin(jπyf a). (3.9)
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The acoustic equations are linear and the nonlinearity in the system is due to the
heat release rate term. Therefore, evolutions of the linear or nonlinear system can
both be investigated by including the appropriate model for the heat release rate in
the above equations.

4. Modelling the flame front as a distribution of monopole sources
The flame front can be represented as a source of sound using Lighthill’s acoustic

analogy (1952). Unsteady heat addition from the flame at constant pressure causes
a corresponding unsteady expansion of the fluid. Across a one-dimensional flame
with area Af , this dilatation term leads to a velocity jump of δu′

f , resulting in
an instantaneous value of volume flow rate Af δu′

f (Chu & Kovasznay 1957; Wu
et al. 2003). This dilatation can be represented as the sum of source strengths of a
distribution of monopole sources of sound, with source strength per unit length S
along the flame front (Morse & Ingard 1968; Dowling & Pierce 1983; Howe 2003).
Thus, the laminar flame front is represented by a distribution of monopole sources
of sound (van Kampen 2006).

The flame front is discretized into P flame elements each of equal length �X̃, each
of which represents an acoustic monopole source of strength S̃i�X̃. The monopole
strength per unit length S̃i can be non-dimensionalized as follows:

Si =
1

γ ūL
S̃i . (4.1)

In the rest of this section, we derive the energy due to heat release rate fluctuations of
the flame front in terms of monopole strength averaged over the cross-sectional area of
the duct. As the initial step, (3.5) can be rewritten to linearly relate the local flame dis-
placement to the non-dimensional heat release rate fluctuation per unit area as follows:

q̇ ′
f =

P∑
i=1

q̇ ′
f i = Ω

P∑
i=1

fiξ
′
i�X, (4.2)

given that we denote Ω as defined before (3.5) and fi are the weight factors
corresponding to the trapezoidal integration formula as given below:

fi =

{ 1
2
, i = 1 and P,

1, i �= 1 or P.
(4.3)

The integration of the acoustic equation for energy given by (3.3) across the heat
source relates the acoustic velocity gradient to the heat source given in (4.4)–(4.8):∫ y+

f

y−
f

(
∂p′

∂t
+ γM

∂u′

∂ya

)
dVc =

∫ y+
f

y−
f

(γ − 1)q̇ ′
f δ(ya − yf a) dVc. (4.4)

Here y−
f and y+

f are the locations just upstream and downstream of the flame front and
the subscript c denotes the combustion zone. The contribution from the acoustic pres-
sure term vanishes for a compact source as dVc → 0. Applying Gauss’s divergence the-
orem to the acoustic gradient term, we can rewrite the left-hand side of (4.4) as follows:

γM

∫ y+
f

y−
f

(
∂u′

∂ya

)
dVc = γM

∫
Sc

(u′ · n̂) dSc. (4.5)
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The surface integral is evaluated over a cylindrical area Sc, which encloses the
flame and whose lateral surface coincides with that of the duct. Here, n̂ denotes the
outward normal from the surface.

As the velocity field is assumed to be one-dimensional, the contribution to the
integral from the lateral surface vanishes identically. Furthermore, the acoustic velocity
is assumed to be uniform across the cross-sectional area of the duct, consistent with
a one-dimensional approximation. Therefore, the contribution to this surface integral
from the left and right faces of the cylindrical area is (−ACSu

′
f −) and (ACSu

′
f +),

respectively, as given by the right-hand term of

(γ − 1)

∫ y+
f

y−
f

q̇ ′
f δ(ya − yf a) dVc = γMACS(δu

′
f ). (4.6)

Using the one-dimensional approximation, the volume integral on the left-hand-
side term in (4.6) is replaced as the product of the cross-sectional area ACS times an
integral along the length of the duct,

(γ − 1)

∫ δ+

δ−
q̇ ′

f δ(ya − yf a) dVc = (γ − 1)ACS q̇ ′
f |ya=yf a

. (4.7)

Comparing the right-hand sides of (4.6) and (4.7), the jump in acoustic velocity
across the heat source δu′

f can be related to the fluctuations in heat release rate as
follows:

δu′
f =

(γ − 1)

γM
q̇ ′

f |ya=yf a
. (4.8)

The jump in acoustic velocity δu′
f i across the ith monopole can be related in terms

of the monopole strength Si�X averaged over the cross-sectional area of the duct as
given below (Morse & Ingard 1968; Dowling & Pierce 1983; Howe 2003):

δu′
f i =

Si�X

ACS

, (4.9)

which we will use later in § 5.2 to calculate the energy due to fluctuations in heat
release rate.

5. Energy due to fluctuations in a premixed flame–acoustic system
5.1. Energy in the acoustic field

The acoustic energy can be written in terms of the acoustic velocity and pressure as
follows (Rienstra & Hirschberg 2008):

Ẽa(t) =
1

2

∫
Ṽa

[
(ρ0ũ

′2) +

(
p̃′2

ρ0c
2
0

)]
dṼa =

1

2
ACSL

∫ ya=1

ya=0

[
(ρ0ũ

′2) +

(
p̃′2

ρ0c
2
0

)]
dya.

