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In the dynamics of Biot poroelastic materials, the fluid flow is not affected by the
deformation of the solid elastic frame. In contrast, in permeable materials whose solid
stiff frames have flexible thin flat films attached, i.e. permeo-elastic materials, the fluid
flow can be significantly modified by the presence of the films. As a consequence of
the local fluid–film interaction, and in particular of the local resonances, the classical
local physics is changed and departs from that leading to the Biot description.
In this paper, the two-scale asymptotic homogenisation method is used to derive
the macroscopic description of sound propagation in air-saturated permeo-elastic
materials. This description is asymptotically analysed to determine the conditions
for which the geometrical and mechanical properties of the films strongly affect the
effective properties of the material. The developed theory is illustrated numerically
and validated experimentally for a prototype material, evidencing the atypical acoustic
behaviour.
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1. Introduction
This paper investigates mass transport and acoustic wave propagation in permeo-

elastic materials. This type of material is characterised by (i) a connected pore
network saturated with a Newtonian fluid and (ii) a solid frame made of a stiff
skeleton onto which highly flexible thin films are fixed. In contrast to Biot poroelastic
materials (Biot 1956a,b), where the fluid flow is not affected by the deformation of
the solid frame, a fluid–film interaction is present in permeo-elastic materials. This
induces significant modifications of the physics determining the mass transport of the
fluid through the porous material. Consequently, the concept of permeability in the
permanent or dynamic regime should be revisited. Specifically, it will be shown in
this paper that the constitutive fluid flow law accounts for the elastic and kinematic
energy of the films in addition to the conventional viscous dissipation and inertia of
the fluid. As a consequence, unconventional flow regimes exist where the fluid–film
system behaves as an equivalent visco-elastic fluid and local fluid–film resonances can
be observed in specific frequency ranges. Accordingly, the acoustic behaviour departs
from the standard poro-acoustic macroscopic description (Biot 1956a,b; Auriault,
Borne & Chambon 1985; Lafarge et al. 1997).
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136 R. Venegas and C. Boutin

Modelling of the overall effect of the multiple fluid–structure interactions that
occur in permeo-elastic media is a challenging and computationally demanding
task. In addition, direct simulation of the fluid flow is practically out of reach due
to the multiscale nature of the problem. For these reasons, an effective model of
such media is established in this paper by using an upscaling approach based on
the two-scale asymptotic homogenisation method (Sanchez-Palencia 1980; Auriault,
Boutin & Geindreau 2009). Potential applications of the theory developed in this
work include, for example, the design of novel materials with unconventional tunable
properties in acoustic engineering (Boutin, Royer & Auriault 1998; Bongard, Lissek
& Mosig 2010; Krynkin et al. 2010; Venegas & Umnova 2011; Boutin 2013; Lafarge
& Nemati 2013; Groby et al. 2015; Leclaire et al. 2015; Venegas & Boutin 2017),
inverse methods in the mechanics of soft films (Leroy & Charlaix 2011) or the
analysis of fluid flow in the presence of deformable membranes, e.g. bio-films or cell
walls, in biomechanics (Dailey, Yalcin & Ghadiali 2007; Rubenstein, Yin & Frame
2015).

Fluid–structure interaction has been widely studied as a phenomenon playing a
determining role in fluid mechanics, aeronautics, structural dynamics and biomechanics.
In acoustics, for example, the fluid–structure interaction is mostly studied for
large-scale vibro-acoustic applications (see Habault 1999) which commonly involve a
single structural element interacting with the fluid. These developments are applied
most commonly to shells or plates which may be impervious or perforated (Lee, Lee
& Ng 2005; Bravo, Maudry & Pinhède 2012; Bolton 2013; Li, Cazzolato & Zander
2016) but also to other types of resonating elements such as Helmholtz resonators
with elastic walls (Norris & Wickham 1993).

Considering the fluid interaction with multiple deformable solid elements, one may
mention the studies of sound transmission in periodic arrays of shells (Krynkin et al.
2010) and sound absorption of packings of elastic hollow grains (Griffiths, Nennig &
Job 2017). In addition, features of the acoustic wave propagation in the presence of
a periodic array of elastic membranes have been investigated recently. For instance,
an array of mass-loaded membranes and a tube periodically loaded with membranes
transversely connected to open channels were investigated by Yang et al. (2008) and
Bongard et al. (2010) respectively. Furthermore, a similar geometry was considered in
Bolton (2013) to model sound propagation in macro-cellular polyolefin foams. In all
of these cases, the effect of fluid–structure resonances is evidenced.

However, distributed fluid–structure interactions taking place at the pore scale
within a porous medium have been rarely studied. This is because, in most practical
cases, the stiffness of the solid frame is sufficiently large to withstand the pressure
and drag force induced by the fluid flow which causes only a negligible deformation.
Hence, the fluid flows as if the pore structure were perfectly rigid. This assumption
has nevertheless been questioned in several works devoted to flow in porous media
involving interaction with the solid frame in large deformation. These studies have
been developed in statics and usually lead to nonlinear constitutive laws. In this
context, for example, Lee & Mei (1997) investigated the validity of the Biot model
and proposed a nonlinear Biot model for the case of non-symmetric cells. The
analysis presented in Brown, Popov & Efendiev (2011) accounts for the evolution
of the pore structure at a time scale much longer than that of the fluid flow. This
leads to an evolutionary flow problem that is ruled by a classical tangent Darcy’s
law at each time. Therefore, the fluid–structure interaction acts only on the long time
scale. In the paper by Brown, Popov & Efendiev (2014), a nonlinear Biot model that
includes pore-scale deformation in the effective description was derived. Consequently,
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the local cell problems are coupled to the macroscopic equations via the effective
coefficients.

The present study differs from the above cited works because (i) only the
deformable films, and not the whole solid, participate in the fluid–structure interaction
and (ii) the pore fluid network is connected, i.e. the films do not close the pores.
Owing to the additional assumptions of flow at low Reynolds number and of small
deformation of the clamped elastic films, the derived macroscopic description is
linear and accounts for the fluid–film interaction. In addition, it will be shown that
the macroscopic mass balance remains unchanged, while the fluid flow constitutive
law is modified. This is the opposite case to non-conventional porous media, where
inner mechanisms induce local mass source terms that alter the mass balance without
modifying the fluid flow constitutive law and its associated effective parameter (Boutin
et al. 1998; Olny & Boutin 2003; Venegas & Umnova 2011; Boutin 2013; Leclaire
et al. 2015; Venegas & Boutin 2017).

The structure of this paper is as follows. Section 2 is devoted to the modelling
of permeo-elastic materials saturated with a Newtonian gas using the two-scale
asymptotic homogenisation method (Sanchez-Palencia 1980; Auriault et al. 2009).
Section 3 deals with the analysis of the effective properties, by which the macroscopic
consequence of the fluid–film interaction at the pore scale is highlighted. It is
shown that, in addition to the characteristic visco-inertial Biot frequency, the
acoustic behaviour also depends on a characteristic visco-elastic frequency and
two characteristic elasto-inertial frequencies. Furthermore, the limiting behaviour of
the materials is presented with reference to the estimated characteristic frequencies.
We investigate in § 4 the different possible fluid flow regimes and how the effective
properties of the material behave in them. This allows us to identify the conditions for
which the material geometry, the mechanical properties of the films and the physical
properties of the saturating gas strongly affect the propagation of sound waves in the
material. Also in this section, we present experimental data measured on a prototype
material that evidences some of the non-conventional features theoretically predicted.
The measured data are compared with numerical simulations, showing a reasonable
agreement. The main findings are summarised in the conclusions.

2. Permeo-elastic materials
2.1. Geometry description

We consider a periodic permeable material whose fluid network is connected and
saturated with a Newtonian fluid. Its frame is made of a very stiff skeleton onto which
highly flexible thin flat films are fixed, as illustrated by figure 1. The characteristic
length associated with the pores (or the period of the microstructure) is denoted as l.
We consider relatively simple pore geometries for which a single characteristic size
determines the fluid flow, i.e. no extreme geometrical contrasts in the pore space are
considered. The volumes of the fluid network, the stiff solid and the representative
elementary volume (REV) are Ωf , Ωs and Ω respectively. The surface of the stiff
solid is denoted as Γs.

On the other hand, it is assumed that the in-plane dimension of the films, h, is of
the same order of magnitude as the period of the microstructure, i.e. h=O(l), while
their thickness, t, is much smaller than the in-plane dimension, i.e. t� h. Therefore,
the volume of the films can be neglected and the porosity of the material is calculated
as φ = Ωf /Ω . Moreover, the films are made of an isotropic elastic material. These
hypotheses allow us to model the films as Love–Kirchhoff plates (Love 1888) with
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N

FIGURE 1. Diagram of the scales of a permeo-elastic material. The thin films are clamped
to the stiff solid frame and the pore fluid network is connected.

negligible thickness and surface Γp whose behaviour is characterised by their out-of-
plane 2D bending. The edges of the films, ∂Γp, are clamped to the stiff solid frame.
This assumption can be (i) relaxed to consider other boundary conditions such as a
combination of a free condition on some parts of ∂Γp and a clamped condition on
other parts of ∂Γp or (ii) modified by considering membranes in tension instead of
plates.

We are interested in long-wavelength sound propagation in permeo-elastic media.
The macroscopic characteristic length L is related to the wavelength λ through L =
|λ|/2π , and the disparity in length scales between the macroscopic and microscopic
characteristic sizes provides the small parameter ε= l/L� 1.

2.2. Governing equations at the local scale

The equations that describe the propagation of harmonic sound waves (eiωt) in
rigid-frame porous materials are now recalled. These correspond to the linearised
equations of conservation of momentum (2.1) and mass (2.2) along with the no-slip
(2.3) boundary condition (Biot 1956a,b; Auriault et al. 1985, 2009). It should be
noted that, for the sake of clarity in the presentation, adiabatic sound propagation
is considered. However, the inclusion of thermal exchanges into the formulation is
straightforward, as it will be shown below.

div(σf )= iωρ0v in Ωf , σf = 2ηD(v)− pI, (2.1)

iω
p
γP0
+∇ · v = 0 in Ωf , (2.2)

v = 0 on Γs. (2.3)

Here, σf is the fluid stress tensor, η is the dynamic viscosity, γ is the adiabatic
exponent, D(v) is the strain rate tensor (defined through 2D(v)=grad(v)+ (grad(v))T),
v is the fluid velocity, p is the pressure and I is the second-rank unitary tensor. The
subscript 0 is used to denote equilibrium quantities.

The Love–Kirchhoff (in-vacuum) plate equations (Love 1888) are now recalled.
The scalar out-of-plane displacement of the films, u, is governed by the equations
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Acoustics of permeo-elastic materials 139

of equilibrium of transverse forces (2.4), moment balance (2.5) and the constitutive
law (2.6):

∇p · T=−ρptω2u on Γp, (2.4)
T=−divp(M) on Γp, (2.5)

M = EpI((1− ν)ep(∇pu)+ ν∇p · ∇puI) on Γp. (2.6)

Here, all of the differential operators are acting in the plane Γp of the films. This
is represented by the subscript p. For example, ∇p stands for the in-plane gradient
operator and ep(a) = (gradp(a) + (gradp(a))T)/2 is the in-plane strain tensor with,
in the present case, a = ∇pu. The transverse force and the bending moment tensor
are respectively denoted as T and M . The apparent Young’s modulus of the films
is given by Ep = E/(1− ν2), where E is the Young’s modulus and ν is the Poisson
ratio. The inertia moment is given by I = t3/12. It should be noted that the term EpI
corresponds to the flexural stiffness, and the films (in vacuum) are loaded by their
own inertia ρptω2, with ρpt being the surface density of the films. We emphasise that
under bending, the thickness of the films can be considered as constant so that they
are deformed without undergoing volume variation.

As previously mentioned, we consider that the edges of the films, ∂Γp, are clamped
to the solid boundary Γs, i.e.

u= 0 and ∇pu · n= 0 on ∂Γp, (2.7)

where n is the outward-pointing normal vector of the edges ∂Γp.
Sound propagation in permeo-elastic materials is characterised by the interaction

between the saturating fluid and the films. Consequently, the equations describing the
out-of-plane displacement of the films and the fluid flow through the material are
coupled. A two-way coupling is achieved as follows.

First, the boundary condition on the surface Γp expressing the continuity of fluid
and film velocities on both faces of the films Γ +p and Γ −p is added. The uniform
out-of-plane displacement across the film thickness allows us to express the boundary
condition as

v = iωuN on Γp, (2.8)

where, by convention, N is the outward-pointing normal vector to Γ +p . It should be
noted that the film kinematics imposes that the velocity of the fluid is orthogonal to
the films.

