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ABSTRACT
Two methods have been compared for the determination of the inertial properties of a small,
fixed-wing un-manned aerial vehicle. The first method uses the standard single degree of
freedom pendulum method and the second method implements a novel, potentially easier,
3 degrees of freedom pendulum method, which yields the entire inertia tensor from a
single swing test. Both methods are using system identification of the pendulum motion to
estimate the inertial properties. Substantial corrections (up to 25%) have to be applied to
the experimental results. These corrections are caused by the acceleration of the pendulum
being immersed in the surrounding air, also called the added mass effect. It has been found
that the methods presented in literature to determine the corrections for full-scale aircraft do
not give the correct results for the small-scale un-manned aerial vehicle under consideration.
The only feasible, cost-effective method to generate these corrections utilise swing tests
with a geometrically similar object of known inertial properties. It has also been found that
the corrections are unique with respect to the experimental methods. Several benchmarking
methods, including the innovative use of static and dynamic wind-tunnel test data, give high
confidence in the results.
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NOMENCLATURE
CG centre of gravity
D drag force
DoF degrees of freedom
F applied force
g gravitational acceleration
I mass moment of inertia
l (pendulum) length
m mass
M applied moment
O pivot point
p q r pendulum rotation rates
q̄ dynamic pressure
S reference area
T kinetic energy
V velocity
X Y Z coordinate axes
ω rotation rate
ρ air density
φ θ ψ pendulum attitude angles
X vector of states
Y vector of measurements
J mass moment of inertia tensor
RO,CG vector from point O to pendulum CG
CD non-dimensional drag coefficient
Clβ rolling moment derivative due to sideslip
Cmα

pitching moment derivative due to angle of attack
Cnβ

yawing moment derivative due to sideslip

Subscripts

D due to drag
F support frame
g due to gravity
m f due to added mass
O about point O
TA test article
x y z axes labels

Other

(˙) time derivative d
dt ()

bold vectors/matrices
xT transpose of x
[d ps] units: degrees per second

https://doi.org/10.1017/aer.2016.105 Published online by Cambridge University Press

https://doi.org/10.1017/aer.2016.105


Lehmkühler ET AL 1787Measurement of UAV inertial properties…

1.0 INTRODUCTION
Small fixed wing Un-manned Aerial Vehicles (UAV) are gaining increasing interest due to
ongoing miniaturisation of electronic systems(1). They can be equipped to fly sensor payloads
not possible even a few years ago. The small-scale enables relatively easy operation with
consideration to cost and manpower. This makes the small-scale fixed-wing UAVs popular
with university researchers, prototype and system developers, hobbyists, and other groups
with limited resources, such as small start-up companies.

Airframe inertial properties have been of interest since the early days of aviation because
of their importance in characterising the handling qualities of aircraft. Their importance has
now further increased due to the use of automated flight control systems. Modern model-based
control systems require an accurate model of the airframe which includes the mass and inertial
properties. The same is true for flight simulation applications. With the growing importance
of UAVs, it is becoming crucial to obtain estimates for these properties for small-scale flight
vehicles.

This paper describes work carried out during the development of a UAV flight test facility
at the University of Sydney. The project aimed to develop experimental instrumentation and
methods to acquire accurate flight test data from small-sized, fixed-wing UAVs. To perform
system identification (ID) on the flight data, the inertial properties of the UAVs had to be
determined accurately. On new UAV designs, usually a sufficiently detailed CAD model
would be used to determine the inertial properties of the airframe. This was not possible
for the existing, commercial UAV design under consideration here, because the airframe
structure is too complex to draw up precisely in CAD without destructively dismantling the
aircraft, particularly since no engineering drawings were available. The only possible method
to estimate the inertial properties, in a time and cost effective manner, was by experiment.

In this paper, the common single degree of freedom (1DoF) pendulum method and a
novel, three degree of freedom (3DoF) pendulum method are tested and compared. The
3DoF method requires only a single swing test to obtain the entire inertia tensor at once.
This is potentially easier and less time-consuming, because the test article has to be mounted
onto and aligned with the test rig only once, compared to the three orientations required for
the 1DoF method (four, if IX Z is required as well). The 3DoF method has not previously
been applied to fixed-wing UAVs, leading to accuracy and usefulness of the method being
investigated for this case. Furthermore, significant corrections for aerodynamic influences on
the pendulum motion are required to achieve an accurate test result for small-scale fixed-wing
UAVs. Methods to develop and apply these corrections are tested and discussed in this paper.

2.0 BACKGROUND
Reference 2 presents a review of available inertia measurement methods for various purposes.
The main difference between the various methods is the use of either forced or free
oscillations. Forced oscillation methods use an apparatus to force the test specimen into either
translational or torsional oscillations(3) with the inertial properties being measured indirectly
by the force or moment required to move the test article. These methods can be very accurate(4)

but require a complicated and expensive apparatus that is prohibitive for typical low-budget
university research.

Free oscillation methods use some sort of translational or torsional pendulum. These will
oscillate freely under the influence of gravity alone, once displaced from rest and released.
Pendulum designs have been used with a single suspension wire as the simplest method or
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using multiple suspension wires to create either a translational or torsional pendulum(5,6). The
latter is more suitable for aircraft applications, because a multi-wire pendulum will hold the
test article in a defined attitude.

The most widely used pendulum swing experiment for aircraft is the two-wire translational
pendulum, used since the 1930s(7). An extension of the basic method(8) discusses the
aerodynamic effects affecting the pendulum motion due to the geometric properties of fixed-
wing aircraft (buoyancy, entrapped air mass and the air mass that travels with the pendulum)
and gives empirical methods to estimate the magnitude of those corrections, based on the
geometric properties of typical aircraft components. These aerodynamic effects can add up to
20% on top of the true airframe inertias and are therefore very significant(8).

A further extension of the pendulum method(9) from 1948 indicates that a major source of
difficulty of all previously mentioned methods is the requirement to accurately determine the
pendulum length, which is the distance from the pivot to the pendulum CG. The difficulty
lies with how the vertical CG position of the aircraft with respect to the pendulum pivot is
to be determined. This method proposes to swing the pendulum with two different arbitrary
lengths and use the two results to simultaneously solve for the pendulum lengths. This is
potentially more accurate than measuring this quantity. A different method was developed in
1950(10) to enable inertia measurements for large and heavy airframes. The pendulum method
is impractical for such large airframes and it was replaced by a ground-based spring support.
Otherwise, this method is similar to the pendulum method.

A novel method that uses multi-degree of freedom motion together with system
identification(3), uses an apparatus which simultaneously allows rotation about the pitch and
yaw axes and translation along the roll and pitch axes. The method does not require the
measurement of the CG position of the test article, compared to the previously mentioned
techniques. On the other hand, the required test apparatus is very complex.

