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Spectral distribution of symmetrized
circulant matrices
Alain Bourget

Abstract. We provide a description of the spectrum and compute the eigenvalues distribution of
circulant Hankel matrices obtained as symmetrization of classical Toeplitz circulant matrices. Other
types of circulant matrices such as simple and Cesàro circulant matrices are also considered.

1 Introduction

Let a0 , a1 , . . . , an−1 be n real numbers. We denote by circ(a0 , . . . , an−1) the circulant
matrix defined as

circ(a0 , . . . , an−1) = [a i− j (mod n)]n
i , j=1 .

More explicitly, we have

circ(a0 , . . . , an−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 an−1 ⋯ a1
a1 ⋱ ⋱ ⋮
⋮ ⋱ ⋱ an−1

an−1 ⋯ a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.(1.1)

It is well known that circ(a0 , . . . , an−1) is diagonalizable by the (unitary) Fourier
matrix

Fn =
⎡⎢⎢⎢⎣

ω jk
n√
n

⎤⎥⎥⎥⎦

n−1

j,k=0
(ωn = e2πi/n).

That is,
circ(a0 , . . . , an−1) = F∗n diag (a(1), a(ωn), . . . , a(ωn−1

n )) Fn ,(1.2)

where a(z) = a0 + a1z +⋯+ an−1zn−1. In particular, circ(a0 , . . . , an−1) is normal, and
its eigenvalues are given by

a(1), a(ωn), a(ω2
n), . . . , a(ωn−1

n ).(1.3)

We refer the interested reader to the excellent books [2, 4, 6, 8] for the derivation of the
aforementioned results and other facts about circulant matrices. A friendly exposition
with some applications is also available in [7].
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432 A. Bourget

The main purpose of this paper is to compute the spectral distribution of families
of Hankel matrices associated to circ(a0 , . . . , an−1) and to other circulant matrices
such as simple and Cesàro circulant matrices (see Section 3).

To this end, letW+ be the positive Wiener Algebra consisting of all functions on the
unit circle T = {z ∶ ∣z∣ = 1} with absolutely convergent Fourier series. That is, a ∈ W+
if it can be written as

a(z) =
∞

∑
k=0

âk zk (z ∈ T) with ∥a∥
W+

=
∞

∑
k=0

∣âk ∣ < ∞.(1.4)

We denote by an the nth partial sum of a, i.e.,

an(z) = â0 + â1z +⋯+ ân−1zn−1 .(1.5)

Throughout the rest of the paper, we adopt the shortened notation circn(a) for
circ(â0 , . . . , ân−1) and refer to a as the symbol of circn(a). More general symbols
will be considered for special types of circulant matrices in Section 3.

The eigenvalues of circn(a) can now be written as

an(1), an(ωn), . . . , an(ωn−1
n ).

From these expressions, one can easily obtain the spectral distribution of circn(a).
Indeed, a simple exercise using Riemann sums and the uniform convergence of an to
a show that

lim
n→∞

1
n

n−1
∑
k=0

φ(an(ωk
n)) = lim

n→∞

Trace[φ(circn(a))]
n

= 1
2π ∫

π

−π
φ(a(e iθ)) dθ

for every continuous function φ on the closed disk {z ∶ ∣z∣ ≤ ∥a∥
W+

}.
Now, let Jn be the n-by-n antidiagonal matrix given by

Jn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ⋯ 0 1

⋮ . . . . . .
0

0 . . . . . . ⋮
1 0 ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and let Jncircn(a) and circn(a)Jn be the circulant Hankel matrices obtained from the
multiplication of Jn and the classical circulant matrix circn(a). That is,

Jncircn(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ân−1 ⋯ â1 â0

⋮ . . . . . .
ân−1

â1 . . . . . . ⋮
â0 ân−1 ⋯ â1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [â1−i− j (mod n)]
n
i , j=1(1.6)
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and

circn(a)Jn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

â1 ⋯ ân−1 â0

⋮ . . . . . .
â1

ân−1 . . . . . . ⋮
â0 â1 ⋯ ân−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [â i+ j−1 (mod n)]
n
i , j=1 .(1.7)

Under the assumption that âk ∈ R, for all k, the matrices Jncircn(a) and circn(a)Jn
are symmetric, although circn(a) is generally not. For this reason, Jncircn(a) and
circn(a)Jn have also been called symmetrized circulant matrices [5, 9]. These matrices
are also often referred to as reversed or backward circulant matrices, and anticirculant
matrices.