(5.1)
Non-dimensionalizing the above expression with the kinetic energy of the steady-

state flow, 1
2
ρ0ū

2ACSL, we obtain the expression for non-dimensional acoustic energy
as below:

Ea(t) =
Ẽa(t)

1
2
ρ0ū2ACSL

=

∫ y=1

y=0

[
u′2 +

(
p′

γM

)2
]

dya. (5.2)

We expand the acoustic variables in terms of the Galerkin basis functions as given
in (3.6) and integrate over the acoustic domain. Making use of their orthogonality
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property, the expression for acoustic energy can be modified as follows:

Ea(t) =
1

2

N∑
j=1

[
ηj (t)

2 +

(
η̇j (t)

jπ

)2
]
. (5.3)

5.2. Energy due to fluctuations in heat release rate

In § 4, the unsteady heat addition at the flame front was related to unsteady expansion
of the fluid across it. The energy due to dilatation at the monopole distribution Ẽf

(Morse & Ingard 1968) is written in the dimensional form as follows:

Ẽf (t) =
1

2

∫
Ṽa

[
ρ0

P∑
i=1

(δũ′
f i)

2

]
dṼa =

1

2
ACSL

∫ ya=1

ya=0

[
ρ0

P∑
i=1

(δũ′
f i)

2

]
dya. (5.4)

Non-dimensionalizing the above the kinetic energy of the steady-state flow,
1
2
ρ0ū

2ACSL, we obtain the non-dimensional expression for the energy of the monopole
distribution as

Ef (t) =
Ẽf (t)

1
2
ρ0ū2ACSL

=

P∑
i=1

(δu′
f i)

2. (5.5)

Using (4.9), we can rewrite the expression for energy Ef in terms of monopole
strengths to obtain

Ef (t) =

P∑
i=1

[
Si(t)�X

ACS

]2

. (5.6)

The dilatation resulting from heat release rate fluctuations is the energy due to
the presence of the flame front which is modelled as a monopole distribution and is
given in terms of the monopole strength averaged over the cross-sectional area of the
duct. Note that the expression for the fluctuating energy as derived in (5.6) is not the
acoustic power of a distribution of monopole sources (Morse & Ingard 1968).

The total energy E(t) due to fluctuations in a premixed flame–acoustic system
includes contributions from the acoustic energy and the energy contributed by the
monopole distribution arising from the heat release rate fluctuations. Thus, E(t) can
be expressed as

E(t) = Ea(t) + Ef (t) =

N∑
j=1

1

2

[
ηj (t)

2 +

(
η̇j (t)

jπ

)2
]

+

P∑
i=1

[
Si(t)�X

ACS

]2

. (5.7)

The above expression is proportional to the square of the L2-norm of the state
vector as given in § 6.1.

6. Evolution equations for the premixed flame thermoacoustic system
The time scale used in the non-dimensional front-tracking equation is

(tc = b/ū sin α), which is different from the time scale used for the acoustic equations
for momentum and energy (t = L/c0). In order to evolve both using a single time-
marching technique, the time scale of the non-dimensional front-tracking equation is
rescaled to the acoustic time scale using the ratio of the time scales as(

L

c0

ū sinα

b

)
∂

∂tc
=

∂

∂t
, (6.1)
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such that the front-tracking equation can be modified as given in (6.4) and (6.10).
Also, the flame front is discretized into P different flame elements along its length
such that the partial differential equation that governs the flame front evolution can
be converted into P ordinary differential equations.

6.1. Linear analysis

The coupled system of equations for the premixed flame thermoacoustic system under
the linear approximation can be written as follows:

dηj

dt
= jπ

(
η̇j

jπ

)
, (6.2)

d

dt

(
η̇j

jπ

)
= −jπηj − 2ζj jπ

(
η̇j

jπ

)
− 2(γ − 1)

γM
q̇ ′

f (t) sin(jπyf a), (6.3)

dξ ′
i

dt
=

(
Lū sin2 α

c0b

) N∑
j=1

cos(jπyf a)ηj −
(

Lū sinα cos α

c0b

)(
�ξ ′

�X

)
i

. (6.4)

Here, the gradient term (�ξ ′/�X)i in the front-tracking equation in expanded using
a first-order backward-difference formula as discussed in § 2.

Equation (6.2) is retained as such, while (6.3) is rewritten in terms of the strength
of monopole distribution as follows:

d

dt

(
η̇j

jπ

)
= −jπηj − 2ζj jπ

(
η̇j

jπ

)
−

√
2 sin(jπyf a)

P∑
i=1

Hi. (6.5)

With Hi representing the monopole strength averaged over the cross-sectional area
of the duct and defining the constants θ1 and θ2,

Hi =

(
Si�X

√
2

ACS

)
, (6.6)

θ1 =

(
(γ − 1)Ω�X

√
2

γM

)(
Lū sin2 α

c0b

)
and θ2 =

(
Lū sinα cos α

c0b�X

)
, (6.7)

the flame front evolution (6.4) is converted to (6.8) using relations (4.9) and (4.2):

dHi

dt
= θ1

N∑
j=1

cos(jπy)ηj − θ2(Hi − H(i−1)). (6.8)

The state vector χ = [η1 η̇1/π η2 η̇2/2π · · · η̇N/Nπ H1 H2 · · · HP ]T is defined such
that the square of the L2-norm of the state vector is proportional to the energy of
fluctuations E(t). The ratio of the squares of the L2-norm of the state vector at time
t to that at time t = 0 gives the normalized energy of fluctuations as follows:

