
KEYNOTE ARTICLE

Whither design space?

ROBERT F. WOODBURY1 and ANDREW L. BURROW2

1School of Interactive Arts and Technology, Simon Fraser University, Vancouver, British Columbia, Canada
2Spatial Information Architecture Laboratory, RMIT University, Melbourne, Australia

(Received March 16, 2005; Accepted December 13, 2005!

Abstract

Design space exploration is a long-standing focus in computational design research. Its three main threads are accounts
of designer action, development of strategies for amplification of designer action in exploration, and discovery of
computational structures to support exploration. Chief among such structures is the design space, which is the network
structure of related designs that are visited in an exploration process. There is relatively little research on design spaces
to date. This paper sketches a partial account of the structure of both design spaces and research to develop them. It
focuses largely on the implications of designers acting as explorers.

Keywords: Design Space Exploration; Knowledge Representation; Search; State Space; Typed Feature Structures

1. INTRODUCTION

Design space exploration is the idea that computers can
usefully depict design as the act of exploring alternatives.
This involves representing many designs, arraying these
represented designs in a network structure termed the design
space, and exploring this space by traversing paths in the
network to visit both previously represented designs and to
find sites for new insertions into the network. This concep-
tual complex arose by elaboration of initial ideas in design
computing, and as a consequence of researching descrip-
tions of design, engineering prototype systems, performing
thought experiments, exploring suitable mathematical
abstractions, and engaging in considerable scholarly debate.
Today, it rests on three premises, each of which is a distinct
area of research.

The first premise is that exploration is a compelling model
for designer action, namely, that it accords with observed
designer actions and suggests approaches to the problem of
supporting designers. Numerous studies have shown the
utility of modeling designers as information processing sys-
tems that search to satisfy changing goals in a strongly

constrained problem space. Furthermore, humans are
endowed with specific and limited cognitive structures that
constrain their behavior as searchers and representors of
problem spaces. Thus, it is possible to argue that explora-
tion is a compelling model for designer action by demon-
strating a correspondence with the actions of designers and
by suggesting means to work around human cognitive limits.

The second premise is that exploration is an effective
basis for computer support, namely, that designers benefit
from tools that amplify their abilities to represent goals and
problems spaces, and to search for designs. Existing design
space explorers demonstrate the case. Researchers have cre-
ated a modest number of computer programs that attend to
such amplification tasks, and one of these, KIRTS0GENESIS
~Heisserman et al., 2000!, has been used in industrial appli-
cation. However, there are difficulties in demonstrating the
effectiveness of a cognitive model by building tools. In
particular, sociological factors determine that tools evolve
and cannot be considered independently of the context in
which they are used. Unable to simply build and test design
space explorers, it is possible to argue the effectiveness of
exploration by demonstrating a lineage from existing activ-
ities and by producing evidence of opportunities for support.

The third premise is that computational support for explo-
ration is feasible, namely, that there are tractable represen-
tations and algorithms that provide suitable amplification
for design explorers. A large body of literature provides

Reprint requests to: Robert F. Woodbury, School of Interactive Arts
and Technology, Simon Fraser University, Surrey Campus, 14th Floor,
Central City Tower, 13450 102nd Avenue, Surrey, BC V3T 5X3, Canada.
E-mail: rw@sfu.ca

Artificial Intelligence for Engineering Design, Analysis and Manufacturing ~2006!, 20, 63–82. Printed in the USA.
Copyright © 2006 Cambridge University Press 0890-0604006 $16.00
DOI: 10.10170S0890060406060057

63

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

support for this premise. Numerous formalisms exist for
representing designs, for acting on designs to produce other
designs, and for recording such action. A large secondary
literature uses such mechanisms to produce relatively com-
pact generative descriptions of corpora of existing and con-
jectured design work.

Research in design space exploration takes on several
distinct patterns. Typically, it addresses representation, search
algorithms, task description, or interaction design. Rela-
tively little work focuses on the design space itself. Instead,
most research focuses on design states and on making action
explicit. Little work exists that depends upon computa-
tional access to the design space ~Chien & Flemming, 1997;
Chien, 1998; Woodbury et al., 1999, 2000a; Woodbury &
Burrow, 2001!. Yet, it would appear that the design space
itself is where the largest gains are to be made. Designers
typically consider a very small number of alternatives in
their work, and this is explained by cognitive limits.

Why is there a paucity of research on the design space?
Conjecture is easy, and the debate is open. Clearly, prior
work on representation, including generative mechanisms,
is a prerequisite for serious thought about design spaces. It
may be that the current state of our knowledge of represen-
tation and generation is inadequate to the task. Further-
more, any useful computational account of a design space
requires both mathematical sophistication and deep knowl-
edge of the design domain. There may be easier pickings
elsewhere, or it may be that design space exploration has
limited utility. There is probably truth in all of these
conjectures.

In recent years, a group of researchers, initially at Ade-
laide University, but now distributed across Australia, Can-
ada, and Taiwan, has developed a representation for design
spaces that is computable, and thus formal, and appears to
have sufficient informal expressiveness to capture complex
aspects of designs. The representation builds on a formal-
ism from computational linguistics, Carpenter’s ~1992! typed
feature structures, and extends it to be an account of the
design space. To researchers in conventional design gram-
mars, the formalism appears strange as it substitutes types
for rules, a unification-based resolution procedure for gen-
erating designs, and a set of composable navigation opera-
tors for complex moves in design space. It does posit an
account of the indefinite parts that are declared essential in
the shape grammar literature ~Chang, 1999!. It is a highly
regular system as a consequence of aiming at disciplined
generation, navigation, and reuse. It has certain striking
limits that are a consequence of its attainment of efficient
algorithms for key computations.

This paper explores some of the implications of having
such a design space representation. It does this in reference
to each of the three premise areas. In particular, it considers
the correspondence between designer action and explora-
tion, the opportunities for amplification in design activities,
and the feasibility of symbolic representation and compu-
tation of design spaces. Its main focus is on the nature of

designer action, although it also presents brief sketches of
the arguments for amplification and computation.

2. DESIGNER ACTION AND THE
DESIGN SPACE

The metaphor of designers as finite explorers entails both
their abilities and the structure of their exploration. In this
section, we take a brief look at each, focusing on the two
key issues of design representation and the situation of the
designer in the design space. We find that good design rep-
resentations are invariably both partial and intentional; and
that accessibility is a key to addressing the incomprehensi-
bly large space of possibilities that comprise all realistic
design spaces.

The empirical work on designer action provides both a
starting point and inspiration to design space exploration.
Akın ~2001!, a canonical senior scholar in the field, sum-
marizes his past work by describing invariants of designer
behavior and, in comparison with the larger class of design-
ers, variants seen in architectural designers. His constructs
are those of exploration, as seen in the finding that expert
designers display a typical strategy of breadth first, depth
next in solving problems. This is in comparison to novices,
who typically display less breadth of exploration. What
remains unclear is to what extent such strategies are condi-
tioned by the external memory aids available to designers.

In interpreting this empirical work, the question is whether
the results generalize across media. Akın’s studies ~and oth-
ers!were conducted using conventional external media such
as sketch paper and pencil. Such media do not, of them-
selves, support the creation, recall, and reuse of alternative
designs; computer support has the potential to provide rapid
access to both a breadth of alternatives and depth of explo-
ration. In the face of these quantitative differences in speed
of recall and reuse, does the earlier framework remain appli-
cable? We are aware of one piece of evidence supporting
this conjecture. The KIRTS0GENESIS system ~Heisser-
man et al., 2000! is, inter alia, a design completion system.
With it, a designer of an airplane hydraulic system indicates
an approximate physical path for a hydraulic line, and the
system completes the design to code conformance and to a
representation suitable for automatic fabrication by a CNC
machine. The effect is to shift the relative cost of depth
versus breadth of exploration. In terms of designer effort,
depth becomes cheaper than breadth. The resulting style of
work might be described as depth first, breadth next. In this
example, the framework remains applicable to the descrip-
tion of a procedure that has been transformed by quantita-
tive differences in the ability to evaluate alternatives.

Most generative system work has been built using the
empirical work as a sort of rough design guide. The preced-
ing example demonstrates the impact of media on the strat-
egies of the designer. To our knowledge, there are no detailed
analyses of designer action in the face of more capable
media. Instead, results emerge from the practice of design-

64 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

ing and building design space explorers. From these expe-
riences, we know of several traps for the unwary.

2.1. Representation and meaning

A principal danger in research that is lead by software devel-
opment is programmatic thinking. By programmatic, we
mean the overly literal attention to representing and com-
puting directly over the concrete entities in the problem at
hand. To be fair to the field, almost all serious expert sys-
tems for design were built on two or three levels: a lower
abstract inference engine, sometimes a midlevel represen-
tation of tasks and methods, and an upper representation of
problem particulars. For example, R1 ~McDermott, 1982!
was built on top of OPS ~Forgy, 1981!, LOOS ~Flemming,
1990! originally in OPS, and GENESIS ~Heisserman, 1994!
on a hybrid logic0solid-modeling substrate. Newell’s knowl-
edge level ~1981! is perhaps the definitive argument for
midlevel representation. Others were working in parallel;
for example, Chandrasekaran and Johnson ~1993! coined
the term generic task to identify a representation level in
which task types intervened between the domain and lower
levels of implementation. Special attention was given to
design tasks ~Chandrasekaran, 1990!. Their formulation grew
out of work such as Brown’s thesis ~1984! and the sub-
sequent book ~Brown & Chandrasekaran, 1989!. The first
trap opens when the specific domain representation is taken
too seriously. To put criticism close to home, the early think-
ing of researchers in the SEED-Config project ~Akın et al.,
1997! confused the knowledge level, involving such things
as functional units, design units, and technologies, with
underlying computations that could support it. The result of
falling into this trap is to miss two crucial points: good
representations are, in a deep sense, both intentional and
partial, and good accounts of designing are given in terms
of the most general constructs possible.