In recent papers [3, 5, 9], the spectral distribution of families of symmetrized
Toeplitz matrices was obtained. Following the approach developed in [3], we extend
those results to Jncircn(a) and circn(a)Jn . We conclude with several applications to
other types of circulant matrices in Section 3.

All the results presented in this paper are stated for circulant Hankel matrices of
the form (1.6). Some obvious modifications of the proofs of those results show that
the same results hold for circulant Hankel matrices of the form (1.7) as well.

2 Spectral distribution of Jncircn(a)

We start by giving a description of the spectrum of Jncircn(a) in terms of the
eigenvalues of circn(a).

Proposition 2.1 Let a ∈ W+ with real Fourier coefficients. The eigenvalues of
Jncircn(a) are given by

−∣an(ωk
n)∣ or ∣an(ωk

n)∣,

for k = 0, . . . , n − 1, with an as in (1.5). In particular, the spectrum of Jncircn(a) lies
within the interval

Ia ∶= [−∥a∥
W+

, ∥a∥
W+

].

Proof From the diagonalization (1.2), it is readily seen that the singular values of
circn(a) are given by

∣an(1)∣, ∣an(ωn)∣, . . . , ∣an(ωn−1
n )∣.

From

(Jncircn(a))T(Jncircn(a)) = (circn(a))T circn(a),

we see that Jncircn(a) and circn(a) have the same singular values. The proposition
then follows by observing that the eigenvalues of Jncircn(a) are in absolute value
equal to its singular values as Jncircn(a) is symmetric. ∎
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434 A. Bourget

The main result of this section—Theorem 2.5 below—is concerned with the asymp-
totic distribution of the eigenvalues Jncircn(a). But first, we need some preliminary
results.

Lemma 2.2 Let a, b ∈ W+ with real Fourier coefficients. We have

∣Trace[φ(Jncircn(a))]
n

− Trace[φ(Jncircn(b))]
n

∣ = O(∥a − b∥
W+

),

for every φ ∈ C(Ia).

Proof We denote the eigenvalues of Jncircn(a) by

λ1;n(a), λ2;n(a), . . . , λn;n(a),

and those of Jncircn(b) by

λ1;n(b), λ2;n(b), . . . , λn;n(b).

By a standard density argument, we only need to consider φ to be Lipschitz
on the compact interval Ia . From Weyl’s Perturbation Theorem [10], there exists a
permutation σ of {1, . . . , n} for which

max
1≤k≤n

∣φ(λσ(k);n(a)) − φ(λk ;n(b))∣ ≤ O (∥Jncircn(a) − Jncircn(b)∥o p) .

By Gershgorin’s Circle Theorem [10], we deduce

∥Jncircn(a) − Jncircn(b)∥o p ≤
n−1
∑
k=0

∣âk − b̂k ∣ ≤ ∥a − b∥
W+

,

as desired. ∎

In order to prove Theorem 2.5, we compute the spectral distribution of
φ(Jncircn(a)) for φ even and φ odd. To this end, for every φ, we write

φ(x) = φ(x) + φ(−x)
2

+ φ(x) − φ(−x)
2

∶= φe(x) + φo(x),(2.1)

where φe and φo , respectively, denote the even and odd parts of φ.

Proposition 2.3 Let a ∈ W+ with real Fourier coefficients. We have

Trace [φo(Jncircn(a))] = o(n),

for every function φ ∈ C(Ia).

Proof By the previous lemma, we only need to prove the proposition for circn(am)
with m < n large enough and am as in (1.5). In fact, we will prove the slightly stronger
result

Trace[φo(Jncircn(am)] = O(1).
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By Weierstrass Approximation Theorem, it suffices to consider odd functions of
the form

φo(x) = x2p−1 (p ∈ N, ∣x∣ ≤ ∥a∥
W+

).