Second, the transverse force equilibrium equation (2.4) is modified by the stress
exerted by the fluid on the two faces of the films. The latter is given by (σf ·N+ −
σf ·N−). Hence, the normal component of the fluid loading on the films can be written
as [σf · N] · N, where [·] denotes the ‘jump’ across the interface Γp. Then, equation
(2.4) becomes

∇p · T=−ρptω2u− [σf ·N] ·N on Γp. (2.9)

It must be noticed that due to the negligible thickness of the films, the momentum
caused by the tangential stress exerted by the fluid does not modify the moment
balance equation (2.5).

In summary, the local description is given by (2.1), (2.2), (2.9), (2.5), (2.6) and
boundary conditions (2.3), (2.7) and (2.8). This is similar to that in Panasenko &
Stavre (2012) for the case of viscous fluid–thin plate interaction and periodic flow,
and that in Lebental & Bourquin (2012) for water–plate interaction in confined media.
The next section deals with the physical analysis of the local description.
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2.3. Physical analysis
This section presents the physical analysis of the local description. Assuming scale
separation, we focus on describing the most general case for which all of the
physical phenomena are present and interact at the local scale. The aim is to
derive a general model that (i) captures the contribution of the local physics to
the macroscopic behaviour of permeo-elastic media and (ii) reduces to degenerated
models in which, for example, one of the mechanisms does not significantly contribute
to the macroscopic acoustic behaviour.

As in long-wavelength sound propagation in conventional porous media (Auriault
et al. 1985, 2009; Lafarge et al. 1997), the pressure fluctuates at the macroscopic
scale, and, while the velocity and its rate of deviatoric deformation vary at the
microscopic scale, the microscopic divergence itself is of the order of the macroscopic
divergence, i.e.

∇p=O
(p

L

)
, η∇2v =O

(ηv
l2

)
and ∇ · v =O

(v
L

)
. (2.10a−c)

The richest flow regime occurs when the viscous and inertial terms balance the
pressure gradient. This means that the three terms in the oscillatory Stokes equation
(2.1) are of the same order of magnitude (Auriault et al. 1985, 2009), i.e.

O
(ηv

l2

)
=O(ρ0ωv)=O

(p
L

)
. (2.11)

In addition, the temporal relative variations of the pressure are balanced out by the
rate of volume variations (Auriault et al. 1985, 2009), i.e.

O
(
ω

p
γP0

)
=O

(v
L

)
. (2.12)

For permeo-elastic media, the case of interest occurs when the films are strongly
interacting with the fluid. Due to the continuity of fluid and film velocities (2.8), one
necessarily has that

O(v)=O(ωu). (2.13)

This implies that the velocity of the films varies at the local scale. In turn, this leads
us to consider that the transverse force and the moment bending tensor also vary at
the local scale, i.e.

O(M)=O
(

EpIu
l2

)
, O(T)=O

(
M
l

)
, and O(∇p · T)=O

(
T
l

)
. (2.14a−c)

The most interesting case corresponds to elasto-inertial fluid–film interaction.
According to the previous estimates, this leads us to consider that the terms in
(2.9) are of the same order of magnitude, i.e.

O
(

T
l

)
=O(ρptω2u)=O

(ηv
l

)
=O

(
l
L

p
)
. (2.15)

The last two estimates are justified as follows. Since the deviatoric viscous stress
varies at the microscopic scale, the jump of this quantity across the interface also
fluctuates at the local scale, i.e. O([ηv/l]) = O(ηv/l). However, since the pressure
fluctuates at the macroscopic scale, the jump in pressure is assessed as (p+− p−)/l=
O([p]/l)=O(p/L).
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As a final remark, in accordance with (2.11), (2.15) and (2.13), the co-existence of
inertial effects in both the fluid and the films leads to O(ρptωuω/l)=O(ρ0ωv), which
results in O(ρpt/h)=O(ρ0).

2.4. Homogenisation methodology
The scale separation between the wavelength and the period size allows us to use the
two-scale asymptotic homogenisation method (Sanchez-Palencia 1980; Auriault et al.
2009) to derive the equivalent macroscopic description. To represent the evolution
at the two spatial scales, one can introduce the following two dimensionless space
variables: x/L= x∗ and x/l= y∗, where x stands for the usual space variable. The space
variables x∗ and y∗ are associated with the variations at the wavelength and period
scales respectively. One can equivalently use the two dimensional space variables
x = Lx∗ and y = Ly∗ = xL/l = ε−1x by taking L as the reference length. It then
follows that any quantity Q is considered to be a function of (x, y), i.e. Q=Q(x, y).
This brings as a consequence that the usual gradient operator ∇x is changed into
∇(xy) = ∇x + ε

−1∇y (and ∇2
(xy) = ∇

2
x + 2ε−1∇xy + ε

−2
∇

2
y ). To reflect the physics of

the phenomena, the use of two space variables (x, y) should be combined with a
rescaling of the usual equations based upon a single space variable. The reason for
the rescaling lies in the fact that when expressed with the two space variables (x, y),
the actual physical gradient of a quantity Q that varies at the large scale, i.e. ∇xQ,
becomes ∇(xy)Q. On the other hand, if the quantity varies at the local scale, the
actual physical gradient ∇yQ has to be expressed as ε∇(xy)Q. Therefore, the gradient
of variables oscillating at the local scale should be rescaled. For instance, ∇2v should
be rewritten as ε2

∇
2
(xy)v(x, y) to express that the fluid velocity actually varies at the

pore scale.
Using the estimates identified in the physical analysis, equations (2.1), (2.2),

(2.9), (2.5), (2.6) and boundary conditions (2.8), (2.3) and (2.7) are rewritten in the
following two-space-variable formulation in rescaled form. It should be noted that
we adopt the usual homogenisation convention which consists of keeping the same
notation as for the single-space-variable formulation for both the variables and the
gradient operator. Therefore, in (2.16)–(2.23), ∇ stands for ∇(xy), v represents v(x, y),
etc.

ε2div(2ηD(v))= iωρ0v +∇p in Ωf , (2.16)

iω
p
γP0
+∇ · v = 0 in Ωf , (2.17)

v = 0 on Γs, (2.18)
v = iωuN on Γp, (2.19)

ε∇p · T=−ρptω2u− ε[2ηD(v) ·N] ·N+ ε−1
[pI ·N] ·N on Γp, (2.20)

T=−εdivp(M) on Γp, (2.21)
M = ε2EpI((1− ν)ep(∇pu)+ ν∇p · ∇puI) on Γp, (2.22)

u= 0 and ε∇pu · n= 0 on ∂Γp. (2.23)

It should be noted that in the rescaled system, the jump in pressure is explicitly of the
order of the pressure O(p). However, it has been shown in the previous section that,
physically, the jump in pressure is one order smaller than the pressure. Therefore, to
satisfy this physical estimation, the jump in pressure in (2.20) should be rescaled as
ε−1
[p] =O(p).

According to the standard homogenisation procedure, the physical variables are
looked for in the form of asymptotic expansions in powers of the small parameter
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ε as Q(x, y) =
∑
∞

i=0 ε
iQ(i)(x, y), where Q = v, p, u. These are then substituted into

(2.16)–(2.23) and the terms of the same order are identified. This procedure based
upon the physical analysis ensures that the limiting description obtained when ε→ 0
keeps a physics of the same nature as in the real situation where the scale separation
is finite.

2.5. Fluid–structure interaction cell problem

At ε−1, it follows from the equations of conservation of momentum that ∇yp(0)= 0 in
Ωf and [p(0)] = 0 on Γp. This means that the pressure is a macroscopic variable, i.e.
p(0)= p(0)(x). According to the physical analysis, this result is consistent with the fact
that the films are not loaded by the leading-order pressure.

Further identification leads to the following fluid–structure interaction cell problem
(with σ

(1)
f = 2ηDy(v

(0))− p(1)I):

divy(σ
(1)
f )= iωρ0v

(0)
+∇x p(0) in Ωf , (2.24)

∇y · v
(0)
= 0 in Ωf , (2.25)

v(0) = 0 on Γs, (2.26)
v(0) = iωu(0)N on Γp, (2.27)

∇yp · T(0)
=−ρptω2u(0) − [σ (1)

f ·N] ·N on Γp, (2.28)

T(0)
=−divyp(M (0)) on Γp, (2.29)

M (0)
= EpI((1− ν)eyp(∇ypu(0))+ ν∇yp · ∇ypu(0)I)= EpIM(u(0)) on Γp, (2.30)

u(0) = 0 and ∇ypu(0) · n= 0 on ∂Γp. (2.31)

This linear problem, whose unknowns are v(0), p(1) and u(0), is forced by the
macroscopic pressure gradient ∇x p(0). To further investigate this cell problem, it
is convenient to derive its associated variational formulation.

We consider the vectorial space W of complex velocity fields w defined in Ωf ∪Γp
such that w is Ω-periodic, divergence free ∇y ·w= 0 in Ωf , with w= 0 on Γs, w=wN
on Γp, and w= 0 and ∇ypw · n= 0 on ∂Γp. To take advantage of the properties of a
Hilbert space, let us introduce the following scalar product on W (it should be noted
that w is the complex conjugate of w):

(v,w)=
∫
Ωf

Dy(v) : Dy(w) dΩ, ‖w‖2
= (w,w). (2.32)

This expression provides a norm since ‖w‖2
= 0 implies that Dy(w)= 0. Therefore, w

is a rigid-body field which reduces to w= 0 when taking into account the boundary
condition on Γs. Equipped with this norm, the space W is a Hilbert space.

The variational formulation of the fluid–structure interaction cell problem is
obtained by (i) multiplying the equation of conservation of momentum in the fluid
(2.24) by the conjugate of w ∈ W and integrating it over Ωf , (ii) multiplying the
momentum balance of the film (2.28) (expressed in terms of the velocity of the films
v(0)= iωu(0)) by w and integrating it over Γp and (iii) adding the two integrals. Further
use of the divergence theorem, boundary conditions on Γs and Γp, and periodicity
leads to the following result (see appendix A, where the mathematical details of the
derivation are provided):

∀w ∈W, a(v(0),w)= b(w), (2.33)
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where

a(v(0),w)=

V︷ ︸︸ ︷
η

∫
Ωf

2Dy(v
(0)) : Dy(w) dΩ +

If︷ ︸︸ ︷
iωρ0

∫
Ωf

v(0) ·w dΩ

+ iωρpt
∫
Γp

v(0)w dΓ︸ ︷︷ ︸
Ip

+
EpI
iω

∫
Γp

N (v(0),w) dΓ︸ ︷︷ ︸
E

, (2.34)

with
N (v(0),w)= (1− ν)eyp(∇ypv

(0)) : eyp(∇ypw)+ ν∆ypv
(0)∆ypw (2.35)

and
b(w)=−

∫
Ωf

∇x p(0) ·w dΩ. (2.36)

From now on, we will refer to V , If , E and Ip as the terms respectively associated
with the effects of viscosity and inertia of the fluid, and elasticity and inertia of the
films, as indicated in (2.34).

The form a in (2.33) is sesquilinear while b is semi-linear. In addition, by taking
w= v(0) in (2.34), one obtains

a(v(0), v(0))= η
∫
Ωf

2|Dy(v
(0))|2 dΩ + iωρ0

∫
Ωf

|v(0)|2 dΩ

+
EpI
iω

∫
Γp

((1− ν)|eyp(∇ypv
(0))|2 + ν|∆ypv

(0)
|
2) dΓ + iωρpt

∫
Γp

|v(0)|2 dΓ . (2.37)

The term a is a coercive form on W since |a(v(0), v(0))| > 2η‖v(0)‖. The Lax–
Milgram lemma ensures the existence and uniqueness of the solution v(0) in Ωf and,
by continuity, that of v(0) on Γp.

Since (2.33) is a linear problem forced by the macroscopic pressure gradient, the
solution v(0) can be written as a linear combination of the three particular Ω-periodic
fields k J(y, ω) corresponding to η−1∇x p(0) = eJ , where the eJ (with J = 1, 2, 3) are
the unitary basis vectors, i.e.

v(0) =−
k̂(y, ω)
η
· ∇x p(0), i.e. v

(0)
i =−

k̂J
i (y, ω)
η
· (∇xp(0))J in Ωf , (2.38)

v(0) = v(0) ·N on Γp, (2.39)

where the tensor k̂(y, ω) includes visco-elasto-inertial effects. It should be noted that
(i) this quantity depends on the geometry of the material and the physical properties
of the films and the saturating fluid, and (ii) the motion of the films is linearly related
to the macroscopic pressure gradient.