Consider how the term intentional, drawn from philoso-
phy of mind, relates to designs. If we are committed to
realizing designs as physical artifacts, then ultimately we
are committed to their intentionality. That is, we are com-
mitted to the notion that designs are about other objects. A
representation is intentional because it is a statement about
another object. It need not be a complete statement, nor
need it be the only statement. The latter is crucial: you can
have multiple representations that are indistinguishable in
terms of the information they convey without implying that
their referents are the same or are distinct.

This level of indirection, the “aboutness” of designs,
becomes a second trap when we conflate the properties of a
design with the properties of its subject. This trap leads to
overly literal interpretations of representation. This confla-
tion has facets.

The first facet is that a designed object embodies phe-
nomena beyond the reach of any particular representation.
Thus, we do not find air flow around buildings accounted
for in a typical building model, nor do we find explicit

reference to nonstructural cladding in a structural design
system, and especially seldom do we find represented the
ineffable sense of space and light that is the hallmark of
much fine architecture. Therefore, those aspects of its ref-
erent that it captures necessarily limit what we can do with
a representation. Yet, as designers, we must constantly make
decisions in just such explicitly unrepresented realms. There-
fore, it is important that we are able to distinguish the unrep-
resented properties expressed by an instantiation of a design
and the represented properties without confusion.

A second facet is that we use representations in distinct
ways, which we label here strong and weak representation.
Strong representation occurs when we imbue the represen-
tation with the ability to make algorithmic inference about
its referent. A ubiquitous example is the now near-universal
use of three-dimensional ~3-D! modeling in architectural
schools. The chief inference here is, of course, visualiza-
tion. Students, and then designers, have found that the effort
involved in building a 3-D model is more than offset by the
ability to multiply render the resulting design. Another exam-
ple, more prosaic, but perhaps even more ubiquitous, is the
spreadsheet. With it the quick quantitative model of a bud-
get, an architectural brief or a plan of work has become an
essential part of much professional practice. Cognitive
accounts of designing tend to focus on the strong aspects of
a representation, as these are precisely the ones amenable to
the constructive nature of the theory building at hand with
its requirement for computationally executable theories.
Weak representation happens when we use a representation
as a reminder, hint, or framer of new insight. Situationist
accounts of design focus mostly on weak aspects of repre-
sentation, largely and precisely because the cognitivists have
mostly ignored such.

A third facet is that, to use representations computation-
ally, we must imbue them with exogenous properties, that
is, ones that are manifestly not in the phenomena they pur-
port to represent. We have to provide a set of operators by
which we can change representations. We have to do this to
use representations: the fact that designers work by search
in a problem space means that they have to be able to alter
representations and most such alterations do not follow the
logic of physical objects represented. Good design repre-
sentations are inherently about supporting change precisely
to help designers move from idea to idea in their search.

Consider how the term partial relates to designs. Having
a design representation does not mean you know all about a
particular design. If you have a sketch in front of you, this
is abundantly clear. It seems to be a lesson often lost on
designers of computer-aided design ~CAD! systems. Much
hay has been made over the years through criticism that
CAD systems force one to overcommit to particulars in
comparison to sketches, which are claimed to be contingent
in every respect. We argue that such criticism is sustained,
and sustainable, because design representations are not thor-
oughly partial at every level. Partiality swims with inten-
tionality. A design is about an artifact. That is no commitment

Whither design space? 65

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

to being all about the artifact, and especially no commit-
ment to being as much about the artifact as it might some
day become. Designs are inherently partial: we add to them
and subtract from them as a routine part of doing design.
Furthermore, aboutness harbors information that may itself
be partial: representations may refer to the same or distinct
objects. For instance, we might have two identical repre-
sentations of a column in a building, each playing a role in
some part of a structural system, yet these two representa-
tions might be identified as referring to a single structure in
a future version of the representation. Such function shar-
ing is one of the oft-cited sources of design innovation
~Ulrich & Seering, 1992!.

A good representation to some degree must avoid these
traps. It must not over commit to a specific and limited set
of represented properties and feasible inferences. It should
display some aspects of strong representation; otherwise, a
significant part of the benefit of using a computer is lost. It
must remain open to the weak uses of representation, or
designers will resolutely suborn it to such. It must afford a
disciplined notion of change; otherwise, it is not a design
representation and certainly not a computable one. It must
achieve a deep notion of partiality in how it represents
designs.

2.2. Vastness

The domain of design imposes further conditions on repre-
sentation that stem from the nature of the collections of
design alternatives considered. In particular, design spaces

are vast in the sense meant by Dennett ~1995!, namely,
hyperastronomical in extent. For example, there are a finite
but incomprehensibly large number of possible games of
chess. Although almost all conceivable classes of designs
are also vast, they remain a vanishingly small part of the
entire design space, so that randomly selecting a worth-
while design is an event with a vanishingly small probabil-
ity. Yet, without an oracle, we must begin at just such a
random place and proceed to search.

In the analogous context of Darwin’s theory of evolution,
Dennett ~1995! argues that expressiveness does not give an
adequate account of possibility—the grade of possibility
that matters is not whether a suitable artifact is expressible
as a design, but whether a suitable design is accessible with
reasonable effort to an explorer positioned somewhere in
the design space. This line of reasoning can be expected to
apply to other vast design spaces. Therefore, the explored
fraction of a design space matters precisely because it decides
the cost of accessing the unexplored designs.

Figure 1 demonstrates two dimensions of accessibility.
Distance in the figure is a measure of derivational effort.
Arcs link designs in the explored part of the space to designs
not yet found. Following an arc expands the explored part
of the space. First, effort counts. Design b will be more
accessible than design a. Second, connectivity counts.
Designs c and d gain an advantage over designs a and b
through their connection to a larger number of already dis-
covered designs.

Vastness has other implications to the implied mecha-
nism of search. Effort counts in other ways than making

Fig. 1. The dimensions of design space accessibility. @A color version of this figure can be viewed online at www.journals.cambridge.org#

66 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

designs accessible along short paths. Design is time pres-
sured; the fact of vastness of the space and finite human life
guarantees this. The effort required to formulate a proposal
is large relative to the time available for the entire process.
Designs are precious productions and designers do return to
them, to use them directly or to infer from them analogous
structures and moves that can be applied to other designs.
In terms of a design space, designers pull paths of actuality
from existing designs and apply them to others in the space.
In the time pressured world of designing, even partial and
inconsistent designs find value as launching points into
unexplored parts of the space. Designs themselves are impor-
tant objects, irrespective of what they represent. That they
are placed in the design space captures a position from
which further exploration can be made. This is a corollary
of the fact that accessibility is the measure of possibility:
designs without physical interpretation or with poor quali-
ties may be the basis for other realizable designs. Although
this matter is also related to the expressiveness of the for-
malism, particularly whether it allows the description of
abstract forms, the role of unsound designs derives from the
importance of accessibility in the design space. Designs
without satisfactory interpretations draw their utility from
the designs that they make accessible either by forming a
link in a chain of explored designs, or by providing a chain
of exploration that may be reused by analogy.

2.3. Expressing intent

The primary design action of search in a space deeply col-
ors the accounts of design intent that will be feasible. We
can equally dismiss a posteriori rationalizations of design
intent as self-serving, and atomistic efforts to include intent
as overly strong representation. Intent is contextual, and the

context is the thread of design space along which it comes
into play. Design spaces enlarge the context for design deci-
sions beyond the brief initiating the exploration. Just as
design space accessibility stands for possibility, the correct
context for interpreting the intent of design decisions is the
position in the design space. When asking the why question
concerning the telos of a feature of a design, or of the result-
ing artifact, the most satisfactory explanation will include
the design space path and the alternatives forsaken. As the
brief changes in the process of exploration, designs create
the context for further decisions on them and the design
space path records alternative paths considered. Thus, a
move in the design space can be interpreted as seeking a
new solution to a particular problem arising in some previ-
ous design, where in general the representation of the prob-
lem and its solution may remain implicit in both the
antecedent and consequent designs. Put another way, the
co-option of earlier features for new roles is a part of design
that can only be understood with respect to the design space
path. In analogy to Gould’s ~1990! claims about the neces-
sity of history in any specific evolutionary account, design
intention finds its most powerful explanations through a
contingent history of process. Figure 2 shows a specific
example. Justifications for residential air conditioning out-
side of the tropics come not solely from a desire for human
comfort but also from the design decisions proposing a build-
ing configuration producing uncomfortable thermal envi-
ronments. Figure 2 presents a hypothetical case of a design
process for an actual building in a Mediterranean climate,
namely, a house in Adelaide, Australia. The house begins as
a functional enclosure for living. If the design was con-
cluded at this stage, air conditioning would be a necessity
because much vertical house surface is exposed to the sun.
The house mass is extended to shape the ceiling0roof and to

Fig. 2. A path developing a house design in a design space. Any decision to air condition, or indeed to recognize that air conditioning
is important, is tempered by the decisions already taken along the path. @A color version of this figure can be viewed online at
www.journals.cambridge.org#

Whither design space? 67

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

provide an elevated balcony around the upper floor. For
reasons not related to thermal comfort, design choices are
made that the upper floor is lightweight wood, and the lower
floor of masonry construction. Suddenly the need for air
conditioning disappears as the heavy part of the construc-
tion is now shielded from absorbing solar radiation and acts
as a heat sink during even protracted periods of hot weather.

We see from both professional ~Wright, 1945! and schol-
arly ~Bruton, 1997! literatures that derivation is a produc-
tive form of explanation. It is a recurrent theme in the
generative design literature ~Flemming, 1987a, 1987b!. It
is a typical device in papers reporting grammars for design
corpora ~Stiny & Mitchell, 1978, 1980; Chiou & Krishna-
murti, 1996!. The grammar rules are introduced, then comes
the application of the rules to produce one or more designs
in the space. This part of the exposition helps the reader
knit together an understanding of the rules in joint action.

Designer action changes with experience. This is most
commonly called learning. The process has explicit aspects:
in mature learners at least, learning itself becomes an object
of cognate action ~Schön, 1983!. Under the standard cogni-
tive claims about the production-like quality of cognition, it
would hardly be surprising if such a production-like quality
surfaced in first-person accounts of design learning. It does
~Wright, 1945; Archea, 1987; Woodbury, 1993!. In sum-
mary, designers use production-like encodings of extant and
newly learned actions. They use such encodings both inter-
nally and in communication with colleagues.