There have been some existing references dealing specifically with small-scale UAVs(11-15).
Reference 11 compares different pendulum methods. The other references all use some form
of the standard bifilar pendulum apparatus. On the very small-scale, Ref. 16 reports on a
test of a small quad-rotor flight vehicle. The paper also performs a comparison with a CAD
modelling method and concludes that considerable errors between physical experiments and
CAD modelling are possible, unless extreme care in the modelling is taken. Another very
promising, novel method, specifically for small-scale UAVs(17), is based on a 3DoF pendulum,
suspended from a three-axis gimbal. It uses system identification of the pendulum motion to
estimate the entire inertia tensor at once. This method is the basis for the second technique to
be presented in this paper.

As noted above, the results of the swinging tests of aircraft require substantial corrections
due to aerodynamic effects. A very interesting report regarding these corrections looks into
all kinds of error sources for a clock pendulum(18). Some of these errors are very relevant for
the current project and are indeed the same as reported by Soule and Miller(8). Other error
sources, such as the change in gravitational acceleration due to to the position of the moon
with respect to earth, are affecting only the long-term stability of a clock pendulum and do not
need to be accounted for during the short experiment durations of the airframe swing tests.

Using system ID of the pendulum motion instead of timing the oscillation periods(8,9) has
proven more reliable for the small inertias involved, because the system ID method uses the
full motion data to estimate frequency and damping instead of characterising the motion from
a few single data points from a timer. It is possible to obtain reasonably accurate data using
a millisecond precision timer, but exploratory tests have shown that this requires many more
experiment repeats than using the system ID method. Most recent implementations of inertia
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Figure 1. Free-body diagram of a physical pendulum.

experiments use system ID for the data processing(3,16,17), and a similar approach has been
taken for the presented work.

3.0 THEORY OF PENDULUM MOTION
3.1 1 DoF pendulum

The equations of motion for a rigid-body, 1DoF pendulum can be developed from the free-
body diagram in Fig. 1. The test article with mass m, inertia I and frontal area S swings about
pivot point O. The pendulum length or the distance between O and the CG of the test article
is l . From Euler’s second law, the rotational equation of motion for the rigid-body pendulum
can be written as

M = IOω̇ … (1)

where M is the applied moment about O, IO the inertia of the pendulum about O and ω̇ the
rotational acceleration of the pendulum.

For the system identification algorithm, the equations of motion need to be expressed in
state space form, depending on the state derivative vector Ẋ and the measurement vector
Y. The state vector for the pendulum is X = [θ ω]T , where ω is the rotation rate of the
pendulum and θ the attitude angle. Using Equation (1), the state rate equations for the rigid-
body pendulum become

Ẋ =
[

θ̇

ω̇

]
=

[
ω

M/IO

]
… (2)

The applied moment is the sum of the moment due to the gravitational acceleration, which is
driving the motion, and the opposing moments due to aerodynamic drag and bearing friction.
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The moment due to the gravitational acceleration about point O is

Mg = −mgl sin θ … (3)

The moment due to the drag about point O opposes the motion according to

MD = −q̄SCD × l × sign(ω), … (4)

= −0.5ρSCDω2l3sign(ω) … (5)

with the dynamic pressure q̄ = 0.5ρV 2 and V = ωl . The term sign(ω) ensures that the drag
force is always opposing the direction of the motion. Friction in the bearings is small compared
to the drag of the test article and will not be modelled separately. It has a similar effect on the
motion as the drag; therefore, the identified drag coefficient will be slightly higher due to that
friction.

So far, the equations of motion for the pendulum include the inertia of the pendulum about
the pivot O. If the inertia of the test article about its CG is desired, the parallel axis theorem
can be used to express the inertia IO of the pendulum as

IO = I + ml2 … (6)

The measurement or output equations Y consist of the two states θ and ω that will be
measured directly by the rig instrumentation. Using the above derivations, the final equations
of motion can be written as

Ẋ =
[

θ̇

ω̇

]
=

[
ω

Mg+MD

I+ml2

]
, … (7)

Y =
[

θ

ω

]
=

[
1 0
0 1

] [
θ

ω

]
… (8)

Inspecting Equation (7), some important implications for the experimental methodology
can be immediately deducted. Firstly, because the expected inertias I of the test article are
going to be small, it is paramount to make the pendulum length l as short as possible. For a
small fixed-wing UAV, the parallel axis component of the total inertia of the pendulum, ml2,
will always be large compared to the test article inertia I , and will dominate the magnitude of
the denominator in Equation (7). If the pendulum is long, this will be even more significant.
A long pendulum, therefore, makes it very difficult to identify the small inertia I with good
precision. This problem has also been referred to in Refs 8 and 17.

Secondly, using knowledge of the system identification algorithm, it is also beneficial to
estimate the full inertia of the pendulum about the pivot (IO = I + ml2) instead of estimating
the inertia of the test article I in isolation. The parallel axis theorem can be applied after the
estimate for IO has be determined. The system ID algorithm perturbs each parameter by a
small amount and calculates the significance of this perturbation onto the fit of the estimated
system response to the measured data. Now, if Equation (7) is used in its stated form, a small
perturbation of the parameter I will not have a significant effect on the magnitude of the
denominator because ml2 is always much larger in magnitude. Perturbing I + ml2 instead
gives a more robust response and the algorithm converges much faster and more accurately.
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Figure 2. Pendulum CG definitions.

Carefully considering those two issues during the experimental design is the first step to an
accurate estimate of small-scale fixed-wing UAV inertial properties.

To determine the pendulum length l , the vertical CG location of the test article must be
known precisely with respect to a reference point(7). This can be achieved by suspending the
test article from a point longitudinally and vertically offset from the CG, as shown in Fig. 2(a).
A vertical line from the suspension point to the longitudinal CG location will indicate the
vertical CG position as shown in the figure. This can then be measured from any convenient
reference line on the test article as indicated. The length l is then the distance from the pivot
to this reference line plus the above measurement to the vertical CG of the test article. For
a combination of objects, such as the test article mounted on a support frame, as shown in
Fig. 2(b), the pendulum length l to the combined CG can be found from a moment balance
about point O

l = mF lF + mTAlTA

mF + mTA
, … (9)

where the subscript F denotes the properties of the support frame and TA the properties of
the test article.