E(t)

E(0)
=

(
N∑

j=1

[
ηj (t)

2 +

(
η̇j (t)

jπ

)2
]

+

P∑
i=1

Hi(t)
2

)
(

N∑
j=1

[
ηj (0)2 +

(
η̇j (0)

jπ

)2
]

+

P∑
i=1

Hi(0)2

). (6.9)

Thus, the set of linear equations which describes the evolution of a premixed flame
thermoacoustic system is given by (6.2), (6.5) and (6.8).
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6.2. Nonlinear analysis

The nonlinear partial differential equation which governs the evolution of the flame
front expressed in the acoustic time scale is

∂ξ ′

∂t
=

(
Lū sin2 α

c0b

) ⎛
⎝1 + u′

f −

√
1 +

(
∂ξ ′

∂X

)2

⎞
⎠ −

(
Lū sinα cosα

c0b

)
(1 + u′

f )

(
∂ξ ′

∂X

)
.

(6.10)
The discretized set of equations for the evolution of the flame front can be written

as below for every i = 1, 2, . . . , P , where P is the number of points along the flame
front:

dξ ′
i

dt
=

(
Lū sin2 α

c0b

)⎛
⎝1 + u′

f −

√
1 +

(
�ξ ′

i

�X

)2

⎞
⎠ −

(
Lū sinα cos α

c0b

)
(1 + u′

f )

(
�ξ ′

i

�X

)
.

(6.11)
Here (�ξ ′

i /�X) is the fifth-order-accurate approximation of the spatial derivative
using the WENO scheme given in Appendix A. The governing equations for the
nonlinear system are the linearized acoustic equations for momentum and energy
(6.2) and (6.3) and the nonlinear evolution equation for the premixed flame given in
(6.11). In (6.3), the heat release rate is substituted in terms of the flame displacement
as

q̇ ′
f =

SL�qR

c3
0

⎛
⎝ 2

sinα

∫ X=1

X=0

(X sin α − ξ ′ cos α)

√
1 +

(
∂ξ ′

∂X

)2

dX − 1

⎞
⎠. (6.12)

Two measures are chosen to check the convergence with increasing number of
acoustic modes and number of flame elements. The number of acoustic modes is
varied in steps of one and the number of flame elements is varied in steps of 25
and the following two relative changes are calculated. The relative changes, due to
variation in the number of acoustic modes N, in the maximum transient growth Φ1

and the average acoustic velocity at the flame for the optimal initial condition Φ2 are
respectively

Φ1 =
Gmax(N) − Gmax(N−1)

Gmax(N)

and Φ2 =
u′

f (N) − u′
f (N−1)

u′
f (N)

. (6.13)

The relative changes, due to variation in the number of flame elements P, in the
maximum transient growth Ψ1 and the average acoustic velocity at the flame for the
optimal initial condition Ψ2 are respectively

Ψ1 =
Gmax(P ) − Gmax(P −25)

Gmax(P )

and Ψ2 =
u′

f (P ) − u′
f (P −25)

u′
f (P )

. (6.14)

Figure 3(a) plots the variation of Φ1 and Φ2 with a change in the number of acoustic
modes N for the case with system parameters α = 100, yf =0.1, c1 = 1.5 × 10−2,
c2 = 1.5 × 10−3, φ = 1, SL = 0.4129 m s−1 and �qR =2.7522 × 106 J kg−1. Figure 3(b)
plots the relative changes Ψ1 and Ψ2 for variation in the number of flame elements
P for the same case. It is seen that the relative changes in both the maximum
transient growth and the acoustic velocity at the flame location for the optimal initial
condition are less than 3 % for N = 100 acoustic modes and P = 500 flame elements,
respectively.
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Figure 3. (a) Relative change in the average value of acoustic velocity at the flame for
the optimal initial condition u′

f as Φ1 (− − −) and relative change in maximum transient
growth Gmax as Φ2 (−−−−−) with the number of acoustic modes N and 500 flame elements.
(b) Relative change in u′

f as Ψ1 (− − −) and in Gmax as Ψ2 (−−−−−) with the number of flame

elements P and 100 acoustic modes at α = 10◦, yf =0.1, c1 = 1.5 × 10−2, c2 = 1.5 × 10−3, φ = 1,

SL = 0.4129m s−1 and �qR = 2.7522 × 106 J kg−1. In both the figures, (− · − · − · −) is the level
indicating a relative change of 3 %.

Also, with 100 Galerkin modes retained in the expansion of acoustic variables,
the jump in acoustic velocity across the heat source is sufficiently well resolved as
shown in figure 7(a). With these choices, the set of ordinary differential equations
given by (6.2), (6.5) and (6.8) is evolved in time using the matrix exponential of the
linear operator (Hirsch, Smale & Devaney 2004) for linear analysis. In the nonlinear
analysis, the set of equations given by (6.2), (6.3) and (6.11) is evolved with a time-
marching technique using the Runge–Kutta third-order scheme with total variation
diminishing (TVD) property (Jiang & Shu 1996). A Courant–Friedrichs–Lewy (CFL)
number of 0.01 was used to determine the time step.