To do this, we break up circn(am) as the sum of 2m − 1 matrices A0 , A±1 , . . . , A±m−1
having at most one nonzero antidiagonal. More precisely, we write

Jncircn(am) =
m−1
∑

k=−m+1
Ak ,

where

Ak =
⎧⎪⎪⎨⎪⎪⎩

[â−k δ−k ,1−i− j (mod n)]
n
i , j=1 if − m + 1 ≤ k ≤ 0,

[ân−k δ−k ,1−i− j (mod n)]
n
i , j=1 if 1 ≤ k ≤ m − 1.

It follows that

Trace[(Jncircn(am))2p−1] = ∑Trace[Ak1⋯Ak2p−1],

where the last sum is taken over all 2p − 1-tuples (k1 , . . . , k2p−1) with −m + 1 ≤ k i ≤
m − 1. A simple induction shows that the product of an odd number of matrices of the
form Ak is an antidiagonal matrix with at most one nonzero antidiagonal. It implies
that

Trace[(Jncircn(am))2p−1] = O(1),

as desired. ∎

Proposition 2.4 Let a ∈ W+ with real Fourier coefficients. We have

lim
n→∞

Trace [φe(Jncircn(a))]
n

= 1
2π ∫

π

−π
φe (∣a(e iθ)∣) dθ ,

for every function φ ∈ C(Ia).

Proof By Proposition 2.1, it follows that

Trace [φe(Jncircn(a))] =
n−1
∑
k=0

φe(∣an(ωk
n)∣).

Because an converges uniformly to a on T, the last equation implies that

Trace [φe(Jncircn(a))]
n

= 1
n

n−1
∑
k=0

φe(∣a(ωk
n)∣) + o(1).

Now, the right-hand side is a Riemann sum for the continuous function φe(∣a(e iθ)∣)
on the interval [−π, π]. Hence, we deduce

lim
n→∞

Trace [φe(Jncircn(a))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ))∣) dθ ,

as desired. ∎
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436 A. Bourget

Having all the necessary results at hand, we are now in position to state and prove
the main result of this section.

Theorem 2.5 Let a ∈ W+ with real Fourier coefficients. We have

lim
n→∞

Trace [φ(Jncircn(a))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ ,(2.2)

for every φ ∈ C(Ia).

Proof By Propositions 2.3 and 2.4, we have from (2.1) and the linearity of the trace

lim
n→∞

Trace [φ(Jncircn(a))]
n

= lim
n→∞

[Trace [φe(Jncircn(a))]
n

+ Trace [φo(Jncircn(a))]
n

]

= lim
n→∞

Trace [φe(Jncircn(a))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ))∣) dθ ,

for every φ ∈ C(Ia). ∎

2.1 Some consequences

An obvious consequence of Theorem 2.5 is concerned with the asymptotic distribu-
tion of the singular values

∣an(1)∣, ∣an(ωn)∣, . . . , ∣an(ωn−1
n )∣

of Jncircn(a). Indeed, by (2.2) applied to φ(∣x∣), we obtain

lim
n→∞

1
n

n−1
∑
k=0

φ(∣an(ωk
n)∣) =

1
2π ∫

π

−π
φ(∣a(e iθ)∣) dθ ,

for every φ ∈ C( [0, ∥a∥
W+

] ).
In a recent paper [1], Angerer conjectured a formula for the spectral distribution of

band Hankel matrices in terms of the Chebyshev polynomials Tk(cos θ) = cos(kθ).
His conjecture was proved in Proposition 3.1 of [3]. We now a derive a similar formula
for JnCn(a).

