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We study the motion of a rigid body with a cavity filled with a viscous liquid. The
main objective is to investigate the well-posedness of the coupled system formed by
the Navier–Stokes equations describing the motion of the fluid and the ordinary
differential equations for the motion of the rigid part. To this end, appropriate
function spaces and operators are introduced and analysed by considering a
completely general three-dimensional bounded domain. We prove the existence of
weak solutions using the Galerkin method. In particular, we show that if the initial
velocity is orthogonal, in a certain sense, to all rigid velocities, then the velocity of
the system decays exponentially to zero as time goes to infinity. Then, following a
functional analytic approach inspired by Kato’s scheme, we prove the existence and
uniqueness of mild solutions. Finally, the functional analytic approach is extended to
obtain the existence and uniqueness of strong solutions for regular data.

1. Introduction

The dynamics of bodies containing fluids is a subject of long-standing importance
in many technical applications. The development of this theory was stimulated by
a variety of applied problems, including the dynamics of fluid-filled missiles, rockets
and artificial earth satellites. These challenging problems are a particular case of
fluid–structure interactions and raise many interesting mathematical issues ranging
from the well-posedness of the equations to their numerical analysis and simulation.

Let us describe the model that we will study in this paper. Consider a solid
body B with a cavity completely filled with a viscous liquid L moving in the three-
dimensional space. We begin by presenting the equations of motion of the system
body liquid in an inertial reference frame, where we fix a Cartesian coordinate
system I = {o, a1, a2, a3}. We denote by F(t) the domain occupied by the fluid
at time t and by S(t) the interior of the region occupied by the rigid part of the
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system body-liquid; ∂F(t) is the boundary of F(t) which coincides with the interior
boundary of S(t).

Concerning the motion of the rigid part of the system {B,L}, let � = �(t) be
the angular velocity of B and η = η(t) the velocity of its centre of mass, C. Then
the velocity field of B is

V (t, y) = η(t) + �(t) × (y − yC(t)) in
⋃
t>0

{t} × S(t),

where yC(t) =
∫ t

0 η(s) ds gives the position of C, if we assume, without loss, that
yC(0) = 0. The centre of mass of B is also defined as

yC(t) =

∫
S(t) �B(t, y)y dy

mB
,

where �B is the density of B and mB is its mass. The regions S(t) and F(t) can be
described in terms of η and � in the following way. Let W be the matrix defined
by

Wij(t) = −εijk�k(t), (1.1)

where εijk is the classical Levi–Civita symbol

εijk =

⎧⎪⎨
⎪⎩

+1 if (i, j, k) is (1, 2, 3) or (2, 3, 1) or (3, 1, 2),
−1 if (i, j, k) is (1, 3, 2) or (3, 2, 1) or (2, 1, 3),
0 otherwise.

Denoting by Q the fundamental matrix of W , that is,

dQ

dt
= WQ, Q(0) = I,

we have

S(t) = {y ∈ R
3 : y = yC(t) + Q(t)x, x ∈ S(0)}, t ∈ (0,∞),

F(t) = {y ∈ R
3 : y = yC(t) + Q(t)x, x ∈ F(0)}, t ∈ (0,∞).

}
(1.2)

Note that QQT = QTQ = I. We also have �B(t, y) = ρB(Q(t)T(y − yC(t))), where
ρB is a given positive integrable function over S(0).

Now let us consider the motion of the liquid inside the cavity, assuming that
it is governed by the Navier–Stokes equations. In this case, the Eulerian velocity
v = v(t, y) and the pressure q = q(t, y) of L obey the following equations:

ρ(∂tv + v · ∇v) = ∇ · T (v, q) + ρfL in
⋃
t>0

{t} × F(t),

∇ · u = 0 in
⋃
t>0

{t} × F(t),

v(t, y) = V (t, y) on
⋃
t>0

{t} × ∂F(t),
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where ρ is the (constant) density of the fluid, where fL = fL(t, y) represents an
external body force acting on the fluid and where T (v, q) is the stress tensor, defined
as

Tij(v, q) = µ

(
∂vi

∂yj
+

∂vj

∂yi

)
− qδij , i, j = 1, 2, 3,

with µ the viscosity coefficient of the fluid.
The equations of balance of linear momentum and angular momentum for the

rigid body are

mB
dη

dt
= −

∫
∂F(t)

T (v, q)N dσy + fB, t ∈ (0,∞),

d(JB�)
dt

= −
∫

∂F(t)
(y − yC) × T (v, q)N dσy + tB, t ∈ (0,∞),

where N = N(t) is the external unit normal to F(t), fB = fB(t) and tB = tB(t) are
the total force and torque acting on B, respectively, and where JB = JB(t) is the
tensor of inertia of B. Recall that JB(t) = Q(t)IBQ(t)T, where IB is the tensor of
inertia of B at time zero:

(IB)ij =
∫

S
ρB(x)(δij |x|2 − xixj) dx and S := S(0).

Hence, the motion of the system {B,L} is described by the following initial boun-
dary-value problem:

ρ(∂tv + v · ∇yv) = ∇y · T (v, q) + ρfL in
⋃
t>0

{t} × F(t),

∇y · v = 0 in
⋃
t>0

{t} × F(t),

v(t, y) = V (t, y) in
⋃
t>0

{t} × ∂F(t),

mB
dη

dt
= −

∫
∂F(t)

T (v, q)N dσy + fB in (0,∞),

d(JB�)
dt

= −
∫

∂F(t)
(y − yC) × T (v, q)N dσy + tB in (0,∞),

η(0) = η0, �(0) = �0, v(0, x) = v0(x), x ∈ F ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.3)

where F := F(0) and the fluid domain is given by the second equation in (1.2).
The general problem associated to system (1.3) is the following. Given the exter-

nal forces acting on the rigid body and on the liquid, and given the initial velocity of
the system, find the velocity of the rigid body and the velocity and pressure of the
liquid, satisfying equations (1.3). Several authors have studied the well-posedness
of (1.3) using a different formulation and classical function spaces, as in [14], and
related problems such as the instability of certain steady motions have been studied
by Lyashenko and Friedlander [6, 16,17].
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Besides the difficulties related to the coupling of the equations, in system (1.3)
the fluid domain is time-dependent and unknown, since it is defined in terms of
the velocity of the solid part. This is the main feature of fluid–structure interaction
problems. As shown in [6,10,11,16,17,19], and as we will recall in the next section,
it is possible to overcome the latter difficulty by making an appropriate change of
variables that leads to a system of equations defined in a fixed, known domain.
However, this approach produces additional nonlinear terms in the equations and
introduces additional unknowns, namely, the external forces and torque. The cou-
pling of the equations can in turn be dealt with by formulating the problem in an
appropriate functional setting, based on extended velocity fields whose restriction
to S are rigid velocities.

Another interesting aspect of this problem is the fact that a Poincaré-type in-
equality is valid in function spaces composed of velocity fields which are orthogonal,
with respect to a certain inner product, to the space of all rigid body velocities. On
the other hand, the operator associated with the viscous term of the equations (1.3)
has a non-trivial kernel which is precisely the space of all rigid velocities. These
aspects have important consequences in the analysis of long time behaviour and
decay of solutions and other related issues such as stability and attainability of
steady states.

We are interested in the study of existence, uniqueness and regularity of solu-
tions, with particular emphasis in functional analytic approaches which exploit the
properties of the operators associated with the equations and are valid for arbitrary
fluid domains. A primary goal is to understand the properties of the underlying
function spaces and operators in a general domain, as in the works of Sohr [21] and
Monniaux [18]. Having developed the abstract framework for equations (1.3), we
prove existence and uniqueness results for weak, mild and strong solutions in the
absence of external forces and torque, without any assumptions on the regularity
of the fluid domain. In the case of strong solutions, we also consider the case of a
regular fluid domain.

This paper is organized as follows. In § 2 we recall the formulation of the equations
in a reference frame attached to the body. Then, in § 3 we introduce the notation
and we recall some classical results. Section 4 is devoted to the functional setting
for the equations. The existence of weak solutions is proved in § 5, and § 6 is devoted
to existence and uniqueness of mild solutions. Finally, in § 7 we show the existence
and uniqueness of strong solutions.

2. Formulation of the problem in a reference frame attached
to the body

In system (1.3), the fluid domain is time-dependent and unknown because it is
expressed in terms of η and �. However, we can avoid this difficulty by reformulat-
ing the equations in the fixed domain F . For this purpose, we consider a Cartesian
coordinate system attached to the body, Y = {C, e1, e2, e3}, and the Euclidean
transformation x = QT(y − yC) := T(y) representing the change of coordinate sys-
tem I → Y. It is clear that T(F(t)) = F and T(S(t)) = S for all t ∈ [0,∞[ , where
S := S(0) and F := F(0) are fixed domains. Moreover, the external unit normal to
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∂F is related to N by n(x) = QT(t)N(t, yC(t) + Q(t)x) and we have∫
S

ρB(x)xdx = 0.

Let x = x(t) be the position of a particle in Y at time t and let y = y(t) be the
position of the same particle in I at time t. Introducing the following transformed
fields:

U(t, x) := ξ(t) + ω(t) × x with ξ = QTη and ω = QT�,

u(t, x) = QT(t)v(t, yC(t) + Q(t)x),
p(t, x) = q(t, yC(t) + Q(t)x),

where v = v(t, y) is the velocity of the particle in I and q = q(t, y) is the associated
pressure. Using this change of variables, system (1.3) becomes

ρ∂tu = ∇ · T (u, p) + ρ[(U − u) · ∇u − ω × u + gL] in (0,∞) × F ,

∇ · u = 0 in (0,∞) × F ,

u = U on (0,∞) × ∂F ,

mB
dξ

dt
= −

∫
∂F

T (u, p)n dσx − mBω × ξ + gB,

IB
dω

dt
= −

∫
∂F

x × T (u, p)n dσx − ω × (IBω) + τB,

ξ(0) = ξ0, ω(0) = ω0, u(0, x) = u0(x), x ∈ F ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

with ξ0 = η0, ω0 = �0, u0(x) = v0(x), because Q(0) = I. The quantities gL, gB and
τB are related to fL, fB and tB by the following equations:

gL(t, x) = QT(t)fL(t, yC(t) + Q(t)x),

gB(t) = QT(t)fB(t),

τB(t) = QT(t)tB(t).