The pendulum uses a support frame to hold the test article. This removes the need for any
wire attachment points on the test article. Hence, after the swing test results are obtained, a
final step is necessary to extract the inertial properties of the UAV about its CG. This step
is the removal of the support frame inertias from the results. The support frame properties
have to be determined beforehand by a separate experiment or other means, such as CAD
modelling. A simple way of doing this would be to just subtract the inertias of the frame from
the combined result, but this would lead to error because the inertia of the frame is typically
measured about its own CG, which can be quite different from the combined CG location,
as shown in Fig. 2(b). In addition, the CG location of the UAV is unlikely to be identical to
the combined CG position as illustrated in the figure. To separate the inertial properties of
the frame and the UAV accurately, it is therefore necessary to apply the parallel axis theorem,
using the masses and dimensions given in Fig. 2(b). This leads to the equation for the test
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(a) Sketch of the support frame, suspended from the gimbal.
Shown are the earth fixed axes at the gimbal pivot O and the pen-
dulum body axes at the pendulum CG. (A photo of the apparatus
is shown in Fig.5)

(b) 3 axis motion gimbal with common pivot
point

Figure 3. (Colour online) 3DoF Pendulum diagram and three-axis motion gimbal.

article inertia ITA about its CG

ITA = −[IF + mF × l2
2 ] − mTA × (−l1)2 + Imeas, … (10)

where IF is the frame inertia about its CG, mF the frame mass, mTA the test article mass, Imeas

the combined inertia result from the system ID and the dimensions li as defined in Fig. 2(b).

3.2 3 DoF pendulum

The three-dimensional rigid-body pendulum, similar to that introduced in Ref. 17, is an
extension of the 1DoF pendulum from the previous section. Figure 3 shows a sketch of the
support frame with the axes definitions. The figure also contains an image of the 3DoF gimbal
used to suspend the pendulum.

In Ref. 17, all equations were developed in the body frame of the pendulum with origin at
the CG of the pendulum. As mentioned above, this is not ideal because it leads to numerical
issues during the system identification. Hence all equations are developed in the earth fixed
frame with origin at the gimbal pivot point O. This increases the stability of the system ID
procedure. The body axes inertia tensor about the pendulum CG is computed using the parallel
axes theorem as a second step.

The derivation method of the equations of motion for the 3DoF rigid-body pendulum
is similar to the single-axis pendulum described before. Euler’s second law, now in three
dimensions, describes the oscillatory motion of the rigid body as

M = Jω̇ + ω × Jω, … (11)

with M being the applied moment vector about the pivot point, J the inertia tensor of the
pendulum about the pivot, and ω the vector of angular velocities p, q and r of the pendulum.
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For a typical aircraft with symmetry about the xz plane, the inertia tensor simplifies to

J =
⎡
⎣ Ix 0 Ixz

0 Iy 0
Ixz 0 Iz

⎤
⎦ … (12)

The state space form of Equation (11) with states ω = [p q r]T , as required for the system
ID algorithm, can be written as

ω̇ = J−1(−ω × Jω) + J−1M … (13)

Similar to the 1DoF pendulum, the applied moment is the sum of the moment due to gravity
and the moments caused by bearing friction and aerodynamic drag. The gravitational force
vector acting at the CG is Fg = mg. The moment due to gravity can then be obtained by
defining a vector RO,CG from the pivot point to the pendulum CG and taking the cross-
product

MG = RO,CG × FG … (14)

The components of the vector RO,CG in the earth fixed frame can be found by rotating the body
axes vector RO,CG = [0 0 l ]T between the pivot point and the pendulum CG (as shown in
Fig. 3) into the earth fixed axes using standard orthogonal transforms.

The damping terms are the moments due to bearing friction and the moment of the
aerodynamic drag of the pendulum about the pivot point. The drag vector is the opposite of
the velocity vector, which, due to the complicated motion of the 3DoF pendulum, constantly
changes direction. Also, the drag will be different about each axis because the aircraft shape.
Therefore, the drag is treated in component form for each axis, similarly to the bearing friction.
No other aerodynamic force is expected to create a significant moment about the pivot point to
influence the motion. Drag and bearing friction have a similar effect on the motion and can be
combined into a single vector MD = [MD,x MD,y MD,z], unless their separate numerical
values are of interest. For this project, this was not the case, so the applied moment becomes

M = RO,CG × F − MD … (15)

Expanding M into its components gives

⎡
⎣ Mx

My

Mz

⎤
⎦ = l

⎡
⎣ cos φ sin θ

− sin φ

cos φ cos θ

⎤
⎦ × mg

⎡
⎣ 0

0
1

⎤
⎦ −

⎡
⎣ MD,x

MD,y

MD,z

⎤
⎦ , … (16)

= mgl

⎡
⎣ − sin(φ) − MD,X

− cos(φ) sin(θ) − MD,Y

−MD,Z

⎤
⎦ … (17)

The above equations require the attitude angles φ, θ and ψ of the pendulum with respect to
the earth fixed frame. These states can be added to yield the final state vector

X = [φ θ ψ p q r]T , … (18)
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where the angles φ, θ and ψ are the attitude angles of the pendulum in the X , Y and Z axis,
respectively.

The state rate equations for the Euler attitude angles can be found in any reference book on
flight mechanics, such as Ref. 19. These, together with Equations (13) and (17) give the final
equations of motion for the 3DoF rigid-body pendulum

φ̇ = p + tan(θ)(q sin(φ) + r cos(φ)), … (19)

θ̇ = q cos(φ) − r sin(φ), … (20)

ψ̇ = [q sin(φ) + r cos(φ)]/ cos(θ), … (21)

ṗ = Ixz�[q(Ix p + Ixzr) − Iy pq] + Iz�[q(Ixz p + Izr) − Iyqr] − IzMx� + IxzMz�, … (22)

q̇ = [p(Ixz p + Izr) − r(Ix p + Ixzr)]/Iy + My/Iy, … (23)

ṙ = −Ix�[q(Ix p + Ixzr) − Iy pq] − Ixz�[q(Ixz p + Izr) − Iyqr] + IxzMx� − IxMz�, … (24)

where � = 1/(I2
xz − IxIz). The measurement equation Y is

Y = I × [φ θ ψ p q r]T , … (25)

where I is the identity matrix. The identified inertias about the pivot can then be transferred
to the test article CG using the parallel axis theorem as before. The only terms affected are
Ix and Iy, while for Iz and Ixz, the parallel axis theorem component is zero. The procedure of
removing the support frame inertias from the solution is identical to the single-axis pendulum
method.