From the fluid velocity field and the equation of conservation of momentum, one
can deduce the expression of the pressure field as

p(1) =−π̂ J(y, ω) · (∇xp(0))J + p̂(1)(x) in Ωf , (2.40)

where the π̂ J(y, ω) are the particular solutions for η−1∇x p(0) = eJ and p̂(1)(x) is an
integration constant.
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Several remarks regarding the results presented in this section can be made as
follows.

(i) The first and second integrals in the term a(v(0), v(0)) in (2.37) respectively
represent the viscous dissipative power and the inertial power developed in the fluid.
The third and fourth integrals account for the elastic stored power and the inertial
power in the films respectively. These powers are balanced by the one developed by
the pressure gradient, which is accounted for by b(v(0)).

(ii) The terms associated with viscosity and inertial effects in a(v(0), v(0)) (i.e. the
first and second integrals) along with the term in b(v(0)) associated with the pressure
gradient correspond to those appearing in the variational formulation of the cell
problem found in conventional porous materials. Here, it is of interest to compare a
permeo-elastic material with the two following conventional porous materials having
the same rigid frame: (1) one in which extremely stiff films are attached and (2)
another one where no films are attached. In these three materials, the kinematic
conditions imposed on the velocity fields differ only by the condition set on Γp. The
latter corresponds to the no-slip condition v(0) = 0 on Γp for extremely stiff films,
v(0) = v(0)N on Γp for elastic films, and continuous fluid velocity in the absence of
films. Consequently, there is no direct correspondence between the classical and the
present variational formulation as the spaces of solution differ. However, in the three
cases, the velocity fields are continuous in Ωf ∪ Γp. Regarding the fluid stress fields,
these are continuous within the fluid space Ωf but may differ on the two sides of
Γp. However, since the films introduce internal solid boundaries, the condition of
continuity across Γp does not have to be considered for the fluid phase. Due to these
considerations about the smoothness of the fields in Ωf , and taking into account the
different kinematic restrictions, one obtains that the spaces of velocity fields, defined
strictly in Ωf , are structured as Wr ⊆ W ⊆ W, where Wr and W are the spaces
associated with the material with extremely stiff films and without films respectively.
As a consequence, the static permeability (respectively high-frequency tortuosity) of
the material with extremely stiff films is smaller (respectively larger) than that of the
material with no films.

(iii) The presence of the films introduces two effects that are a direct consequence
of the fluid–film interaction. These are represented by the elastic term E , which does
not appear in the conventional Darcy’s cell problem and introduces an additional
mechanism, and the inertial term Ip, which is of a similar nature to that in the fluid.

(iv) In contrast to the usual visco-inertial description in conventional porous media
which excludes the possibility of inner resonances, the fact that the elastic effects can
be balanced out by the inertial ones can lead to inner resonances that result in atypical
behaviour.

(v) Finally, we recall that in standard poroelasticity, the elastic effects are of
different nature. Specifically, the solid displacement varies at the macroscopic scale
so that the fluid flow cell problem is not affected by the deformation of the solid.
This brings as a consequence that the visco-inertial permeability does not depend on
the solid elasticity. On the other hand, the effective elasticity of the skeleton results
from a cell problem defined in the solid domain and forced by the macroscopic strain
and fluid pressure. Conversely, in permeo-elastic materials, the fluid flow is affected
by the elastic deformation of the films, which is forced by the pressure gradient.

2.6. Macroscopic acoustic description
The leading-order mass balance equation is given by

iω
p(0)

γP0
+∇x · v

(0)
+∇y · v

(1)
= 0 in Ωf . (2.41)
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Integration of this equation over Ωf yields∫
Ωf

iω
p(0)

γP0
dΩ +

∫
Ωf

∇x · v
(0) dΩ +

∫
Ωf

∇y · v
(1) dΩ = 0. (2.42)

The rightmost term in (2.42) can be written as a surface integral by using the
divergence theorem. The resulting integral is null because of periodicity, null
velocity v(1) = 0 on Γs and the continuity of the fluid velocity across the interface
v(1) ·N+ = v(1) ·N− = v(1) on Γp.

Thus, the macroscopic description is given by

∇x · 〈v
(0)
〉 + iω

p(0)

γP0
= 0, (2.43)

〈v(0)〉 =−
k(ω)

η
· ∇x p(0), (2.44)

where the average operator is defined by

〈·〉 =
1
Ωf

∫
Ωf

· dΩ (2.45)

and the effective visco-elasto-inertial permeability k(ω) is calculated as

k(ω)= 〈k̂(y, ω)〉. (2.46)

It should be noted that the permeability is related to the usual permeability k
determined by spatially averaging the velocity field with respect to the whole material
volume through k =φk . In this paper, we will systematically use the term permeability
to refer to that calculated by spatially averaging the velocity field with respect to the
pore volume, i.e. that calculated using the operator (2.45).

Equation (2.43) corresponds to the classical case of adiabatic mass balance in
conventional rigid-frame porous material. This is because (i) the solid frame and
the films in bending experience no volume variation and (ii) the thermal exchanges
have been neglected for the sake of clarity in the presentation. It should be noted
that accounting for heat exchanges would lead to replacement of the adiabatic bulk
modulus γP0 by the dynamic bulk modulus K(ω). The latter can be calculated, for
example, using a semi-phenomenological model, as proposed in Lafarge et al. (1997).

Conversely, the fluid flow constitutive law given by (2.44) does not correspond to
the classical dynamic Darcy’s law since the elasto-inertial effects of the films are
accounted for in the associated effective tensor k , which is symmetric. This property
is inherited from the symmetry of the form (2.34).

Depending on the frequency range and material parameters, it may be convenient
to rewrite (2.44) in physically equivalent forms expressed in terms of the effective
dynamic flow resistivity H(ω) or apparent dynamic density ρ(ω) tensors,

H(ω) · 〈v(0)〉 =−∇xp(0), (2.47)
−ω2ρ(ω) · 〈u(0)〉 =−∇x p(0), (2.48)

where 〈u(0)〉 = 〈v(0)〉/iω is the mean fluid displacement.
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The effective dynamic flow resistivity and apparent dynamic density are related to
the visco-elasto-inertial permeability by

ρ(ω)=
η

iω
k−1(ω)=

H(ω)

iω
. (2.49)

Combination of the macroscopic mass balance (2.43) and the constitutive fluid flow
law (2.44) leads to the following wave equation:

∇x ·

(
k(ω)

η
· ∇x p(0)

)
= iω

p(0)

K(ω)
. (2.50)

Considering the case of isotropic permeo-elastic materials, one has that k =KI . Then,
the characteristic impedance Zc, wavenumber kc and speed of sound C through the
material are given by

Zc(ω)=

√
η

iωK
K, kc(ω)=ω

√
η

iωK
1
K

and C(ω)=
ω

kc(ω)
=

√
iωK
η

K. (2.51a−c)

To understand the acoustical properties of permeo-elastic materials, it is required to
investigate those of the visco-elasto-inertial permeability tensor. This is developed in
the next section.

3. Properties of the visco-elasto-inertial permeability

This section deals with the analysis of the effective properties of permeo-elastic
materials. In this type of material, the fluid flow is affected by three mechanisms
of different nature, which are related to the effects of viscosity V , elasticity E and
inertia of the fluid and the films (If and Ip). In general, these three mechanisms
are involved and induce complex fluid flow regimes. To get an insight into this,
the analysis of the behaviour will be carried out in two steps. In the first one,
the different characteristic frequencies that determine the material behaviour will
be identified. Second, asymptotic analyses with reference to the already identified
characteristic frequencies will be conducted in an attempt to describe, in a simplified
manner, the material behaviour in different regimes.

3.1. Characteristic frequencies

In contrast to the classical case of rigid-frame porous media, where only a
visco-inertial characteristic frequency can be identified, in permeo-elastic materials,
the three mechanisms involved give rise to at least three characteristic frequencies
that determine the behaviour of the material. These frequencies can be estimated
by considering each one of the three possible combinations of two mechanisms,
i.e. visco-inertial, visco-elastic and elasto-inertial. Indeed, when only two of the
mechanisms are involved, a specific fluid flow regime arises, which is characterised
by a frequency that determines the transition between the two degenerated regimes
driven by a single mechanism, i.e. purely viscous, elastic and inertial regimes.
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3.1.1. Visco-inertial characteristic frequency
Let us consider first the case where the elastic effects E are negligible. In this visco-

inertial regime, equation (2.33) evaluated at w= v(0) can be rewritten as

〈2η|Dy(v
(0))|2〉 + iωρ0〈|v

(0)
|
2
〉 + iωρpt

1
Ωf

∫
Γp

|v(0)|2 dΓ = −∇x p(0) · 〈v(0)〉

= η〈v(0)〉 · k−1(ω) · 〈v(0)〉. (3.1)

From this equation, one can deduce that the real part of ηk−1(ω) is the density of
viscous dissipated power, while the imaginary part corresponds to the density of the
kinetic power (for unitary flux).

In a close analogy to the Biot frequency in conventional porous materials, one can
define a characteristic frequency ωv that determines the transition from the viscous to
the inertial regime. At this frequency, the viscous dissipated and kinetic powers are
equal, i.e. the real and imaginary parts of k(ω) have the same magnitude.

Focusing on the case of isotropic permeo-elastic media, the permeability at low
frequency is denoted by K(ω → 0) = K0 and the effective mass density at high
frequency by ρ(ω→∞) = %α∞, where α∞ is a geometric factor of the fluid–film
system representing its high-frequency tortuosity and % = ρ0(1 + ρptΓp/ρ0Ωf ) is its
mean density. Considering the low- and high-frequency limits of (3.1), these terms
are given by

η

K0
= lim

ω→0

〈2η|Dy(v
(0))|2〉

|〈v(0)〉|2
, (3.2)

α∞ = lim
ω→∞

 〈|v(0)|2〉|〈v(0)〉|2
+
ρp

ρ0

t
Ωf

∫
Γp

|v(0)|2 dΓ

|〈v(0)〉|2

(1+
ρpt
ρ0

Γp

Ωf

)−1

. (3.3)

As in the conventional case, the visco-inertial characteristic frequency ωv is estimated
by considering that at this frequency, the viscous dissipation power is approximated by
its low-frequency regime value, while the kinetic power by its high-frequency regime
one. Equating these two terms leads to

ωv =
η

K0%α∞
. (3.4)

3.1.2. Visco-elastic characteristic frequency
Let us now consider the case where the inertial effects If and Ip are negligible. In

this visco-elastic regime, equation (2.33) evaluated at w= v(0) can be rewritten as

〈2η|Dy(v
(0))|2〉 +

EpI
iω

1
Ωf

∫
Γp

N (v(0), v(0)) = −∇x p(0) · 〈v(0)〉

= η〈v(0)〉 · k−1(ω) · 〈v(0)〉. (3.5)

This equation shows that in the visco-elastic regime, the real part of ηk−1(ω) is
the density of viscous dissipated power, while the imaginary part corresponds to the
density of the elastic power in the films (for unitary flux).
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One can define a characteristic frequency ωe that determines whether the viscous
or elastic effects dominate. At this frequency, the viscous dissipated power and elastic
power match, which occurs in this regime when the real and imaginary parts of k(ω)
have the same magnitude.

For simplicity, we consider again isotropic permeo-elastic media. When the viscous
dissipated power (i.e. the first term on the left-hand side of (3.5)) vanishes, one obtains
that the effective permeability tends to

lim
η→0

K
η
=

iω
EpIθ

, with θ =Θ|η→0 and Θ =

1
Ωf

∫
Γp

N (v(0), v(0))

|〈v(0)〉|2
, (3.6a,b)

where the parameter θ is a geometrical factor related to the deformation of the films
which can be estimated, applying a dimensional analysis to (2.35) and (3.6), as of the
order of θ =O(Γp/Ωf h4).

It should be noted that the permeo-elastic constitutive law (3.6) takes the form of
an elastic constitutive law determined by the film properties, i.e.

〈u(0)〉EpIθ =−∇x p(0). (3.7)

Following the same approach as in the previous case, one deduces that the visco-
elastic characteristic frequency is estimated by

ωe =
K0

η
EpIθ =O

(
Ep

η

( t
h

)3
)
. (3.8)

It should be noted that this estimation has made use of the estimations of θ , K0 =

O(l2) and I =O(t3).