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

Note that fL, fB and tB are known in the inertial frame I but, since the motion
of the body is not prescribed, gL, gB and τB are unknown in Y. Therefore, in that
case, we have to append equations (2.2) to the system (2.1). We have defined Q
and yC in terms of η and �, but they can be rewritten as functions of ξ and ω
in the following way. Defining a matrix Π by Πij = εijkωk, i, j = 1, 2, 3, we have
Π = −QTWQ, where W is defined by (1.1). Then

dQT

dt
Q = −QT dQ

dt
= −QTWQ = Π,

from which it follows that QT is the fundamental matrix of Π, that is,

dQT

dt
= ΠQT and QT(0) = I.
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Since ξ = QTη, it is clear that

yC(t) =
∫ t

0
Q(s)ξ(s) ds.

3. Notation and preliminary results

In addition to the notation introduced in the previous sections, we shall adopt the
following. We denote by Ls(O), Hs(O) etc., the classical Lebesgue and Sobolev
spaces on a domain O, with norms ‖ · ‖s,O and ‖ · ‖s,2,O, respectively. Whenever
confusion does not arise, we shall omit the subscript O in the above norms. Classical
properties and results related to these spaces can be found in, for example, [1, 9].
Likewise, if X is a Banach space, we denote by Lr(a, b; X) and C([a, b];X) the space
of all measurable functions from [a, b] to X such that

∫ b

a

‖u(t)‖r
X dt < ∞, 1 � r < ∞, or ess sup ‖u(t)‖r

X < ∞, r = ∞,

and the space of continuous functions from [a, b] to X, respectively. Throughout the
paper we shall use the same font style to denote scalar, vector and tensor-valued
functions.

If X1 is a Banach space and X0 is a closed subspace of X1, we will denote by
PX1,X0 the projection operator from X1 onto X0, while JX0,X1 will denote the
canonical injection X0 ↪→ X1.

It is well known that, for an arbitrary domain O, the Helmholtz decomposition
L2(O)3 = H(O) ⊕ G(O) holds with

H(O) := completion of {u ∈ C∞
0 (O)3; ∇ · u = 0} in the norm of L2(O)3,

G(O) := {w ∈ L2(O)3; w = ∇p for some p ∈ L2
loc(O)},

see [9, p. 107]. If O is a C0,1-domain, then

H(O) = {u ∈ L2(O)3; ∇ · u = 0 in O and u · n = 0 on ∂O},

where ∇ · u = 0 and u · n are understood in the weak sense [9, p. 119]. Another
common space in hydrodynamics is

V (O) := completion of {u ∈ C∞
0 (O)3; ∇ · u = 0} in the norm of H1(O).

If O is a C0,1-domain then

V (O) = {u ∈ L2(O)3; ∇ · u = 0 in O and u = 0 on ∂O}.

Throughout the text of this paper, absolute constants depending on mB and/or
IB will be represented by C(B), whereas the dependence on ρ and ν will be expressed
in terms of a constant represented by C(L). We will also use other notation such
as C(B,L) to express the dependence on physical properties of both B and L.
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4. Functional setting for the equations

From now on, we set Ω := F̄ ∪ S and denote by R(Ω) the space of all rigid velocity
fields in Ω:

R(Ω) = {u ∈ C∞(Ω)3; u(x) = ξ + ω × x, ξ, ω ∈ R
3}.

Note that we have u ∈ R(Ω) if and only if D(u) = 0, where D(u) is the symmetric
part of ∇u. Moreover, we define

C∞
R (Ω) = {φ ∈ C∞(Ω)3; D(φ) = 0 in a neighbourhood of S̄},

DR(Ω) = {φ ∈ C∞
R (Ω); ∇ · φ = 0}.

For 1 � s � ∞, we denote by Ls
R(Ω) and Hs

R(Ω) the spaces obtained by comple-
tion of C∞

R (Ω) in the norms of Ls(Ω; ρ̃ dx)3 and Hs(Ω; ρ̃ dx)3, respectively, where

ρ̃(x) =

{
ρB(x) in S,

ρ in F .

In particular, L2
R(Ω) is a Hilbert space with inner product

(u, v) :=
∫

Ω

u · vρ̃ dx = mBξu · ξv + ωu · IBωv + ρ

∫
F

u · v dx, (4.1)

whose induced norm will be denoted by | · |. It is easy to show that

Ls
R(Ω) = {φ ∈ Ls(Ω); D(φ) = 0 in S}.

For u ∈ Ls
R(Ω), we will use the notation ū = u|S and ū(x) = ξu + ωu × x.

Lemma 4.1. For 1 < s < ∞, (Ls
R(Ω))′ = Ls′

R(Ω) where s′ is such that 1/s+1/s′ =
1. This means that the dual space of Ls

R(Ω) is isometrically isomorphic to Ls′

R(Ω).

Proof. To begin with, we observe that, for 1 < s < ∞, Ls
R(Ω) is reflexive, because

it is a closed subspace of Ls(Ω)3.
Now, we consider the mapping T : Ls′

R(Ω) → (Ls
R(Ω))′ defined by

〈T u, v〉 =
∫

Ω

u · vρ̃ dx, v ∈ Ls
R(Ω).

By a standard procedure (see, for example, [3, p. 60]), we show that

‖T u‖(Ls
R(Ω))′ = ‖u‖Ls′

R (Ω) ∀u ∈ Ls′

R(Ω),

and, therefore, T is an isometry between Ls′

R(Ω) and T (Ls′

R(Ω)) ⊆ (Ls
R(Ω))′.

It remains to show that T is surjective. This will be achieved by showing that
T (Ls′

R(Ω)) is dense in (Ls
R(Ω))′. Let v ∈ (Ls

R(Ω)))′′ = Ls
R(Ω) be such that

〈T u, v〉 =
∫

Ω

uvρ̃ dx = 0 ∀u ∈ Ls′

R(Ω).

Then, by considering u such that ū = 0, we have in particular that∫
F

u · v dx = 0 ∀u ∈ Ls′
(F),
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which implies that v|F ≡ 0. Hence,

〈T u, v〉 = mBξu · ξv + ωu · IBωv ∀u ∈ Ls′

R(Ω).

Choosing u = ei, i = 1, 2, 3, yields mBξv = 0, while, for u = ei × x, i = 1, 2, 3, we
obtain IBωv = 0, and therefore v̄ ≡ 0. Since v ≡ 0, by the Hahn–Banach theorem,
T (Ls′

R(Ω)) is dense in (Ls
R(Ω))′.

We now introduce two subspaces of L2
R(Ω): the space H(Ω) obtained by com-

pletion of DR(Ω) in the norm induced by (4.1), and the space V(Ω) obtained by
completion of DR(Ω) with respect to the norm induced by the inner product

((u, v)) := (u, v) + 2ν

∫
F

D(u) : D(v) dx, (4.2)

whose associated norm in V(Ω) will be denoted by ‖ · ‖. The notation PL2
R,H will

indicate the orthogonal projector in L2
R(Ω) onto H(Ω) with respect to the inner

product (4.1). It is the adjoint of the embedding JH,L2
R
.

The spaces H(Ω) and V(Ω) are characterized as follows:

H(Ω) = {φ ∈ L2(Ω)3; ∇ · φ = 0 in Ω, D(φ) = 0 in S},

V(Ω) = {φ ∈ H1(Ω)3; ∇ · φ = 0 in Ω, D(φ) = 0 in S}.

Clearly, DR(Ω) ⊂ H1
R(Ω) and, since DR(Ω) ⊂ V(Ω), V(Ω) is dense in H(Ω).

Moreover, due to the compact embedding of H1(Ω) in L2(Ω), we have the following.

Lemma 4.2. V(Ω) is compactly embedded in H(Ω).

We will use another subspace of H(Ω) formed by more regular functions than
those in V(Ω): the space W(Ω) obtained by completion of DR(Ω) in H2

R(Ω). Denot-
ing by V ′(Ω) and W ′(Ω) the dual spaces, with respect to the pivot space H(Ω), of
V(Ω) and W(Ω), respectively, the following injections are valid:

W(Ω) ↪→ V(Ω) ↪→ H(Ω) ↪→ V ′(Ω) ↪→ W ′(Ω).

For the orthogonal complement H⊥(Ω) of H(Ω) in L2
R(Ω), the following charac-

terization holds.

Lemma 4.3. We have

H⊥(Ω) =
{

u ∈ L2
R(Ω); u|F = ∇p, ξu = − ρ

mB

∫
F

∇p dx

and ωu = −ρI−1
B

∫
F

x × ∇p dx for some p ∈ L2
loc(F)

}
.

If ∂F is locally Lipschitz, then

H⊥(Ω) =
{

u ∈ L2
R(Ω); u|F = ∇p, ξu = − ρ

mB

∫
∂F

pn dσx

and ωu = −ρI−1
B

∫
∂F

px × n dσx for some p ∈ H1(F)
}

.
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Proof. The arguments are similar to those used in [20]. Set

Z(Ω) :=
{

u ∈ L2
R(Ω); u|F = ∇p, ξu = − ρ

mB

∫
F

∇p dx

and ωu = −ρI−1
B

∫
F

x × ∇p dx for some p ∈ L2
loc(F)

}
.