2.4. Summary of designer action

We claim that the above features of design representations
are invariants of the exploration view and are necessary
properties of a useful design space representation. In sum-
mary, representations must avoid the programmatic pitfall,
must be intentional and partial, are inevitably limited in
scope, carry both strong and weak representational qualia,
and have properties exogenous to the artifact represented.
That representations are used in search in a vast space makes
accessibility the primary criterion of utility, drafts unsound
designs into a potentially crucial role, and points to contin-
gent historical accounts of design history as the best record
of design intent.

Simon ~1980! long argued that the limits of cognitive
capability would seldom surface in observing problem
solving action. Humans work within their limits. Entirely
absent from unaided human problem solving are strategies
that require the storage of even modest numbers of problem
states. Indeed, the absence of such strategies forms a pro-
found falsification test for cognitive theories of problem
solving. Discovery of a single instance of such a strat-
egy would deeply challenge the entire edifice. Yet, design
space exploration is precisely about supporting humans to
do design work such that the overall system engages in
patterns of exploration that are beyond unaided human
capability.

We know that external memory, of almost any form, is a
significant amplifier of action. What is not, and cannot be,
clear from accounts of designer action alone is the utility of
providing computational means for designers to surmount
these biological limits. Can designer action be so amplified?

Here, surely, is a case where the absence of evidence
should not be taken as evidence of absence. Given the state
of design space exploration work today, we have little evi-
dence for amplification of designer action through support-
ing exploration. We also have little ground for arguing against
such amplification. Having almost no systems that engage
designers with multiple states, we can make only shallow
and tentative inferences about their utility.

In closing our discussion about the domain that design
space exploration intends to support, we would distance
ourselves from some current debates in design research.
Design space exploration takes a philosophical position that
is neither cognitivist nor situated. As Bredo ~1994! points
out with equal relevance to both cognitivist and situationist
ideologues:

Yet difficulties with the approach would vanish if it were
seen as simply an attempt to model human capabilities
on the computer so as to better understand them. If the
model were a tool, useful for solving certain problems,
rather than “the way the world is” ~Goodman, 1972!,
then it would be unobjectionable. All of the dualisms I
outlined would then disappear along with the attempt to
force human cognition into a given descriptive language.
Computational models would simply be tools for work-
ing out the implications of certain formal theories.1

3. ACTION AMPLIFICATION

Simon notes repeatedly that we should expect to see pri-
marily the properties of the task environment when we
observe designer action. Except in extreme situations we
do not see the situations in which cognitive limits are reached
as problem solvers simply avoid such situations. Yet, it is
precisely at such places where human cognition limits action
that we should seek to amplify human ability. In addition,
we know they exist. Because, with a few exceptions ~New-
ell & Simon, 1972, p. 826!, we do not have positive empir-
ical accounts of designer limitations, we need to resort to
argument and anecdote to build a catalog of opportunity.
Presuming that humans find amplification of their abilities
useful, we should expect to find opportunity at the bound-
aries of systems and we sketch examples of these below.
The first refers to informal qualities of representations that
are found, in some way, in almost every commercial CAD
system. It appears here more as an existence proof for ampli-
fication than as the focus of design space explorers. The

1Either “cognitivist” or “situationist” could be substituted for “Com-
putational” here with equal relevance.

68 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

second, codification, is the strategy behind both scripting
languages for CAD systems and the early rule-based gen-
erative design systems. The third looks to the record of past
work, the explicit space, as a source of useful resources for
work. The fourth, implication, points to the generative mech-
anism as helping a designer project potential implications
of design moves. The fifth is speed, less of computation
than of computationally supported processes. Backup, recall,
and replay complete the suite of amplification strategies.

3.1. Representational prowess

External memory use is near ubiquitous for designers, and
representation of designs is a primary function for external
memory. A good account of the history of commercial design
computing can be built on events introducing new represen-
tational tricks. One such trick was solid modeling, the rep-
resentation of the geometry of 3-D solid objects. At its
inception, solid modeling was seen as a key support tech-
nology for a larger enterprise of supporting design with
computers.2 This happened, but as things played out, bound-
ary representation solid modeling also gained a life of its
own and is now, in and of itself, a key design medium. Why
did this occur? It turned out, that in analogy to Dennett’s
terminology ~Dennett, 1995!, solid modeling was just enough
to give designers a playground and not too much to over-
burden them with specifics. The typical operations of
abstract, primitive parametric solids, boundary tweaking,
and Boolean operators allowed designers to make virtually
any form they could conceive. There is no meaning cap-
tured beyond solidity; designers are free to make their own
associations between the forms represented and the thing
being designed. Rendering allowed designers to play with
visual effect far beyond simple realistic veridicality with
the world. Solid modeling with computers is the analog to
the model-making shop still to be found in many design
schools.

3.2. Codification

Numerous authors, both designers reflecting on their work
and scholars observing designers, note processes of codifi-
cation of design moves. These vary in temporal extent from
within a single design episode ~Akın, 1986! through indi-
vidual projects ~Archea, 1987; Flemming, 1987a! to con-
stancies and changes through the development of a life’s
corpus ~Knight, 1981!. Designers preferentially use past
successful moves, their own or others, in future projects.
One of the long promises of grammars is the ability to
explicitly encode such moves.

Such encoding coheres with the ability of computers
to be active with data. Most professional tools come with

a programming language that can be used to extend the
tool to automate tasks. Apparently, explicit codification of
action is important. Very few such languages support the
production-like character that we noted above as a feature
of much designer communication on design process. A par-
tial exception is the venerable AutoLISP, recently reborn
as Visual Lisp, which at least has structures that make
production-like expression relatively easy. Designers and
firms do use these codification tools, although seldom to
the degree that academic purists might prefer.

The main strategy for amplification in early grammar
formalisms and interpreters was the codification of design
moves as grammar rules. Those that went from formalism
to implementation, and especially to those used by other
than their authors ~Akın et al., 1997; Flemming, 1978, 1987a,
1987b, 1989; Heisserman, 1994; Heisserman et al., 2000!
made this codification active, and thus, at some level, dealt
with design space. In every case except for SEED-Config
~Akın et al., 1997! and SEED-LOOS ~Akın et al., 1997!, the
strategy was minimal: the design space was represented either
through a subset of the language of designs generated by
a grammar or primarily through strands of derivation taken
one at a time. Carlson’s ~1993! thesis presented a unique
exception. He presented a formalism called grammatical
programming and implementation ~GRAMMATICA! for
embedding grammars in a nondeterministic functional
programming environment. Grammatical programming pro-
vides control mechanisms richer than grammar, subroutine-
like mechanisms for dealing with complexity, and the ability
to use transformations other than rewrite rules. Further, gram-
matical programming can apply to spaces of parametric,
constrained designs. Carlson provided an ability to recur-
sively enumerate languages of designs specified by state-
ments in a control algebra over transformations. Figure 3
reproduces one of its outputs, a drawing of an early Gothic
tracery.

Codification is, at least in part, a successful amplifica-
tion strategy. But just how does it work for the designer?
What assurances and efficacies does it provide?

Authors such as Flemming ~1987a!, Archea ~1987!, and
Bruton ~1997! describe a mode of work with rule systems,
either used formally with an interpreter or informally as a
metaphorical guide to action, in which the designer acts as
author of the rule system. The account goes that the design-
ers work in circles by making rules, using them, observing
their actions, modifying the rules and reentering the circle
by using them again. Bruton ~1997! captures this process
especially well in the title of his thesis: A Contingent Sense
of Grammar. The measure of rule utility is what it gener-
ates now and perhaps in future contexts. In general, we
cannot assure formal properties in the utterances of a gram-
mar. We might like to think that generative design holds
forth the promise of operating within a distinct space of
possibilities, for example, the space of well-formed Gaud-
ian surfaces, but we cannot guarantee this space. The space
is implicit in the given rules, which induce appropriate

2At a first approximation, we can make this claim without citation. One
of the authors ~Woodbury! was a participant in this process.

Whither design space? 69

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

designs or designs that can easily be ruled out. However,
where do rules arise? When we presume that a generative
system is restricted to a well-formed subset of the possible
Gaudian surfaces, we do so on the basis of past moves in a
freer design space. We have, in general, no device for ensur-
ing either that we capture all well-formed Gaudian surfaces
or that we do not generate ill-formed surfaces along with
the good ones. All we can do is temper our expectations
with experience in the more open context in which we, or
others, built the rules. In this more fluid context, ultimately
the unrestricted design space, a path records the co-option
of design features and their assignments to roles. Rules
ossify such experience. We have confidence in them to the
extent that we can reinterpret the resulting designs our-
selves, can follow the logic of the design space path or have
enumerated enough outcomes to feel confident in future
explorations. Each of these sources of surety is an illusion.
Reinterpretable designs arise in weak representations that
defer explicit commitments to the viewer and thus surren-
der potential ground for computational assistance. Under-
standing design space paths privileges the easily explainable
over the creatively explored. Confidence in numbers is a
simple recapitulation of the general logical error of induc-
tion of general laws from specific facts.

In the cases of both single-fronted cottages ~Woodbury
et al., 1999!, the historically dominant cheap housing in
Adelaide, and Queen Anne houses ~Flemming, 1987a,
1987b!, we are permissive in the interpretation of features

and create logically coherent design space paths. Each
single-fronted cottage consists of a hall the length of one
wall and a parallel collection of nearly identical rooms.
These are generated by rules that attend to the geometric
pattern alone. The assignment of roles to rooms is deferred
to a later stage of rule application. The rules are con-
structed to apply in stages and this orderly filling in of
design detail aids both rule creation and comprehension of
rule application. The same overall structure is mirrored in
Flemming’s Queen Anne house grammar ~Flemming, 1987a,
1987b!, which has a similar deferral of functional assign-
ment and goes through successive stages of completion
with different rules acting at each stage.