3.1.3. Elasto-inertial characteristic frequencies
We now consider the case where the viscous effects V can be disregarded. From

(3.9), which is obtained by evaluating (2.33) at w = v(0), two elasto-inertial regimes
will be identified

EpI
iω

1
Ωf

∫
Γp

N (v(0), v(0)) dΓ + iωρ0

(
〈|v(0)|2〉 +

ρp

ρ0

t
Ωf

∫
Γp

|v(0)|2 dΓ

)
=−∇x p(0) · 〈v(0)〉.

(3.9)
This formulation shows that the elastic and inertial effects (in both the fluid and
the films) can balance each other at certain frequencies. These correspond to the
resonances of the coupled fluid–film system. Attention is paid to the fundamental
frequency ωg, which can be estimated using a dimensional analysis as

ω2
g =

EpIθg

%α∞
=ωeωv

θg

θ
, (3.10)

where θg =Θ|ω→ωg is a geometrical factor that accounts for the modal shape of the
films. It should be noted that (3.10) and (3.6) constitute an implicit system. Hence, it
is generally not possible to give an explicit expression but an estimation of the order
of magnitude of θg =O(Γp/h4Ωf )=O(θ).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.505


Acoustics of permeo-elastic materials 149

In order to reveal the behaviour of the material at ωg, one can use (2.44), (3.6) and
(3.3) to rewrite the variational form (2.33), for isotropic materials, as

〈v(0)〉 · 〈v(0)〉
EpIθ
iωη

θg

θ
+ 〈v(0)〉 · 〈v(0)〉

iω%α∞
η

= −
∇x p(0)

η
· 〈v(0)〉

= 〈v(0)〉 ·K−1(ω) · 〈v(0)〉, (3.11)

where the parameters α∞ and θg take specific values around the frequency of interest.
Then, by simplifying the velocity terms, one can estimate the dynamic elasto-inertial
permeability as

K(ω)∼=K0
ωv

iω
1

1−
ωeωv

ω2

θg

θ

, (3.12)

which, considering the dependence of ωg on ωe and ωv, leads to the following
constitutive law:

〈v(0)〉 ∼=−
K0

η

ωv

iω
1

1−
ω2

g

ω2

· ∇x p(0). (3.13)

This equation allows us to conclude that at the resonance frequency ωg, the
elasto-inertial permeability tends to infinity. Consequently, the apparent dynamic
density tends to zero. Physically, this means that the averaged velocity takes very
large values in response to a finite pressure gradient.

It must be emphasised that the parameters α∞ and θg in (3.11) take specific
values around the resonance frequency ωg. At lower frequencies, the behaviour of
the fluid–film system is mainly determined by the inertia of the fluid, which is
characterised by a tortuosity factor α′

∞
, i.e. the elasto-inertial permeability behaves as

K(ω) ∼= K0ω
′

v/iω, where ω′v = η/ρ0K0α
′

∞
. This expression shows that the imaginary

part of the elasto-inertial permeability is negative and its magnitude is a decreasing
function of frequency. As the frequency increases, this response overlaps with that
described by (3.13). Such an overlap, which is a product of the atypical modification
of the effective inertia of the fluid–film system by the elasticity and inertia of
the films, leads to the identification of a characteristic frequency ω0 at which the
elasto-inertial permeability becomes null, while the apparent dynamic density becomes
singular. The frequency ω0 can be estimated from (3.14) and is given by (3.15).

K(ω0)∼=K0
ωv

iω0

ω′vωv + 1

1−
ω2

g

ω2
0

= 0, (3.14)

ω0 =
ωg√

1+
ωv

ω′v

=
ωg√

1+
ρ0

%

α′
∞

α∞

. (3.15)

It should be noted that these atypical situations are exclusive to the elasto-inertial
regime. In visco-inertial or visco-elastic regimes, the phase shift between the two
respective mechanisms prevents the occurrence of resonance. This brings as a
consequence that the effective permeability does not present poles.
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Using the expressions of the characteristic frequencies, the variational formulation
(2.33) can be rewritten in the following equivalent form:

∀w ∈W, A(v(0),w)= B(w), (3.16)

where

A(v(0),w) = K0

∫
Ωf

2Dy(v
(0)) : Dy(w) dΩ +

iω
ωv

1
α∞%

∫
Ωf∪Γp

ρ̃v(0) ·w dΩ

+
ωe

iω
1
θ

∫
Γp

N (v(0),w) dΓ (3.17)

and

B(w)=−
K0

η
∇x p(0) ·

∫
Ωf

w dΩ. (3.18)

Here, we have introduced the local density distribution ρ̃ = ρ0 + ρptδΓp , where δΓp is
the Dirac distribution associated with the film surface Γp. It should be noted that the
mean density of the fluid–film system is given by %=Ω−1

f

∫
Ωf∪Γp

ρ̃ dΩ .
Alternatively, introducing the elasto-inertial frequency ωg, A can be expressed as

A(v(0),w) =
ωe

iω
θg

θ

(
1
θg

∫
Γp

N (v(0),w) dΓ −
ω2

ω2
g

∫
Ωf∪Γp

ρ̃

ρ0
v(0) ·w dΩ

)

+K0

∫
Ωf

2Dy(v
(0)) : Dy(w) dΩ. (3.19)

Considering the complexity of the possible regimes in permeo-elastic media, it is
convenient to investigate them through asymptotic analyses. These will be performed
by expanding the local solutions in terms of dimensionless parameters identified in
(3.17) and (3.19). In the next sections, we will consider the case of quasi-rigid films
(i.e. ω/ωe → 0) and extremely flexible films (i.e. ωe/ω → 0) in both viscous (i.e.
ω/ωv→ 0) and inertial regimes (i.e. ωv/ω→ 0).

We have the following remarks.

(i) We emphasise that a mixed regime in which viscous, inertial and elastic effects
are of a similar order of magnitude exists. In this case, highly damped resonances
can be observed, as will be shown numerically further below. It should be noted,
however, that no analytical estimation of the characteristic frequency associated
with this phenomenon can be provided. This is because the effective properties
of the material cannot be approximated by their asymptotic values in this mixed
regime.

(ii) For anisotropic materials, K0, α∞, θ and θg are no longer scalars and have to be
replaced by tensors. In such a case, the estimates of the characteristic frequencies
take the same functional form but their parameters are assessed by the norm of
the respective tensors involved. For simplicity, we have kept the scalar notation
throughout § 3.1 to express the norm of the tensors, which is an approximation
valid as long as the material is moderately anisotropic.
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3.2. Quasi-rigid films
The behaviour of the effective properties of permeo-elastic materials is investigated
using an asymptotic analysis. First, a dimensionless parameter α= iω/ωe is identified
from the variational formulation (3.16). The parameter α tends to zero when ω�ωe.
This is satisfied when either EpI→∞, which corresponds to the case of quasi-rigid
films, or ω→ 0. This situation leads to a specific fluid–film interaction cell problem,
as detailed in appendix B. The analysis is performed by expressing the local fields in
the form of expansion series of the type v(0) =

∑
∞

i=0 α
iv[i], etc. The solution of the

resulting problems at the first two orders of expansion in α yields for ω/ωe� 1 (see
appendix B for the details of the resolution)

〈v(0)〉 ∼=−

(
k r(ω)

η
+

iω
ωe

Br(ω)

η

)
· ∇x p(0) =−

(
k r(ω)

η
+

iω
Ep

Br(ω)

IK0θ

)
· ∇x p(0), (3.20)

where k r(ω) represents the standard dynamic permeability of a material with perfectly
rigid films. The symmetric tensor Br(ω) (in m2) is related to the fluid flow generated
by the elastic motion of the films in response to the excitation by the fluid flow at
the leading order (at α0).

From (3.20), it is concluded that (i) the elasticity of the films acts as a corrector
of the permeability and (ii) the classical dynamic Darcy’s law is recovered for large
values of the Young’s modulus and at low frequencies.

Equation (3.20) can be written in the alternative forms (2.47) and (2.48). These
will be used in §§ 3.2.1–3.2.3 to investigate the response of the fluid–film system in
different fluid flow regimes.

−∇x p(0) = Hr(ω) · 〈v
(0)
〉 ∼= ηk−1

r (ω)

(
I −

iω
ωe

Br(ω)k
−1
r (ω)

)
· 〈v(0)〉, (3.21)

−∇x p(0) =−ω2ρr(ω) · 〈u(0)〉 ∼=−ω2ηk−1
r (ω)

(
I

iω
−

1
ωe

Br(ω)k
−1
r (ω)

)
· 〈u(0)〉. (3.22)

In what follows, the analysis is conducted for an isotropic material (or for a
preferential flow direction), i.e. the tensors involved become scalar. For example,
the viscous permeability tensor reads as k r(ω) = Kr(ω)I . The analysis will be made
with reference to figure 2. This figure shows a conceptual diagram representing the
asymptotic behaviour of permeo-elastic materials with respect to the visco-inertial
frequency ωvr for the case ω � ωe. It will become apparent throughout the next
subsections under what conditions these regimes are achieved.

3.2.1. Quasi-rigid films – visco-elastic regime (a1 : V + E)
For frequencies much smaller than the viscous characteristic frequency, i.e. ω �

ωvr = η/Kr0ρ0α∞r, equation (3.20) becomes (with Gi =−∇x p(0) · ei and ω�ωe)

〈v
(0)
i 〉
∼=

Kr0

η

(
1+

iω
ωe

Br0

Kr0

)
Gi. (3.23)

This equation can be rewritten in the alternative form (2.47) as

µa1(ω)

Kr0
〈v
(0)
i 〉
∼=Gi, with

1
µa1(ω)

=
1
η
+

iω
ωeη

Br0

Kr0
. (3.24)
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FIGURE 2. Rheological diagram representing the combination of dashpot (V , ), spring
(E , ) and mass (If ,E) describing the acoustic behaviour of permeo-elastic materials
with respect to the visco-inertial frequency ωvr for the case ω�ωe (i.e. quasi-rigid films).

This equation shows that the flow is characterised by (i) the standard intrinsic
permeability of the pore space with the films being perfectly rigid, Kr0, and (ii) a
saturating effective fluid that behaves rheologically as a Maxwell visco-elastic fluid
(Boutin & Auriault 1990; López de Haro, Del Río & Whitaker 1996) with parameter
µa1(ω). This parameter corresponds to a dashpot of viscosity η connected in series
with a stiff spring Ea1 =ωeηKr0/Br0=O(EpI/h3). This behaviour is represented by a1
(i.e. V + E) in figure 2. The combination in series of the elements is consistent with
the fact that the small deformation of the stiff films results from the stress imposed
by the fluid flow. Furthermore, the fluid–film system behaviour can be alternatively
analysed by rewriting (3.24) as 1

Ra1

+
1

ka1

iω


−1

〈v
(0)
i 〉 =

 1
η

Kr0

+
1
ωeη

iωBr0


−1

〈v
(0)
i 〉
∼=Gi, (3.25)

where the resistivity is given by Ra1 = η/Kr0=Hr0 and the elasticity is represented by
the stiff spring ka1 =ωeη/Br0 = EpIθK0/Br0.

The effective dynamic flow resistivity of the material for ω� ωvr and ω� ωe is
then given by

Ha1(ω)
∼=Hr0

(
1−

iω
ωe

Br0

Kr0

)
. (3.26)

This expression shows that the imaginary part of the effective dynamic flow resistivity
takes negative values due to the contribution of the elasticity of the films. When
using the positive convention eiωt, as in this work, such a behaviour does not
exist in conventional porous materials. The negativity of the imaginary part of
the effective dynamic flow resistivity leads to a negative real part of the apparent
dynamic density, as shown in (3.27). It is worth mentioning both that this behaviour
has been observed in the so-called acoustic metamaterials (see, for example, the
review papers by Cummer, Christensen & Alù 2016 and Ma & Sheng 2016) and that
the homogenisation-based approach used in this work can provide a way of assessing
their acoustical properties.

ρa1(ω)
∼=−

Hr0

ωe

Br0

Kr0
+

Hr0

iω
. (3.27)
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3.2.2. Quasi-rigid films – visco-elasto-inertial regime (b1 : V ‖ If + E)
When the fluid flow enters into the visco-inertial regime, the effects of the inertia

of the fluid start to be manifested. In this regime, equation (3.20) takes the following
form valid for ω�ωe and ω<ωvr:

〈v
(0)
i 〉
∼=

Kr0

η

(
1+ iω

(
1
ωe

Br0

Kr0
−

1
ωvr

αr0

α∞r

))
Gi, (3.28)

where αr0 is the static tortuosity (Pride, Morgan & Gangi 1993).
This equation can be rewritten as

µb1(ω)

Kr0
〈v
(0)
i 〉
∼=Gi, with

1
µb1(ω)

=
1

η+ iω
ηαr0

ωvrα∞r

+
iωBr0

ωeηKr0
. (3.29)

The fluid flow is characterised by (i) the standard intrinsic permeability of the pore
space with the films being perfectly rigid, Kr0, and (ii) a saturating effective fluid that
behaves as a visco-elasto-inertial fluid with effective modulus µb1(ω).