Let u ∈ Z(Ω) and v ∈ DR(Ω). Then we have

(u, v) = mBξv ·
(

− ρ

mB

∫
F

∇p dx

)
+ ωv · IB

(
−ρI−1

B

∫
F

x × ∇p dx

)

+ ρ

∫
F

v · ∇p dx

= ρ

∫
F

(v − v̄) · ∇p dx = ρ

∫
F

p∇ · (v̄ − v) dx

= 0

because v−v̄ vanishes in a neighbourhood of ∂F and ∇·(v̄−v) = 0. Hence (u, v) = 0
for all v ∈ DR(Ω) and, by density, (u, v) = 0 for all v ∈ H(Ω), that is, u ∈ H⊥(Ω).
Conversely, u ∈ H⊥(Ω) means that

(u, v) = 0 ∀v ∈ H(Ω), (4.3)

and, in particular, (u, v) = 0 for all v ∈ H(Ω) such that v̄ = 0. This in turn implies
that ∫

F
u · v dx = 0 ∀v ∈ H(F),

and therefore (recall the Helmholtz decomposition of the space L2(F)) there exists
p ∈ L2

loc(F) such that u|F = ∇p. Now, we take v = ei and v = ei × x, i = 1, 2, 3, in
(4.3) and use the fact that u|F = ∇p to obtain

mBξu + ρ

∫
F

∇p dx = IBωu + ρ

∫
F

x × ∇p dx = 0.

Thus, u ∈ Z(Ω).
In the case when ∂F is locally Lipschitz, we only have to apply the divergence

theorem to the integrals ∫
F

∇p dx and
∫

F
x × ∇p dx.

Since R(Ω) ⊂ H(Ω) has finite dimension, it is a closed subspace of H(Ω). Con-
sider the following closed linear subspace of H(Ω):

H�(Ω) = {u ∈ H(Ω); (u, v̄) = 0 for all v̄ ∈ R(Ω)}.

Then we have the following decomposition of H(Ω):

H(Ω) = H�(Ω) ⊕ R(Ω).
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Since R(Ω) = span{ei|Ω , ei × x|Ω ; i = 1, 2, 3}, we have

(u, v̄) = 0 for all v̄ ∈ R(Ω)

⇐⇒

⎧⎪⎪⎨
⎪⎪⎩

mBξu · ei + ρ

∫
F

u · ei dx = 0, i = 1, 2, 3,

(ωuIB) · ei + ρ

∫
F

u · (ei × x) dx = 0, i = 1, 2, 3,

and, therefore,

H�(Ω) =
{

u ∈ H(Ω); mBξu + ρ

∫
F

u dx = IBωu + ρ

∫
F

x × u dx = 0
}

.

Lemma 4.4. Let u ∈ H�(Ω) ∩ V(Ω). Then there exists a positive constant C =
C(B,L) such that

|ξu| + |ωu| + ‖u‖2,F + ‖∇u‖2,F � C‖D(u)‖2,F .

Proof. By the Poincaré inequality,

‖u − ū‖2,F � C‖∇(u − ū)‖2,F = 2C‖D(u)‖2,F .

Since u ∈ H�(Ω), we get

‖u − ū‖2
2,F = ‖u‖2

2,F − 2
∫

F
u · ū + ‖ū‖2

2,F

= ‖u‖2
2,F +

2mB
ρ

|ξu|2 + 2ωu ·
(

IB
ρ

ωu

)
+ ‖ū‖2

2,F .

Consider the symmetric bilinear form a : V(Ω) × V(Ω) → R defined by

a(u, v) = 2ν

∫
F

D(u) : D(v) dx.

Then a satisfies |a(u, v)| � ‖u‖‖v‖ for all u, v ∈ V(Ω) and, for each λ > 0, we have
a(u, u) � min{1, λ}‖u‖2 − λ|u|2 for all u ∈ V(Ω).

The form a induces a bounded linear operator A : V(Ω) → V ′(Ω) defined as

〈Au, v〉V′(Ω),V(Ω) = a(u, v), u, v ∈ V(Ω),

which satisfies
‖A(u)‖V′(Ω) � ‖u‖ ∀u ∈ V(Ω). (4.4)

It is easy to show that ker(A) = R(Ω), and that A+λJV(Ω),V′(Ω) is an isomorphism
from V(Ω) onto V ′(Ω) when λ > 0.

The operator A has a restriction to H(Ω) defined as

D(A) = {u ∈ V(Ω); Au ∈ H(Ω)},

(Au, v) = a(u, v), u ∈ D(A), v ∈ V(Ω).
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By direct calculations, we can show that if u ∈ DR(Ω) then a(u, v) = (−ν∆u, v).
Since D(∆u) = 0 in a neighbourhood of S and ∇ · (∆u) = 0 in Ω, it follows that
DR(Ω) ⊂ D(A), and therefore D(A) is dense in H(Ω).

The operator A is symmetric because a is a symmetric form, and A is accretive
because (Au, u) = a(u, u) = 2ν‖D(u)‖2

2,F � 0 for all u ∈ D(A).
In order to show that Ran(IH(Ω) + A) = H(Ω), where IH(Ω) is the identity oper-

ator in H(Ω), we consider the following problem. Given w ∈ H(Ω), find u ∈ D(A)
such that u + Au = w. By the Lax–Milgram theorem, the variational problem

(u, ϕ) + a(u, ϕ) = (w, ϕ) ∀ϕ ∈ V(Ω), (4.5)

has a unique solution u ∈ V(Ω). It follows from (4.5) that Au = u − w in V ′(Ω),
and since u − w ∈ H(Ω), we conclude that u ∈ D(A) and u + Au = w.

From the above properties of the operator A, we conclude that −A generates an
analytic semigroup of contractions in H(Ω).

Let us henceforth write ∆F
D to denote the Dirichlet–Laplacian on H1

0 (F). The
next theorem gives a characterization of the operator A in terms of ∆F

D.

Theorem 4.5. Let u ∈ D(A). Then there exists p ∈ L2
loc(F) such that

Au =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ν

ρ
∆F

D(u − ū) +
1
ρ
∇p in F ,

1
mB

∫
F

(ν∆F
D(u − ū) − ∇p) dy

+
(

I−1
B

∫
F

y × (ν∆F
D(u − ū) − ∇p) dy

)
× x in S.

Proof. Let u ∈ D(A). We have

(Au, v) = 2ν

∫
F

D(u) : D(v) dx = 2ν

∫
F

D(u − ū) : D(v) dx ∀v ∈ V(Ω). (4.6)

For v ∈ V(Ω) with v̄ = 0, we obtain

ρ

∫
F

Au|F · v dx = 2ν

∫
F

D(u − ū) : D(v) dx,

with u − ū ∈ V (F). This means that

〈ρAu|F + ν∆F
D(u − ū), v〉(C∞

0 (F)3)′,C∞
0 (F)3 = 0 ∀v ∈ C∞

0 (F)3 with ∇ · v = 0,

and, therefore, there exists p ∈ L2
loc(F) (with ∇p ∈ H−1(F)3) such that

ρAu|F = −ν∆F
D(u − ū) + ∇p ∈ L2(F)3.

Taking v = ei and then v = ei × x, i = 1, 2, 3, in (4.6) yields

ρ

∫
F

Au|F dx + mBξAu = 0, i.e. ξAu =
1

mB

∫
F

(ν∆F
D(u − ū) − ∇p) dx,

ρ

∫
F

x × Au|F dy + IBωAu = 0, i.e. ωAu = I−1
B

∫
F

x × (ν∆F
D(u − ū) − ∇p) dx.
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When F is a C1,1-domain, we have D(A) = {u ∈ V(Ω); u|F ∈ H2(F)3}. Indeed,
in that case,

−ν

ρ
∆F

D(u − ū) +
1
ρ
∇p ∈ L2(F)3

and u = ū on ∂F in the trace sense, so that, by classical results for the Stokes
equations [2], we conclude that u ∈ H2(F)3 and p ∈ H1(F). We also have∫

F
(ν∆F

D(u − ū) − ∇p) dx = 2ν

∫
∂F

D(u)n dσx −
∫

∂F
pn dσx,

∫
F

x × (ν∆F
D(u − ū) − ∇p) dx = 2ν

∫
∂F

x × D(u)n dσx −
∫

∂F
x × pn dσx.

Therefore, A is given by

Au =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−ν

ρ
∆u +

1
ρ
∇p in F ,

2ν

mB

∫
∂F

D(u)n dσy +
(

2νI−1
B

∫
∂F

y × D(u)n dσy

)
× x

− 1
mB

∫
∂F

pn dσy −
(

I−1
B

∫
∂F

y × pn dσy

)
× x in S.

For an arbitrary F , we introduce the operator L : H1
R(Ω) → (H1

R(Ω))′ defined
by

〈Lu, v〉(H1
R(Ω))′,H1

R(Ω) = ν

∫
F

∇(u − ū) : ∇(v − v̄) dx, u, v ∈ H1
R(Ω).

Furthermore, we define

D(L) = {u ∈ V(Ω); ∆F
D(u − ū) ∈ L2(F)},

Lu =

⎧⎪⎪⎨
⎪⎪⎩

ν

ρ
∆F

D(u − ū) in F ,

− ν

mB

∫
F

∆F
D(u − ū) dy −

(
νI−1

B

∫
F

y × ∆F
D(u − ū) dy

)
× x in S,

which takes the form

D(L) = {u ∈ V(Ω); u|F ∈ H2(F)},

Lu =

⎧⎪⎪⎨
⎪⎪⎩

ν

ρ
∆u in F ,

− 2ν

mB

∫
F

D(u)n dσy −
(

2νI−1
B

∫
∂F

y × D(u)n dσy

)
× x in S,

when the domain F is C1,1. The next lemma gives a characterization of A and A
in terms of the operators L and L, respectively.

Lemma 4.6. For an arbitrary domain F , we have A = −P(H1
R)′,V′L. If F is a C1,1

domain, then A = −PL2
R,HL.
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Proof. To prove that A = −P(H1
R)′,V′L we just have to observe that P(H1

R)′,V′f
means the restriction of f ∈ (H1

R(Ω))′ to the test space V(Ω) and that∫
F

∇u : ∇v dx = 2
∫

F
D(u) : D(v) dx, u, v ∈ V (F).

The second result follows from the previous properties of the operators A and L
and lemma 4.3.

Remark 4.7. We recall the embedding JH,L2
R

and note that the restriction of JH,L2
R

to V(Ω) has its range in H1
R(Ω) so that, by using a classical result [25, proposi-

tion 2.9.3], P(H1
R)′,V′ is the extension of PL2

R,H to (H1
R(Ω))′.