The accounts generated in exploration are thus necessar-
ily both constructive and contingent. It is not clear that you
can provide a computationally tractable and humanly under-
standable mechanism that mimics set theoretical selection,
that is, selection based on the interpretations of designs. In
a constructive world, be it evolution or design, accessibility
is the only sound concept for discovery. Accessibility derives
not only from the operations at hand in the design represen-
tation, but also from the reuse of recurring patterns in the
threads of actuality that trace out the explicit design space:
the space of visited designs. Reuse of threads is the intu-
ition behind, for instance, case-based reasoning. However,
from a design space explorer perspective, the case lies not
in the individual designs but rather in the design space paths
embedded in an explicit design space.

Fig. 3. A Gothic tracery generated as the output of a GRAMMATICA program.

70 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

3.3. The explicit space

Design space paths are embedded in both implicit and explicit
design spaces. The former is the graph of all possibilities
engendered by the codification system used. The latter is
that subgraph that a designer, or a design organization, has
previously visited. Ground in the explicit space is gained
through designer work and it expands over time as a library
of potentially recoverable, reusable and readaptable work.
At least that is the theory. In practice, the storage and recall
of past design states was, in 2005, hardly supported in
any commercial system and hardly touched as an issue in
research.

There are several reasons why the explicit space is impor-
tant. Designers recall prior work and adapt it in new con-
texts. Design firms that invest in developing libraries of
standard details are using a recall strategy. Designers may
wish to replay paths previously discovered in a space, but
in new contexts thus producing new results. This is the
strategy behind systems, such as ArchiCAD, that provide
procedural languages to write programs for adapting details
to new contexts. Recall and replay are themselves impor-
tant strategies worthy of their own sections in Sections 3.7
and 3.8, respectively. A third reason to be interested in the
explicit space is that it contains alternative solutions to the
design problem at hand. Alternatives are important because
designs are inevitably evaluated along multiple criteria, only
some of which are, or can be, captured in a given symbolic
representation. They are also important because of the pri-
macy of accessibility over possibility in making new dis-
coveries in the implicit space. Last, they are important
because the thread of actuality along which each develops
is the best available carrier for explanations of design intent.
Narratives of design intent provided by replay of thread,
and embellished by commentary, themselves provide a basis
for comparison and reflection on design possibilities.

Designers create alternatives as they work. According
to Akın ~2001!, a main distinguishing mark of expert de-
signers compared with nonexperts is the creation of com-
paratively more alternative problem formulations. Why
alternatives? One part of the answer is revelation. Alterna-
tives reveal things you have not considered, and thus sug-
gest future avenues of exploration. Different alternatives
reveal different avenues of exploration; they make new parts
of design space accessible to future exploration. Further,
different alternatives reveal not only oversights but also
intangibles that cannot be considered formally in a sym-
bolic representation. Another part of the answer is compar-
ison. As a practical matter implied by finite capabilities and
resources, including time, being available for any given
design process, evaluation against criteria is an act of sat-
isficing ~Simon, 1955, 1956! according to which designs
are accepted on the basis of their satisfying rather than opti-
mizing performance against criteria. Important ground is
gained though by satisficing against what is, or can be,
known about the exploration so far. It is, rhetorically at

least, better to claim that a design both satisfies criteria and
is the best among those considered, than to simply make the
claim that it satisfies.

As of 2005, available systems were resolutely based in a
metaphor of the single state. One uses such a system to
work on “a design” that one alters over time. The current
design ~one point and one point only in explicit space! is all
that the system provides a user. Users of systems learn man-
ual strategies of making versions, either through file copies
or sometimes elaborate manual patterns of work with such
structures as layers or groups, but systems themselves pro-
vide little or no systematic support for multiple states. Even
such signal works as Chien’s ~1998! thesis builds design
space navigation on a metaphor of a single explorer who is
“located” at precisely one state at a time.

In design space, the primary view is of the space, in
which states participate as members. Displays and inter-
actions involving multiple states are in the set of elements
from which interfaces to design space explorers will be
built. There are facets to this broad claim.

A design space provides access to multiple points in
explicit space. Interdesign comparison, multidesign inter-
action, and marking important places in the space are likely
elements of interactions.

Interdesign comparisons potentially allow a designer to
grasp possibilities within a region or on a front of explicit
space. The SEED-Config ~Woodbury & Chang, 1995; Akın
et al., 1997! and discoverForm ~Carlson & Woodbury, 1994!
interfaces each provide negative examples of why interde-
sign comparison is important. SEED-Config provided sep-
arate windows in which alternatives could be visited, a
window for a current design node and a layout of the nodes
in its design space. One of these windows is shown in Fig-
ure 4. Clicking on a node produced a view of the design at
that node in the current window. A combination of a spe-
cific key and a click opened a new window on the design of
the clicked node. Designs were not well juxtaposed; the
distance both in graphic space and interaction work between
displays of designs made comparisons cumbersome.

The SEED-Config authors knew this well. When they
prepared explanations of the system for publication ~Akın
et al., 1997! they crafted both abstracted examples of the
interface using its metaphor of isolated views ~Fig. 5! to
explain development along a path, but also included a view
of a set of designs from design space ~Fig. 6!. We interpret
this inclusion as implicit admission of the need for better
interdesign comparisons.

DiscoverForm is another negative example. Its main goal
was immediacy in the interface. This is reflected in its
declared primary principle of interaction, noted by Carlson
and Woodbury ~1994, p. 126! as “All changes to the motifs
and clones are reflected immediately in the patterns that
they generate.”

Again we see an implicit admission that interdesign com-
parisons are important. Figure 7, which reproduces figure 2
of Woodbury ~1993!, shows two paths of exploration from

Whither design space? 71

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

an initial, symmetric tree. Carlson and Woodbury’s ~1994!
figure 18 ~not reproduced here! shows an exploration of a
binary tree as a cycle through a rotation. Both of these
diagrams were manually prepared and both illustrate the
importance of making connections among states. Neither
could be accessed as a whole in the discoverForm interface,
and it is granted that such was not the goal of discoverForm.

Comparisons can be symbolic as well as visual. Wood-
bury et al. ~2000b! argue for comparing representations based
on information specificity. This yields a variety of compar-
ison operators including equivalence, inclusion, common-
ality, difference, and consistency. In turn, this calls for a
representation in which computation can play a role larger
than state visualization in preparing comparisons of states
for designer interaction.

Multidesign interaction labels the idea that, by making
changes to an abstract state, a designer can effect changes

to several more concrete states. Alternatively and equiva-
lently in information terms, if a set of states share a feature
or parameter, changing that feature logically changes all of
the dependent states. To our knowledge, this strategy has
received no explicit attention. The SEED-Layout system
did have an ability to update prior states as a side effect of
the finalization process in which a layout was dimensioned
according to current constraints ~U. Flemming, personal
communication, 2003!.

Marking prior places, or landmarks, in an exploration is
a recurrent theme in research on navigation in complex
information spaces. Chien ~1998, p. 32! lists it as the first of
four principles for designing navigation support in genera-
tive systems. Strong ~1998, chap. 3! makes a similar argu-
ment in his thought experiments on cyberspace navigation.
These are just two examples from many. Interestingly, they
both use the same root examples of wayfinding in architec-

Fig. 4. A design node window in SEED-Config. Such windows could be opened on any state in a design space. Once opened, they
were not visually linked to the design space in any way. @A color version of this figure can be viewed online at www.journals.
cambridge.org#

72 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

tural and urban spaces ~Lynch, 1960; Passini, 1984!. In the
current argument, the privileged place of accessibility over
possibility in a vast design space provides an analytic argu-
ment for landmarks. Exploration work against the implicit
space is a precious commodity. Such work itself can pro-
duce a set of states sufficiently large that the principle of
accessibility over possibility becomes recursively relevant.
By marking states with special exogenous meaning, users
add a grade of accessibility to their explorations. It is inter-
esting to note that this strategy has been found lacking in
bookmark systems in Web browsers. Bookmarks quickly
proliferate and themselves need organization. In these the
recursion is carried a step further: bookmarks can them-
selves be classified into simple recursive labeled containers.

3.4. Implication and “implicature”

Construction of design space paths is a main task for design
space exploration. At any state along a path, or in design
space in general, exploration is largely conditioned by knowl-
edge about both the present state and states reachable from
that state by path traversal. Thus, an important property of
a representation, be it of a state or a space of states, is what
can be reliably inferred from it. Inference has long been a
principal strategy for constructing design support tools. Argu-
ably, it was the motivator for projects as early as Sketchpad
~Sutherland, 1963!, in which the designer was to build a
geometric framework of which implications could sub-
sequently be explored.

Implication as a strategy has exemplars in such common
tools as renderers, animation packages, and spreadsheets.
In renderers, a model is created and subsequently explored
via renderings taken with different viewpoints, camera set-
tings, lighting configurations, and material choices. Anima-
tion systems support a simulacrum of end-user experience
of a design through automation of camera models over time.
Spreadsheets implement a small step toward design space.
In a spreadsheet, the structure is a cascade of equations that
allows users to quickly see the implications of changing the
independent variables at the top of the cascade. Designers
such as Jay Parrish ~personal communication, 2003! fur-
ther use spreadsheets by developing codified, yet informal,
models by which values in a spreadsheet are taken as param-
eters by which a design state, for example, a stadium is
defined. Spreadsheets are an exemplar of the long-standing
strategy of design parameterization, which, in 2005, is in
revival in architecture through adaptation of such systems
as CATIA ~2003!, and development within the AEC com-
munity of new systems, for example, Generative Compo-
nents ~Aish, 2002, 2004; Aish & Woodbury, 2005!.

Deferral is the flip side of implication. Under some cir-
cumstances, it is worth designer effort to build a represen-
tation through which decisions can be deferred. Deferral
only works when a representation supports some capability
for implication. A typical use of parametric systems is to
develop an example design that can then be adapted to fit a

Fig. 5. The presentation of SEED-Config ~adapted from Akın et al., 1997!.
An abstracted view of the separate windows provided by the interface
explains development of a design along a path. @A color version of this
figure can be viewed online at www.journals.cambridge.org#

Whither design space? 73

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

particular geometric context. Such adaptation stands in con-
trast to the extensive rework that must be done to modify a
complex design that is represented in a strictly nonparamet-
ric modeler, as demonstrated in Figure 8.