The following alternative form allows us to conclude that the fluid–film system
behaves as a parallel dashpot–mass system (with Rb1=Ra1 and mb1=ηαr0/Kr0ωvrα∞r=

ρ0αr0) connected in series to a stiff spring (kb1 = ka1). This behaviour is represented
by b1 (i.e. V ‖ If + E) in figure 2. 1

Rb1 + iωmb1

+
1

kb1

iω


−1

〈v
(0)
i 〉 =

 1
η

Kr0
+ iω

αr0η

ωvrα∞rKr0

+
1
ωeη

iωBr0


−1

〈v
(0)
i 〉
∼=Gi.

(3.30)
The effective dynamic flow resistivity and apparent dynamic density are given by

Hb1(ω)
∼=Hr0 +

iω
ωvr

Hr0
αr0

α∞r

(
1−

ωvr

ωe

Br0

Kr0

α∞r

αr0

)
, (3.31)

ρb1(ω)
∼=

Hr0

ωvr

αr0

α∞r

(
1−

ωvr

ωe

Br0

Kr0

α∞r

αr0

)
+

Hr0

iω
. (3.32)

Considering the real part of (3.32), one can conclude that the fluid–film system
behaves as an effective Maxwell fluid when the elastic effects dominate over those
of the inertia of the fluid at low frequencies. Such a situation is observed when
ωvr/ωe >Kr0αr0/Br0α∞r =O(1). The opposite case, i.e. elasticity effects weaker than
inertial ones, leads to the fluid–film system behaving as an effective Newtonian
fluid with a modified static tortuosity that accounts for the weak elastic effects. On
the other hand, the real part of the apparent dynamic density can become null if
ωeBr0α∞r/ωvrKr0αr0 = O(1). This condition determines the transition from elasticity-
to inertia-dominated behaviour or from negative to positive real part of the apparent
dynamic density.

3.2.3. Quasi-rigid films – elasto-inertial regime (c1 : If ‖ E)
Viscosity effects can be disregarded for frequencies ω�ωvr. Then, keeping in mind

that ω�ωe, equation (3.20) can be approximated by

〈v
(0)
i 〉
∼=

Kr0

η

(
ωvr

iω
+

iω
ωe

Br∞

Kr0

)
Gi. (3.33)
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Substituting the value of Br∞ given by (B 25), one obtains(
iωmc1 +

kc1

iω

)
〈v
(0)
i 〉 =

(
iωρ0αr∞ +

EpIθ
iω

)
〈v
(0)
i 〉
∼=Gi. (3.34)

This equation indicates that the fluid–film system behaves as a mass mc1 = ρ0α∞r and
a spring kc1 = EpIθ connected in parallel. This case corresponds to c1 (i.e. If ‖ E) in
figure 2.

The effective dynamic flow resistivity and apparent dynamic density are respectively
given by

Hc1(ω)
∼= iω

Hr0

ωvr

(
1−

ωeωvr

ω2

Kr0

K0

)
, (3.35)

ρc1(ω)
∼=

Hr0

ωvr

(
1−

ωeωvr

ω2

Kr0

K0

)
. (3.36)

This equation shows that the apparent dynamic density becomes significantly
influenced by the elasticity of the films, while in conventional porous materials
it is only determined by the inertia of the fluid. The modification appears as a
corrector that is inversely proportional to the square of frequency. It is worth noting
that when the viscosity effects (i.e. ω � ωvr) are negligible, the real part of the
apparent dynamic density will tend to zero as ω→

√
kc1/mc1 , provided that ω�ωe.

3.3. Very flexible films
The same approach as in § 3.2 is followed in this section to investigate the behaviour
of very flexible films. This situation can be studied by considering a small parameter
β =ωe/iω→ 0 identified from (3.16). This condition is satisfied when either EpI→ 0
or ω→∞. As in the previous section, the variables are looked for as expansion series
but now in terms of β. The solution of the resulting problems at the first two orders
of expansion in β yields for ω�ωe (see appendix C for the details of the resolution)

〈v(0)〉 ∼=−

(
k s(ω)

η
−
ωe

iω
Bs(ω)

η

)
· ∇x p(0), (3.37)

where k s(ω) is the dynamic permeability of a material slightly different from one
without films since a condition of normal flow on the films is imposed and its high-
frequency behaviour is determined by the inertia of the fluid and that of the films. The
term Bs(ω) represents the additional flow required to equilibrate the films which are
undergoing deformation imposed by the fluid flow at the leading order (i.e. at β0).

From (3.37), it is concluded that (i) the elasticity of the films acts as a corrector
of the permeability and (ii) a dynamic Darcy’s law slightly different from that of a
material without films is obtained when ωe/ω→ 0.

Equation (3.37) can be rewritten in the following alternative forms (see (2.47) and
(2.48)) which will be used in §§ 3.3.1–3.3.3:

Hs(ω) · 〈v
(0)
〉 = ηk−1

s (ω)
(

I +
ωe

iω
Bs(ω)k

−1
s (ω)

)
· 〈v(0)〉 =−∇x p(0), (3.38)

−ω2ρs(ω) · 〈u(0)〉 =−ω2ηk−1
s (ω)

(
I

iω
−
ωe

ω2
Bs(ω)k

−1
s (ω)

)
· 〈u(0)〉 =−∇x p(0). (3.39)
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FIGURE 3. Rheological diagram representing the combination of dashpot (V , ), spring
(E , ) and masses (If ,E and Ip,@) describing the acoustic behaviour of permeo-elastic
materials with respect to the visco-inertial frequency ωvs for the case ω� ωe (i.e. very
flexible films).

For simplicity, the analysis is further conducted for an isotropic material (or for
a preferential flow direction). Therefore, the tensors involved become scalar. For
example, k s(ω)=Ks(ω)I . The analysis will be made with reference to figure 3, which
shows a conceptual diagram representing the asymptotic behaviour of permeo-elastic
materials with respect to the visco-inertial frequency ωvs for the case ω�ωe.

3.3.1. Very flexible films – visco-elastic regime (A1 : V ‖ E)
For frequencies much smaller than the viscous characteristic frequency, i.e. ω �

ωvs = η/Ks0%α∞, equation (3.37) becomes

〈v
(0)
i 〉
∼=

Ks0

η

(
1−

ωe

iω
Bs0

Ks0

)
Gi. (3.40)

This equation can be rewritten in the following alternative form:

µA1(ω)

Ks0
〈v
(0)
i 〉
∼=Gi, with µA1(ω)= η+

ωeηBs0

iωKs0
= η+

Ep

iω
IθBs0

K0

Ks0
. (3.41)

This equation shows that the flow is characterised by (i) the permeability of the
pore space including very flexible films, Ks0, and (ii) a saturating effective fluid
that behaves rheologically as a Kelvin–Voigt visco-elastic fluid (Boutin & Auriault
1990) with parameter µA1(ω). This parameter corresponds to a dashpot of viscosity η
connected in parallel to a soft spring EK =ωeηBs0/Ks0=O(EpI/h3). The combination
of elements in parallel is consistent with the fact that the fluid is forcing the
deformation of the soft films. This behaviour, which is represented by A1 (i.e. V ‖ E)
in figure 3, can be alternatively seen by rewriting (3.41) as(

RA1 +
kA1

iω

)
〈v
(0)
i 〉 =

(
η

Ks0
+

1
iω
ωeηBs0

K2
s0

)
〈v
(0)
i 〉
∼=Gi, (3.42)

where the viscous and elastic effects are represented by RA1 = η/Ks0 and kA1 =

ωeηBs0/K2
s0 respectively.
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Recalling that ω � ωe, ω � ωvs and Hs0 = η/Ks0, the effective dynamic flow
resistivity and apparent dynamic density are given by

HA1(ω)
∼=Hs0 +

Hs0

iω
ωe

Bs0

Ks0
, (3.43)

ρA1(ω)
∼=−

Hs0

ω2
ωe

Bs0

Ks0
+

Hs0

iω
. (3.44)

These expressions show that the imaginary (respectively real) part of the effective
dynamic flow resistivity (respectively apparent dynamic density) takes negative values.
When considering the positive convention eiωt, as in this work, such a behaviour does
not exist in conventional porous materials.

3.3.2. Very flexible films – visco-elasto-inertial regime (B1 : V ‖ Ip ‖ If ‖ E)
When the fluid flow enters into the visco-inertial regime, i.e. ω<ωvs, and recalling

that ω�ωe, (3.37) takes the following form:

〈v
(0)
i 〉
∼=

Ks0

η

(
1−

iω
ωvs

αs0

α∞
−
ωe

iω
Bs0

Ks0

)
Gi, (3.45)

which can be rewritten in the following alternative form:(
RB1 + iω(mB1 +MB1)+

kB1

iω

)
〈v
(0)
i 〉

=

(
η

Ks0
+ iω

(
ρ0αs0 + ρpαs0

tΓp

Ωf

)
+

1
iω
ωeηBs0

K2
s0

)
〈v
(0)
i 〉
∼=Gi. (3.46)

It is then concluded that the fluid–film system behaves as a parallel dashpot–spring–
double-mass system, as represented by B1 (i.e. V ‖ Ip ‖ If ‖ E) in figure 3. The
parameters of the system are RB1 =RA1 , mB1 = ρ0αs0, MB1 = ρpαs0tΓp/Ωf , and kB1 = kA1 .

The effective dynamic flow resistivity and apparent dynamic density are given by

HB1(ω)
∼=Hs0 +

iω
ωvs

Hs0
α0s

α∞

(
1−

ωeωvs

ω2

α∞

α0s

Bs0

Ks0

)
, (3.47)

ρB1(ω)
∼=

Hs0

ωvs

α0s

α∞

(
1−

ωeωvs

ω2

α∞

α0s

Bs0

Ks0

)
+

Hs0

iω
. (3.48)

This equation describes the richest asymptotic behaviour of permeo-elastic media,
i.e. the one in which viscous, elastic and inertial effects are involved. It reduces to
(3.44) when the inertia of the fluid–film system is negligible in comparison to the
elasticity of the films and predicts that the real part of the apparent dynamic density
becomes null when ω=

√
kB1/(mB1 +MB1).

3.3.3. Very flexible films – elasto-inertial regime (C1 : E ‖ Ip ‖ If )
Neglecting viscosity effects (i.e. ω�ωvs) and recalling that ω�ωe, equation (3.37)

becomes

〈v
(0)
i 〉
∼=

Ks∞

η

(
1−

ωe

iω
Bs∞

Ks∞

)
Gi. (3.49)
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Substitution of the values of Ks∞ =Ks0ωvs/iω and Bs∞ (C 13) leads to(
iω(mC1 +MC1)+

kC1

iω

)
〈v
(0)
i 〉 =

(
iω
(
ρ0α∞ + ρpt

Γp

Ωf
α∞

)
+

EpIθg

iω

)
〈v
(0)
i 〉
∼=Gi.

(3.50)
This equation shows that the fluid–film system behaves as a spring kC1 = EpIθg
connected in parallel to the effective mass of the fluid and the films m=mC1 +MC1 =

%α∞. These two masses are also connected in parallel and are given by mC1 = ρ0α∞
and MC1 = α∞ρptΓp/Ωf = O(α∞ρpt/h). This regime is represented by C1 (i.e.
E ‖ Ip ‖ If ) in figure 3.

The effective dynamic flow resistivity and apparent dynamic density are given by

HC1(ω)
∼= iω

Hs0

ωvs

(
1−

ω2
g

ω2

)
, (3.51)

ρC1(ω)
∼=

Hs0

ωvs

(
1−

ω2
g

ω2

)
. (3.52)

This equation shows that the apparent dynamic density becomes null at ω = ωg,
while the effective permeability tends to infinity. This is a typical resonance effect
observed in an elasto-inertial system and appears as a macroscopic consequence of
the fluid–film interaction at the pore scale. It is worth noting that in the elasto-inertial
regime and for ω <ωg, an overlap of the fluid–film system response given by (3.34)
and (3.50) is predicted. In such a case, the effective permeability can be estimated by
considering the leading-order term in (3.34) (i.e. the behaviour is inertia-dominated)
and both terms in (3.50) as K(ω) ∼= η

(
1/iωmc1 + 1/(iω(mC1 +MC1)+ kC1/iω)

)−1.
Further algebra leads us to obtain that the effective permeability becomes null at
ω2
= ω2

g/(1 + ρ0α
′

∞
/%α∞), with α′

∞
= α∞r, which further justifies the estimation of

ω0 given by (3.15).
As a final remark, it should be mentioned that for frequencies ω� ωg, the elastic

effects become negligible and the fluid–film system behaviour is determined solely
by the inertia of the fluid and the films. Hence, one has that ρ(ω)= %α∞ (see also
§ 3.1.1).