To conclude this section, note that, since A is a non-negative operator, there exists
a uniquely determined non-negative, self-adjoint operator A1/2 : D(A1/2) → H(Ω)
such that

D(A1/2) = V(Ω), 〈A1/2u, A1/2v〉 = 2ν

∫
F

D(u) : D(v) dx = a(u, v).

More generally, since the resolvent set of A contains the negative real ray (−∞, 0)
and e−tA is an analytic semigroup in H(Ω), according to [13], the fractional pow-
ers Aδ (δ > 0) can be constructed, and the following estimates are valid for the
semigroup {e−tA}t�0 generated by −A [7]:

‖tδAδe−tAu‖ � M(δ)‖u‖, u ∈ H(Ω),

where M(δ) is a positive constant.

5. Weak solutions

We will assume that the external forces and torque in (2.1) are zero. For T > 0 and
u0 in a suitable space, a weak solution of problem (2.1) should satisfy

d
dt

(
mBξu · ξϕ + (IBωu) · ωϕ + ρ

∫
F

u · ϕ dx

)
+ 2ν

∫
F

D(u) : D(ϕ) dx

+ mBωu × ξu · ξϕ + ωu × (IBωu) · ωϕ + ρ

∫
F

(u − ū) · ∇u · ϕ dx

+ ρ

∫
F

ωu × u · ϕ dx = 0 ∀ϕ ∈ V(Ω) and almost everywhere (a.e.) in [0, T ],

and u(0) = u0 in some sense. In order to make the above integrals and the initial
condition meaningful (and by analogy with the classical theory for the Navier–
Stokes equations), we expect that if u0 ∈ H(Ω), then the function u satisfies u ∈
L2(0, T ; V(Ω)) ∩ Cw([0, T ];H(Ω)) with u′ ∈ Lα(0, T ; V ′(Ω)) for some α � 1.

In order to show the existence of weak solutions, we will prove some auxiliary
results, namely, the existence of a special basis of the space H(Ω) and some prop-
erties of the trilinear form associated with the nonlinear terms in equations (2.1).
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Theorem 5.1.

(i) The spectral problem

(w, v)H2
R(Ω) = λ(w, v), ∀v ∈ W(Ω),

admits a sequence {wk}k∈N ⊂ W(Ω) of non-zero solutions corresponding to
a sequence {λk}k∈N of eigenvalues 0 < λ1 � λ2 � λ3 � · · · , which satisfy
λk → ∞ as k → ∞.

(ii) We can choose {wk}k∈N so that it forms an orthonormal basis of H(Ω) and
such that {wk/

√
λk}k∈N is an orthonormal basis of W(Ω).

Proof. Given w ∈ H(Ω), by the Lax–Milgram theorem, the variational problem

(u, ϕ)H2
R(Ω) = (w, ϕ) ∀ϕ ∈ W(Ω)

has a unique solution u ∈ W(Ω). The operator Λ : H(Ω) → W(Ω), w �→ u is linear
and continuous. Since the injection of W(Ω) into H(Ω) is compact, S := JW,H ◦ Λ
is a compact operator in H(Ω).

Let w, w̃ ∈ H(Ω) and set u := Sw and ũ := Sw̃. Then

(Sw, w̃) = (u, w̃) = (w̃, u) = (ũ, u)H2
R(Ω) = (u, ũ)H2

R(Ω) = (w, ũ) = (w, Sw̃),

and therefore S is symmetric. On the other hand, S is a positive operator: (Sw, w) =
(u, u)H2

R(Ω) � 0 for all w ∈ H(Ω) and u := Sw, and if (Sw, w) = 0, we deduce
that u = 0 and, thus, that w = 0. As a consequence, I + S is one-to-one and,
since S is compact, we deduce that I + S is surjective. Hence, S is self-adjoint and
H(Ω) admits an orthonormal basis of eigenfunctions wk of S with corresponding
eigenvalues µk verifying µk > 0 for all k ∈ N, and µk → 0 as k → ∞. Therefore, we
have

(wk, ϕ)H2
R(Ω) = λk(wk, ϕ) ∀ϕ ∈ W(Ω), (5.1)

where λk = 1/µk.
Finally, we show that {wk/

√
λk}k∈N is an orthonormal basis of W(Ω). Suppose

that u ∈ W(Ω) satisfies (wk, u)H2
R(Ω) = 0 for all k ∈ N. Since

(wk, u) = (wk, u)H2
R(Ω)/λk

and {wk}k∈N is a basis of H(Ω), it follows that u ≡ 0, and therefore {wk/
√

λk}k∈N

is a basis of W(Ω). This basis is orthonormal since it follows from (5.1) that(
wk√
λk

,
wj√
λj

)
H2

R(Ω)
=

1√
λk

√
λj

(wk, wj)H2
R(Ω)

=
λk√

λk

√
λj

(wk, wj)

=
λk√

λk

√
λj

δkj = δkj ∀k, j ∈ N.
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Now we investigate the properties of the trilinear form

b : V(Ω) × V(Ω) × V(Ω) → R

defined as

b(u, v, w) = mBωv × ξu · ξw + ωv × (IBωu) · ωw

+ ρ

∫
F

(v − v̄) · ∇u · w dx + ρ

∫
F

ωv × u · w dx

= −
∫

Ω

g(u, v) · wρ̃ dx,

where g(u, v) ∈ L
3/2
R (Ω) is given by

g(u, v) =

{
(v̄ − v) · ∇u − ωv × u in F ,

−ωv × ξu − [I−1
B (ωv × (IBωu))] × x in S.

(5.2)

Using an interpolation inequality for Lebesgue norms, Sobolev and Korn inequali-
ties, we get the following estimates for b(u, v, w):

|b(u, v, w)| � mB|ωv||ξu||ξw| + |IB||ωv||ωu||ωw|
+ ‖v − v̄‖3,F‖∇u‖2,F‖w‖6,F + |ωv|‖u‖2,F‖w‖2,F

� C(B,L)(|v|‖u‖‖w‖ + ‖v − v̄‖1/2
2,F‖D(v)‖1/2

2,F‖u‖‖w‖)

� C(B,L)(|v|‖u‖‖w‖ + |v|1/2‖v‖1/2‖u‖‖w‖) ∀w ∈ V(Ω).

Hence, defining G : V(Ω) × V(Ω) → V ′(Ω) as

〈G(u, v), w〉V′(Ω),V(Ω) = b(u, v, w), w ∈ V(Ω),

we have
‖G(u, v)‖V′(Ω) � C(B,L)(|v|‖u‖ + |v|1/2‖v‖1/2‖u‖). (5.3)

Actually, b(u, v, w) is also defined for w ∈ H1
R(Ω) and therefore

G(u, v) = P(H1
R)′,V′g(u, v).

On the other hand, since V ′(Ω) ↪→ W ′(Ω), we also have G(u, v) ∈ W ′(Ω), when-
ever u, v ∈ V(Ω), with

〈G(u, v), w〉W′(Ω),W(Ω) = b(u, v, w), w ∈ W(Ω).

Using the density of DR(Ω) in V(Ω), we show that∫
F

(v − v̄) · ∇u · w dx = −
∫

F
(v − v̄) · ∇w · u dx

and, therefore,

|b(u, v, w)| � mB|ωv||ξu||ξw| + |IB||ωv||ωu||ωw|
+ ‖v − v̄‖6,F‖∇w‖3,F‖u‖2,F + |ωv|‖u‖2,F‖w‖2,F

� C(B,L)‖v‖|u|‖w‖2,2,Ω ∀w ∈ W(Ω).
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Hence
‖G(u, v)‖W′(Ω) � C(B,L)‖v‖|u|. (5.4)

With a similar reasoning, we also show that

|b(u, v, w)| � C(B,L)|v|‖u‖‖w‖2,2,Ω ∀w ∈ W(Ω).

From the inequalities (4.4), (5.3) and (5.4), we obtain the following lemma.

Lemma 5.2. Let T > 0. If u ∈ L2(0, T ; V(Ω)) ∩ L∞(0, T ; H(Ω)), then

Au ∈ L2(0, T ; V ′(Ω)),

G(u, u) ∈ L4/3(0, T ; V ′(Ω)) ∩ L2(0, T ; W ′(Ω))

and the following estimates hold∫ T

0
‖Au‖2

V′(Ω) � C(B,L)‖u‖2
L2(0,T ;V(Ω)),∫ T

0
‖G(u, u)‖4/3

V′(Ω) � C(B,L)‖u‖2/3
L∞(0,T ;H(Ω))‖u‖2

L2(0,T ;V(Ω)),∫ T

0
‖G(u, u)‖2

W′(Ω) � C(B,L)‖u‖2
L∞(0,T ;H(Ω))‖u‖2

L2(0,T ;V(Ω)),

where C(B,L) is a positive constant.

Now we recall a well-known compactness result, which can be found, for example,
in [24, p. 271]. Let X0, X, X1 be three Banach spaces such that X0 ↪→↪→ X ↪→ X1
and X0, X1 are reflexive. For T > 0 and α, β > 1, let

Y(0, T ; α, β; X0, X1) := {u ∈ Lα(0, T ; X0); u′ ∈ Lβ(0, T ; X1)}

with norm ‖ · ‖Y = ‖ · ‖Lα(0,T ;X0) + ‖ · ‖Lβ(0,T ;X1).

Theorem 5.3. Under the above assumptions, the injection of Y(0, T ; α, β; X0, X1)
into Lα(0, T ; X) is compact.

Another useful result is the following [24, p. 263].

Theorem 5.4. Let X and Y be two Banach spaces such that X ↪→ Y . If u ∈
L∞(0, T ; X) ∩ Cw([0, T ];Y ), then u ∈ Cw([0, T ];X).

In terms of the forms previously introduced and their properties, we can give the
following definition of weak solution of problem (2.1).