The resulting ability to make rapid changes along a lim-
ited range of variation is the primary argument for param-
eterization. Deferral strategies can also be found in the design
and use of conventional CAD systems. For instance, assign-
ment of logical material types throughout a design allows
for rapid refinement of material properties when rendering
from the design, In practice, rendering is an iterative pro-
cess of changing material properties, lighting, viewpoints,
and rendering settings. Figure 9 demonstrates the effect of
this type of deferral. The appearance of a design can be
quickly changed simply by reassignment of material prop-
erties, not in the design, but in a table of materials. Deferred
decisions may be taken either automatically, for example,
in parametric design systems, or manually, for example, in
user choices within rendering systems.

For very good computational reasons, most automatic
implementations of a deferral strategy involve situations in

which the deferred decisions are linked to the design through
deterministic, if not continuous, functions. Nondeterminis-
tic choice is much harder to support and there are few exem-
plars ~but see Harada et al., 1995!. Paths in design space
inevitably capture nondeterministic and discrete changes;
this is how the structure of a design develops. Nondeter-
minism creates branch points; discrete change can greatly
alter what can be inferred from a design.

Implication has different meanings for design states and
exploration paths. The implicature of a design state is what
can be inferred about that state from its representation.Arep-
resentation of a state may allow certain decisions to be
deferred, that is, decided at some later time. In contrast, the
implicature of a state along an exploration path is the other
states and their implicatures that can be accessed by explo-
ration from the given state. What can be implied along an
exploration path is thus affected by the properties of designs
that are preserved along the path. Unfortunately, what can be
inferred along a path is limited in most design space explorers.

Grammars and their variants are perhaps the most com-
mon strategy for implementing generative systems, at least

Fig. 6. Presentation of a set of designs produced by SEED-Config as a coherent whole ~reprinted with permission from Akın et al.,
1997!. The interface to SEED-Config had no analogous view. @A color version of this figure can be viewed online at www.
journals.cambridge.org#

74 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

in the building domain. A grammar comprises a represen-
tation, a collection of rules, and an initial state. Used as a
design space explorer, its sentential forms stand for the design
space and its language to designs that are understood, in
some sense, to be complete. Rules are typically defined as a
left-hand side and a right-hand side. A rule match occurs by
finding the left-hand side in a state. A rule application
removes the left-hand side and adds the right-hand side
under conditions determined by the rule match. A rule can
thus map between arbitrary places in design space. In an
extreme case, an entire design could be erased by its removal
in the first part of a rule application and an arbitrary design
put in its place.

In certain domains stronger guarantees on design space
exploration are possible. Flemming ~1987b, 1989! imple-

mented rectangular layouts in such a way that the spatial
relations between rectangles in a layout are invariant along
an exploration path.

3.5. Speed

The finiteness of human existence puts intellectual curios-
ity at odds with time. In a rushed life the speed at which we
can do things is important, as are the moments of silent
reflection bought by speedy action. Standard accounts of
human–computer interaction, for example, Card et al. ~1983!,
place speed and accuracy as primary criteria against which
to evaluate interactions with systems. When exploring design
spaces, one measure of speed is against the unfolding of
paths in design space. The focus here is not the time taken
to compute a particular path, but rather the time taken to
consider and make the choices along the path. That is not to
say that efficiency in computing paths is not important,
indeed it is a primary concern in developing a design space
explorer representation. For example, Heisserman ~1991!
went to great lengths in his thesis to ensure that the rule
matching and invocation mechanisms were efficient as com-
putations. Rather, once you have an efficient mechanism,
making choices will inevitably dominate the speed at which
exploration can occur. There are at least two dimensions of
choice. The first is simple consideration of the choices avail-
able at a given point in a path. There may be many such
choices and it is common that authors of generative mech-
anisms pay considerable attention to reducing the choices
available at a given time; for example, this is one of the
primary practical uses of labels in shape grammars. The
other dimension is one of anticipation. Exploration is con-
tingent: we cannot know the range of possibilities that lie in
front of a given partial path. That said, indications are impor-
tant. For example, discoverForm employs a limited domain
comprising a one-rule set grammar in which a path is
uniquely determined by choice of motif, branching factor,
and affine transformation ~Carlson & Woodbury, 1994!, but
trades on providing rapid anticipation of path choice.

In comparison, the SEED-Config interface was dismal in
looking forward to likely effects along paths. The user was

Fig. 7. An exploration in discoverForm ~Woodbury, 1993! showing
two paths of development. Changes to both cloning rule and motif are
used freely throughout.

Fig. 8. A model of a theater created using a conventional solid modeler ~form•Z!. Considerable manual work is required to change
the model from its original state on the left to a variant state on the right. This is despite the model being specifically crafted to take
advantage of the operations provided by the modeling system. Reprinted with permission of Tristan d’Estree Sterk, The Office
for Robotic Architectural Media ~www.ofram.com!, 2003. @A color version of this figure can be viewed online at www.journals.
cambridge.org#

Whither design space? 75

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

resolutely pinned down to local choices of rule application
and had to manually explore from a particular point to gain
some insight on likely future productions.

Harada and colleagues ~Harada, 1997; Harada et al. 1995!
showed an alternative approach. In essence, she put a gram-
mar interpreter inside a physically based modeling inter-
action loop. When, in the midst of a user interaction, a
parametric design reached a limit state along which no change
was possible, the grammar interpreter performed a limited
exploration and made a representational change using a prin-
ciple of least disturbance of the interface. All this happened
quickly within one interaction cycle. The resulting system
was responsive to user input and resulted in a user strategy
of dragging objects to explore possibilities. Harada did not
record the space of possibilities explored, so did not pro-
vide explicit assistance in forming an impression of what
might be possible from a particular point in design space.

3.6. Backup

Newell and Simon ~1972, p. 826! note that humans use very
limited backup strategies, and this is directly due to cogni-
tive limits. In particular, people do not use search and scan
strategies in which they consider a large number of alterna-
tives and proceed from the prior alternatives that seem most
promising at a given time. To some extent external media,
teams, and assiduous librarianship can overcome these lim-
itations, but such occurrences are relatively rare probably
due to the time and expense involved. Synthetic problem
solvers, on the other hand, are often designed with large
fast memory structures, which make possible relatively prof-
ligate use of strategies employing backup. Almost all com-
mercial CAD systems provide an undo command, essentially
a backup along a single thread of development. One has
only to work with and without such a limited form of backup
to realize the degree to which even such a modest feature
enhances work. In essence, having backup reduces the costs
of recovery from a mistake to zero. The resulting sense of
play is palpable. What is not clear is how to structure inter-
action with a large number of backup states. Yet, the num-

ber of potential backup states is not limited to those available
along a single derivation thread. Woodbury et al. ~2000a!
describe hysterical undo as an operation that permits backup
along paths not previously taken to a particular state. Chang
and Woodbury ~2003! demonstrate that user choices of
Boolean operators in a conventional solid modeling system
provide the basis for a form of backup that picks an expres-
sion of operators apart in a variety of ways. Both point to
richer amplification strategies based on generalized backup
mechanisms.

3.7. Recall

Backup implies proximity, either in derivational distance or
in terms of design episode. We backup to prior states in a pro-
cess. Other states may be every bit as interesting in a present
context: but they may be unrelated by time, task, derivation,
or author. Recall is the metaphor for such distant access.

Backup and recall comprise a necessary substrate on which
exploration action grows. Normal design, and this in the sense
of a large majority of design work, proceeds from the known
to the unknown. Designers work on and through prior work.
They make steps by modifying and adapting prior work until
it becomes new and fresh. Although rarely employing care-
fully recorded sketches, designers sometimes make leaps from
what they know to a new synthesis ~Wright, 1945!. Some-
times, and such moments are often recounted as memorable
events, they combine two or more knowns into a hitherto
unknown. In such a model recall is that action that draws
precedent into play. The precedent may be the work of any-
one: the designer, a colleague, another distant design pro-
fessional, or it may be a vernacular production. It might
even be a natural phenomenon. That precedent is valuable
is easily seen in the regular and prolific publication of pro-
fessional journals and picture books on architecture. That it
is used can be seen by the presence of such publications,
numerous photographs, and found objects that tend to col-
lect in design offices. Devices for organizing such prec-
edents are widely known and sometimes used: the office
catalog, library, and CAD symbol collection are all examples.

Fig. 9. A model of a house by Australian architect Max Pritchard. The model was created as part of a suite of teaching exercises
~Woodbury et al., 2001; Adelaide University, 2002! aimed at learning the tools provided by CAD systems. It is configured so that
changes to the properties of solids in the model can be easily made and propagated throughout the model ~by permission!. @A color
version of this figure can be viewed online at www.journals.cambridge.org#

76 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

In the context of design space exploration then, an impor-
tant amplification might be the ability to recall what you or
someone else has done before. Such recall is, of course, one
of the aspirations of the complex of work labeled case-
based design. As we have argued elsewhere, and without
disparaging the prior work on cases ~Woodbury et al., 1999!,
considering the design space seriously leads to different
conclusions on formalizing and implementing the function-
ality of cases. We will return to this issue in the discussion
of representation and computation below.

Recall must operate on both wholes and parts, with the
parts being more important than the wholes in practice. The
chance of reusing an entire office design is significantly
less than that of reusing a window detail.

A corollary of recall is knowing when you have been in a
particular area of design space before. This is a generaliza-
tion of the duplicate detection problem in generative sys-
tems in which it is important either to recognize when you
reach a prior design or to avoid ever doing it at all. Know-
ing when you are in the neighborhood of things you tried
before could save a lot of work.

What is not clear is how recall can be made to work. This
can be seen in difficulties encountered in recall in a much,
much smaller space than the ones under consideration here:
the World Wide Web. A major current issue here is search-
ing. It is bluntly clear that current search tools are inade-
quate to the task on the Web at large; further, the available
ways of storing and recalling even the relatively small num-
ber of bookmarks generated by a single person are hardly
better. There is some light, though, in such systems as CZWeb
~Fisher et al., 1997!, which provided a way of organizing
and communicating bookmarks such that they related visu-
ally to the logical structure of the browsed Web sites and to
a user’s choices about appropriate visual layout.