7. Results and discussions
7.1. Quantification of transient growth

In addition to the variables for acoustic velocity and pressure, the state vector of
the self-evolving system consists of variables for the strengths of the monopole
sources associated with the flame elements. The measure chosen in this paper to
quantify transient growth contains contributions from the dilatation resulting from
the fluctuating heat release rate in addition to the classical acoustic energy. The
square of the L2-norm of the state vector at time t gives the net energy of fluctuations
E(t). The fluctuation energy is normalized with its value at time t =0 as given in
(6.9). This normalized energy when maximized over all possible initial conditions and
over all times is called maximum growth factor Gmax and it represents the maximum
possible amplification for the fluctuating energy of a given system. The optimal
initial condition for maximum transient growth in a linear system can be obtained
by singular value decomposition of the operator governing the linearized system.
Evolution of the normalized energy for a linearly stable case from the corresponding
optimal initial condition is shown in figure 4(a). The system configuration chosen is
the same as for figure 3. The optimal initial condition, maximized over all times, is
observed to undergo a transient amplification of 66.7 times the initial energy and
attain this maximum amplification at tmax =3.3.
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Figure 4. (a) Evolution of the ratio of energy at an instant Et to the initial energy E0

in the acoustic time scale t , for the optimal initial condition. (b) Pseudospectra of the
linearized matrix of a linearly stable system with α = 10◦, yf =0.08, c1 = 0.135, c2 = 0.015,

φ = 1, SL = 0.4129 m s−1 and �qR = 2.7522 × 106 J kg−1.

For a non-normal system, the evolution of the system at finite time cannot be
adequately characterized by the eigenvalues (λ) of the linearized system. In such
cases, if B is the linear operator of the system, the eigenvalues enforce a bound on the
growth factor ‖ exp(t B)‖ only for t → ∞. The normalized net energy of fluctuations
is given by the square of the growth factor. Pseudospectra of the linearized operator
can be analysed to obtain the magnitude of transient amplification of energy of the
fluctuations. The time scale over which transient growth occurs can also be estimated
from the pseudospectra of the linearized matrix.

The ε-pseudospectrum for the linear operator B is a set of points in the complex
plane which are the eigenvalues of a perturbed matrix (B + T ), such that the random
perturbation T to the operator B satisfies the condition ||T || <ε. On a given
ε-pseudospectrum, the pseudospectral abscissa σε gives the location of the point
on the real axis with the largest value. If the value of σε is positive, such that
(σε(B)/ε) > 1, then transient growth is indicated. The ratio of (σε(B)/ε) maximized
over all ε gives the minimum value of transient growth possible. A lower bound on
the magnitude of the transient growth can be given in terms of the Kreiss constant
κ(B) from the Kreiss matrix theorem as given below (Trefethen & Embree 2005):

sup
t�0

‖et B‖ � sup
ε>0

σε(B)

ε
= κ(B). (7.1)

The upper bound on transient growth or ϕ(B) for a matrix of dimension (2N + P ) is
also given by the Kreiss matrix theorem in terms of κ(B) as follows:

‖et B‖ � e(2N + P )κ(B) = ϕ(B). (7.2)

In the case of a linearly unstable case, when z′ is the location of the eigenvalue
with the largest positive real part, exponential growth occurs within a time span of
1/Re(z′). In the case of a linearly stable system, the ε-pseudoeigenvalue of the system
with the largest value determines the time span over which transient growth occurs.
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Figure 5. Variation of Gmax with yf for the system with α = 10◦, c1 = 1.5 × 10−2,

c2 = 1.5 × 10−3, φ =1, SL = 0.4129 m s−1 and �qR = 2.7522 × 106 J kg−1. Blank spaces indicate
configurations for which the system is linearly unstable.

When the pseudospectral abscissa σε is the ε-pseudoeigenvalue of the system with
the largest real part, the system experiences a transient growth of the order of κ(B)
over a time span 1/σε (Trefethen & Embree 2005).

Thus, the pseudospectra of the linear matrix give us bounds for the evolution of
normalized energy (Et/E0) at finite time. For the case of a premixed flame with φ = 1
and flame angle of α =10◦, which is stabilized at yf = 0.08, the pseudospectra of the
system are given in figure 4(b). We see that the pseudospectra spill onto the right half-
plane. The perturbation amplitude ε = 1 gives a ratio of ε/||B|| =7.04 × 10−4, which
implies that the perturbations are very small compared to the norm of the linear
operator. The pseudospectrum corresponding to ε =1 is seen to protrude by σ1 = 5
units into the right half-plane. The ratio of the protrusion of the pseudospectra to
the corresponding perturbation amplitude is greater than one, indicative of transient
growth. This ratio when maximized over all perturbation amplitudes gives the Kreiss
constant for this case as κ(B) = 6.4, with σ = 0.64 and ε/||B|| =7.04 × 10−5 for ε = 0.1.
The Kreiss constant sets the lower bound for transient amplification of energy to be
κ2(B) = 41 from pseudospectra. The upper bound for transient growth is given as
ϕ(B) = 7.7 × 104. The maximum value of normalized energy amplification is 66.7, as
shown in figure 4(a), which falls within the bounds estimated from pseudospectra.
The estimated time scale for transient growth from pseudospectra is tmax =1.6, which
is of the same order as the computed time for maximum growth, which is tmax = 3.3.