Definition 5.5. For T > 0, we say that u ∈ L2(0, T ; V(Ω)) ∩ Cw([0, T ];H(Ω)),
with u′ ∈ L4/3(0, T ; V ′(Ω)), is a weak solution of (2.1) provided

〈u′, ϕ〉 + a(u, ϕ) + b(u, u, ϕ) = 0 ∀ϕ ∈ V(Ω) and a.e. in (0, T ), (5.5)
u(0) = u0, (5.6)

where 〈·, ·〉 stands for the duality product between V(Ω) and V ′(Ω).
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We are now in a position to prove the main result of this section.

Theorem 5.6. Let u0 ∈ H(Ω). There exists a weak solution

u ∈ L∞(0,∞; H(Ω)) ∩ Cw([0,∞); H(Ω)) ∩ L2
loc([0,∞); V(Ω))

of (2.1) satisfying u′ ∈ L
4/3
loc ([0,∞); V ′(Ω)) and the energy inequality

|u(t)|2 + 4ν

∫ t

0
‖D(u)(s)‖2

2,F ds � |u0|2 ∀t � 0.

Moreover, if u0 ∈ H�(Ω), then u(t) ∈ H�(Ω) for all t � 0 and there exists a positive
constant C = C(B,L) such that

|u(t)| � |u0|e−t/C ∀t � 0.

Proof. We will use the Galerkin method implemented with the basis of H(Ω) intro-
duced in theorem 5.1. For each k ∈ N, we define an approximate solution uk of the
form

uk(t, x) =
n∑

i=1

cik(t)wi(x)

with the coefficients cik obtained from the system

(u′
k(t), wj) + a(uk(t), wj) + b(uk(t), uk(t), wj) = 0, j = 1, . . . , k,

uk(0) = u0k,

}
(5.7)

where u0k is the projection of u0 onto span{w1, . . . , wk} in H(Ω). For each k, this is
a quadratic, constant coefficient k × k ordinary differential equation system, which
has a unique solution defined in some interval [0, Tk) with Tk > 0. We will see
that Tk = ∞ for all k ∈ N, as a consequence of the next uniform estimates for the
approximate solutions.

The first estimates are obtained from the relation

(u′
k(t), uk(t)) + a(uk(t), uk(t)) + b(uk(t), uk(t), uk(t)) = 0 ∀t ∈ [0, Tk), ∀k ∈ N,

which follows from (5.7) by multiplying the first equation by cjk and summing from
1 to k. By density of DR(Ω) in W(Ω), we deduce b(uk, uk, uk) = 0. This identity,
combined with the above equation, yields

1
2

d
dt

|uk|2 + a(uk, uk) = 0 in (0, Tk) ∀k ∈ N, (5.8)

and, integrating in [0, t] with t < Tk,

|uk(t)|2 + 2
∫ t

0
a(uk(s), uk(s)) ds � |u0|2 ∀t ∈ [0, Tk).

This inequality implies that Tk = ∞ for all k ∈ N, and that the sequence {uk}
remains in a bounded set of L∞(0,∞; H(Ω)). Then, integrating (5.8) in (0, t) and
letting t → ∞ yields

2ν

∫ ∞

0
‖D(uk)(s)‖2

2,V ds =
∫ ∞

0
a(uk(s), uk(s)) ds � 1

2 |u0|2,
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and, therefore, the sequence {D(vk)} remains in a bounded set of L2(0,∞; L2(Ω)).
Consequently, for each T > 0, {uk} is bounded in L2(0, T ; V(Ω)).

For each k ∈ N, let Pk be the orthogonal projector onto

span
{

w1√
λ1

, . . . ,
wk√
λk

}
in W(Ω).

Then, by theorem 5.1, we have, for each w ∈ W(Ω),

‖Pkw‖H2
R(Ω) � ‖w‖H2

R(Ω) and Pkw → w in H2(Ω).

The last estimate that we will derive is obtained from the relation

(u′
k(t), w) = (u′

k(t), Pkw)
= −a(uk(t), Pkw) − b(uk(t), uk(t), Pkw) ∀t ∈ (0,∞), ∀w ∈ W(Ω),

from which it follows that

〈u′
k, w〉W′(Ω),W(Ω) = −〈Auk + G(uk, uk), Pkw〉W′(Ω),W(Ω) in (0,∞) ∀w ∈ W(Ω).

Using lemma 5.2, we conclude that {u′
k} remains in a bounded set of

L2
loc([0,∞); W ′(Ω)).

The previous estimates enable us to assert the existence of an element

u ∈ L∞(0,∞; H(Ω)) ∩ L2
loc([0,∞); V(Ω))

with u′ ∈ L2
loc([0,∞); W ′(Ω)), and a subsequence {uk′} of {uk} such that

uk′ → u in L2
loc([0,∞); V(Ω)) weakly,

uk′ → u in L∞(0,∞; H(Ω)) weak-star,

u′
k′ → u′ in L2

loc([0,∞); W ′(Ω)) weakly,

uk′ → u in L2
loc([0,∞); H(Ω)) strongly.

The latter convergence result follows from theorem 5.3. These convergence results
and the uniform bounds for the approximate solutions will allow us to pass to the
limit k′ → ∞ and find a weak solution for our problem. In particular, for each
w ∈ W(Ω) and ψ ∈ C∞

0 (0,∞), we have∣∣∣∣
∫ T

0
[a(uk′(t), ψ(t)Pk′w) − a(u(t), ψ(t)w)]dt

∣∣∣∣
�

∣∣∣∣
∫ T

0
ψ(t)a(uk′(t), Pk′w − w) dt

∣∣∣∣ +
∣∣∣∣
∫ T

0
a(uk′(t) − u(t), ψ(t)w) dt

∣∣∣∣
� ‖Pk′w − w‖

∫ T

0
|ψ(t)|‖uk′(t)‖dt +

∣∣∣∣
∫ T

0
a(uk′(t) − u(t), ψ(t)w) dt

∣∣∣∣
� C(B,L)‖ψ‖L2(0,T )‖uk′‖L2(0,T ;V(Ω))‖Pk′w − w‖2,2,Ω

+
∣∣∣∣
∫ T

0
a(uk′(t) − u(t), ψ(t)w) dt

∣∣∣∣,
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where T > 0 is such that supp(ψ) ⊂ (0, T ). With regard to the nonlinear terms, for
each w ∈ W(Ω) and ψ ∈ C∞

0 (0,∞), we find that∣∣∣∣
∫ T

0
[b(uk′ , uk′ , ψ(t)Pk′w) − b(u, u, ψ(t)w)] dt

∣∣∣∣
=

∣∣∣∣
∫ T

0
ψ(t)[b(uk′ , uk′ , Pk′w − w) + b(uk′ − u, uk′ , w) + b(u, uk′ − u, w)] dt

∣∣∣∣
� C‖ψ‖∞

∫ T

0
[|uk′ |‖uk′‖‖Pk′w − w‖2,2,Ω + |uk′ − u|(‖uk′‖ + ‖u‖)‖w‖2,2,Ω ] dt

� C‖ψ‖∞‖w‖2,2,Ω

∫ T

0
|uk′ − u|(‖uk′‖ + ‖u‖) dt

+ C‖ψ‖∞‖Pk′w − w‖2,2,Ω

∫ T

0
|uk′ |‖uk′‖dt

� C‖ψ‖∞‖w‖2,2,Ω‖uk′ − u‖L2(0,T ;H(Ω))(‖uk′‖L2(0,T ;V(Ω)) + ‖u‖L2(0,T ;V(Ω)))

+ C‖ψ‖∞‖Pk′w − w‖2,2,Ω‖uk′‖L2(0,T ;H(Ω))‖uk′‖L2(0,T ;V(Ω)),

where C = C(B,L). Letting k′ → ∞ in

−
∫ T

0
(uk′(t), ψ′(t)w) dt +

∫ T

0
a(uk′(t), ψ(t)Pk′w) dt

+
∫ T

0
b(uk′(t), uk′(t), ψ(t)Pk′w) dt = 0

yields∫ ∞

0
(u(t), ψ′(t)w) dt =

∫ ∞

0
a(u(t), ψ(t)w) dt +

∫ ∞

0
b(u(t), u(t), ψ(t)w) dt,

for all ψ ∈ C∞
0 (0,∞) and all w ∈ W(Ω). Hence, the solution we have found satisfies

u ∈ L∞(0,∞; H(Ω)) ∩ L2
loc([0,∞); V(Ω)) and u′ ∈ L2

loc([0,∞); W ′(Ω)).

Actually, u′ ∈ L
4/3
loc ([0,∞); V ′(Ω)). To see this, we use the density of W(Ω) in V(Ω)

to obtain∫ ∞

0
(u(t), ϕ)ψ′(t) dt =

∫ ∞

0
a(u(t), ϕ)ψ(t) dt +

∫ ∞

0
b(u(t), u(t), ϕ)ψ(t) dt

for all ϕ ∈ V(Ω) and ψ ∈ C∞
0 (0,∞). Therefore, u′ ∈ (C∞

0 )′(0,∞; V ′(Ω)) and〈 ∫ ∞

0
u(t)ψ′(t) dt, ϕ

〉
=

〈 ∫ ∞

0
Au(t)ψ(t) dt, ϕ

〉
+

〈 ∫ ∞

0
G(u(t), u(t))ψ(t) dt, ϕ

〉
,

for all ϕ ∈ V(Ω) and ψ ∈ C∞
0 (0,∞). By lemma 5.2, we have

Au + G(u, u) ∈ L
4/3
loc ([0,∞); V ′(Ω)),

which implies that u′ ∈ L
4/3
loc ([0,∞); V ′(Ω)) and satisfies (5.5). Hence,

u, u′ ∈ L1
loc([0,∞); V ′(Ω))

and, therefore (see, for example, [24, p. 250]), u ∈ C([0,∞); V ′(Ω)).
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Since u ∈ L∞(0,∞; H(Ω)) ∩ C([0,∞); V ′(Ω)) then, by theorem 5.4, it follows
that u ∈ Cw([0,∞); H(Ω)). Using standard arguments, as in [24, pp. 288–289], for
example, it is easy to show that (u(0), ϕ) = (u0, ϕ) for all ϕ ∈ H(Ω), and, therefore,
the initial condition (5.6) is also satisfied.