Corollary 2.6 For every φ ∈ C(Ia), we have

lim
n→∞

Trace [φ(JnCn(a))]
n

= 1
π ∫

1

−1

φe(α(x))√
1 − x2

dx ,

where

α(x) =
!
""#

∞

∑
k=0

â2
k + 2

∞

∑
k=0

∞

∑
m=1

âk âm+k Tk(x) (−1 ≤ x ≤ 1).
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Proof By Theorem 2.5 and the substitution x = cos θ, we get

lim
n→∞

Trace[φ(Jncircn(a))]
n

= 1
π ∫

1

−1

φe(α(x))√
1 − x2

dx ,

where

α(x) = ∣a(e iθ)∣

=
!
""#

∞

∑
k=0

â2
k + 2

∞

∑
k=0

∞

∑
m=1

âk âm+k cos(k arccos x)

=
!
""#

∞

∑
k=0

â2
k + 2

∞

∑
k=0

∞

∑
m=1

âk âm+k Tk(x),

as desired. ∎

The next result is an extension of Theorem 2.5 to convergent sequences of symbols
{an} in W+. The proof is an immediate consequence of Lemma 2.2 and Theorem 2.5.

Corollary 2.7 Let {an} be a sequence in W+ for which every an has real Fourier
coefficients. If an → a in W+, then we have

lim
n→∞

Trace [φ(Jncircn(an))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ ,(2.3)

for every φ ∈ C0(R), the space of compactly supported continuous functions on R.

We conclude with a result on the signature, i.e., the number of positive and negative
eigenvalues, of Jncircn(a). We denote by

N+[Jncircn(a)] = #{k ∶ λk ;n(a) > 0}

and

N−[Jncircn(a)] = #{k ∶ λk ;n(a) < 0}

the number of positive and negative eigenvalues of Jncircn(a).

Corollary 2.8 Let a ∈ W+ with real Fourier coefficients. We have

∣N+[Jncircn(a)] − N−[Jncircn(a)]∣ = o(n),

as n → ∞.

Proof This is an immediate consequence of the fact that

−Jncircn(a) = Jncircn(−a)

and Jncircn(a) have the same spectral distribution due to Theorem 2.5. ∎
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438 A. Bourget

3 Other circulant matrices

In this section, we consider three special classes of circulant matrices. In each case, we
obtain an extension of Theorem 2.5 by either allowing φ to be a function of bounded
variation, or by allowing the symbol a to be in L2(T) or L1(T).

3.1 Laurent polynomials

First, we extend our definition of circulant matrices to allow symbols given by Laurent
polynomials with nontrivial singular parts. Namely, we consider Laurent polynomial
br ,s with real coefficients given by

br ,s(z) =
s
∑
j=−r

b jz j (r, s ∈ N, b j ∈ R, z ∈ T).(3.1)

For n ≥ r + s + 1, we define as in [2] the n × n circulant matrix Ln(br ,s) as the
“periodization” of the Toeplitz matrix with symbol br ,s , i.e.,

Ln(br ,s) ∶= circn
⎛
⎝

s
∑
j=0

b jz j +
r
∑
j=1

b− jzn− j⎞
⎠

= circ(b0 , . . . , bs , 0, . . . , 0, b−r , . . . , b−1).

It follows from (1.3) that the eigenvalues of Ln(br ,s) are given by
s
∑
j=0

b j(ωk
n) j +

r
∑
j=1

b− j(ωk
n)n− j =

s
∑
j=0

b j(ωk
n) j +

r
∑
j=1

b− j(ωk
n)− j = br ,s(ωk

n),

for k = 0, . . . , n − 1. Moreover, the matrix Ln(br ,s) is normal and admits the diago-
nalization

Ln(br ,s) = F∗n diag (br ,s(1), br ,s(ωn), . . . , br ,s(ωn−1
n )) Fn .

The next result describing the spectrum of Jn Ln(br ,s) is proved in the exact same
manner as Proposition 2.1, i.e., by observing that Jn Ln(br ,s) is symmetric and has the
same singular values as Ln(br ,s).

Proposition 3.1 Let br ,s be a Laurent polynomial as in (3.1). For n ≥ r + s + 1, the
eigenvalues of Jn Ln(br ,s) consist of

−∣br ,s(ωk
n)∣ or ∣br ,s(ωk

n)∣,

for k = 0, . . . , n − 1. As a consequence, the spectrum of Jn Ln(br ,s) is contained in the
interval Ir ,s = [−∥br ,s∥∞, ∥br ,s∥∞].