The variation of Gmax with system parameters is obtained to quantify the effect of
system parameters on the non-normality of the system. Significant system parameters
considered are flame location yf and flame angle α. The variation of Gmax with the
location of the flame is shown in figure 5 for a flame angle of α = 10◦. It is seen
that Gmax increases with increase in yf till the half duct length. The blank spaces
in the distributions in figure 5 are configurations for which the system is linearly
unstable. The system is linearly unstable for locations of the flame beyond the half
duct length. The dependence of the growth factor on the flame angle is as shown in
figure 6 for yf = 0.1. The transient growth observed is stronger for elongated flames
than for flatter flames. When α is small, i.e. for elongated flames, the convective
term dominates the linear evolution of the flame front as given in (2.4). Increased
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Figure 6. Variation of Gmax with α for the system with yf =0.1, c1 = 1.5 × 10−2,

c2 = 1.5 × 10−3, φ = 1 with SL = 0.4129 m s−1 and �qR = 2.7522 × 106 J kg−1.

non-normality was observed with increased advection in the context of ducted
diffusion flames by Balasubramanian & Sujith (2008a), who reported that the
maximum growth factor was seen to increase with an increase in the Péclet number.

7.2. Influence of internal flame dynamics

In addition to the acoustic equations for momentum and energy, the dynamical
system described in § 6.1 includes the evolution equation for the flame front in terms
of the monopole strength averaged over the cross-sectional area of the duct. If the
flame front is thought of as consisting of a number of small flame elements, the
flame displacements at these points represent a large number of additional degrees of
freedom which we refer to as the internal degrees of freedom of the flame front or
internal flame dynamics. The linearized system of from (6.2), (6.5) and (6.8) can be
written in matrix form as

dχ

dt
= Bχ =

(
C2N×2N D2N×P

EP ×2N FP ×P

)
(2N+P )×(2N+P )

χ (2N+P )×1. (7.3)

Here, χ is the state vector and B is the operator governing the linearized
thermoacoustic system as expanded in Appendix B. The size of the linearized operator
B is (2N + P ) × (2N + P ) for N number of acoustic modes and P number of points
along the flame. The sub-matrix C is the linearized operator which governs the
evolution of acoustic modes in the absence of a heat source and has the size (2N × 2N).
Thus, the self-evolving thermoacoustic system has more degrees of freedom than just
the number of acoustic modes. The sub-matrix D contains the effect of flame dynamics
on the acoustic modes and E represents the acoustic driving term in the evolution
of the monopole sources. The sub-matrix F represents the interaction between the
monopole sources that represent the flame front.

The optimal initial condition can be obtained using singular-value decomposition
(SVD) of the linear operator of the system (Schmid & Henningson 2001). The
optimal initial condition was obtained for the case examined in figures 3 and 4. In
the kinematic model considered, the heat release rate fluctuations are correlated to
the monopole strength distribution along the flame. The optimal initial condition

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

14
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2011.140


332 P. Subramanian and R. I. Sujith

0.25
1.0

0.8

0.6

0.4

0.2

0

(a) (c)

0u′
f

y

–0.25
0 0.5 1.0

1
(×10–4)

(b)

0p′
f

–1
0 0.5 0

xya

0.2 0.4–0.2–0.41.0

Figure 7. (a) Acoustic velocity field, (b) acoustic pressure field and (c) flame shape for the
evolution of the optimal initial condition maximized over all times, with Et (0) = 1 × 10−4

for α = 10◦, yf = 0.08, c1 = 0.135, c2 = 0.015, φ = 1, SL =0.4129 m s−1 and �qR =2.7522 × 106

J kg−1: · · · · · · , the unperturbed state; −−−−−, distribution for the optimal initial condition;
− − −−, distribution at t = tmax = 3.3.

has significant projections onto the monopole strength distribution. The evolution
from the optimum initial condition at different instances of time as seen through the
projections on acoustic velocity, pressure and the displacement of the flame shape
are shown in figure 7. The acoustic velocity and pressure distributions along the duct
and the displacement of the flame shape for the optimal initial condition at time
instances t = 0 and at time t = tmax = 3.3 are shown in figure 7(a–c). The acoustic
velocity distribution in figure 7(a) shows a jump while the pressure distribution in
figure 7(b) is continuous across the flame location.

Inclusion of the monopole strengths in the state space increases the number of
degrees of freedom in the system from (2N × 2N) to (2N+P ) × (2N+P ). Traditionally,
thermoacoustic instability has been analysed in terms of an acoustic model which is
driven by combustion. In this traditional approach, a time lag model (Schuermans
et al. 2004; Noiray et al. 2006) or a lumped model (Annaswamy et al. 1997) has been
used to model the heat release rate fluctuations. The coupled system can have initial
perturbations both in the acoustic variables and the position of the flame front.