3.8. Replay

Once you have recalled, how do you use the recalled thing
in a new context? In a professional context, the question
might be “How do we use this detail we have found in our
library?”

To this question, conventional CAD systems have a defin-
itive answer: copy and paste. The standard CAD system
representation is an extreme of declarativeness: it simply
describes a set of geometric and attribute objects. These
generally have an independent existence and can be simply
put into a new context. The user has the entire responsibil-
ity of properly relating the inserted objects to what is already
in the design, and this responsibility is typically not oner-
ous. Most CAD systems, and most styles of using them,
veer to the weak end of a weak to strong representational
spectrum. Relatively few properties of the designed object
are maintained formally in the representation. Examples
include dimensions in working drawings, and polygon integ-
rity and material properties in models used for rendering.
Copy and paste works: it has become a near-universal user

interface device across a wide range of system types. How-
ever, it is fragile; it is challenged by the slightest hint of
interobject relations. Consider spreadsheets, an exemplar
of which is Excel. The underlying abstract data structure of
most spreadsheets is a unidirectional constraint network in
which links between nodes model the propagation of the
value of a source node into the equation that, in its turn,
computes the value of a sink node. Using copy and paste is
tricky in spreadsheets, as all users of these systems quickly
discover. The usual metaphor is that, within the formula of
a cell, a reference to another cell is made either in absolute
or relative terms, or a mix of the two. When doing copy and
paste, the user must be aware of, and must control, which
reference style he or she has used. Users of spreadsheets
develop an idiom of use, which might be labeled copy paste
and patchReferences,3 in which users first try to copy and
paste and, if it fails to produce a sensible result, either patch
the reference style in the copied cells and copy and paste
again, or patch the copied equation itself.

In contrast, most of the representations used in genera-
tive design systems and demonstrations have a stronger char-
acter and this seems to be required by the codification of
designer experience in the design generator. For example,
shape grammars for design corpora universally make prof-
ligate use of labels to carry intentional information ~Stiny
& Mitchell, 1978, 1980; Chiou & Krishnamurti, 1996!. This
style of programming seems idiomatic: grammars in sys-
tems such as GENESIS ~Heisserman 1991, 1994! and Gram-
matica ~Carlson 1993!make extensive use of those systems’
analogues of labels. The information states of these labels
are typically fragile; they relate to specific places in a gen-
eration process.

The natural analogue to copy and paste in generative
systems is copy and apply path where a path is a sequence
of design states related by rule application or other moves
to a start state in a design space. Copying a path copies not
the design states, but the moves that generate the state
sequence from the start state. Applying a thus-copied path
is to reexecute the rule applications from a different start
state ~Fig. 10!.

Path reuse has been a bête noir of generative systems. To
our knowledge, no grammar-based generative system has
implemented it, despite considerable discussion of it among
developers. Yet, is it a key amplification point for design
systems.

4. REPRESENTATIONS AND COMPUTATION
OF DESIGN SPACE

A core feature of system designs for design space explora-
tion is explicit representation of the space of discovered

3This claim is based on anecdote, not empirical study. The basis of the
claim is that one of the authors ~Woodbury! uses spreadsheets extensively
and has taught students how to use them.

Whither design space? 77

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

designs, namely, the explicit design space. It necessarily
inherits the properties of the task environment ~designer
action by search in a problem space! that it must serve. As
we argued above, these include intentionality, partiality, vast-
ness, and the attendant primacy of accessibility over possi-
bility. Further, a design space representation would seek to
support one or more of the strategies outlined in Section 3.

What are the implications for design space representa-
tion? All such must arise against the constraints that a use-
ful representation must be simultaneously understandable
to its users and computable by a machine. Understandabil-
ity may take many forms, but a chief strategy is to present
to the user in terms of the tasks being undertaken. In the
case of design space exploration, this is in terms of all the
earlier-mentioned elements of its task environment and some,
or all, of the amplification strategies. Computability means
that we must carefully attend to using only algorithms and
representations that work within the finite resources avail-
able to computation.

We call out some principal constraints from both under-
standability and computation. Work by search in a problem
space immediately implies that some of the possible states
will have been visited and some not. The visited ones are
accessible by recall and subject to interstate comparisons.
The unvisited states are possible and may become accessi-
ble through future acts of exploration. We distinguish these
two classes of states by the designation of two subsets of
design space. The implicit space is that made possible by
the generative mechanism. The explicit space comprises
those states that have been visited, in the current or an
available past exploration episode.

The vastness of design space is a permanent constraint.
Examples of vast spaces are the game tree of chess or the

collection of all possible 500-page ASCII manuscripts. The
latter has more states than exist protons in the universe.
The fact is more often appreciated than the converse: that
these spaces are, in fact, finite, are composed of finite objects,
and are reachable by finite computations. The upshot of
vast spaces, composed of finite elements, is that there are
clear shortest paths in the design space, and that such paths
are generally tractable. For example, a book in the library
of Babel ~Borges, 1962! is reachable in a year to anyone
prepared to type a couple of pages a day. However, to con-
sider the contents of the same library is to boggle the mind.
There is no class of English literature, or literature in any
language, for example, biographies of the reader, that it
does not house in vast quantities. Therefore, we may be
reasonably extravagant with algorithms that process paths
in the design space, because they deal with tractable num-
bers of elements, although we must strenuously avoid algo-
rithms that attempt brute force work against anything but a
vanishingly small fraction of the design space. Design space
exploration thus inevitably mixes human intervention with
machine generation; it is a mixed-initiative enterprise.

The term mixed initiative has a specific meaning in the
wider literature, which we adopt without change here. It
refers to the understanding of interaction with a system in
terms of the communication that would occur were the sys-
tem a colleague. Interaction changes from issuance of com-
mands and reception of results to a multilevel system of
dialogue, in which agents communicate within a domain to
coordinate tasks and achieve goals ~Allen, 1999; Datta,
2004!. An implication for design space explorers is that the
opportunities for external access to any generative mecha-
nism need to be fine grained. This is not a claim that all
interaction must be fine grained, just that it can be. In a vast

Fig. 10. Path reuse can either be through the recognition of homologous pattern in the ancestry or analogous pattern in design form.
In both cases the ability to reuse known paths is crucial in enabling design space exploration. @A color version of this figure can be
viewed online at www.journals.cambridge.org#

78 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

space, task control becomes crucial: search is intractable,
but movement along specific paths is efficient. Conversely,
given a mechanism that can actually do much of the hard
work of developing designs along given paths, the mecha-
nism needs, at times, to retain initiative.

In the mixed-initiative enterprise of design space ex-
ploration, there are at least two important sources of
clarity to exploit. The first is navigation, and the second is
recombination.

Navigation is cognate movement through a space. It
involves both moving along and understanding your path.
Navigation in implicit and explicit spaces is subject to the
same constraint: it can only be done in reference to what is
already known. This constraint manifests differently in each
space. In implicit space, a navigator stands at the frontier of
the explicit and must base action on some location on that
frontier. She has in hand a set of operators, and some nec-
essarily fallacious, but heuristically useful knowledge about
what those operators might do. In explicit space, a designer
has a richer context of reference. She can move from known
state to known state along explicit paths that express some
measure of relatedness. She can search through indexes of
design state properties.

A flaw in standard rule-based accounts of design space
exploration in implicit space is that the usual formulation of
rules cast navigation solely in terms of derivation, thus put-
ting the landscape of the explicit space forever beyond the
sight of the navigator. Applying rules of the form a r b
involve removing a transformed version of a from the design
and substituting for it an identically transformed version of
b. This means that the granule of movement specified in a
rule can go from one point in a design space to another
arbitrary point irrespective of any underlying design space
order. Rules of the form match and apply create a similar
screen between derivation and design space structure to the
extent that the apply part of the rules does not create an
explicit account of its movement through the structure.
Recasting the devices of navigation from rules to opera-
tions that make explicit reference to underlying structure
permits us navigators to know more about the paths we
have taken ~Woodbury et al., 2000a!.

Recombination generalizes the notion of copy and apply
path argued above as a natural analogue to copy and paste
in more conventional systems. Recombination permits the
application of past navigation to future explorations. For
example, we may splice together paths, or reorder the steps
along a path. A given design space representation will make
a variety of such operations feasible, but we require certain
regularities in the representation of design states that allow
us to cheaply and robustly reapply design transformations,
and to recognize some monotonically increasing properties
along the paths.

Against the vastness of the design space, it is clear that
we cannot hope to exhaustively optimize. Even a vanish-
ingly small subclass of the design space is, in general, also
vast, so that design problems are examples of what Simon

~1955, 1956, 1980! calls “satisficing.” For example, you
can only expect to arrange a vanishingly small fraction of
the competent autobiographies contained in the library of
Babel, and those that you will reach will be by refinement
of your original attempt. Therefore, it is crucial that the
organization of the explored space makes possible the reuse
of drafts.

If, as we argued above, the best accounts of intent will
necessarily include the decision history of design process,
then narrative becomes an important part of a design sys-
tem. The bet here is that telling stories of design decisions,
including the decisions foregone, begets new understand-
ing. Efficient navigation and recombination reinvigorate such
narrative. To explain the telos of a design, simply replay an
account of its creation. If the navigation mechanism embod-
ies structure other than derivation, for example, plausible
explanations other than those followed by the designer might
be available and such explanations could just be interest-
ing. Navigation and recombination reify story telling as a
design tool.

Explicit space is necessarily a vanishingly small part of
design space, but that does not mean that it is small in
computational terms. Over design episodes on a project and
multiple projects it is likely to grow to very large size. This
puts a premium on methods of recall that are both efficient
in computational resources and effective to the designer.
Similarity is the usual term used for such recall, and is the
stock in trade of the large case-based reasoning literature.
Again, we call on a necessity for regularities in design space
to both formalize and make efficient notions of similarity-
based recall. An insight is to use the structure of the design
space itself as the recall mechanism. To recall a past design,
put an approximation of part of it into a design space. The
designs proximal to it will be similar by the measures implied
by design space structure.