4.0 AERODYNAMIC EFFECTS ON ESTIMATED
INERTIAL PROPERTIES

During the swing experiments, the pendulum is immersed in a fluid (the surrounding air);
therefore, the measured inertial properties will be affected by added mass due to the enclosed
air, the buoyancy of the airframe in the surrounding air, and by the inertia of the air being
accelerated by the pendulum(8,18,20). Hence, the measured inertia Imeas will be different from
the test article inertia ITA measured in a vacuum. Added mass is a general term for all
aerodynamic effects that change the measured inertia of a body immersed in a fluid, as if
the mass of the body itself was changed. The influence of buoyancy and enclosed air mass
actually results in a change in weight of the test article, where buoyancy reduces the measured
weight and the enclosed air adds to the measured weight of the test article, respectively. The
added mass due to the inertia of the fluid accelerated by the pendulum motion is caused by a
momentum change of the surrounding fluid due to an acceleration of the pendulum. It has the
same form as a mass term(20), hence the name.

As explained by Brennan(20), a body moving through a fluid adds a certain amount of kinetic
energy to the fluid. That kinetic energy T can be written for steady and rectilinear motion as

T = 1
2

m f luidV 2 … (26)
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or, if incompressible flow is assumed,

T = 1
2
ρζV 2 where ζ =

∫
V

vx

V
vy

V
vz

V
dV, … (27)

where V is the velocity of the body and the integral ζ is a measure of the volume of fluid
affected by the motion of the body inside the entire fluid domain V . The resulting differences
in velocity relative to V in the flow field are denoted vi. The product ρζ is then the mass of
fluid affected by the motion of the object. The integral ζ is constant for constant velocity V .

When the body accelerates or decelerates, as it constantly does during pendulum motion,
the velocity V of the body changes and with that the kinetic energy T imparted on the fluid.
This requires additional work to be done by the body, which is simply dT/dt. The rate of
work done can then be expressed as FDV , where FD is an additional drag force. Assuming
that ζ is constant, that is, the flow pattern does not change, the added drag, FD, is

FD = 1
V

dT
dt

= ρζ
dV
dt

= m
dV
dt

, … (28)

where the sign of the force depends on whether the body accelerates or decelerates. The added
drag force FD has the same form and sign as a force required to accelerate or decelerate the
mass m of the body. Therefore, the term ρζ can be interpreted as an additional mass m f of
fluid that is being accelerated or decelerated by the body. This added mass m f has an inertia
about the axis of rotation and hence the inertia measured is

Imeas = ITA + Im f … (29)

It should be observed that this added drag force is different from the ‘conventional’ drag force,
which is proportional to the square of the velocity of the body. The added drag described
here is proportional to the change in velocity of the body. Given the direct dependency on
the fluid density ρ and the high density of water, this effect is very important especially
for hydrodynamic problems(20,21). However, it is also critical for the correct determination
of airframe inertial properties as previously discovered(8).

For full-scale aircraft, the corrections due to the added-mass typically amount to 3% of the
measured inertias due to buoyancy. The enclosed air adds around 5% in the X axis and is
negligible in the Y axis. Another 20% are added in the X-axis due to Im f , while errors in Y and
Z, caused by Im f , are about 5%(8). For small-scale UAVs, the enclosed air mass and buoyancy
are negligible because the airframes only have small internal volumes and the volume of their
structures is also small. Hence, the added mass due to these two effects will only add the
equivalent of a few grams of weight to a 2–5kg airframe; therefore, these two corrections can
be neglected. The third correction, Im f , however, is very significant for small-scale UAV and
thus requires careful consideration. For example, the correction due to Im f in the X axis is
25.1% for the UAV used for this research.

Methods have previously been developed to estimate Im f
(8,22,23). These methods are based

on test data for flat plates and ellipsoids to model the airframe’s shape from these basic bodies.
The corrections for the full test articles are then assumed to be the sum of the corrections for
the separate components, ignoring potential interference effects between the parts. For full-
scale aeroplanes, this appears to work quite well, with resulting inertia estimates within 2.5%
or less of the true value(22).
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Applying the previously published methods to the given UAV geometry results in
corrections that are an order of magnitude too small. It is unclear why this happens, since
the datasets in Refs 22 and 23 are missing crucial information to reproduce the findings.
Alternatively, Brennan(20) introduces a method for estimating the corrections based on
results of a potential flow solver. Lin and Liao(21) handled the same problem using modern
fluid-structure interaction solvers. Both methods are conceptually very difficult and were
beyond the scope of this project. Instead, geometrically similar models with known inertial
properties, together with additional swing tests, will be used to determine the corrections due
to Im f for the given UAV.

It should be noted that none of the available publications on UAV inertial properties(11-15)

acknowledge the requirement of these corrections. These reported results must, therefore, be
treated with care.

5.0 METHODOLOGY
The UAV used in this work is based on a commercially available model of a Piper Cherokee,
which has been extensively upgraded and equipped with a state-of-the-art miniature flight
data recorder. The UAV is used to develop system identification techniques for this scale of
aircraft. The UAV has 1.5m wingspan, weighs 4kg and is built from a balsa wood frame with a
film cover, which is a standard construction method for this size of airframe(24-26). In addition
to the UAV, several other test articles were used to test and verify the method. These were
generally simple shapes, where the true inertias could be derived from a CAD model. This
allowed to benchmark the methods with a known object, and also to generate estimates for the
aerodynamic corrections required.

The two pendulum experiments require an apparatus that allows the test article to be
mounted onto a support frame that can swing about a single axis for the 1DoF case and
about three axes for the 3DoF case. Initially, the traditional knife edge suspension design(8)

was used for the 1DoF case, and the three-axis motion gimbal for the 3DoF case. Testing has
shown, however, that there is very little difference in the results if the gimbal is used for the
1DoF case as well. One simply has to be careful to initiate the oscillations about a single axis
only. Consequently, only the gimbal suspension rig was used for this work, which allowed a
common apparatus between the methods. The axes definitions for both experiments follow the
standard flight mechanics conventions with X forward, Y out to the right wing and Z down.

5.1 Experiment set-up

The experimental set-ups for the 1DoF and 3DoF cases are quite similar. The only difference
is the design of the support frame. The 1DoF frame allows the airframe to be placed on its
side for the Z axis measurements. To keep the pendulum length short, the frame has a bay for
the test article to placed in, as shown in Fig. 4(b). The 3DoF frame, as shown in Fig. 5, is flat
because the test article can remain in a single position during the tests. The support frame is
suspended from a three-axis gimbal on four steel cables to form the pendulum. The gimbal
contains high-quality ball bearings to keep friction as low as possible. The gimbal is mounted
onto a rigid cantilever beam framework, as shown in Fig. 4.

The data acquisition system can be seen at the bottom of the frame in Fig. 4(a). It consists of
a miniature 9DOF IMU (Vectornav VN-100(27)) and a small, custom-designed processing unit
that is connected via wireless network to a control station. All data was recorded at 100 Hz
into the memory of the processing unit, so no time delays caused by the wireless connection
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Figure 4. (Colour online) UAV inertia measurement rig.