Because Jn Ln(br ,s) has at most r + s + 1 nonzero antidiagonals, the proof of
Proposition 2.3 implies that

Trace[φo(Jn Ln(br ,s))] = O(1),(3.2)
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for every φ ∈ C(Ir ,s). In addition, Proposition 2.4 together with the basic inequality

∣ 1
n

n−1
∑
k=0

φe(∣br ,s(ωk
n)∣) −

1
2π ∫

π

−π
φe(∣br ,s(e iθ)∣) dθ∣ ≤ 2π

n
Var

Ir ,s
φe ,(3.3)

for every φ ∈ BV(Ir ,s), imply the following improvement of Theorem 2.5 in this
present case.

Theorem 3.2 Let br ,s be a Laurent polynomial as in (3.1). We have

lim
n→∞

Trace[φ(Jn Ln(br ,s))]
n

= 1
2π ∫

π

−π
φe(∣br ,s(e iθ)∣) dθ ,(3.4)

for every φ ∈ C(Ir ,s). If φ is even, then we can take φ ∈ BV(Ir ,s).

In that situation, we also have the minor improvement of Corollary 2.8 regarding
the signature of Jn Ln(br ,s).

Corollary 3.3 Let br ,s be a Laurent polynomial as in (3.1). We have

∣N+[Jn Ln(br ,s)] − N−[Jn Ln(br ,s)]∣ = O(1),(3.5)

and

lim
n→∞

N+[Jn Ln(br ,s)]
n

= lim
n→∞

N−[Jn Ln(br ,s)]
n

= 1
2

.(3.6)

Proof For the sake of simplicity, we denote N±[Jn Ln(br ,s)] by N±. For every ε > 0,
let N+ε , N−ε , and Nε be the sets, respectively, defined by

N+ε = #{k ∶ λk(Jn Ln(br ,s)) > ε},

N−ε = #{k ∶ λk(Jn Ln(br ,s)) < −ε},

and

Nε = #{k ∶ ∣λk(Jn Ln(br ,s))∣ ≤ ε}.

By the Fundamental Theorem of Algebra, for every n ∈ N, there exists δn > 0 such that

meas{θ ∈ [−π, π] ∶ ∣br ,s(e iθ)∣ < δn} = 1/n.

Let φn and ψn be the functions defined by

φn(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if ∣x∣ ≤ δn ,
0 otherwise,

and

ψn(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if − ∥br ,s∥∞ ≤ x < −δn ,
δ−1

n x if − δn ≤ x ≤ δn ,
1 if δn < x ≤ ∥br ,s∥∞.
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Clearly, φn is even and belongs to BV(Ir ,s). By (3.3), we obtain

Nδn = n
2π ∫

π

−π
φn(∣br ,s(e iθ)∣) dθ +O(1) = O(1).(3.7)

Moreover, by (3.2) applied to ψn , we deduce

∣N+δn
− N−δn

∣ ≤ Nδn +O(1) = O(1).(3.8)

By combining (3.7) and (3.8), we obtain

∣N+ − N−∣ ≤ ∣N+ − N+δn
∣ + ∣N+δn

− N−δn
∣ + ∣N−δn

− N−∣ = O(1).

Finally, we prove (3.6). By estimate (3.7), it follows that

#{k ∶ λk(Jn Ln(br ,s)) = 0} = O(1),

and therefore,

lim
n→∞

[N+

n
+ N−

n
] = 1.

On the other hand, (3.5) also implies that

lim
n→∞

[N+

n
− N−

n
] = 0.

By combining last two equations, one can easily deduce (3.6). ∎

3.2 Simple circulant matrices

In our second extension, the class symbol is enlarged to allow functions that are
square-integrable on the unit circle. That is, let a ∈ L2(T) with

∥a∥L2 = ( 1
2π ∫

π

−π
∣a(e iθ)∣2 dθ)

1/2
.

We assume that a has real Fourier coefficients given by

âk = 1
2π ∫

π

−π
a(e iθ) e−i kθ d θ (k ∈ Z).(3.9)

Following the notation introduced in [12], we define the n-by-n simple circulant
matrix Sn(a) by

Sn(a) ∶= circn
⎛
⎝

⌈n/2⌉−1

∑
j=0

â jz j +
⌈n/2⌉−1

∑
j=1

â− jzn− j⎞
⎠

.