The calls for navigation richer than derivation, robust
recombination, recapitulation through replay and content-
based recall all imply a primary space structuring mecha-
nism other than rewrite rules, although rewrite rules could
be built on top of such a mechanism. We are aware of at
least one such computationally efficient mechanism, and
this is based on a formalism known as typed feature struc-
tures. The essential information structuring relation here is
subsumption, that is, a relation of information specificity.
One state subsumes another if it contains strictly less infor-
mation than the other. With some restrictions on the kinds
of information carried, notably functional values for features,
subsumption can be computationally efficient. Further, the
formalism provides a means of codification and generation
involving type hierarchies as an analogue to rewrite rules.
It turns out the consequent style of expressing design infor-
mation is familiar in computational design circles. It is essen-
tially that of constraint languages in which users build
descriptions of collections of objects as networks in which
the arcs express either constraints or equality among vari-
ables depending on the view taken. In constraint languages,

Whither design space? 79

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

the utterances are used directly as design descriptions. In
typed feature structures, they effectively become the rules
that control generation through a resolution process, specif-
ically called p-resolution.

Woodbury et al. ~1999! introduced the typed feature struc-
tures representation to design space exploration, argued its
relevant properties, and showed how it could be used to
model simple housing designs.

Burrow and Woodbury ~1999! gave precise definition to
the typed feature structures representation as adapted from
Carpenter ~1992!, and showed how to make thep-resolution
incremental. An incremental algorithm in which each
stage of the resolution process is open to user interaction is
a crucial property for a mixed-initiative design space
explorer.

Woodbury et al. ~2000a! introduced a set of fundamental
operators over typed feature structure subsumption net-
works and showed how these could be used to generate
explicit design spaces and navigate design spaces in general.
In his PhD thesis, Chang ~1999! showed how the typed
feature structures representation could be extended to include
objects, such as solids, that have indefinite subparts. He
showed simple examples of generation using the extended
representation.

Datta’s ~2004! thesis constructs a mixed-initiative model
for interacting with subsumption-based representations in
general and the extended typed feature structures represen-
tation in particular.

In his forthcoming thesis, Burrow ~2005! has shown that
efficient design spaces can be organized around typed fea-
ture structures and p-resolution. For the first time, a for-
malism simultaneously captures generation, navigation,
recombination, recapitulation and recall.

The typed feature structure representation provides a com-
putationally efficient substrate for design space explora-
tion. In order to do this, it imposes rigorous constraints on
the properties of a representation; it introduces significant
properties that are exogenous to the task of simply repre-
senting a design. The representation supports the properties
we argued for in the discussion of the design space explo-
ration domain in Section 2, namely abstraction above the
program, partiality, intentionality, and the ability to provide
both strong and weak representations. Its form of codifica-
tion is more declarative than conventional rules: a user
describes structure rather than operations. Its algorithms
are incremental at a fine-grained level of the generation
process, thus allowing for mixed-initiative interaction at
almost any stage of the generation and navigation process.

The representation is young. In front of it lie the sorts of
effective, medium-scale demonstrations achieved by Heis-
serman ~1991!, Woodbury et al. ~1992!, Carlson ~1993!,
Carlson and Woodbury ~1994!, Akın et al. ~1997!, and Harada
~1997!. Far in front of it lies serious industrial application
~Heisserman et al., 2000!. It is though, the first representa-
tion that gives system designers a meaningful handle on the
primary object of research in the field, the design space.

Without knowing the periodicity and lifetime of patterns
in the design space, it is better to equip the designer with an
explorer that can be reshaped and paths that can be reused
as patterns emerge in the work of constructing threads of
actuality. This is another reason why design space explorers
are mixed-initiative systems, not viewers of ready-made
designs for a human. They are systems requiring reflective
thought from designers.

5. ANALOGIES WITH EVOLUTIONARY
THEORY: HOMOLOGIES, ANALOGIES,
AND TAXONOMY

We might construct a generative design system by codify-
ing the past successful moves in the design space. How-
ever, will this help us find new designs for say, fire stations?
We may find surprising results, fire station designs hidden
in the rules, but this is limited, because the rules have ossi-
fied past decisions. Although the rules work, they operate
within the scope of the experience from which they were
drawn; once outside this scope, the likelihood of striking a
productive region in the underlying design space is minute.
A borrowed move can be interpreted as seeking a solution
to the problem that arose in an earlier design, but because
the telos of these moves is bound up in the earlier path,
reuse under matching is not guaranteed to be productive.
These observations, based on ideas of path reuse, show
both coherence and difference with the most significant
design space of which we have even a partial record. This is
the design space of life.

This section is almost purely speculative. In it we
briefly discuss a few ideas from evolutionary theory that
might be helpful in thinking through potential design space
formalisms.

Homology and analogy are terms describing two modes
of feature sharing. In the case of homology, features are
shared by common inheritance. An example is the anatomy
shared by reptiles and mammals, which is evidence of shared
ancestry. This exemplifies our equation between accessibil-
ity and possibility. In a design space explorer, homology is
important to recognize: when a branched path encounters a
problem that is solved by transforming a shared feature on
one branch, it is possible that another branch can transform
the feature in a similar manner. Note that this is very unlike
evolutionary theory, in which homologous structures endure
along a thread of actuality. Here we posit that we can intro-
duce homology structures because the new structures can
be built on homologous foundations. Therefore, homology
is a useful trait to search for, and one that can be handled by
backtracking along paths. However, analogy also occurs
outside of homology where the designer is able to synthe-
size a relation between the two designs. In evolutionary
terms such is an instance of convergence, in which similar
features evolve over time from nonhomologous parts of the
tree.

80 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

The activity of synthesizing relations across the design
space is an act of taxonomy that seeks to uncover notions of
purpose in the arrangement of features. It need not be sound
or complete, because the notions of essential purpose have
been disposed of in place of a derived purpose occurring
within the context of design space paths. In the activity of
design, making the past accessible by synthesis and critique
is a discipline intended to hone the reuse of path fragments.
It serves to keep alive the visited filaments in the design
space and therefore to maintain accessibility.

Whether by homology or analogy, a goal for design space
explorers must be the robust reuse of paths of exploration.

6. SUMMARY

To take the metaphor of design space exploration seriously
is to admit the design space as the primary object of research.
Possible structures for design space are conditioned by mod-
els of exploration behavior by designers, by choices of strat-
egies for amplifying designer action, and by the limits
imposed by both computation itself and our knowledge of
it. Formalisms for design space exploration must simulta-
neously accord with designer action, implement a useful
amplification strategy, and be both formalizable and com-
putationally tractable.

ACKNOWLEDGMENTS

This work was partially supported through the Australian Research
Council Large Grants Scheme, the Australian Research Council
Small Grants Scheme, the Canadian National Sciences and Engi-
neering Research Council Research Grants Program, the Advanced
Systems Institute of British Columbia Provincial Research Fel-
lowships Program, the University of Adelaide, and Simon Fraser
University.

REFERENCES

Adelaide University. ~2002!. The Architecture Games. Accessed at
www.arch.adelaide.edu.au0games on December 2, 2005.

Aish, R. ~2002!. Smart Geometry. Accessed at www.smartgeometry.com0
bd.htm on December 2, 2005.

Aish, R. ~2004!. Bentley’s Generative Components. A design tool for explor-
atory architecture. Accessed at www.cmu.edu0architecture0graduate0
G-CAD0pdf0GenerativeComponents.pdf on December 2, 2005.

Aish, R., & Woodbury, R. ~2005!. Multi-level interaction in parametric
design. In Proc. SmartGraphics, 5th Int. Symp., SG2005, Lecture Notes
in Computer Science 3638 ~Butz, A., Fisher, B., Krüger, A. & Oliver,
P., Eds.!, pp. 151–162. Berlin: Springer.

Akın, Ö. ~1986!. The Psychology of Architectural Design. London: Pion.
Akın, Ö. ~2001!. Variants of design cognition. In Design Knowing and

Learning: Cognition in Design Education ~Eastman, C., Newstetter,
W., & McCracken, M., Eds.!, pp. 105–124. New York: Elsevier.

Akın, Ö., Aygen, Z., Chang, T.-W., Chien, S.-F., Choi, B., Donia, M.,
Fenves, S.J., Flemming, U., Garrett, J.H., Gomez, N., Kiliccote, H.,
Rivard, H., Sen, R., Snyder, J., Tsai, W.-J., Woodbury, R., & Zhang, Y.
~1997!. SEED: a software environment to support the early phases of
building design. The International Journal of Design Computing.
Accessed at www.arch.usyd.edu.au0kcdc0 journal0vol10papers0
flemming0index.html on December 2, 2005.

Allen, J. ~1999!. Mixed initiative interaction. Proceedings of the IEEE
Intelligent Systems 12(6), 14–23.

Archea, J. ~1987!. Puzzle-making: what architects do when no one is look-

ing. In Computability of Design, Principles of Computer-Aided Design
~Kalay, Y., Ed.!, pp. 37–52. New York: Wiley.

Borges, J. ~1962!. The Library of Babel. In Labyrinths: Selected Stories
and Other Writings, pp. 51–58. New York: New Directions.

Bredo, R. ~1994!. Cognitivism, Situated Cognition and Deweyian Prag-
matism. Accessed at www.ed.uiuc.edu0EPS0PES-yearbook094_docs0
BREDO.HTM on December 2, 2005.

Brown, D.C. ~1984!. Expert systems for design problem-solving using
design refinement with plan selection and redesign. PhD Thesis. Ohio
State University, Department of Computer and Information Science.

Brown, D.C., & Chandrasekaran, B. ~1989!. Design Problem Solving:
Knowledge Structures and Control Strategies. Research Notes in Arti-
ficial Intelligence. London: Pitman.

Bruton, D. ~1997!. A contingent sense of grammar. PhD Thesis. Univer-
sity of Adelaide.

Burrow, A. ~2005!. Typed feature structures and design space exploration.
PhD Thesis. University of Adelaide.

Burrow, A., & Woodbury, R. ~1999!. p-Resolution in design space explo-
ration. In Computers in Building: Proc. CAAD Futures ’99 Conf.
~Augenbroe, G., & Eastman, C., Eds.!, pp. 291–308. Dordrecht: Klu-
wer Academic.