Figure 5. (Colour online) UAV inertia measurement rig for the 3DoF case without test article.

need to be considered. The data measured and recorded are the rotation rates and the attitude
angles of the frame.

Further data required from the experiments are the mass m of the pendulum, the
gravitational acceleration g and the distance from the pivot to the test article CG l . Gusev(28)

reported on highly accurate measurements for the gravitational acceleration at the University
of Sydney, where this work was conducted. For the pendulum length, the vertical CG position
of the frame and test article was measured using the method of off-CG suspension illustrated
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in Fig. 2(a). As discussed during the derivation of the equations of motion, the pendulum
must be as short as possible for good results. The limiting factor is the wing span of the test
airframe, which can seen in Fig. 4(b). It would be possible to use a shorter length for the X
and Y cases, but during testing, it was shown that the increases in accuracy did not warrant
the extra effort in using two separate pendulum lengths.

5.1.1 1 DoF pendulum

The support frame for the 1DoF case was designed to accept the UAV horizontally for the X
and Y axes and and lying on its side for the Z axis as shown in shown in Fig. 4. This way, all
axes could be tested using the bifilar pendulum, avoiding the difficult trifilar pendulum method
typically used for the Z axis(7-9). The difficulty of the trifilar pendulum is the requirement
to excite the pendulum in pure rotation about the CG. In practice, it is very difficult, if
not impossible, to set the pendulum in motion without causing translations. In addition, the
aerodynamic damping is large due to the vertical fin of the UAV. This makes it difficult to
obtain a sufficient number of oscillations for a valid measurement.

In each case, the UAV CG was aligned precisely below the pivot point (along the Z axis).
An advantage of the additional degrees of freedom of the gimbal is that the UAV does not
have to be moved for the two horizontal cases, which minimises errors due to CG alignment.
Each test was initiated from rest by manually deflecting the frame in one axis by about 5°
and letting go. Using only very small initial deflections reduces the damping due to the drag.
The oscillation was allowed a few seconds to settle from the disturbance of the release into
pure unforced oscillation before the data recording was started. Each recording was about 40
seconds and was repeated at least five times.

5.1.2 3 DoF pendulum

The support frame for the 3DoF experiment is shown in Fig. 5. The test article has to be
placed on the frame in a single, horizontal orientation only. This enables a shorter pendulum,
as shown in the figure. The frame is essentially a flat version of the previous frame, which
makes it easier to locate its vertical CG location. It also reduces the inertias of the frame
itself, which have to be removed from the test results. The data acquisition system is located
in the plane of the frame and is identical to the 1DoF case.

The tests were initiated manually as before. As will be discussed in the next section, the
starting attitude is very critical to obtain good results with this method. It is also necessary
to vary the initial deflections to obtain multiple solutions for a better judgement of the data
quality. To achieve this, the pendulum was deflected between 5° and 10° about X and Y
and released. This was repeated multiple times with varying attitudes. Each recording was
50 seconds, on average.

5.2 Data processing

The recorded data was then prepared for use with the output error system identification
algorithm(19). Due to the long datasets and the low-frequency content the sample rate was
reduced by a third from the nominal rate of 100 Hz without loss of information. The down-
sampling was done by low pass filtering the data with a 10 Hz cut-off and then re-sampling
it at 33.3 Hz. This reduces the runtime of the algorithm considerably without affecting the
accuracy of the parameter estimates.
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Figure 6. Example swing data with model fit and residuals.

5.2.1 1 DoF pendulum

The output error method for the 1DoF case uses the equations of motion of Equation (7).
Parameters to estimate are the inertia IO and the drag coefficient CD. Initial values for the
parameters were generated by trial and error, based on available information like previous test
results or CAD results for the reference bodies. Figure 6 shows an example dataset with the
model output Y and the experimental data Z plotted on top of each other for comparison. The
figure also contains plots of the residuals Z − Y.

The figure shows excellent agreement between the data and the model in both frequency
and damping of the oscillation. The residuals for the pitch rate q are purely random noise with
less than 1% of the signal amplitude. The pitch angle θ residuals still contain some sinusoidal
component. This is caused by a small phase error between the model and the experimental
data. This phase error is most likely the result of a small error in the initial value for θ and is
of no consequence for the accuracy of the results. The quality of the model fit is similar across
all three axes, and it is repeatable to a very high degree of accuracy as will be shown later.
Therefore, the model of the pendulum motion as developed above is correctly describing the
data and can be used to identify the inertia of the pendulum with high accuracy.

5.2.2 3 DoF pendulum

The system ID for the 3DoF case uses the model equations Equations (24). Estimated
parameters are the four inertia terms Ix, Iy, Iz and Ixz, together with the three damping
terms. Figure 7 shows a typical result of the process, plotting the model over the measured
data and showing the residuals similarly to the 1DoF case. The model fit to the data is
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Figure 7. Example of a 3DoF system ID result.

excellent, which proves that Equation (24) describe the motion correctly. The assumption
of any aerodynamic force other than drag being insignificant appears correct. There are
some minor phase differences in the residuals which are most likely caused by an imperfect
pendulum release, but these have no influence on the final results. On release, the pendulum
probably may have not been fully at rest or the disturbance of the release may not have
completely dissipated throughout the recording.

The Z-axis rotation is unforced and purely the result of the cross-coupling between the
axes in the equations of motion. The IZZ component is also the largest element in the tensor
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Figure 8. Piper flight inertia test results with uncertainties of each test point for two data time windows.

for a typical aircraft. Figure 7 shows that the Z axis, denoted ψ in the figure, has very low
information content due to these physical properties. Over the 20 seconds’ duration plotted,
only a single oscillation occurs, compared to 12 oscillations in the Y axis.

This low information content in the Z axis has several implications for the experiment
execution as well as for the processing of the data. During execution, it is important to choose
starting attitudes which maximises the Z oscillations. This requires considerable trial and
error, because these starting attitudes depend on the ratio between the inertias and the damping
in the Z axis of the test article. They are, therefore, different for each body tested.