When the flame front is modelled with a time lag model or as lumped model, it is not
possible to prescribe an initial condition for the flame shape (monopole source strength
distribution). In order to include the possibility of an initially perturbed flame shape
(i.e. an initial non-zero monopole strength distribution), the variables corresponding
to the monopole source strengths must be included in the state variables of the system.
Inclusion of the monopole source strength variables in the state space retains the
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Figure 8. Evolution of acoustic velocity at the flame for (a) linearized system and
(b) nonlinear system. Evolution of the normalized energy due to fluctuations E(t)/E(0) for
(c) linearized system and (d) nonlinear system. All evolutions are plotted along the acoustic
time scale t . A purely acoustic initial condition with u′

f (0) = 1.6 × 10−3 and E(0) = 4 × 10−6

is seen to decay monotonically in both linear and nonlinear evolutions. The other system
parameters are α =10◦, yf = 0.2, φ = 0.8, c1 = 2 × 10−3, c2 = 2 × 10−4, SL = 0.2782m s−1 and

�qR = 2.2263 × 106 J kg−1.

internal degrees of freedom of the flame front. This is particularly significant as the
ability to predict transient growth in a non-normal system is affected by the degrees
of freedom of the model (Trefethen & Embree 2005).

7.3. Subcritical transition to instability

A system that is predicted to be stable by classical linear stability theory can become
nonlinearly unstable for large amplitudes of initial perturbation and reach a limit-
cycle oscillation. Depending upon the amplitude of the initial perturbation, this type
of stability transition is called subcritical transition to instability. The evolutions of
acoustic velocity for the linearized and nonlinear systems are compared in figures 8(a)
and 8(b) for the system configuration with α = 100, yf = 0.2, c1 = 2 × 10−3,
c2 = 2 × 10−4, φ = 0.8, SL = 0.2782 m s−1 and �qR = 2.2263 × 106 J kg−1. An initial
condition purely in the acoustic variables with η1(0) = 0.002, ηi(0) = 0 ∀ i �= 1 and
η̇i(0) = 0 ∀ i = 1 to N is given with an initial acoustic velocity of u′

f (0) = 1.6 × 10−3,

and the initial energy due to fluctuations being E(0) = 4 × 10−6. The system is linearly
stable and the linear evolution decays asymptotically without any transient growth.
The nonlinear evolution also decays asymptotically.
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Figure 9. Evolution of acoustic velocity at the flame for (a) linearized system and (b) nonlinear
system. Evolution of the energy due to fluctuations E(t)/E(0) for (c) linearized system and
(d) nonlinear system. All evolutions are plotted along the acoustic time scale t . The optimal
initial condition with u′

f (0) = 7.8 × 10−5 and E(0) = 4 × 10−6 is seen to grow transiently and
decay in the linear evolution. The nonlinear evolution reaches a limit cycle of amplitude
|u′

f |LC = 0.67. The other system parameters are α = 10◦, yf = 0.2, φ = 0.8, c1 = 2 × 10−3,

c2 = 2 × 10−4, SL = 0.2782m s−1 and �qR = 2.2263 × 106 J kg−1.

In a non-normal system, the transient growth obtained is dependent on the initial
condition applied to the system. The initial condition which maximizes the transient
amplification of energy is called the optimal initial condition. Figure 9 shows the
evolution of the linear and nonlinear systems from the optimal initial condition for
the same linearly stable case as shown in figure 8. The energy due to fluctuations
is retained at the same value of E(0) = 4 × 10−6 as in figure 8. However, in this
case the linear and nonlinear evolutions diverge within a short period of time.
The linear evolution exhibits a transient growth of a factor of 197 in the energy
due to fluctuations until tmax = 1.5 and then asymptotically decays. Initially, the
nonlinear evolution undergoes lesser transient growth than the linear evolution but
asymptotically reaches a limit cycle with |u′

f |LC = 0.67. This is seen from the insets in
figures 9(b) and 9(d).

From this example, it is evident that an initial condition with very small initial
amplitude, if applied in an optimal manner, can cause transient growth in the
energy of the system. If this transient growth is high enough for nonlinear effects
to become significant, a system which is stable according to classical linear stability
theory can become nonlinearly unstable. Therefore, in non-normal systems, even
initial perturbations whose amplitudes are small enough for linearization to appear
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Figure 10. Nonlinear evolutions for α =10◦, yf = 0.2, φ = 0.8, c1 = 2 × 10−3, c2 = 2 × 10−4,
SL =0.2782 m s−1 and �qR = 2.2263 × 106 J kg−1 for initial conditions with (a) optimal initial
condition with u′

f (0) = 7.8 × 10−5, (b) initial condition with u′
f (0) = 0.40, (c) rate of separation

of the two evolutions given in (a) and (b). All evolutions are plotted along the acoustic time
scale t .

apparently legitimate, can cause the nonlinear evolution to reach self-sustaining
oscillations.

For the linearly stable system shown in figures 8 and 9, two nonlinear evolutions
which differ only in the value of the initial condition are shown in figures 10(a) and
10(b). The two evolutions evolve to the same limit cycle even when all eigenvalues
are stable. This asymptotic behaviour of the nonlinear evolution is characterized as a
limit cycle using the Lyapunov exponent (Wolf et al. 1985). The Lyapunov exponent
λ1 is a measure of the rate at which two nearby trajectories asymptotically diverge
from each other. A limit cycle is obtained when the Lyapunov exponent between the
two evolutions goes to zero. In figure 10(c), it is seen that the value of the Lyapunov
exponent asymptotically converges to zero, which confirms that the asymptotic state
is a limit cycle.