Equivalently, Sn(a) is given for n even by

Sn(a) = circ (â0 , . . . , ân/2−1 , 0, â−n/2+1 , . . . , â−1) ,

and for n odd by

Sn(a) = circ (â0 , . . . , â⌈n/2⌉−1 , â−⌈n/2⌉+1 , . . . , â−1) .
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As a consequence of (1.3), the eigenvalues of Sn(a) are given by

⌈n/2⌉−1

∑
j=0

â j(ωk
n) j +

⌈n/2⌉−1

∑
j=1

â− j(ωk
n)n− j =

⌈n/2⌉−1

∑
j=−⌈n/2⌉+1

â j(ωk
n) j =∶ a⌈n/2⌉(ωk

n),

for k = 0, . . . , n − 1. It follows that Sn(a) is normal with diagonalization

Sn(a) = F∗n diag (a⌈n/2⌉(1), a⌊n/2⌋(ωn), . . . , a⌈n/2⌉(ωn−1
n )) Fn .(3.10)

As a consequence, we have the following characterization of the spectrum of Sn(a)
whose proof follows the same argument as in Proposition 2.1.

Proposition 3.4 Let a ∈ L2(T) with âk ∈ R, for all k ∈ Z. The eigenvalues of the
Hankel matrix Jn Sn(a) are given by

−∣a⌈n/2⌉(ωk
n)∣ or ∣a⌈n/2⌉(ωk

n)∣,

for k = 0, . . . , n − 1. Moreover, the spectrum of Jn Sn(a) is contained within the interval

[−
√

n ∥a∥L2 ,
√

n ∥a∥L2].

Proof The bound on the eigenvalues is obtained by using the Cauchy–Schwarz and
Bessel inequalities, i.e.,

∣a⌈n/2⌉(ωk
n)∣ ≤

⌈n/2⌉−1

∑
j=−⌈n/2⌉+1

∣â j ∣

≤
√

n
⎛
⎝

⌈n/2⌉−1

∑
j=−⌈n/2⌉+1

∣â j ∣2
⎞
⎠

1/2

≤
√

n ∥a∥L2 ,

for k = 0, . . . , n − 1. ∎

In order to show that Trace[φo(Jn Sn(a))] = O(1), for every φ ∈ C0(R), we need
to modify the perturbation Lemma 2.2 as follows.

Lemma 3.5 Let a, b be two functions in L2(T)with real Fourier coefficients. For every
φ ∈ C0(R), we have that

∣Trace[φ(Jn Sn(a))]
n

− Trace[φ(Jn Sn(b))]
n

∣ = O(∥a − b∥L2).

Proof As before, we only need to consider φ to be Lipschitz with compact support.
As a consequence of the Cauchy–Schwarz and Wielandt–Hoffman [10] inequalities,
we get

∣Trace[φ(Jn Sn(a))]
n

− Trace[φ(Jn Sn(b))]
n

∣ = 1√
n
O (∥Sn(a) − Sn(b)∥F) .
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In addition, we have

∥Sn(a) − Sn(b)∥2
F ≤ n ∑

k∈Z
∣âk − b̂k ∣2 = n ∥a − b∥2

L2 ,

where the last equality follows from Parseval’s identity. The conclusion of the lemma
follows by combining the previous two inequalities. ∎

The next result is concerned with the spectral distribution of Jn Sn(a).

Theorem 3.6 Let a ∈ L2(T) with âk ∈ R, for all k ∈ Z. We have

lim
n→∞

Trace[φ(Jn Sn(a))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ ,

for every φ ∈ C0(R).

Proof From the proof of Proposition 2.3, we know that

Trace[φo(Jn Sn(b))] = O(1),

when b is a Laurent polynomial. Because those are dense in L2(T), Lemma 3.5 implies
that

Trace[φo(Jn Sn(a))] = o(n).(3.11)

By Theorem 4.2 in [11], the singular values ∣a⌈n/2⌉(ωk
n)∣, for k = 0, . . . , n − 1, of Sn(a),

and hence of Jn Sn(a), satisfy

lim
n→∞

1
n

n−1
∑
k=0

φ(∣a⌈n/2⌉(ωk
n)∣) =

1
2π ∫

π

−π
φ(∣a(e iθ)∣) dθ .(3.12)

It then follows by Proposition 3.4 that

lim
n→∞

Trace[φe(Jn Sn(a))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ .(3.13)

The conclusion of the theorem can easily be deduced from (3.11) and (3.13). ∎

As for Jncircn(a), we have the following two results regarding sequences of
symbols {an} in L2(T) and the signature of Jn Sn(a). These results are proved in a
similar manner as Corollaries 2.7 and 2.8.