During processing, the system ID algorithm is essentially attempting to establish the
frequency and damping of the motion of the pendulum. Attempting to do this with a single
oscillation exceeding a period of 20 seconds will not be very accurate. This shows up in the
uncertainties reported by the algorithm and is illustrated in Fig. 8. As shown, the uncertainties
for the Z axis are an order of magnitude larger than for the X and Y axes. Naturally, this
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leads to a larger deviation between repeats, which in turn, requires more runs than the 1DoF
pendulum to achieve similar accuracy. Another effect of the low frequency in the Z axis is
that the time window chosen for the system ID can make a large difference in the results.
This applies to the length of the window as well as to the location. For example, a 20-
second window of a particular dataset can yield an estimate for Iz of 0.6 kg m2 or 0.56 kgm2,
which equals a 7% difference, depending on the starting point. The same dataset returns
an Iz estimate of 0.6 kg m2 or 0.62 kg m2 for a 20-second and a 30- second data window,
respectively. This equals a 3% difference. Finally, some datasets with particular starting
attitudes do not converge at all. The best results were obtained from starting attitudes that
result in at least a full period of oscillation in the Z axis. Depending on the test article and
its damping properties, this may not be possible at all and a careful selection of the data
window is required. This is the case for the UAV under consideration, where the period of the
Z oscillation can exceed 40 seconds.

To obtain a trustworthy result for Iz with the 3DoF method, it is therefore necessary to
repeat the experiment often and use critical engineering judgement when interpreting and
selecting the results. For this project, the final tests with the UAV were repeated 10 times.
Each dataset was then processed with a 20- and 30-second window, and the final results were
averaged. Obvious outliers with unrealistic parameter estimates were discarded in the process.

5.3 Verification

As the next step, it is necessary to investigate the magnitudes of corrections Im f required to
extract the true inertial properties of the UAV. As mentioned above, the empirical formulas
developed in Ref. 22 did not predict accurate values for Im f for the UAV. For example, using
the method in Ref. 22, Im f for the X axis was calculated be 0.02 kg m2. The correct value, as
determined experimentally, is 0.12 kg m2. This is a difference of 83%. The testing has also
revealed that the corrections are not the same for the two swinging methods. It is therefore
necessary to develop a two-step verification and calibration process to estimate Im f for the
UAV.

The first step of verification is unique to this project. The UAV was tested extensively in
the wind tunnel to determine its aerodynamic properties. This was done using conventional
static tests as well as more involved dynamic tests, similar to Ref. 29. Some of the stability
derivatives can be estimated from either static or dynamic tests and the results should be
identical(30). The dynamic test results contain the inertias of the UAV, while the static tests
do not. The inertia estimates for the UAV could, therefore, be verified in a unique way by
matching the wind-tunnel test results using the inertial properties from the swing tests and
evaluating the differences.

To estimate the value of Im f experimentally, a known body was used as a benchmark. As
shown in Fig. 9, this body initially was simply a flat plate model of the UAV. It was made
from particle board with approximately uniform density and had similar weight and inertia
properties as the UAV. The flat plate was modelled in a CAD package to determine its inertias
with high accuracy.

Based on the derivations of the correction methods in Refs 8 and 22 , the corrections for the
UAV were calculated from the flat plate tests by using the differences in the results to the CAD
model. Preliminary testing, using the wind-tunnel data, showed that the flat plate corrections
were too small. The corrections, however, were closer to the empirical values in Ref. 22.
The experimentally determined correction for the flat plate model were 0.05 kg m2, versus
0.02 kg m2 from the calculations. Clearly, the flat plate model does not capture the full extent
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(a) On the 1DoF support frame (b) CAD model

Figure 9. (Colour online) Flat plate inertia simulator.

Figure 10. (Colour online) Inertia simulator for the 1DoF case.

of the added mass quantity for the UAV. The reason for this must be the three-dimensional
shape of the fuselage and vertical fin of the UAV, since the wings are essentially a thick flat
plate (although streamlined). During swinging motion about the X axis, the flow is perpendic-
ular to the fuselage walls, and there will be significant displacement of air. This might lead to
a larger body of air being affected by the pendulum, and hence Im f will be increased.

The solution to the problem is shown in Fig. 10. A foam simulator of the UAV was
constructed to have similar volume and surface area. It was then placed on the support
frame and loaded up with aluminium bars to have similar inertial properties as the UAV. The
arrangement is shown in Fig. 10(b). Figure 11 illustrates the CAD model for the simulator
configuration used for the 3DoF case. Note the different location of the aluminium bars
compared to the 1DoF case (Fig. 10). Because the 3DoF motion is more violent, the bars
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Figure 11. CAD model of the support frame with two reference bars and the
foam plane simulator for the 3DoF case.

had to be secured to the frame more rigidly than in the 1DoF case, resulting in the given
configuration.

Since the foam density and dimensions, as well as the properties of the aluminium bars
were known, the simulator could be modelled in the CAD package relatively accurately and
its inertial properties determined this way. Given the geometric similarity of the simulator to
the UAV, it is expected that the values for Im f obtained from testing this simulator will be
fairly close to the corrections required for the UAV.

The mass m and the pendulum length l were measured with a precision of ±1 g and
±1 mm, respectively. To judge whether this accuracy is sufficient, a brief sensitivity study
was performed using the 3DoF method. Firstly, a pendulum length change of 2mm during the
system ID resulted in an error in the inertia estimate of 0.7% or less. Then a run was performed
with the mass increased by 5g. This lead to errors of less than 0.5%. It is not expected to be
able to estimate the size of the errors due to the aerodynamic effects with similar or better
accuracy; therefore, the precision of the measurements of m and l was considered sufficient.

6.0 RESULTS
The first dataset presented and discussed in this section is for the flat plate, then for the foam
UAV simulator, and finally for the UAV itself. All datasets include the support frame. All
tables list the identified results for the respective inertias together with the uncertainty of the
parameter estimate as reported by the output error algorithm for multiple runs. The mean
and standard deviation of the results are calculated and compared to the CAD results. The
differences are listed as an absolute value and as a percentage.

Because the support frame is different between the 1DoF and the 3DoF cases, the estimated
inertias of the full pendulum cannot be directly compared between the methods. This is
not a serious limitation, because corresponding CAD models were used to determine the
corrections required.