7.4. Evolution of an initially decaying system

Nonlinear evolution of acoustic velocity for a linearly stable system is shown in
figure 11(a). It shows an initial decay with a higher frequency and then a shift to a
dominant mode of lower frequency. Despite the initial decay, the evolution reaches
a self-repeating limit cycle asymptotically. An analysis of the frequency content of
the evolution during different intervals of time is performed in order to identify the
dominant modes. Enlarged plots of the acoustic evolution are shown in figure 11(b–).
Corresponding plots of amplitude |A| versus frequency f are shown in figure 11(e–g).
Non-dimensional frequency for the fundamental mode of the duct is 0.5 with higher
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Figure 11. (a) Evolution of acoustic velocity with u′
f (0) = −0.14 to a limit cycle of amplitude

|u′
f |LC = 0.41 plotted along the acoustic time scale t . Enlarged views of acoustic velocity

evolution between (b) 0 < t � 10, (c) 20 < t � 30 and (d) 1990 < t � 2000. FFT of the signal
between (e) 0 < t � 10, (f) 10 < t � 30 and (g) 30 < t � 2000 showing change in the dominant
frequency during evolution. System parameters for the linearly stable system are α = 10◦,
yf = 0.2, φ = 0.6, c1 = 2 × 10−3, c2 = 2 × 10−4, SL = 0.1231 m s−1 and �qR = 1.6885 × 106 J kg−1.

modes having multiples of this fundamental frequency. Figure 11(e) shows that
initially the third mode is dominant during time 0 < t � 10. Comparable amplitudes
for the first and third modes are obtained for the evolution between 10 < t � 30 in
figure 11(f) and then the first mode is seen to dominate the evolution from figure 11(g).
Transfer of energy between modes causes the shift in dominant mode during
evolution.

The evolution of the phase θ between acoustic pressure and the heat release rate
oscillations is shown in figure 12. In a self-evolving thermoacoustic system, the phase
between acoustic pressure and the heat release rate fluctuations is free to evolve and
change with time. From the inset in figure 12, it is observed that θ initially remains
at acute angles indicative of driving. However, later it evolves to obtuse angles, which
is indicative of damping and remains at these obtuse values for many cycles. Finally
the evolution of the phase settles at an acute angle such that the driving from the
unsteady heat release rate balances the damping present in the system as shown by the
asymptotic behaviour of the evolution of the phase. The phase between heat release
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Figure 12. Evolution of the phase angle θ between acoustic pressure and heat release
rate fluctuations for linearly stable system with α = 10◦, yf = 0.2, φ = 0.6, c1 = 2 × 10−3,
c2 = 2 × 10−4, SL = 0.1231m s−1 and �qR = 1.6885 × 106 J kg−1 for the evolution shown in
figure 11(d). The inset shows short-term evolution of the phase angle θ . Evolutions are plotted
along the acoustic time scale t .

rate fluctuations and acoustic pressure is therefore only an indicator of stability that
is local in time and cannot be used to predict the asymptotic stability of the system.

8. Conclusions
The non-normal nature of thermoacoustic interaction in ducted premixed flames is

characterized. The unsteady heat release rate from the flame front acts as a source of
unsteady dilatation. Therefore, the laminar flame front is modelled as a distribution
of monopole sources of sound. The energy due to fluctuations in the premixed flame–
acoustic system includes the energy due to the monopole sources in addition to the
fluctuations in acoustic pressure and velocity. This total energy due to fluctuations is
used as a measure of non-normal transient growth. Parametric study of the variation
in transient growth due to change in parameters such as flame angle and flame
location is conducted. Larger transient growth is observed when convective effects
dominate.

Traditionally, thermoacoustic instabilities have been analysed in terms of an
acoustic model which is driven by combustion. However, the thermoacoustic system
has more degrees of freedom than the number of acoustic modes. These additional
degrees of freedom represent the internal degrees of freedom of the flame front or
the internal flame dynamics. In addition to the acoustic variables, the optimal initial
condition for a linearly stable thermoacoustic system displays significant projections
along the monopole source strength distribution or the heat release rate variables. In
order to accurately capture the non-normal effects, the internal degrees of the flame
front must be accounted for in the model for the evolution of the thermoacoustic
system.
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Subcritical transition to instability has been thought of as being caused by a large-
amplitude initial perturbation to a linearly stable system. In a linearly stable case,
even a small but finite-amplitude initial perturbation is shown to reach limit cycle. In
contrast to the same case, an initial condition purely in acoustic variables is seen to
monotonically decay. Therefore, for non-normal systems, even initial perturbations
whose amplitudes are small enough for linearization to appear apparently legitimate
can cause the nonlinear evolution to reach self-sustaining oscillations.

Nonlinear evolutions can display dominant mode change during evolution for a
linearly stable case for an initially decaying evolution. For this initially decaying
evolution, the phase between acoustic pressure and the heat release rate fluctuations
was shown to drift over many cycles between values indicative of driving and damping
before settling to a constant value. Therefore, the phase between acoustic pressure
and heat release rate fluctuations is an indicator of stability that is local in time and
cannot be used to determine the asymptotic stability of a thermoacoustic system.

This work was funded by the Department of Science and Technology (DST) of the
Government of India.