4. Examples and experimental validation
4.1. Illustrating examples

This section illustrates the theoretical results obtained in the previous sections for
permeo-elastic media. We consider an air-saturated material made of a solid matrix
with an embedded array of cylindrical pores into which periodically distributed coaxial
short tubes are inserted. The films are fixed on one of the extremes of the short tubes,
while the other extremes are open. The geometry of the material is shown in figure 4,
together with a 2D axisymmetric geometry of one cylindrical pore with the inserted
short tubes with films and the unit cell. We emphasise that the physics of the array is
mostly captured by the phenomena occurring in the tubes. The radius of the cylindrical
pore is represented by r0, while the short tube inner radius and length are represented
by rc and tc respectively. The size of the gap formed in between the tube and the
walls of the cylindrical pore is denoted as g, while the thickness of the tube walls is
given by w= r0− rc− g. The unit cell of the material has a length t0 and the distance
between the short tubes is t0 − tc.
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FIGURE 4. (Colour online) (a) Array of cylindrical pores with periodically distributed
coaxial short tubes with clamped films on one of their extremes (left) and section views
(right). (b) Two-dimensional axisymmetric geometry of a cylindrical pore with the inserted
short tubes with films (left) and geometrical parameters of the unit cell of the material
(right).

The mechanical parameters of a polyetherimide (PEI) film sample are considered as
reference. These are ρp = 1200 kg m−3, ν = 0.36, t = 75 µm and E = E0 = 6.9 GPa.
To illustrate the properties of the materials, we first consider the following geometrical
parameters: rg= 23 mm, rc= 17 mm, tc= 20 mm, w= 3 mm and t0= 30 mm, which
result in a porosity of φ = 0.86. It should be noted that this porosity corresponds to
that of one cylindrical pore with the inserted short tubes.

If one considers two extreme values of the Young’s modulus, E → 0 and
E → ∞, corresponding approximately to the cases of materials without films
and with perfectly rigid films, the permeabilities and tortuosities are given by
(2.46 × 10−5

; 2.3 × 10−7) m2 and (1.03; 3.16) respectively. One can then conclude
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FIGURE 5. Real part (a) and phase (b) of the normalised apparent dynamic density
ρ(ω)/ρ0 of a material with perfectly rigid films (i), and permeo-elastic materials with
E = E0 (ii) and E = 5E0 (iii). The vertical dotted lines with downward- and
upward-pointing triangles represent f0 =ω0/2π and fg =ωg/2π respectively.

that very different acoustical properties can be observed when varying the elastic
properties of the films. In addition, it is further noticed that (i) the material with
perfectly rigid films will be dominated by inertial effects in the audible frequency
range since the Biot frequency is 2.85 Hz and (ii) the in-vacuum fundamental
resonance frequency of the clamped films is 313 Hz.

In the remaining part of this section, we will present the results for two quantities
that are normally used in the field of acoustics of porous media (Allard & Atalla
2009), namely the apparent dynamic density and the speed of sound.

Figure 5 shows the real part and phase of the apparent dynamic density of a
permeo-elastic material compared with those of a material with perfectly rigid films.
This effective parameter has been calculated for an infinite array of short tubes with
films from the solution of the fluid–structure interaction problem (2.24)–(2.31) in a 2D
axisymmetric unit cell (see figure 4). The solution was obtained numerically using the
finite element method and the software COMSOL Multiphysicsr (COMSOL 2013). In
particular, an arbitrary Lagrangian–Eulerian formulation implemented in this software
was used and a fully coupled solver (MUMPS) that involves the simultaneous solution
of the fields was considered. Lagrangian linear elements modelled the fluid velocity
and pressure (i.e. a P1–P1 formulation with streamline diffusion as stabilisation
method), while quadratic elements approximated the film displacement. A triangular
mesh in combination with a layered quadrilateral mesh to resolve the boundary layers
was used. Furthermore, the mesh coincided on the periodic boundaries of the unit
cell and a mesh refining analysis was conducted to ensure the convergence of the
solution.

As discussed in § 3.2.3, the films behave as quasi-rigid at low frequencies. Hence,
the real part of the apparent dynamic density and its phase approach those of a
material with perfectly rigid films. As the frequency increases, this behaviour overlaps
with that described in § 3.3.3 and the fluid–film system enters into the resonance zone.
The frequency at which the apparent dynamic density tends theoretically to infinity
is f0 = 241 Hz. The fundamental resonance frequency of the fluid–film system with
E = E0 is fg = 277 Hz. This is smaller than the in-vacuum fundamental resonance
frequency due to the fluid loading on the films (see Filippi 2008, Ch. 3). In between
the two elasto-inertial frequencies f0 and fg, an atypical band is observed where the
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FIGURE 6. (a) Real part of the normalised speed of sound Re(C(ω)/c0). (b) Normalised
phase of the normalised speed of sound Phase(C(ω)/c0)/π. Material with perfectly rigid
films (i), and permeo-elastic material with E=E0 (ii) and E= 5E0 (iii). The vertical dotted
lines with downward- and upward-pointing triangles represent f0 and fg respectively.

real part of the apparent dynamic density becomes negative and its phase tends to
−π. In the atypical band, the fluid movement is opposite in phase with respect to
the carrying wave outside the inner resonating units. As a consequence, the average
movement leads to a negative apparent density with an unusual phase value. Such a
behaviour is a direct consequence of the fluid–film interaction at the pore scale and
does not exist in conventional porous materials. In the latter type of material, the
real part of the apparent dynamic density is always positive and its phase varies in
between its values for viscous and inertial fluid flow, i.e. from −π/2 to 0 (Johnson,
Koplik & Dashen 1987; Smeulders, Eggels & van Dongen 1992). As predicted by
(3.10), the fundamental resonance frequency for the same material but with films
with elastic modulus E = 5E0 is increased by a factor of approximately

√
5, i.e.

fg = 621 Hz, with respect to that of the material with E = E0. In turn, the frequency
f0 is also increased by the same factor.

Figure 6 shows the real part and phase of the normalised speed of sound in the
material. It should be noted that to calculate this, the bulk modulus (2.51) was
calculated using the following semi-phenomenological model (Lafarge et al. 1997):
K(ω)= P0/(1− jωF(ω)(γ − 1)/γωt), with F(ω)= 1/( jω/ωt +

√
1+ jωMt/2ωt). Here,

ωt = κ/ρ0Cpk′0 is the thermal characteristic frequency, Mt = 8k′0/Λ
′2 is the thermal

shape factor, κ/ρ0Cp is the thermal diffusivity, Λ′= 2|Ωf |/(|Γs| + |Γp|) is the thermal
characteristic length and k′0 is the static thermal permeability. The latter has been
numerically calculated by spatially averaging the solution of a static heat conduction
problem with respect to the fluid phase, as detailed, for example, in Venegas &
Umnova (2011). At low frequencies, the speed of sound of permeo-elastic materials
tends to that of a material with perfectly rigid films. A significant decrease in speed
of sound is observed in the atypical band. Moreover, the phase of the speed of
sound in this band tends to π/2, i.e. the waves are overdamped. At the fundamental
resonance frequency, and for slightly higher frequencies, supersonic velocities are
observed. In conventional porous materials, the phase of the speed of sound varies
from π/4 to 0 and the real part of the speed of sound is bounded by its inertial
value, i.e. by the speed of sound in the saturating fluid c0 divided by the square root
of the tortuosity. It is clear that the acoustic behaviour of permeo-elastic materials is
significantly different.
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FIGURE 7. Real part (a) and phase (b) of the normalised apparent dynamic density
ρ(ω)/ρ0 of a material with film density ρp = 0.6ρp0 (i.e. %= 2.785 kg m−3) (i), ρp = ρp0
(i.e. % = 3.839 kg m−3) (ii) and ρp = 1.4ρp0 (i.e. % = 4.894 kg m−3) (iii), with ρp0 =

1200 kg m−3. The inset plot shows the elasto-inertial characteristic frequencies fg (grey
line) and f0 (black line) as a function of the ratio between the film density and the
saturating fluid density (ρ0 = 1.204 kg m−3).

Figure 7 shows the influence of the density of the films on the real part and
phase of the normalised apparent dynamic density. Heavier films provide smaller
elasto-inertial characteristic frequencies. However, the behaviour is qualitatively similar
to that obtained when varying the elastic modulus of the films. As predicted by (3.15),
the elasto-inertial frequencies fg and f0 become closer to each other as the density of
the films is increased. This is shown in the inset plot of figure 7, where fg and f0 are
plotted as a function of the ratio between the densities of the films and the saturating
fluid. The net effect is that the atypical band where the apparent dynamic density
becomes negative and its phase shows unusual values becomes much narrower as the
density ratio increases. Hence, lightweight films, i.e. O(%) = O(ρ0), are preferred to
observe permeo-elastic effects.

The influence of viscous dissipation on the apparent dynamic density of permeo-
elastic materials has been assessed by decreasing the size of the gap g formed in
between the short tubes and the cylindrical pore wall (see figure 4). The results are
shown in figure 8. The other geometrical and mechanical parameters (with E = E0)
are the same as those in figure 5. The static permeability is decreased when the
gap size becomes smaller. For example, this parameter for the material with the
narrowest gap (g= 0.4 mm) is of the order of 290 times smaller than that with the
widest gap (g = 3 mm). This results in a higher (respectively lower) visco-inertial
(respectively visco-elastic) characteristic frequency. It should be noted, however, that
the fundamental resonance frequency fg remains constant. The behaviour of the
fluid–film system at low frequencies is determined by the low-frequency inertia of
the fluid that is affected by the elasticity of the films, as developed in § 3.2.2. As the
frequency increases, the behaviour overlaps with that described in § 3.3.2. This means
that the fluid flow regime in the fluid–film system is influenced by viscosity, elasticity
and the inertia of the fluid and the films. Then, the fluid–film system enters into the
elasto-inertial regime described in § 3.3.3. An increase in the effects of viscosity
leads to an increase of the bandwidth of the atypical band. For example, the atypical
band covers frequency regions of B≈ 277− 197= 80 Hz and B≈ 277− 87= 190 Hz
when g= 1 mm and g= 0.4 mm respectively. Furthermore, the peak associated with
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FIGURE 8. Influence of viscosity effects on the real part (a) and phase (b) of the
normalised apparent dynamic density ρ(ω)/ρ0: (i) g = 3 mm, (ii) g = 1 mm, (iii) g =
0.6 mm, (iv) g = 0.4 mm. The inset plot shows the values of the phase of ρ(ω)/ρ0 at
lower frequencies. The frequency has been normalised to fg = 277 Hz.
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FIGURE 9. Influence of viscosity effects on the real part of the normalised speed of
sound Re(C(ω)/c0) (a) and the normalised phase of the normalised speed of sound
Phase(C(ω)/c0)/π (b) for permeo-elastic materials with (i) g= 3 mm, (ii) g= 1 mm, (iii)
g = 0.6 mm and (iv) g = 0.4 mm. The inset plot shows the normalised phase of the
normalised speed of sound at lower frequencies. The frequency has been normalised to
fg = 277 Hz.

f0 decreases in amplitude until it becomes highly damped and no longer appears.
The latter occurs when the visco-inertial frequency approaches fg. On the other hand,
the wider atypical band leads to a wider frequency region where the sound waves
are slowed down, as shown in figure 9, where the normalised speed of sound and
its phase are presented. It must be emphasised that in this frequency range, the
magnitude of the imaginary part of the apparent dynamic density is much larger than
that of its real part, which reflects the fact that viscosity effects dominate in this
frequency range. Hence, the first zero value of the real part of the apparent dynamic
density in figure 8 does not induce supersonic velocities in the effective fluid–film
system.