6.1 Flat plate

The 1DoF results for the flat plate from Fig. 9 are presented in Table 1. The repeatability is
excellent and the reported uncertainties are small over five runs in all axes. The comparison
with the CAD results shows that the inertias of the flat plate are over predicted in all axes, as
expected. This is caused by the added mass inertia Im f . Contrary to the corrections from Ref.
8, where the X axis required the largest correction by a factor of 2 or more, the flat plate here
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Table 1
1DoF inertia test results of the flat plate with support frame

Run IX X [kg m2] IYY [kg m2] IZZ [kg m2]

1 0.651 ± 0.0002 0.01% 0.344 ± 0.0003 0.02% 0.835 ± 0.0007 0.02%
2 0.654 ± 0.0006 0.02% 0.343 ± 0.0002 0.01% 0.829 ± 0.0004 0.01%
3 0.650 ± 0.0003 0.01% 0.346 ± 0.0002 0.01% 0.829 ± 0.0003 0.01%
4 0.648 ± 0.0003 0.01% 0.344 ± 0.0001 0.01% 0.830 ± 0.0003 0.01%
5 0.649 ± 0.0002 0.01% 0.344 ± 0.0002 0.01% 0.829 ± 0.0005 0.01%

Mean 0.650 ± 0.002 0.344 ± 0.001 0.831 ± 0.003
CAD 0.597 0.298 0.778

� 0.053 8.2% 0.046 13.4% 0.053 6.4%

Table 2
3DoF inertia test results for the flat plate with the support frame

Run IX X [kg m2] IYY [kg m2] IZZ [kg m2]

1 0.577 ± 0.003 0.1% 0.279 ± 0.003 0.1% 0.787 ± 0.013 0.8%
2 0.574 ± 0.004 0.1% 0.275 ± 0.003 0.1% 0.746 ± 0.025 1.7%
3 0.587 ± 0.003 0.1% 0.279 ± 0.002 0.1% 0.806 ± 0.021 1.3%
4 0.582 ± 0.005 0.2% 0.285 ± 0.003 0.1% 0.818 ± 0.027 1.6%
5 0.581 ± 0.005 0.2% 0.285 ± 0.002 0.1% 0.830 ± 0.051 3.1%

Mean 0.580 ± 0.009 0.281 ± 0.008 0.797 ± 0.059
CAD 0.541 0.2425 0.7825

� 0.039 6.7% 0.039 14% 0.015 1.9%

has the highest correction in the Y axis. The X axis correction is also more than twice as big
as the result computed with the method from Ref. 22, as discussed earlier.

The 3DoF inertia estimates for the flat plate are listed in Table 2. The flat plate is
symmetrical about the xz and xy plane. Therefore, the product of inertia Ixz of the plate is
zero, and the total Ixz of the plate on the frame is negligibly small. As a result, the system
ID algorithm was unable to identify this parameter reliably because it is not sufficiently
observable. Therefore, it was decided to remove the Ixz from the parameter vector and just
identify Ix, Iy and Iz, while setting Ixz to zero. This also reduced the uncertainties of Iz.

Similarly to the 1DoF cases, the repeatability of the X and Y axes are very good, with
small uncertainties. The Z axis, however, has uncertainties an order of magnitude larger than
the two other axes. The estimates for Iz vary up to 10% between the runs.

Comparing the differences between 3DoF experimental results and the CAD data to the
1DoF case in Table 1, there are similar magnitudes of corrections for the X and Y axes. The
Z axis, however, has a significantly smaller correction due to the added mass effect in the
3DoF case. This will be even more pronounced for the three-dimensional bodies tested next.
For both cases, the corrections due to the added mass are too small to satisfy the verification
test using the aerodynamic derivatives. Clearly, the flat plate model of the UAV is not a suitable
simulator for the actual UAV, as expected.
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Table 3
1DoF inertia test results of the foam simulator with support frame

Run IX X [kg m2] IYY [kg m2] IZZ [kg m2]

1 0.481 ± 0.0002 0.01% 0.492 ± 0.0006 0.03% 0.744 ± 0.0004 0.01%
2 0.481 ± 0.0003 0.01% 0.491 ± 0.0004 0.02% 0.745 ± 0.0004 0.01%
3 0.482 ± 0.0002 0.01% 0.492 ± 0.0004 0.02% 0.745 ± 0.0005 0.02%
4 0.482 ± 0.0004 0.02% 0.488 ± 0.0002 0.01% 0.745 ± 0.0004 0.01%
5 0.486 ± 0.0005 0.03% 0.486 ± 0.0003 0.02% 0.744 ± 0.0003 0.01%

Mean 0.482 ± 0.002 0.490 ± 0.003 0.745 ± 0.001
CAD 0.361 0.404 0.631

� 0.12 25.1% 0.09 17.6% 0.11 15.3%

6.2 Foam simulator

To estimate the magnitude of corrections required due to the added mass effect Im f the UAV
foam simulator from Fig. 10 was tested next. The 1DoF results are listed in Table 3. Again,
the repeatability is excellent with very small uncertainties, leading to high confidence in the
results. Comparing the mean values for the estimated inertias to the CAD predictions shows
significant deviations for all axes due to the aerodynamic effects. The additional inertias are
25% for the X axis, 18% for the Y axis and 15% for the Z axis, considerably more than for
the flat plate and the full-scale airframe in Ref. 8. The IX Z term is too small to be estimated
reliably and no attempt has been made to test for it in the 1DoF experiments.

The 3DoF test results are listed in Table 4. Each run was processed with a 20-second and
30-second data window, as discussed above. The results for the X and Y axis are perfectly
repeatable, as for the flat plate, and they do not depend on the data window. The Z axis, again,
shows more spread across the runs, and the results also vary depending on the data window.

Comparing the added-mass corrections between the two cases, significant differences can
be seen between the two methods. The X and Y corrections of the 3DoF case are about half
of the 1DoF experiment. The correction for the Z axis is even negative for the 3DoF case.
Both corrections are, however, correct for their respective methods, as will be shown in the
next section. It appears that the added mass corrections depend on the type of motion the
pendulum performs. A possible explanation may be that the assumption of constant integral
ζ , that is the volume of affected fluid in the derivation of the added mass in Section 4, is
violated by the larger, more complex motion pattern of the 3DoF pendulum. More research
with different bodies would be required to fully explain this phenomenon.

The foam simulator is geometrically similar to the UAV and was set up to have comparable
inertial properties. Therefore, the deviations between the experimental data and the CAD
results for the respective methods are expected to be valid to correct the experimental results
for the unknown inertial properties of the UAV, as discussed next.