In order to show the energy inequality and to analyse the long-time behaviour
of the weak solution, we follow [21, p. 334]. Let φ ∈ C1([0,∞); [0,∞)). From (5.7),
we obtain

((φuk)′, φuk) + φ2a(uk, uk) + φ2b(uk, uk, uk) = φ′φ(uk, uk) in (0,∞) ∀k ∈ N,

which simplifies to

1
2

d
dt

|φuk|2 + φ2a(uk, uk) = φ′φ|uk|2 in (0,∞) ∀k ∈ N.

Integrating in [0, t] and letting k → ∞, we obtain the ‘weighted energy inequality’

1
2φ2(t)|u(t)|2 +

∫ t

0
φ2(s)a(u(s), u(s)) ds

� 1
2φ2(0)|u0|2 +

∫ t

0
φ′(s)φ(s)|u(s)|2 ds ∀t � 0. (5.9)

In particular, for φ(t) := 1, we obtain the ‘classical energy inequality’

1
2 |u(t)|2 +

∫ t

0
a(u(s), u(s)) ds � 1

2 |u0|2 ∀t � 0.

Next, we will consider the case of initial velocities belonging to H�(Ω). Taking
ϕ = ei, i = 1, 2, 3, in (5.5) yields

d
dt

(
mBξu · ei + ρ

∫
F

u · ei dx

)
=

d
dt

(u, ei)

= 〈u′, ei〉
= −a(u, ei) − b(u, u, ei)

= −mB(ωu × ξu) · ei − ρ

∫
F

ωu × u · ei dx,

because a(u, ei) = 0 and

b(u, u, ei) = mBωu × ξu · ei + ρ

∫
F

(u − ū) · ∇u · ei dx + ρ

∫
F

ωu × u · ei dx

= mBωu × ξu · ei + ρ

∫
F

ωu × u · ei dx.

Hence, the following relation is valid for a weak solution:

d
dt

(
mBξu + ρ

∫
F

u dx

)
= −ωu ×

(
mBξu + ρ

∫
F

u dx

)
,

which implies∣∣∣∣mBξu(t) + ρ

∫
F

u(t) dx

∣∣∣∣ =
∣∣∣∣mBξu0 + ρ

∫
F

u0 dx

∣∣∣∣ ∀t � 0. (5.10)
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Analogously, taking ϕ = ei × x, i = 1, 2, 3, in (5.5) yields

d
dt

(
IBωu · ei + ρ

∫
F

u · (ei × x) dx

)

=
d
dt

(u, ei × x)

= 〈u′, ei × x〉
= −a(u, ei × x) − b(u, u, ei × x)

= −ωu × (IBωu) · ei − ρ

∫
F

(u − ū) · ∇u · (ei × x) dx

− ρ

∫
F

(ωu × u) · (ei × x) dx.

By direct calculations, and using the density of DR(Ω) in V(Ω), we find∫
F

(u − ū) · ∇u · (ei × x) dx =
∫

F
ū · ∇(ei × x) · u dx

= (ei × ξu) ·
∫

F
u dx +

∫
F

ei × (ωu × x) · u dx

=
(

ξu ×
∫

F
u dx

)
· ei +

∫
F

u × (x × ωu) · ei dx,

∫
F

(ωu × u) · (ei × x) dx =
∫

F
ωu × (x × u) · ei dx −

∫
F

u × (x × ωu) · ei dx,

so that a weak solution also satisfies

d
dt

(
IBωu + ρ

∫
F

x × u dx

)
= −ωu ×

(
IBωu + ρ

∫
F

x × u dx

)
− ρξu ×

∫
F

u dx.

Therefore, we have

1
2

∣∣∣∣IBωu(t) + ρ

∫
F

x × u(t) dx

∣∣∣∣
2

=
1
2

∣∣∣∣IBωu0 + ρ

∫
F

x × u0 dx

∣∣∣∣
2

− ρ

∫ t

0

(
ξu(s) ×

∫
F

u(s) dx

)
·
(

IBωu(s) + ρ

∫
F

x × u(s) dx

)
ds ∀t � 0.

(5.11)

Now suppose that u0 ∈ H�(Ω), that is,

mBξu0 + ρ

∫
F

u0 dx = IBωu0 + ρ

∫
F

x × u0 dx = 0.

Then, from (5.10) and (5.11) we conclude that u(t) ∈ H�(Ω) for all t � 0, and
by lemma 4.4, there exists a positive constant C = C(B,L) such that |u(t)|2 �
Ca(u(t), u(t)) for all t � 0. Choosing φ(t) := et/C in (5.9) yields

e2t/C |u(t)|2 � |u0|2 for all t � 0
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and, therefore,
|u(t)|2 � |u0|2e−2t/C for all t � 0.

Let {e−tA}t�0 be the semigroup generated by −A. We have the following integral
representation for weak solutions.

Theorem 5.7. Let u0 ∈ H(Ω) and let u ∈ L∞(0,∞; H(Ω)) ∩ L2
loc([0,∞); V(Ω)) be

a weak solution to (2.1). Then

u(t) = e−tAu0+(δI+A)1/2
∫ t

0
e−(t−s)A(δI+A)−1/2G(u(s), u(s)) ds a.e. in (0,∞)

for δ > 0.

Proof. A weak solution satisfies

u′ + Au = G(u, u) in L
4/3
loc ([0,∞); V ′(Ω)).

Since
(δI + A)−1/2V ′(Ω) = (δI + A)−1/2(D(A1/2))′ = H(Ω),

we have

(δI+A)−1/2u′+(δI+A)−1/2Au = (δI+A)−1/2G(u, u) in H(Ω) and a.e. in (0,∞).

Setting
z := (δI + A)−1/2u = (δI + A)−1/2u

and using the property

(δI + A)−1/2Av = A(δI + A)−1/2v, v ∈ V(Ω),

we can write

z′ + Az = (δI + A)−1/2G(u, u) in H(Ω) and a.e. in (0,∞).

By the Duhamel formula, z satisfies

z(t) = e−tAz0 +
∫ t

0
e−(t−s)A(δI + A)−1/2G(u(s), u(s)) ds a.e. in (0,∞)

with z0 = (δI + A)−1/2u0, and, therefore,

u(t) = e−tAu0+(δI+A)1/2
∫ t

0
e−(t−s)A(δI+A)−1/2G(u(s), u(s)) ds a.e. in (0,∞).

In the next section, we will consider a more regular initial velocity and investigate
the existence of a more regular solution, the so-called mild solution, for system (2.1).
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6. Mild solutions

We now focus on the investigation of mild solutions. The idea is to write system (2.1)
in the form

u′(t) + Au(t) = G(u(t), u(t)), t > 0, u(0) = u0, (6.1)

where −A is the generator of a semigroup and G is a bilinear map and, following
the approach of [8] (see also [18]), to use the abstract semigroup theory for linear
operators and the Picard fixed point theorem to solve (6.1). To this end, we need
the following general hypotheses on A and on G.

(H1) The operator −A : D(A) → H is the generator of an analytic semigroup in
the Hilbert space H and the resolvent set of A contains the negative real ray
(−∞, 0).

(H2) There exist four non negative constants α, β, γ, κ with β > α such that

G(D(Aβ) × D(Aβ)) ⊂ D(Aγ)′,

G(D(Aα) × D(Aβ)) ⊂ D(Aκ)′,

G(D(Aβ) × D(Aα)) ⊂ D(Aκ)′,

and

∀(u, v) ∈ D(Aβ) × D(Aβ), ‖(δ + A)−γG(u, v)‖H � C‖u‖β‖v‖β ,

∀(u, v) ∈ D(Aα) × D(Aβ), ‖(δ + A)−κG(u, v)‖H � C‖u‖α‖v‖β ,

∀(u, v) ∈ D(Aβ) × D(Aα), ‖(δ + A)−κG(u, v)‖H � C‖u‖β‖v‖α.

Here we have used the notation ‖u‖l := ‖u‖H + ‖Alu‖H for the norm of the
space D(Al), l � 0.

(H3) The constants α, β, γ, κ satisfy β + γ < 1, 2β − α + γ = 1 and β + κ = 1.

Let us introduce some more notation. For all α, β > 0, with β > α, and for all
T > 0, we set

ET (α, β) =
{

u ∈ C([0, T ];D(Aα)) ∩ C1((0, T ];D(Aα)) ∩ C((0, T ];D(Aβ));

‖u‖ET (α,β) < ∞, lim
s→0

(‖sβ−αu(s)‖β + ‖su′(s)‖α) = 0
}

with
‖u‖ET (α,β) := sup

0<s<T
(‖u(s)‖α + ‖sβ−αu(s)‖β + ‖su′(s)‖α).

We are now in a position to give a definition of a mild solution for problem (6.1).

Definition 6.1. Let T > 0. We say that u ∈ C([0, T ];D(Aα)) is a mild solution of
(6.1) provided s �→ e−(t−s)AG(u(s), u(s)) is in L1

loc(0, T ; D(Aα)) and

u(t) = e−tAu0 +
∫ t

0
e−(t−s)AG(u(s), u(s)) ds, t ∈ [0, T ].
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We have the following result of existence of mild solutions for small data.

Theorem 6.2. Assume the above hypotheses.

(i) Let T > 0. Then, for all sufficiently small u0 ∈ D(Aα) in the norm ‖ · ‖α,
there exists a unique mild solution u ∈ ET (α, β) of (6.1).

(ii) For all u0 ∈ D(Aα), there exist T > 0 and a unique mild solution u ∈ ET (α, β)
of (6.1).

(iii) The mild solutions are unique in the space C((0, T ];D(Aβ)).

In order to prove theorem 6.2, analysing the nonlinear term is an important step.
For u, v ∈ ET (α, β), we define

Φ(u, v)(t) = 1
2

∫ t

0
e−(t−s)A(G(u(s), v(s)) + G(v(s), u(s))) ds.

Lemma 6.3. The bilinear map Φ is continuous from ET × ET to ET and the norm
of Φ is an increasing function of T .