Equation (3.32) predicts that the real part of the apparent dynamic density could
be either null or negative in a wide range of frequency depending on the interaction
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FIGURE 10. Real part of the normalised apparent dynamic density ρ(ω)/ρ0 (a) and speed
of sound C(ω)/c0 (b) of permeo-elastic materials with (i) E= 0.3E0= 2070 MPa, (ii) E=
0.65E0= 4485 MPa and (iii) E= 0.95E0= 6555 MPa. The inset plots show the normalised
phase values. The frequency has been normalised to (i) fg= 152 Hz, (ii) fg= 225 Hz and
(iii) fg = 268 Hz.

between the low-frequency inertia of the fluid and the elasticity of the films. This is
evidenced in figure 10, where the real part of the apparent dynamic density and its
phase are shown for three different elastic modulus values, i.e. E= 0.3E0, E= 0.65E0
and E=0.95E0. The geometrical parameters are as in figure 5, except that the gap size
is set to g= 0.4 mm. The strongest effect of the elasticity is observed for the material
with the smallest Young’s modulus. This shows a wide-band negative real part of the
apparent dynamic density. For the material with intermediate Young’s modulus value,
the elastic effects compensate those due to the low-frequency inertia of the fluid. This
leads to a nearly null real part of the apparent dynamic density. As previously argued,
the behaviour in this frequency region is dominated by viscosity effects. Therefore,
the nearly null real part of the apparent dynamic density does not lead to supersonic
velocities in the fluid–film system, as can be seen in the plot in figure 10(b).

4.2. Experimental validation
This section presents results of experiments conducted on a single unit cell of a
prototype permeo-elastic material corresponding to that illustrated by figure 4(b)
(right). Since the physics of a periodic array is mostly determined by that in a unit
cell, our experimental work focuses on measuring the acoustical properties of a
single unit cell. This allows us to study the most relevant features of permeo-elastic
materials.

For convenience, measurements of surface impedance have been taken in an
impedance tube by following the procedure described in ISO 10534-2:2001 (2001). A
diagram of the measurement set-up is presented in figure 11. The measured magnitude
and phase of the surface impedance Zw(ω) normalised to the characteristic impedance
of the saturating fluid, Z0 = ρ0c0, are shown in figure 12. These measurements have
been taken on a configuration composed of an air gap backed by a single unit cell of
the permeo-elastic material, which is backed by a rigidly backed plenum, as illustrated
in figure 11. The film material is PEI, whose parameters are E = E0 = 6.9 GPa,
ρp = 1200 kg m−3, ν = 0.36 and t = 75 µm. The other parameters of the geometry
can be inferred from figure 11.
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FIGURE 11. (Colour online) (a) Unit cell of the prototype permeo-elastic material placed
in the impedance tube. (b) Diagram of the impedance tube used to measure the surface
impedance of a prototype permeo-elastic material. The vertical dashed line represents the
front surface of the measured configuration.
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FIGURE 12. Measured and predicted normalised magnitude (a) and phase (b) of the
surface impedance of a permeo-elastic material and a material with perfectly rigid films.

The validation of the theory is conducted by comparing the measured experimental
data with numerical calculations of surface impedance. The latter was calculated as
follows. The dynamic permeability was numerically calculated for an infinite array
from the solution of the fluid–film interaction problem (2.24)–(2.31), while the bulk
modulus was calculated using the semi-phenomenological model proposed in Lafarge
et al. (1997), whose input parameters were also obtained numerically as detailed
above. This parameter and the apparent dynamic density were used to calculate
the wavenumber and characteristic impedance using (2.51). Then, a transfer matrix
approach (Allard & Atalla 2009) was used to take into account the air gaps in front
of and behind the prototype material (see figure 11).

The predictions of the model shown in figure 12 and the measured values are
in reasonable agreement. The developed theory explains and the numerical model
captures the local peak of the magnitude of the surface impedance as well as the
change in phase around the atypical band where the apparent dynamic density takes
negative values. This phenomenon does not exist in the material with perfectly rigid
films.
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The discrepancies between the numerical and experimental results, i.e. prediction
of a narrower band where the phase is shifted and the local peak in the magnitude of
the surface impedance being located at a slightly lower frequency, may be due to the
following factors. (i) The effective parameters have been determined for an infinite
array, while only one period has been measured. This means that, in principle, the
theoretical model cannot exactly reproduce the conditions of the prototype material
used in the experiment. (ii) The internal damping of the elastic films has not been
accounted for. Similarly to viscosity effects, this could lead to a wider atypical band.
(iii) The mounting rods used to build the prototype material (see figure 11) are
not considered in the 2D axisymmetric numerical model. These rods decrease the
effective gap size in between the short tube and the wall of the impedance tube. This
smaller gap can lead to a larger influence of viscosity effects which may result in
an increase of the bandwidth of the atypical band, as shown in figure 8. (iv) The
practical implementation of the perfect clamping condition of the films may not be
accurate. This could lead to a variation in the eigenfrequency values.

5. Conclusions
This paper investigated the effective dynamic properties of permeo-elastic materials

using the two-scale asymptotic homogenisation method. This class of material
possesses a specific solid frame architecture: the microstructure is composed of a
stiff skeleton onto which flexible films are fixed. In contrast to the classical case of
Biot poroelastic materials, where the fluid flow is not affected by the deformation
of the solid frame, the films are deformed by the fluid flow. Due to this fluid–film
interaction, the notion of dynamic permeability determined in an undeformed frame
no longer applies. We have shown that accounting for the elasticity and inertia of the
films leads to a non-conventional constitutive dynamic fluid flow law as opposed to
the standard dynamic Darcy’s law. For instance, the fluid–film system can behave as
an equivalent visco-elastic fluid as well as exhibiting local resonances. Therefore, the
acoustic behaviour is substantially different from that described by the standard Biot
poroelastic theory, as evidenced theoretically, numerically and experimentally in this
work.

We emphasise that our work was conducted within the framework of a small
deformation regime and that the fluid–film interaction influences the permeability of
the effective saturating fluid, while its effective compressibility remains unchanged.
Hence, our work introduces new possibilities for designing or describing porous media
with non-conventional features. Applications of our results may include materials for
acoustical engineering (e.g. soft perforated open-cell foams), inverse methods in
mechanics of soft films, and mechanics of biological materials (e.g. bio-films or cell
walls).

Extensions of this work in different directions may include the study of viscoelasticity
in polymeric films, which could induce a strong dependence on temperature of the
fluid–film interaction, unconventional mass transport in liquid-saturated media in both
permanent and dynamic regimes, and the macroscopic description of permeo-elastic
media accounting for the stiffness of the solid frame.
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Appendix A
The derivation of the variational formulation (2.33) associated with the fluid–

structure interaction cell problem (2.24)–(2.31) is detailed in this appendix.
We consider the vectorial space W of complex velocity fields w defined in Ωf ∪Γp

such that w is Ω-periodic, divergence free ∇y ·w= 0 in Ωf , with w= 0 on Γs, w=wN
on Γp, and w= 0 and ∇ypw · n= 0 on ∂Γp. As shown in § 2.5, W equipped with the
norm (2.32) is a Hilbert space.

In order to derive the variational formulation (2.33), the fluid flow problem is
considered first. The equation of conservation of momentum (2.24) is multiplied by
the conjugate of w, i.e. w, and integrated over Ωf ,∫

Ωf

divy(σ
(1)
f ) ·w dΩ =

∫
Ωf

iωρ0v
(0)
·w dΩ +

∫
Ωf

∇x p(0) ·w dΩ. (A 1)

Integration by parts of the left-hand side integral, application of the divergence
theorem and noting that I : Dy(w)=∇y ·w= 0 in Ωf lead to∫

Ωf

divy(σ
(1)
f ) ·w dΩ =

∫
∂Ωf

σ
(1)
f ·N ·w dΓ −

∫
Ωf

2ηDy(v
(0)) : Dy(w) dΩ. (A 2)

Denoting the periodic boundaries of the fluid network as Γf and recalling that ∂Ωf =

Γs ∪ Γp ∪ Γf , the surface integral in (A 2), which cancels out on opposite boundaries
of the cell due to periodicity and is null on Γs because of the zero velocity condition
(2.26), becomes ∫

∂Ωf

σ
(1)
f ·N ·w dΓ =−

∫
Γp

[σ
(1)
f ·N] ·wN dΓ , (A 3)

where [ζ ] denotes the jump in ζ across the interface Γp. It should be emphasised that
the films are considered as planes, i.e. their thicknesses are negligible.

Using (A 2)–(A 3), one can rewrite (A 1) as

−

∫
Ωf

∇x p(0) ·w dΩ = η

∫
Ωf

2Dy(v
(0)) : Dy(w) dΩ + iωρ0

∫
Ωf

v(0) ·w dΩ

+

∫
Γp

[σ
(1)
f ·N] ·wN dΓ . (A 4)

This equation represents the classical variational formulation of the forced Stokes
problem except that the surface integral accounts for the fluid–film interaction. This
surface integral can be further developed as follows.

The momentum balance of the films (2.28) is multiplied by w and integrated over
Γp, i.e. ∫

Γp

[σ
(1)
f ·N] ·wN dΓ =−

∫
Γp

∇yp · T(0)w dΓ − ρptω2
∫
Γp

u(0)w dΓ . (A 5)
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Integration by parts and application of the divergence theorem lead to∫
Γp

∇yp · T(0)w dΓ =
∫
∂Γp

T(0)
·wnds−

∫
Γp

T(0)
· ∇ypw dΓ . (A 6)

The first integral on the right-hand side is null because the films are clamped, i.e.
w= 0 on ∂Γp. Substitution of the moment balance (2.29) into (A 6) yields∫

Γp

∇yp · T(0)w dΓ =
∫
Γp

divyp(M
(0)) · ∇ypw dΓ . (A 7)

By integrating by parts, applying the divergence theorem and considering the
symmetry of M (0), one obtains∫

Γp

∇yp · T(0)w dΓ =+
∫
∂Γp

(M (0)
· ∇ypw) · n ds−

∫
Γp

M (0)
: ep(∇ypw) dΓ . (A 8)

Since the films are clamped, i.e. ∇ypw · n= 0 on ∂Γp, the first integral on the right-
hand side vanishes. On substituting the constitutive law of the films (2.30) into (A 8)
and noting that I : ep(∇ypw)=∆ypw, one obtains∫

Γp

∇yp · T(0)w dΓ =−EpI
∫
Γp

N (u(0),w) dΓ . (A 9)

Substitution of this expression into (A 5) yields∫
Γp

[σ
(1)
f ·N] ·wN dΓ =−ρptω2

∫
Γp

u(0)w dΓ + EpI
∫
Γp

N (u(0),w) dΓ . (A 10)

Finally, the variational formulation (2.33) is obtained by substituting (A 10) into
(A 4).

Appendix B
The cell problem (2.24)–(2.31) is analysed in this appendix for the limiting case

of very rigid films, i.e. EpI→∞, or low frequencies, as will become apparent below.
The cell problem is rewritten in terms of the visco-elastic characteristic frequency ωe
as

divy(σ
(1)
f )= iωρ0v

(0)
+∇xp(0) in Ωf , (B 1)

∇y · v
(0)
= 0 in Ωf , (B 2)

v(0) = v(0)N on Γp, v(0) = 0 on Γs, (B 3a,b)

−
ωe

iω
η

K0θ
∇yp · (divyp(M(v(0))))= iωρptv(0) − [σ (1)

f ·N] ·N on Γp, (B 4)

v(0) = 0 and ∇ypv
(0)
· n= 0 on ∂Γp. (B 5a,b)

A small parameter α = iω/ωe is identified in (B 4). It is clear that α→ 0 when
ω � ωe. This condition is satisfied when either EpI → ∞ (rigid films) or ω → 0.
The variables are then looked for as expansion series of the type v(0) =

∑
∞

i=0 α
iv[i],

σ
(1)
f =

∑
∞

i=0 α
iσ
[i]
f and v(0) =

∑
∞

i=0 α
iv[i]. After substituting these series into the set
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(B 1)–(B 5) and identifying the terms in powers of α, one obtains at α−1 that the
velocity of the films is governed by

∇yp · (divyp(M(v[0])))= 0 on Γp, (B 6)

v[0] = 0 and ∇ypv
[0] · n= 0 on ∂Γp. (B 7a,b)

This leads to v[0] = 0, which means that the films are motionless at the leading
order. In turn, the fluid flow at the leading order is governed by the oscillatory
Stokes problem (i.e. (B 1)–(B 3), with v[0] = 0 on Γp) in a pore space geometry with
perfectly rigid films. Its solution is given by

v[0] =−
k̂ r(y, ω)
η

· ∇xp(0), (B 8)

p[0] =−π̂ [0](y, ω) · ∇xp(0) + p̂[0], (B 9)

where k̂ r(y, ω) represents the Ω-periodic local field of velocity, and the pressure
field has been expressed in terms of its zero mean part π̂ [0](y, ω) and an integration
constant p̂[0].