Carlson, C. ~1993!. Grammatical programming: an algebraic approach to
the description of design spaces. PhD Thesis. Carnegie Mellon Uni-
versity, Department of Architecture.

Carlson, C., & Woodbury, R. ~1994!. Hands-on exploration of recursive
patterns. Languages of Design 2(2), 121–142.

Carpenter, B. ~1992). The Logic of Typed Feature Structures with Appli-
cations to Unification Grammars, Logic Programs and Constraint Res-
olution. Cambridge Tracts in Theoretical Computer Science. New York:
Cambridge University Press.

Catia. ~2003!. The CATIA system. Accessed at www.3ds.com0products-
solutions0brands0CATIA0 on December 2, 2005.

Chandrasekaran, B. ~1990!. Design problem solving: a task analysis. AI
Magazine Winter, 59–71.

Chandrasekaran, B., & Johnson, T.R. ~1993!. Generic tasks and task struc-
tures: history, critique and new directions. In Second Generation Expert
Systems ~David, J.-M., Krivine, J.-P., & Simmons, R., Eds.!, pp. 232–
272. Berlin: Springer–Verlag.

Chang, T.W. ~1999!. Geometric typed feature structures: toward design
space exploration. PhD Thesis. University of Adelaide.

Chang, W., & Woodbury, R.F. ~2003!. ACADIA 2003, pp. 19–27, India-
napolis, IN, October.

Chien, S.-F. ~1998!. Supporting information navigation in generative design
systems. PhD Thesis. Carnegie Mellon University, Department of
Architecture.

Chien, S.-F., & Flemming, U. ~1997!. Information navigation in genera-
tive design systems. Proc. Second Conf. Computer Aided Architec-
tural Design Research in Asia, CAADRIA 97 ~Yu-Tung Liu, J.-Y.
Tsou, J.-H.H., Eds.!, pp. 355–366. Hsinchu, Taiwan: National Chia
Tung University.

Chiou, S.C., & Krishnamurti, R. ~1996!. Example Taiwanese traditional
houses. Environment and Planning B: Planning and Design 23(1),
91–116.

Datta, S. ~2004!. Unfolding design spaces interactively. PhD Thesis. Uni-
versity of Adelaide.

Dennett, D.C. ~1995!. Darwin’s Dangerous Idea: Evolution and the Mean-
ings of Life. New York: Simon & Schuster.

Fisher, B., Agelidis, G., Dill, J., Tan, P., Collaud, G., & Jones, C. ~1997!.
CZWeb: fish-eye views for visualizing the World-Wide Web. Proc.
Seventh Int. Conf. Human–Computer Interaction (HCI Int. ’97),
pp. 719–722.

Flemming, U. ~1978!. Wall representations of rectangular dissections and
their use in automated space allocation. Environment and Planning B:
Planning and Design 5(2), 215–232.

Flemming, U. ~1987a!. The role of shape grammars in the analysis and
creation of designs. In Computability of Design, Principles of Computer-
Aided Design ~Kalay, Y., Ed.!, pp. 245–272. New York: Wiley–
Interscience.

Flemming, U. ~1987b!. More than the sum of parts: the grammar of Queen
Anne houses. Environment and Planning B: Planning and Design 14(3),
323–350.

Flemming, U. ~1989!. More on the representation and generation of loosely
packed arrangements of rectangles. Environment and Planning B: Plan-
ning and Design 16(3), 327–359.

Whither design space? 81

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

Flemming, U. ~1990!. Knowledge representation and acquisition in the
LOOS system. Building and Environment 25(3), 209–219.

Flemming, U. ~2003!. Personal communication.
Forgy, C. ~1981!. OPS5 User’s Manual. Pittsburgh, PA: Carnegie-Mellon

University, Department of Computer Science.
Gould, S.J. ~1990!. Wonderful Life: The Burgess Shale and the Nature of

History. New York: Norton.
Harada, M. ~1997!. Discrete0continuous design exploration by direct manip-

ulation. PhD Thesis. Carnegie Mellon University, Department of
Architecture.

Harada, M., Witkin, A.P., & Baraff, D. ~1995!. Interactive physically-
based manipulation of discrete0continuous models. Proc. SIGGRAPH
1995, pp. 199–208.

Heisserman, J. ~1991!. Generative geometric design and boundary solid
grammars. PhD Thesis. Carnegie Mellon University, Department of
Architecture.

Heisserman, J. ~1994!. Generative geometric design. IEEE Computer Graph-
ics and Applications 14(2), 37– 45.

Heisserman, J., Callahan, S., & Mattikalli, R. ~2000!. A design represen-
tation to support automated design generation. In Artificial Intelli-
gence in Design 00 ~Gero, J., Ed.!, pp. 545–566. Dordrecht: Kluwer
Academic.

Knight, T. ~1981!. Languages of designs: from known to new. Environ-
ment and Planning B: Planning and Design 8(2), 213–238.

Lynch, K. ~1960!. The Image of the City. Cambridge, MA: MIT Press.
McDermott, J. ~1982!. R1: a rule-based configurer of computer systems.

Artificial Intelligence 19(1), 39–88.
Newell, A. The knowledge level. ~1981!. AI Magazine Summer, 1–19.
Newell, A., & Simon, H.A. ~1972!. Human Problem Solving. Englewood

Cliffs, NJ: Prentice–Hall.
Parrish, J. ~2003!. Personal communication.
Passini, R. ~1984!. Wayfinding in Architecture. New York: Van Nostrand

Reinhold.
Schön, D. ~1983!. The Reflective Practitioner: How Professionals Think

in Action. New York: Basic Books.
Simon, H.A. ~1955!. A behavioral model of rational choice. Quarterly

Journal of Economics 69(1), 99–118.
Simon, H.A. ~1956!. Rational choice and the structure of the environment.

Psychological Review 63(1), 129–138.
Simon, H.A. ~1980!. The Sciences of the Artificial, 2nd ed. Cambridge,

MA: MIT Press.
Sterk, T.d. ~2003!. Personal communication, Office for Robotic Architec-

tural Media ~www.ofa.com!.
Stiny, G., & Mitchell, W.J. ~1978!. The Palladian grammar. Environment

and Planning B 5, 5–18.
Stiny, G., & Mitchell, W.J. ~1980!. The grammar of paradise: on the gen-

eration of Mughul gardens. Environment and Planning B: Planning
and Design, 7(2), 206–226.

Strong, J. ~1998!. Cognitive architecture, bridging the gap between real
and virtual environmental design. Honours Thesis. University of Ade-
laide, School of Architecture, Landscape Architecture and Urban Design.

Sutherland, I.E. ~1963!. Sketchpad: A Man–Machine Graphical Commu-
nication System. Cambridge, MA: MIT Lincoln Lab.

Ulrich, K.T., & Seering, W.P. ~1992!. Function sharing in mechanical design.
In Artificial Intelligence in Engineering Design ~Tong, C., & Sriram,
D., Eds.!, vol. 2, pp. 185–213. New York: Academic Press.

Woodbury, R., & Burrow, A. ~2001!. Design spaces: the forgotten artifact.
Proc. Third Int. Conf. Mathematics and Design ~Burry, M., Datta, S.,
Dawson, A., & Rollo, J., Eds.!, pp. 56–62, Geelong, Victoria, Australia.

Woodbury, R., Datta, S., & Burrow, A. ~2000a!. Erasure in design space
exploration. In Artificial Intelligence in Design 2000, pp. 521–544.
Dordrecht: Kluwer.

Woodbury, R.F. ~1993!. Grammatical hermeneutics. Architectural Science
Review 36(2), 53– 64.

Woodbury, R.F., & Chang, T.-W. ~1995!. Massing and enclosure design
with SEED-Config. ASCE Journal of Architectural Engineering 1(4),
170–178.

Woodbury, R.F., Burrow, A.L., Datta, S., & Chang, T.-W. ~1999!. Typed
feature structures in design space exploration. Artificial Intelligence in
Engineering Design, Analysis and Manufacturing 13(4), 287–302.

Woodbury, R.F., Burrow, A.L., Drogemuller, R., & Datta, S. ~2000b!.
Code checking by representation comparison. Proc. Fifth Conf. Com-
puter Aided Architectural Design Research in Asia (CAADRIA2000),
May 18–19, 2000, pp. 235–244. National University of Singapore.

Woodbury, R.F., Radford, A.D., Taplin, P.N., & Coppins, S.A. ~1992!.
Tartan worlds: a generative symbol grammar system. ACADIA 92
~Noble, D. & Kensek, K., Eds.!, pp. 211–220, Charleston, SC.

Woodbury, R.F., Shannon, S.J., & Sterk, T.D. ~2001!. What works in a
design game? Supported by Student Reactions to Being Made to Play.
Proc. Sixth Conf. Computer Aided Architectural Design Research in
Asia (CAADRIA ’2001), April 2001, pp. 411– 420. Sydney, Australia.

Wright, F.L. ~1945!. An Autobiography. New York: Hyperion Press.

Robert F. Woodbury holds a Bachelor of Architecture from
Carleton University and a Master of Science and PhD from
Carnegie Mellon University ~CMU!. He has served in the
Architecture and Engineering Design Research Center at
CMU; in the Architecture, Landscape Architecture, and
Urban Design Department at Adelaide University; and in
the School of Interactive Arts and Technology at Simon
Fraser University. Dr. Woodbury’s research is in computa-
tional design, design collaboration, and design learning. His
current work in generative systems is on subsumption-
based design space explorers, an alternative to the long-
standing and dominant rule mechanism. He has over 100
technical publications.

Andrew L. Burrow is a Research Associate in the Spatial
Information Architecture Lab at RMIT University. His
research interests cluster around the following activities:
ontology-based design collaboration; transdisciplinary design
communication; applying the theory of partially ordered
sets to information structures in design space exploration;
analyzing representations for incremental updates to bring
direct manipulation interfaces to sophisticated information
systems; and exploring collaboration in tools that do not
prescribe a single approach to metadata.

82 R.F. Woodbury and A.L. Burrow

https://doi.org/10.1017/S0890060406060057 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060406060057