Proof. By definition of Φ, we have

‖AαΦ(u, v)(t)‖H

� 1
2

∫ t

0
‖Aα(δ + A)γe−(t−s)A‖L(H)‖(δ + A)−γG(u(s), v(s))‖H ds

+ 1
2

∫ t

0
‖Aα(δ + A)γe−(t−s)A‖L(H)‖(δ + A)−γG(v(s), u(s))‖H ds.

Using the fact that −A is the generator of an analytic semigroup and the hypotheses
on G, we deduce from the above inequality that

‖AαΦ(u, v)(t)‖H

� C

∫ t

0

1
(t − s)α+γ

1
s2(β−α) ds sup

0<s<t
‖sβ−αu(s)‖β sup

0<s<t
‖sβ−αv(s)‖β

= C

∫ 1

0

1
(1 − σ)α+γ

1
σ2(β−α) dσ sup

0<s<t
‖sβ−αu(s)‖β sup

0<s<t
‖sβ−αv(s)‖β

= C‖u‖ET (α,β)‖v‖ET (α,β),

where we have used α+γ +2(β −α) = 1. The estimate of ‖Φ(u, v)(t)‖H is obtained
in a similar way:

‖Φ(u, v)(t)‖H � C

∫ t

0

1
(t − s)γ

1
s2(β−α) ds‖u‖ET (α,β)‖v‖ET (α,β)

= Ctα
∫ 1

0

1
(1 − σ)γ

1
σ2(β−α) dσ‖u‖ET (α,β)‖v‖ET (α,β)

= CTα‖u‖ET (α,β)‖v‖ET (α,β).
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The fact that Φ(u, v) ∈ C([0, T ];D(Aα)) can then be deduced from the continuity
of u and v. We proceed similarly for the second norm:

‖AβΦ(u, v)(t)‖H

� 1
2

∫ t

0
‖Aβ(δ + A)γe−(t−s)A‖L(H)‖(δ + A)−γG(u, v)‖H ds

+ 1
2

∫ t

0
‖Aβ(δ + A)γe−(t−s)A‖L(H)‖(δ + A)−γG(v, u)‖H ds

� C

∫ t

0

1
(t − s)β+γ

1
s2(β−α) ds sup

0<s<t
‖sβ−αu(s)‖β sup

0<s<t
‖sβ−αv(s)‖β

= C
1

tβ−α

∫ 1

0

1
(1 − σ)β+γ

1
σ2(β−α) dσ sup

0<s<t
‖sβ−αu(s)‖β sup

0<s<t
‖sβ−αv(s)‖β

= C
1

tβ−α
‖u‖ET (α,β)‖v‖ET (α,β).

We also deduce from the above calculations that

lim
t→0

tβ−α‖AβΦ(u, v)(t)‖H = 0.

Finally,

Φ(u, v)(t) = 1
2

∫ t/2

0
e−(t−s)A(G(u(s), v(s)) + G(v(s), u(s))) ds

+ 1
2

∫ t/2

0
e−sA(G(u(t − s), v(t − s)) + G(v(t − s), u(t − s))) ds

so that

Φ(u, v)′(t) = 1
2e−(t/2)A(G(u( 1

2 t), v( 1
2 t)) + G(v( 1

2 t), u( 1
2 t)))

− 1
2

∫ t/2

0
Ae−(t−s)A(G(u(s), v(s)) + G(v(s), u(s))) ds

+ 1
2

∫ t/2

0
e−sA(G(u′(t − s), v(t − s)) + G(u(t − s), v′(t − s))

+ G(v′(t − s), u(t − s)) + G(v(t − s), u′(t − s))) ds,

and thus

Φ(u, v)′(t) = 1
2e−(t/2)A(G(u( 1

2 t), v( 1
2 t)) + G(v( 1

2 t), u( 1
2 t)))

− 1
2

∫ t/2

0
Ae−(t−s)A(G(u(s), v(s)) + G(v(s), u(s))) ds

+ 1
2

∫ t/2

0
e−sA(G(u′(t − s), v(t − s)) + G(u(t − s), v′(t − s))

+ G(v′(t − s), u(t − s)) + G(v(t − s), u′(t − s))) ds,
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which implies

‖AαΦ(u, v)′(t)‖H

� C

t
sup

0<s<t
‖sβ−αu(s)‖β sup

0<s<t
‖sβ−αv(s)‖β

+ C

∫ t/2

0

1
(t − s)α+γ+1

1
s2(β−α) ds sup

0<s<t
‖sβ−αu(s)‖β sup

0<s<t
‖sβ−αv(s)‖β

+ CM(t)
∫ t/2

0

1
sκ+α

1
(t − s)β−α+1 ds,

where

M(t) := sup
0<s<t

‖su′(s)‖α sup
0<s<t

‖sβ−αv(s)‖β + sup
0<s<t

‖sβ−αu(s)‖β sup
0<s<t

‖sv′(s)‖α.

The above inequality yields

‖AαΦ(u, v)′(t)‖H � C

t
‖u‖ET (α,β)‖v‖ET (α,β)

and
lim
t→0

‖tAαΦ(u, v)′(t)‖H = 0.

Remark 6.4. In [18], a norm of Φ that is independent of T is obtained. We would
obtain the same result by replacing the norm of D(Al) in (H2) with the semi-
norm ‖Al · ‖H . However, in our case, this semi-norm is not sufficient to bound the
nonlinear term.

We are now in a position to prove theorem 6.2.

Proof of theorem 6.2. First we set Ψ(u0)(t) := e−tAu0. Since u0 ∈ D(Aα), Ψ(u0) ∈
ET . Indeed (see, for example, [7]), using the fact that −A is the generator of an
analytic semigroup, we have

Ψ(u0) ∈ C([0, T ];D(Aα)) and ‖Ψ(u0)(t)‖α � M‖u0‖α for some M > 0.

We also have tβ−αAβΨ(u0)(t) = tβ−αAβ−αAαΨ(u0) and, again, since −A is the
generator of an analytic semigroup,

‖tβ−αAβΨ(u0)(t)‖H � M‖Aαu0‖H .

If u0 ∈ D(Aβ), then

‖tβ−αAβΨ(u0)(t)‖H � Mtβ−α‖Aβu0‖H → 0

as t → 0 and, using the density of D(Aβ) into D(Aα), we obtain that

lim
t→0

‖tβ−αAβΨ(u0)(t)‖H = 0

for u0 ∈ D(Aα) (this is a classical argument [8, lemma 2.10]). On the other hand,

‖tβ−αΨ(u0)(t)‖H � MT β−α‖u0‖H .
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Finally, Ψ(u0)′(t) = AΨ(u0)(t) and, thus, again using the fact that −A is the
generator of an analytic semigroup,

‖tAαΨ(u0)′(t)‖H � M‖Aαu0‖H .

As above, using the density of D(Aα+1) into D(Aα), we deduce that

lim
t→0

‖tAαΨ(u0)′(t)‖H = 0.

Let us now prove the global existence result for small data. Assume u0 ∈ D(Aα).
We seek a fixed point of the map

N : ET → ET , u �→ Ψ(u0) + Φ(u, u).

From lemma 6.3, we know that there exists a positive constant CT such that
‖Φ‖L(ET ×ET ,ET ) � CT . Then we are going to show that, for sufficiently small R,

N ({u ∈ ET ; ‖u‖ET
� R}) ⊂ {u ∈ ET ; ‖u‖ET

� R},

and that the restriction of N to the closed subset {u ∈ ET ; ‖u‖ET
� R} of the

Banach space ET is a contraction, which will conclude the proof.
From the estimates on Φ and Ψ we can deduce that there exists a constant

C = C(T ) such that if ‖u‖ET
� R, then

‖N (u)‖ET
� C‖u0‖α + CT R2. (6.2)

Let us assume that ‖u0‖α � 1/(8CCT ), and let us set R = 2C‖u0‖α. Then, from
the two above inequalities and from (6.2), we deduce

‖N (u)‖ET
� R and ‖N (u) − N (v)‖ET

� 2CT R‖u − v‖ET
� 1

2‖u − v‖ET
.

The proof is similar for the local existence. Assume that u0 ∈ D(Aα). Then we
consider the space

XT (α, β) =
{

u ∈ C1((0, T ];D(Aα)) ∩ C((0, T ];D(Aβ));

lim
s→0

(‖sβ−αu(s)‖β + ‖su′(s)‖α) = 0
}

with the norm

‖u‖XT (α,β) := sup
0<s<T

(‖sβ−αu(s)‖β + ‖su′(s)‖α).

From the above calculation, N (XT ) ⊂ XT . Moreover, for all u ∈ XT with
‖u‖XT (α,β) � R, we have obtained

‖N (u)‖XT
� ‖Ψ(u0)‖XT

+ CT R2. (6.3)

We note that limT→0 ‖Ψ(u0)‖XT
= 0 so that, for sufficiently small T , there exists

R > 0 such that

‖N (u)‖XT
� R and ‖N (u) − N (v)‖XT

� 1
2‖u − v‖ET

,
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which implies the existence and uniqueness of a solution in XT . By following the
proof of lemma 6.3, one can check that u ∈ ET . To prove the uniqueness of the mild
solutions of (6.1) in C((0, T ];D(Aβ)), we have to follow the idea of Brezis [4,12] to
show that a mild solution of (6.1) in C((0, T ];D(Aβ)) is in the space

X̂T (α, β) =
{

u ∈ C((0, T ];D(Aβ)); lim
s→0

‖sβ−αu(s)‖β = 0
}

with the norm
‖u‖X̂T (α,β) := sup

0<s<T
‖sβ−αu(s)‖β .

Then we can see that N is a contraction in X̂T (α, β) for small time.

We now apply theorem 6.2 to our problem and prove that a mild solution exists.
For (u, v) ∈ D(A1/4) × D(A1/2) or (u, v) ∈ D(A1/2) × D(A1/4), we set

g̃(u, v) =

{
−∇ · [(v̄ − v) ⊗ u] − ωv × u in F ,

−ωv × ξu − [I−1
B (ωv × (IBωu))] × x in S.