Further identification leads to the following problem for the velocity of the films
v[1]:

1
θ
∇yp · (divyp(M(v[1])))=

K0

η
[σ
[0]
f ·N] ·N− iωρptv[0] on Γp, (B 10)

v[1] = 0 and ∇ypv
[1] · n= 0 on ∂Γp. (B 11a,b)

To solve this problem, we consider the space WΓp composed of the complex velocities
w defined in Γp that satisfy the boundary conditions w= 0 and ∇ypw · n= 0 on ∂Γp.
Then, equation (B 10) is multiplied by a test function w in WΓp . Noting that v[0] = 0
and that the integral transformation process is similar to that performed in appendix A,
the respective variational formulation is given by

∀w ∈WΓp,
1
θ

∫
Γp

N (v[1],w) dΓ =
K0

η

∫
Γp

[σ
[0]
f ·N] ·Nw dΓ . (B 12)

This is a linear problem forced by the stress exerted by the fluid σ
[0]
f at the leading

order, which is induced by the macroscopic pressure gradient ∇x p(0) (see (B 8)–(B 9)).
The solution is therefore given by

v[1] =−
K0θ

η
b̃r(y, ω) · ∇xp(0) =−

b̂r(y, ω)
η
· ∇xp(0), (B 13)

where b̂r(y, ω) has units of m2 and represents the local response of the films to the
stress exerted by the fluid, which is induced by the macroscopic pressure gradient. It
should be noted that (i) v[1] is only defined on Γp and (ii) the frequency dependence
of b̂r(y, ω) is due to the visco-inertial stress exerted by the fluid but not from the
inertia of the films themselves.

At the next order, the fluid flow problem reads as

divy(σ
[1]
f )= iωρ0v

[1] in Ωf , (B 14)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

50
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.505


Acoustics of permeo-elastic materials 169

∇y · v
[1]
= 0 in Ωf , (B 15)

v[1] = v[1]N on Γp; v[1] = 0 on Γs. (B 16a,b)

Since v[1] is known, this set can be solved as follows. We consider the Ω-periodic
unique vector v defined in Ωf that is divergence free, ∇y · v= 0, and takes the value
v = v[1]N on Γp and v = 0 on Γs. Since v[1] is linear in the macroscopic pressure
gradient, one has that v is also linear in ∇x p(0). The construction of v is performed
by following the same ideas as developed in Ladyzhenskaya (1963, Ch. 1). We then
set v[1] = v + U and look for U ∈ Wr, where Wr is the space of Darcy’s velocities
considering the films as perfectly rigid.

By multiplying (B 14) by w and integrating over Ωf , the following variational
formulation is obtained after integration by parts:

∀w ∈Wr,

∫
Ωf

2Dy(U) : Dy(w) dΩ +
iωρ0

η

∫
Ωf

U ·w dΩ

=−

∫
Ωf

2Dy(v) : Dy(w) dΩ −
iωρ0

η

∫
Ωf

v ·w dΩ. (B 17)

The Lax–Milgram theorem applied to (B 17) ensures the existence of a unique U.
Since v is linear in the macroscopic pressure gradient, U is also linear in ∇x p(0). Then,
the corrector v[1] takes the form

v[1] =−
B̂r(y, ω)

η
· ∇xp(0), (B 18)

where B̂r has units of m2 and represents the local contribution to the fluid flow
generated by the vibration of the films in response to the excitation by the fluid flow
at the leading order (i.e. at α0).

Finally, the averaged velocity 〈v(0)〉 = 〈v[0]〉 + α〈v[1]〉 reads as

〈v(0)〉 =−

(
k r(ω)

η
+

iω
ωe

Br(ω)

η

)
· ∇x p(0), (B 19)

where k r(ω)= 〈k̂ r(y, ω)〉 and Br(ω)= 〈B̂r(y, ω)〉. The symmetry of these two tensors
is inherited from the symmetry of the form (2.34).

Now, we focus on the case where viscosity effects dominate. Hence, the term
representing the inertia of the fluid in (B 1) (i.e. iωρ0v

(0)) is negligible. Considering
the viscous, elastic and forcing terms in the variational formulation (2.33), setting
w= v(0) and w= v(0), and using (B 19), one obtains for ω�ωe and ω�ωvr

η

∫
Ωf

2|Dy(v
(0))|2 dΩ − i

EpI
ω

∫
Γp

N (v(0), v(0)) dΓ

=+Ωf∇x p(0) ·
k r0

η
· ∇x p(0) − iΩf

ω

ωe
∇x p(0) ·

Br0

η
· ∇x p(0), (B 20)

where k r0 = k r(ω� ωvr) and Br0 = Br(ω� ωvr). By equating the real and imaginary
parts, one directly proves that k r0 and Br0 are positive. Moreover, due to the symmetry
of the form (2.34), these tensors are symmetric.
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The micro–macro viscous dissipated and elastic stored power relationships are given
by

η

∫
Ωf

2|Dy(v
(0))|2 dΩ =Ωf∇x p(0) ·

k r0

η
· ∇x p(0), (B 21)

EpIωe

∫
Γp

N (u(0), u(0)) dΓ =Ωf∇x p(0) ·
Br0

η
· ∇x p(0). (B 22)

Finally, it is of interest to investigate the behaviour of the tensors k r∞ = Kr∞I and
Br∞ = Br∞I , which correspond to the values of the respective tensors when viscosity
effects are negligible, i.e. for ω�ωvr. Recalling that the inertia of the films does not
contribute to the fluid flow when ω�ωe, the variational formulation (2.33) evaluated
at w= v(0) and divided by the volume of the pores reads as

iωρ0

η
〈|v(0)|2〉+

EpI
iωη

1
Ωf

∫
Γp

N (v(0), v(0)) dΓ =〈v(0)〉 ·
(
Kr∞ +

iω
ωe

Br∞

)−1

· 〈v(0)〉. (B 23)

This equation can be rewritten using (3.6), (3.8) and (3.3) for ρp= 0 and ω�ωe, i.e.
α∞ = α∞r, as

1
Kr0

iω
ωvr

(
1−

Kr0

K0

ωeωvr

ω2

)
=

1
Kr∞

(
1+

iω
ωe

Br∞

Kr∞

)−1

. (B 24)

Considering that Kr∞ = η/iωρ0α∞r = Kr0ωvr/iω, the resolution of the resulting
equation yields

Br∞ =−Kr0
Kr0

K0

(ωvrωe

ω2

)2
(

1−
Kr0

K0

ωvrωe

ω2

)−1

. (B 25)

Appendix C
The case of very flexible films EpI → 0 (or high frequencies ω → ∞, as will

become apparent further below) is now considered. The procedure is similar to that
described in appendix B. A small parameter β = ωe/iω→ 0 is first identified from
(B 4). The variables are looked for as expansion series of the type v(0) =

∑
∞

i=0 β
iv[i],

σ
(1)
f =

∑
∞

i=0 β
iσ
[i]
f and v(0)=

∑
∞

i=0 β
iv[i]. At β0, one obtains the oscillatory Stokes flow

problem with boundary conditions v[0]= 0 on Γs and v[0]= v[0]N on Γp, together with
the following condition on the films:

[σ
[0]
f ·N] ·N= iωρptv[0] on Γp, (C 1)

and clamping boundary conditions v[0]= 0 and ∇ypv
[0] · n= 0 on ∂Γp. The variational

formulation associated with this problem is given by

∀w ∈W, K0

∫
Ωf

2Dy(v
[0]) : Dy(w) dΩ +

iω
ωv

1
α∞%

∫
Ωf∪Γp

ρ̃v[0] ·w dΩ

=−
K0

η
∇x p(0) ·

∫
Ωf

w dΩ. (C 2)
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Therefore, the solution of the problem reads as

v[0] =−
k̂ s(y, ω)
η

· ∇xp(0). (C 3)

It must be emphasised that, even though the variational formulation and the solution
of the problem resemble the classical dynamic Darcy’s law set in the pore space, the
local fluid velocity field is different from that in the case where the films are absent.
This is because (i) a condition of normal fluid flow is imposed on the film surface
and (ii) the global inertia is determined by the distribution of density of the fluid–film
system, which is accounted for by ρ̃, instead of the fluid density alone.

The problem governing the corrector v[1] corresponds to an oscillatory Stokes
problem without macroscopic pressure gradient. In addition, the boundary conditions
v[1] = 0 on Γs and v[1] = v[1]N on Γp are considered, together with the following
condition on the films:

iωρptv[1] + [σ [1]f ·N] ·N=−
η

K0θ
∇yp · (divyp(M(v[0]))) on Γp. (C 4)

This equation indicates that the equilibrium of the films, for which the motion is
imposed by the fluid flow at the leading order (i.e. at β0), is realised by the velocity
field at the next order v[1].

The variational formulation associated with this problem is given by

∀w ∈W, K0

∫
Ωf

2Dy(v
[1]) : Dy(w) dΩ +

iω
ωv

1
α∞%

∫
Ωf∪Γp

ρ̃v[1] ·w dΩ

=−
1
θ

∫
Γp

N (v[0],w) dΓ . (C 5)

Noting that the forcing term is related to the balance of v[0] and the film velocity is
linear in the macroscopic pressure gradient, the solution of the problem is written in
close analogy with Darcy’s law as

v[1] =+
B̂s(y, ω)

η
· ∇xp(0). (C 6)

The term B̂s(y, ω) has units of m2 and determines the local additional flow required
to equilibrate the films which are undergoing deformation imposed by the flow at the
leading order (at β0). Then, the averaged velocity 〈v(0)〉 = 〈v[0]〉 + β〈v[1]〉 reads as

〈v(0)〉 =−

(
k s(ω)

η
−
ωe

iω
Bs(ω)

η

)
· ∇x p(0). (C 7)

This expression holds as long as β =ωe/iω→ 0. Such a condition cannot be satisfied
at very low frequencies. In such a case, the results presented in appendix B should be
considered. This means that the films behave as quasi-rigid at low frequencies. Despite
this, there could exist a material for which ωe�ω�ωvs. Provided that this condition
is satisfied, one can consider the viscous, elastic and forcing terms in the variational
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formulation (2.33), set w= v(0) and w= v(0), and use (C 7) to obtain

η

∫
Ωf

2|Dy(v
(0))|2 dΩ +

EpI
iω

∫
Γp

N (v(0), v(0)) dΓ

=+Ωf∇x p(0) ·
k s0

η
· ∇x p(0) +Ωf

ωe

iω
∇x p(0) ·

Bs0

η
· ∇x p(0), (C 8)

where k s0 and Bs0 are the viscous permeability and elasticity-induced corrector for
very flexible films in the absence of inertial effects. One may infer that k s0 can be
reasonably estimated by the static viscous permeability of the pore space without
films.

By equating the real and imaginary parts in (C 8), one directly proves that
both tensors are positive, while their symmetry is ensured by that of the form
(2.34). Furthermore, the micro–macro viscous dissipated and elastic stored power
relationships are given by

η

∫
Ωf

2|Dy(v
(0))|2 dΩ =Ωf∇x p(0) ·

k s0

η
· ∇x p(0), (C 9)

EpIω2

ωe

∫
Γp

N (u(0), u(0)) dΓ =Ωf∇x p(0) ·
Bs0

η
· ∇x p(0). (C 10)

Finally, it is of interest to investigate the behaviour of k s and Bs when ω� ωvs. To
do so, the variational formulation (2.33) is evaluated at w= v(0), divided by Ωf , and
the viscous term is omitted, i.e.

iωρ0

η

(
〈|v(0)|2〉 +

ρp

ρ0

t
Ωf

∫
Γp

|v(0)|2 dΓ

)
+

EpI
iωη

1
Ωf

∫
Γp

N (v(0), v(0)) dΓ

= 〈v(0)〉 ·
(
Ks∞ −

ωe

iω
Bs∞

)−1
· 〈v(0)〉. (C 11)

Noting that Ks∞ = Ks(ω� ωvs) = Ks0ωvs/iω and using (3.6), (3.3), (3.4) and (3.8),
one can rewrite this expression as(

Ks0
ωvs

iω
−
ωe

iω
Bs∞

) 1
K0

(
iω
ωv
+
ωe

iω
θg

θ

)
= 1, (C 12)

which leads to

Bs∞ =Ks0
ωvs

ωe

1

1−
ω2

ω2
g

. (C 13)
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