Corollary 3.7 Let {an} be a sequence in L2(T) for which every an has real Fourier
coefficients. If an → a in L2(T), then we have

lim
n→∞

Trace [φ(Jn Sn(an))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ ,(3.14)

for every φ ∈ C0(R).
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Corollary 3.8 Let a ∈ L2(T) with real Fourier coefficients. We have

∣N+[Jn Sn(a)] − N−[Jn Sn(a)]∣ = o(n),

as n → ∞.

3.3 Cesàro circulant matrices

In our last example, we consider circulant matrices usually referred to as Cesàro
circulant matrices. The symbol a is assumed to be in L1(T) with

∥a∥L1 = 1
2π ∫

π

−π
∣a(e iθ)∣ dθ .

These circulant matrices are defined as

Cn(a) ∶= circn (
n−1
∑
k=0

ak ;n zk) = circ(a0;n , a1;n , . . . , an−1;n),

where the coefficients ak ;n are given by

ak ;n = (n − k)âk + kâk−n

n
(k = 0, . . . , n − 1),

with âk ∈ R, for all k ∈ Z. These matrices are also known as optimal circulant matrices
as they are the best circulant matrices approximating the Toeplitz matrix

Tn(a) = [â i− j]n
i , j=1 .

We refer the reader to [12] for more details.
These matrices are called Cesàro circulant for the reason that their eigenvalues are

by (1.3) given by
n−1
∑
k=0

ak ;n ωk
n ∶= σn(ωk

n) (k = 0, . . . , n − 1)

with σn being the Cesàro sum

σn(z) = 1
n

n−1
∑
k=0

k
∑

j=−k
â jz j .

Consequently, Cn(a) is normal with diagonalization given by

Cn(a) = F∗n diag (σn(1), σn(ωn), . . . , σn(ωn−1
n ) Fn .

Proposition 3.9 Let a ∈ L1(T) with âk ∈ R, for all k ∈ Z. The eigenvalues of JnCn(a)
are given by

−∣σn(ωk
n)∣ or ∣σn(ωk

n)∣,

for k = 0, . . . , n − 1. Moreover, the spectrum of JnCn(a) is contained in the interval

[−n∥a∥L1 , n∥a∥L1].
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Proof As observed before, the first part is proved in a similar fashion as Proposition
2.1. By Fejer’s representation, we can express the eigenvalues as

σn(ωk
n) = ( fn−1 ⋆ (a − b))(ωk

n) ∶=
1

2π ∫
π

−π
fn−1 (

2kπ
n

− θ) a(e iθ) dθ ,

where fn−1 denotes Fejer’s kernel given by

fn−1(θ) = 1
n

sin2(nθ/2)
sin2(θ/2)

.

From the basic inequality ∣ sin(nθ)∣ ≤ n∣ sin θ∣, one can easily deduce that ∥ fn−1∥∞ ≤
n, and therefore,

∣σn(ωk
n)∣ ≤

n
2π ∫

π

−π
∣a(e iθ)∣ dθ = n ∥a∥L1 . ∎

In order to compute the spectral distribution of Cn(a), we need the following
perturbation lemma.

Lemma 3.10 For every a, b ∈ L1(T) with real Fourier coefficients, we have

∣Trace[φ(JnCn(a))]
n

− Trace[φ(JnCn(b))]
n

∣ = O (∥a − b∥L1) ,

for every φ ∈ C0(R).