Since D(A0) = H(Ω) ↪→ L2
R(Ω) and D(A1/2) = V(Ω) ↪→ L6

R(Ω), by interpolation,
we deduce that D(A1/4) ↪→ L3

R(Ω). Assume u ∈ D(A1/4), v ∈ D(A1/2) and let
w ∈ H1

R(Ω). Then

〈g̃(u, v), w〉 = −mBωv × ξu · ξw − ωv × (IBωu) · ωw

+ ρ

∫
F

(v̄ − v) · ∇w · u dx − ρ

∫
F

ωv × u · w dx

defines g̃(u, v) as an element of (H1
R(Ω))′, and its norm satisfies

‖g̃(u, v)‖(H1
R(Ω))′ � C(B)|ωv|(|ξu| + |ωu|) + C(L)‖v̄ − v‖6,F‖u‖3,F

+ C(L)|ωv|‖u‖2,F � C(B,L)‖u‖1/4‖v‖1/2.

If u ∈ D(A1/2) and v ∈ D(A1/4), we also have g̃(u, v) ∈ (H1
R(Ω))′. Defining

G(u, v) = P(H1
R)′,V′ g̃(u, v),

it follows that G(u, v) ∈ D(A1/2)′ for (u, v) ∈ D(A1/4) × D(A1/2) or (u, v) ∈
D(A1/2) × D(A1/4).

Now, if u, v ∈ D(A1/2), then g̃(u, v) = g(u, v) ∈ L
3/2
R (Ω), where g(u, v) is defined

by (5.2), and

‖g̃(u, v)‖
L

3/2
R (Ω) � C(L)(‖v̄ − v‖6,F‖∇u‖2,F + |ωv|‖u‖2,F )

+ C(B)|ωv|(|ξu| + |ωu|) � C(B,L)‖u‖1/2‖v‖1/2.

Since D(A1/4) ↪→ L3
R(Ω), by duality and lemma 4.1, we conclude that L

3/2
R (Ω) ↪→

D(A1/4)′. With the help of figure 1, we conclude that if u, v ∈ D(A1/2), then

G(u, v) = P(H1
R)′,V′ g̃(u, v) = P

L
3/2
R ,D(A1/4)′g(u, v) ∈ D(A1/4)′.
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H1
R(Ω) � � �� L3

R(Ω) � � �� L2
R(Ω) � � ��

��

L
3/2
R (Ω)

P
L

3/2
R ,D(A1/4)′

��

� � �� (H1
R(Ω))′

P(H1
R)′,V′

��
V(Ω) � � ��

��

��

D(A1/4) � � ��
��

��

H(Ω) � � ��
��

��

(D(A1/4))′ � � �� V(Ω)′

Figure 1. Functional spaces.

Hence, G satisfies the hypotheses of theorem 6.2 with α = 1
4 , β = 1

2 , γ = 1
4 ,

κ = 1
2 , which allows us to obtain the existence and uniqueness of mild solutions for

our system.

Theorem 6.5. Let u0 ∈ D(A1/4). Then, for each T > 0, there exists a constant
C = C(B,L, T ) such that if ‖u0‖1/4 � C, then the system (2.1) admits a unique
mild solution on [0, T ]:

u ∈ C([0, T ];D(A1/4)) ∩ C1((0, T ];D(A1/4)) ∩ C((0, T ];D(A1/2))

with
sup

0<s<T
(‖s1/4u(s)‖1/2 + ‖su′(s)‖1/4) < ∞.

The mild solution obtained in theorem 6.5 is a strong solution in the following
sense.

Theorem 6.6. Let u0 ∈ D(A1/4) and let

u ∈ C([0, T ];D(A1/4)) ∩ C1((0, T ];D(A1/4)) ∩ C((0, T ];D(A1/2))

be a mild solution to system (2.1). Then there exists a scalar function p such that
ν∆F

D(u − ū) − ∇p ∈ C((0, T ];L3/2
R (Ω)) and

ρ
∂u

∂t
= ν∆F

D(u − ū) − ∇p + ρ(ū − u) · ∇u + ρωu × u in (0, T ] × F ,

mB
dξu

dt
+ mBωu × ξu = −

∫
F

(ν∆F
D(u − ū) − ∇p) dx,

IB
dωu

dt
+ (IBωu) × ωu = −

∫
F

(ν∆F
D(u − ū) − ∇p) × xdx in (0, T ].

Proof. A mild solution satisfies u ∈ C1((0, T ];D(A1/4)) ∩ C((0, T ];D(A1/2)) and
therefore u′ ∈ C((0, T ];L3

R(Ω)) and g(u, u) ∈ C((0, T ];L3/2
R (Ω)). Since

u′(t) + Au(t) = G(u(t), u(t)) in C((0, T ];V ′(Ω)),

it follows that

〈Au(t), v〉 =
∫

Ω

(g(u(t), u(t)) − u′(t)) · vρ̃(x) dx ∀v ∈ V(Ω), ∀t ∈ (0, T ].

Combining the above relation with the fact that

〈Au, v〉 = 2ν

∫
F

D(u) : D(v) dx = 2ν

∫
F

D(u − ū) : D(v) dx for v ∈ V(Ω),
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we deduce

2ν

∫
F

D(u− ū) : D(v) dx =
∫

Ω

(g(u, u)−u′) ·vρ̃(x) dx ∀v ∈ V (F) in (0, T ]. (6.4)

In particular,

2ν

∫
F

D(u − ū) : D(v) dx = ρ

∫
F

(g(u, u) − u′) · v dx ∀v ∈ V (F) in (0, T ].

From classical results for the Stokes problem (see, for example, [24, p. 14]), for each
t ∈ T , there exists p(t) ∈ L2

loc(F) such that

ρ(g(u, u) − u′)|F = −ν∆F
D(u − ū) + ∇p ∈ C((0, T ];L3/2(F)). (6.5)

and, therefore,

ρ
∂u

∂t
= ν∆F

D(u − ū) − 1
ρ
∇p + ρ(ū − u) · ∇u + ρωu × u in (0, T ] × F .

Now we take v = ei, i = 1, 2, 3, in (6.4) to get∫
Ω

(g(u, u) − u′)ρ̃(x) dx = 0,

i.e. ∫
S
(g(u, u) − u′)ρB(x) dx = −ρ

∫
F

(g(u, u) − u′)dx.

Observing that

ρ

∫
F

(g(u, u) − u′) dx = −
∫

F
(ν∆F

D(u − ū) − ∇p) dx,

∫
S
(g(u, u) − u′)ρB(x) dx = −mBωu × ξu − mB

dξu

dt
,

we find

mB
dξu

dt
+ mBωu × ξu = −

∫
F

(ν∆F
D(u − ū) − ∇p) dx in (0, T ].

Finally, taking v = ei × x, i = 1, 2, 3, in (6.4) gives∫
Ω

(g(u, u) − u′) × xρ̃(x) dx = 0,

i.e. ∫
S
(g(u, u) − u′) × xρB(x) dx = −ρ

∫
F

(g(u, u) − u′) × xdx.

By direct calculations, and using (6.5), we obtain

ρ

∫
F

(g(u, u) − u′) × xdx = −
∫

F
(ν∆F

D(u − ū) − ∇p) × xdx,

∫
S
(g(u, u) − u′) × xρB(x) dx = −IBωu × ξu − IB

dωu

dt
,
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which yields

IB
dωu

dt
+ (IBωu) × ωu = −

∫
F

(ν∆F
D(u − ū) − ∇p) × xdx.

Hence, (u, p) is a strong solution to (2.1) if we consider ν∆F
D(u − ū) − ∇p undecou-

pled.

In the next section we will construct strong solutions for more regular data.

7. Strong solutions

In this section we assume that the domain F is of class C1,1. Then, using classical
results (see, for example, [2, 5, 15]), we have

D(A) = {u ∈ V(Ω); u|F ∈ H2(F)} (7.1)

In that case, we can obtain the existence and uniqueness of strong solutions by
using exactly the same arguments as those used in [22,23].

Theorem 7.1. Assume that F is a C1,1-domain. Let u0 ∈ V(Ω). Then there exist
T > 0 and a strong solution (u, ξ, ω, p) of problem (2.1) satisfying

u ∈ L2(0, T ; H2(F)) ∩ C([0, T ];H1(F)) ∩ H1(0, T ; L2(F)),

∇p ∈ L2(0, T ; L2(F)),

ξ ∈ H1(0, T ), ω ∈ H1(0, T ).

Proof. First we write (2.1) as

u′(t) + Au(t) = G(u(t), u(t)), t > 0, (7.2 a)

u(0) = u0 ∈ D(A1/2), (7.2 b)

where G(u, u) := PL2
R,Hg|D(A)×D(A)(u, u). We observe that, since −A is the gener-

ator of an analytic semigroup, then, for any F ∈ L2(0, T ; H(Ω)), the system

u′(t) + Au(t) = F (t), t > 0,

u(0) = u0 ∈ D(A1/2)

}
(7.3)

admits a unique solution

u ∈ L2(0, T ; D(A)) ∩ C([0, T ];D(A1/2)) ∩ H1(0, T ; H(Ω)).

Then, by using some calculations and (7.1), we obtain that

G(u, u) ∈ L5/2(0, T ; H(Ω)).

Consequently, we can consider the following mapping:

M : L2(0, T ; H(Ω)) → L2(0, T ; H(Ω)), F �→ G(u, u),

where u is the solution of (7.3) associated with F . By using the Hölder inequality,
we deduce that, for small time, there exists a closed ball B(0, R) of L2(0, T ; H(Ω))
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invariant by M and such that the restriction of M to B(0, R) is a contraction, from
which it follows that (7.2) has a unique solution in B(0, R). Finally, we observe
that, by lemma 4.6, (7.2 a) is equivalent to u′ = PL2

R,H(L + g|D(A)×D(A)(u, u)))
and, therefore, there exists p ∈ L2(0, T ; L2(F)) such that (2.1) holds true.

Remark 7.2. It is important to note that a strong solution is a mild solution and
a weak solution. Moreover, since a mild solution satisfies u(τ) ∈ D(A1/2) for all
τ > 0, then a mild solution is also a strong solution on the interval [τ, T ] for all
τ > 0.
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