6.3 UAV

The 1DoF test results for the UAV are listed in Table 5. As before, the test results are fully
repeatable over five runs and the reported uncertainties on the estimated inertias are very low.
No test was performed for IX Z in the 1DoF case. The 3DoF tests were run 20 times to improve
the accuracy of the Z axis. The individual results are plotted in Fig. 7 and a summary is listed
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Table 4
3DoF inertia test results for the foam simulator with the support frame (each run reported for 20 sec and 30 sec data)

Run IX X [kg m2] IYY [kg m2] IZZ [kg m2] IX Z [kg m2]

1 0.279 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.506 ± 0.024 2.3% 0.002 ± 0.003 56.8%
0.279 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.535 ± 0.012 1.2% 0.001 ± 0.004 219%

2 0.282 ± 0.001 0.1% 0.433 ± 0.001 0.0% 0.520 ± 0.010 0.9% 0.004 ± 0.002 28.2%
0.281 ± 0.001 0.1% 0.434 ± 0.001 0.0% 0.548 ± 0.012 1.8% 0.004 ± 0.001 12.7%

3 0.283 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.530 ± 0.012 1.2% 0.008 ± 0.003 22.6%
0.281 ± 0.001 0.1% 0.432 ± 0.001 0.0% 0.564 ± 0.014 1.2% 0.008 ± 0.004 23.3%

4 0.286 ± 0.000 0.0% 0.435 ± 0.001 0.0% 0.513 ± 0.001 0.1% 0.003 ± 0.003 40.7%
0.284 ± 0.000 0.0% 0.435 ± 0.001 0.0% 0.547 ± 0.014 1.3% 0.001 ± 0.005 164%

Mean 0.282 ± 0.005 0.433 ± 0.002 0.533 ± 0.037 0.004 ± 0.005
CAD 0.2147 0.3857 0.5914 0.0038

� 0.067 23.8% 0.047 10.9% −0.058 − 10.9% -

https://doi.org/10.1017/aer.2016.105 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/aer.2016.105


1808
N

o
v

em
ber

2016
T

h
e

A
ero

n
au

tic
a

l
Jo

u
r

n
a

l

Table 5
1DoF inertia test results of the UAV including the support frame

Run IX X [kg m2] IYY [kg m2] IZZ [kg m2]

1 0.499 ± 0.0002 0.01% 0.518 ± 0.0002 0.01% 0.750 ± 0.0005 0.02%
2 0.498 ± 0.0002 0.01% 0.518 ± 0.0002 0.01% 0.745 ± 0.0003 0.01%
3 0.499 ± 0.0002 0.01% 0.516 ± 0.0003 0.02% 0.746 ± 0.0004 0.01%
4 0.497 ± 0.0002 0.01% 0.517 ± 0.0004 0.02% 0.746 ± 0.0003 0.01%
5 0.499 ± 0.0001 0.01% 0.518 ± 0.0002 0.01% 0.746 ± 0.0004 0.01%

Mean 0.498 ± 0.001 0.517 ± 0.001 0.747 ± 0.002
Correction −0.12 − 25.1% −0.09 − 17.6% −0.11 − 15.3%

Final 0.378 0.427 0.637
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Table 6
3DoF inertia test results for each run including the support frame of the UAV

IX X [kg m2] IYY [kg m2] IZZ [kg m2] Ixz [kg m2]

Mean 0.340 ± 0.013 0.449 ± 0.006 0.550 ± 0.080 −0.011 ± 0.006
Correction 0.067 0.047 −0.058

Final 0.27 0.40 0.61 −0.011

Table 7
UAV inertial properties final results in [kg m2]

Axis 1DoF 3DoF � (in %)

IX X 0.22 0.19 −13.6%
IYY 0.31 0.31 -
IZZ 0.51 0.48 − 5.9%
IX Z - − 0.01 -

in Table 6. The standard deviations for the 3DoF case are at least an order of magnitude larger
than for the 1DoF case. The mean values were then corrected using the factors determined
with the foam simulator for the respective method above.

Table 7 lists the final results for the UAV’s inertial properties. The support frame
contributions were removed using Equation (10). The agreement between the two methods
is good, only the X axis shows a difference above 10%. Given the discussed issues with the
3DoF method and the added mass corrections, this is a good result. More research, however,
should be done to improve the 3DoF method before it can be preferred over the 1DoF method
for small fixed-wing UAVs. Once perfected, the 3DoF method will be easier and quicker than
the traditional 1DoF method, because the UAV only needs to be swung in a single orientation
to obtain the entire inertia tensor. For the current project, the 1DoF results were used for the
subsequent flight dynamic analysis. Only the IX Z value was used from the 3DoF experiment.
The final results also confirm that the added mass corrections are specific to the test article and
the experiment used. For each test article, it will be necessary to construct a reference body
of known inertial properties and determine the added mass corrections with the described
methods. At this stage, no method exists to transfer the corrections between test articles. This
will require a large database of different UAV shapes to be tested, similarly to the design data
available for full scale aircraft(31). This is beyond the scope of this project.

Table 8 lists the results of the aerodynamic derivatives from the wind-tunnel tests. The static
test data is used as the reference. It should be matched by the results from the dynamic tests,
which include the inertial properties. The table shows that the obtained derivatives have large
deviations when determined using the uncorrected inertial properties of the UAV. With the
corrected data, the match to the static data is excellent. In the Z axis, the difference is higher
than for the other two axes, which is most likely caused by a small remaining error in the
added mass correction for that axis. To improve this result, one would need to use a simulator
body for which inertial properties are more precisely known than it was the case for the foam
simulator used here.
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Table 8
UAV stability derivative benchmark using the 1DoF results

Stability Static Dynamic Dynamic
Axis Derivative (reference) (I uncorrected) Error (I corrected) Error

X Clβ − 0.061 − 0.039 −36% − 0.061 −
Y Cmα

− 0.948 − 0.74 −22% − 0.956 0.8%
Z Cnβ

0.087 0.072 −17% 0.090 3.3%

These results demonstrate that the devised test and correction methods are working
correctly. The table also emphasises that without performing these corrections, the estimates
for the inertial properties of the UAV will be in error by a significant amount.

7.0 CONCLUSION
Two methods have been tested and compared for the determination of the inertial properties
of a small, fixed-wing UAV. The first method uses the standard 1DoF pendulum method.
The second experiment implemented a novel and potentially easier 3DoF pendulum method,
which yields the entire inertia tensor from a single swing test. Both methods used system
identification of the pendulum motion to estimate the inertial properties of the UAV.

Substantial corrections due to the effect of added mass, caused by the acceleration of the
pendulum immersed in the surrounding air, need to be applied to the results to obtain the
correct values for the inertial properties of the UAV. It has been found that the methods
presented in previous literature to determine the corrections for full-scale aircraft do not
give the correct results for the small-scale UAV. At this stage, the only feasible method to
generate these corrections are swing tests with a geometrically similar object of known inertial
properties. It has also been found that the corrections are specific for the type of experiment
and cannot be transferred between the 1DoF and 3DoF case. This has to be kept in mind when
applying one of the methods.

Several benchmarking methods, including the innovative use of results obtained from static
and dynamic wind-tunnel tests, have been utilised to prove the accuracy of the results obtained
with both swinging methods. Very good agreement between the experiments and the reference
data was achieved. Both methods agree well, but there is more research required before
the 3DoF pendulum method can be used with equally high confidence to determine inertial
properties of small, fixed-wing UAVs.
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