Proof As we observed earlier, it suffices to take φ to be Lipschitz with compact
support on R. In such case, the Wielandt–Hoffman inequality [10] implies that

∣Trace[φ(JnCn(a))] − Trace[φ(JnCn(b))]∣ = O (∥JnCn(a) − JnCn(b)∥tr)
= O (∥Cn(a − b)∥tr) ,

where the second equality follows from the fact that JnCn(⋅) and Cn(⋅) have the same
singular values. Therefore, we only need to prove that

∥Cn(a − b)∥tr = O(n ∥a − b∥L1).

Using Fejer’s kernel to express the singular values of Cn(a) as in Proposition 3.9, we
have

∥Cn(a − b)∥tr =
n−1
∑
k=0

∣σn(ωk
n ; a − b)∣

≤
⎡⎢⎢⎢⎢⎣

sup
θ∈[−π ,π]

n−1
∑
k=0

fn−1 (
2kπ

n
− θ)

⎤⎥⎥⎥⎥⎦
∥a − b∥L1 .

Therefore, it remains to show that

sup
θ∈[−π ,π]

n−1
∑
k=0

fn−1 (
2kπ

n
− θ) = O(n).
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To do this, we follow the argument given in [12]. From the properties of the sine
function, one can easily deduce that

sup
θ∈[−π ,π]

n−1
∑
k=0

fn−1 (
2kπ

n
− θ) ≤ 2 sup

t∈[0,1]

⌈(n−1)/2⌉

∑
k=0

fn−1 (
2π(k + t)

n
) .

Using the basic inequality sin θ ≥ 2/π θ, for 0 ≤ θ ≤ π/2, we obtain

∣sin(π(k + t)
n

)∣ ≥ 2
π

(π(k + t)
n

) ,

for 1 ≤ k ≤ ⌈(n − 1)/2⌉. It follows that

sup
t∈[0,1]

⌈(n−1)/2⌉

∑
k=0

fn−1 (
2π(k + t)

n
)

≤ sup
t∈[0,1]

⎡⎢⎢⎢⎢⎣
fn−1 (

2πt
n

) +
⌈(n−1)/2⌉

∑
k=1

fn−1 (
2π(k + t)

n
)
⎤⎥⎥⎥⎥⎦

≤ n + sup
t∈[0,1]

1
n

⌈(n−1)/2⌉

∑
k=1

sin2(πt)
sin2(π(k + t)/n)

≤ n + n
2π

⌈(n−1)/2⌉

∑
k=1

1
k2

≤ n + πn
12

,

as desired. ∎

Theorem 3.11 Let a ∈ L1(T) with âk ∈ R, for all k ∈ Z. If the Fourier series of a
converges in the L1-norm, then we have

lim
n→∞

Trace[φ(JnCn(a))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ ,

for every φ ∈ C0(R).

Proof From the proof of Proposition 2.3, we know that

Trace[φo(JnCn(b))] = O(1)

when b is Laurent polynomial. Because the latter are dense in L1(T), Lemma 3.10
implies that

Trace[φo(JnCn(a))] = o(n).(3.15)

From the remark on page 20 of [11], the singular values ∣σn(ωk
n)∣ of JnCn(a) satisfy

lim
n→∞

1
n

n−1
∑
k=0

φ(∣σn(ωk
n)∣) =

1
2π ∫

π

−π
φ(∣a(e iθ)∣) dθ .(3.16)
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It then follows by Proposition 3.9 that

lim
n→∞

Trace[φe(JnCn(a))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ .(3.17)

The conclusion of the theorem can easily be deduced from (3.11) and (3.13). ∎

We conclude with the following two consequences of the previous result. They are
proved in the exact same manner as Corollaries 2.7 and 2.8.

Corollary 3.12 Let {an} be a sequence in L1(T) for which every an has real Fourier
coefficients with convergent Fourier series in L1(T). If an → a in L1(T), then we have

lim
n→∞

Trace [φ(JnCn(an))]
n

= 1
2π ∫

π

−π
φe(∣a(e iθ)∣) dθ ,(3.18)

for every φ ∈ C0(R).

Corollary 3.13 Let a ∈ L1(T) with real Fourier coefficients and convergent Fourier
series in L1. We have

∣N+[JnCn(a)] − N−[JnCn(a)]∣ = o(n),

as n → ∞.
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