Appendix A. Implementation of WENO scheme
The high-resolution WENO scheme uses a six-point stencil formed of three sub-

stencils each with four points. It will therefore give fifth-order accuracy in the smooth
regions and third-order accuracy in the discontinuous regions. Implementation of
WENO assumes that the function ξ ′(X, t) is continuous, with piece-wise smooth
spatial derivatives, i.e. the discontinuities in the spatial derivative are isolated. The
domain can then be discretized with Xi being the set of uniform discretization points
along the flame front with an equidistant spacing of �X. If ξi = ξ (Xi) and

∆+ξk = ξk+1 − ξk, ∆−ξk = ξk − ξk−1 (A 1)

are as defined above, then the approximation for the spatial derivative at the ith
location using a left biased stencil which is written in (A 2) and is given by a weighted
average of the values due to the individual stencils 0, 1 and 2 shown in (A 3):

∂ξ ′

∂X
= ξ−

X,i, (A 2)

ξ−
X,i = w0,NLξ−,0

X,i + w1,NLξ−,1
X,i + w2,NLξ−,2

X,i , (A 3)

with

ξ−,0
X,i =

1

3

∆+ξi−3

�X
− 7

6

∆+ξi−2

�X
+

11

6

∆+ξi−1

�X
, (A 4)

ξ−,1
X,i = −1

6

∆+ξi−2

�X
+

5

6

∆+ξi−1

�X
+

1

3

∆+ξi

�X
, (A 5)

ξ−,2
X,i =

1

3

∆+ξi−1

�X
+

5

6

∆+ξi

�X
− 1

6

∆+ξi+1

�X
, (A 6)

where ξ−,s
X,i is the third-order approximation to ξ−

X,i on the sth sub-stencil. In an ENO

scheme, one of the ξ−,s
X,i would be chosen based on the relative smoothness of the sub-

stencil. The nonlinear weight of the derivative calculated in a sub-stencil depends on
the smoothness of the function derivative in that sub-stencil. The modified smoothness
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indicators are given in (A 7)–(A 9) (Jiang & Shu 1996; Zhang & Shu 2007):

IS0 = (ξi−2 − 4ξi−1 + 3ξi)
2, (A 7)

IS1 = (ξi−1 − ξi+1)
2, (A 8)

IS2 = (3ξi − 4ξi+1 + ξi+2)
2, (A 9)

which are then used to calculate the nonlinear weights as given below, with typical
values for p = 2 and ε =10−6,

µs =
ws,L

(ε + ISs)r
, (A 10)

ws,NL =
µs

2∑
s=0

µs

. (A 11)

Here the linear weights ws,L for the sth sub-stencil at point i are made to satisfy
the consistency condition, such that

2∑
s=0

ws,L = 1. (A 12)

When the linear weights are w0,L = 0.3, w1,L = 0.6 and w2,L = 0.1, we obtain the
fifth-order-accurate solution in the smooth regions. While using WENO with a left
biased stencil, we require derivative values for the first three points and the last two
points. The appropriate fifth-order-accurate explicit scheme is used to calculate the
first derivative of the function values at boundary cells (Zhong 1998).

Appendix B. Linear operator
If the matrix governing the linearized thermoacoustic system as given in the set of

(6.2), (6.5) and (6.8) is B, they can be written as given in (B 1) for the state vector χ

in (B 2). Then the sub-matrices can be expanded as given in (B 3) to (B 6):

B =

(
C2N×2N D2N×P

EP ×2N FP ×P

)
(2N+P )×(2N+P )

, (B 1)

χ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

η1

η̇1/π

η2

η̇2/2π

.

.

η̇N/Nπ

H1

H2

.

.

HP

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2N+P )×1

, (B 2)
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C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 π . . . . . .

−π −2ζ1k1 . . . . . .

. . 0 2π . . . .

. . −2π −2ζ2k2 . . . .

. . . . . . . .

0 Nπ

. . . . . −Nπ −2ζNkN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

, (B 3)

D = −
√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . 0

0 sin(πyf ) . . 2 sin(πyf )

0 0 . . 0

0 sin(2πyf ) . . 2 sin(2πyf )

0 0 . . 0

0 sin(3πyf ) . . 2 sin(3πyf )

0 0 . . 0

. . . . .

. . . . .

0 0 . . 0

0 sin(Nπyf ) . . 2 sin(Nπyf )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×P

, (B 4)

E =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . 0 0

θ1cos(πyf ) 0 θ1cos(2πyf ) 0 . . θ1cos(Nπyf ) 0

. . . . . . . .

. . . . . . . .

θ1cos(πyf )/2 0 θ1cos(2πyf )/2 0 . . θ1cos(Nπyf )/2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

P ×2N

, (B 5)

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . .

0 −θ2 . . . . . .

. θ2 −θ2 . . . . .

. . θ2 −θ2 . . . .

. . . . . . . .

. . . . . . . .

. . . . . . θ2 −θ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P ×P

. (B 6)

Here Hi corresponds to the monopole strength averaged over the cross-sectional area
of the duct and the values of constants θ1 and θ2 are defined in (6.8). The spatial
derivative is approximated with the first-order backward-difference formula and the
integration for the source term is approximated with a trapezoidal integration over
all points along the flame front.
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