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ABSTRACT 

The claims development result (CDR) is one of the major risk drivers in the 
profi t and loss statement of a general insurance company. Therefore, the CDR 
has become a central object of interest under new solvency regulation. In current 
practice, simple methods based on the fi rst two moments of  the CDR are 
implemented to fi nd a proxy for the distribution of the CDR. Such approxima-
tions based on the fi rst two moments are rather rough and may fail to appro-
priately describe the shape of the distribution of the CDR. In this paper we 
provide an analysis of higher moments of the CDR. Within a Bayes chain ladder 
framework we consider two different models for which it is possible to derive 
analytical solutions for the higher moments of  the CDR. Based on higher 
moments we can e.g. calculate the skewness and the excess kurtosis of  the 
distribution of the CDR and obtain refi ned approximations. Moreover, a case 
study investigates and answers questions raised in IASB [9].

INTRODUCTION

One of the most important fi nancial positions in the balance sheet of a general 
insurance company are the claims reserves. The claims reserves are used for 
paying the outstanding loss liability cash fl ows. The changes (over time) in these 
claims reserves, called the claims development result (CDR), are one of the 
major risk drivers in the profi t and loss statement of a general insurance com-
pany. Therefore, in new solvency regulations, such as Solvency II, the CDR 
has become a central object of interest for the assessment of the reserving risk. 
As proposed in Solvency II and applied in current practice, a proxy for the 
distribution of the CDR is obtained by fi tting a shifted lognormal distribution 
to the estimates of  the fi rst two moments of  the CDR. This rather rough 
approach may fail to describe the shape of the distribution of the CDR. In fact, 
fi tting a shifted lognormal distribution to the fi rst two moments or applying 
bootstrapping techniques often lead to rather symmetric approximations to 
the distribution of the CDR which, in general, fail to fi t the skewness and the 
excess kurtosis of the distribution of the CDR. Knowledge about the shape 
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of the distribution is important for the risk assessment of future cash fl ows as 
discussed in IASB [9]. As for instance stated in paragraph B76 of IASB [9], 
for the selection of the confi dence level for estimating risk adjustments the insurer 
must take into account additional factors, such as the skewness of the probabil-
ity distribution. Moreover, when it comes to selecting an appropriate technique 
to estimate risk adjustments, shape parameters such as the skewness have to 
be taken into account as stated in paragraph B95 of IASB [9]. The considera-
tion of higher moments allows insurance companies to gain more insight into 
the shape of the distribution of the CDR which is essential for the application 
of techniques for estimating risk adjustments as discussed in IASB [9]. 

We work within a chain ladder (CL) framework. Since the CDR in the next 
accounting year results from an information update, such problems are most 
naturally understood recursively (see Bühlmann-Gisler [2], Section 9.2). A uni-
fi ed approach to incorporate new information into a CL model is provided
by the Bayes CL framework (see Bühlmann et al. [1]). In this paper we con-
sider two different distributional Bayes CL models. We emphasize that for the 
analysis of  higher moments we need to make explicit distributional model 
assumptions.

As an important property of the Bayesian setup we highlight that it does 
not only allow for the incorporation of  the information update but it also 
accounts for the parameter estimation uncertainty in a natural way. Moreover, 
our distributional model assumptions allow for the calculation of  higher 
moments of the CDR in closed form w.r.t. the data available.

In a case study we fi t the so called 4-parameter Johnson family of distribu-
tions (see Johnson et al. [11]) to moments up to order four of the CDR, i.e.
in addition to the fi rst two moments we fi t the skewness and excess kurtosis 
of the CDR. As a special case the 4-parameter Johnson family of distributions 
includes the shifted lognormal distribution which is proposed in Solvency II 
as a proxy for the distribution of the CDR. This allows to directly compare 
the distributional approximation for the shifted lognormal distribution based 
on the fi rst two moments with the refi ned approximation for the 4-parameter 
Johnson family of distributions based on higher moments up to order four. 
The case study shows that considering the shape of the distribution of the 
CDR signifi cantly infl uences the uncertainty analysis of the CDR and answers 
questions raised in IASB [9]. 

Organization of the paper
In the following section we introduce the CDR. In Section 2 we defi ne two 
different Bayes CL models. Then we calculate posterior distributions (of the 
underlying model parameters) which enable us to compute higher moments
of the CDR in closed form (as far as they exist) for single accident years as well 
as for the aggregated case, see Section 3. The estimation of the structural param-
eters (which are needed to calibrate the models) is described in Section 4. Finally, 
Section 5 presents a case study and a discussion of the results. The main results 
are proved in the appendix.
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FIGURE 1: Information update DI  "  DI  +  1 during the fi rst accounting year (0,1], a new diagonal
is added to the trapezoid at the end of accounting year 1.

1. CLAIMS DEVELOPMENT RESULT

In the sequel we work with claims development triangles (trapezoids) for 
which the single entries correspond to cumulative claims denoted by Ci, j  >  0. 
The index i  ! {0,  …,  I} refers to accident years and the index j  ! {0,  …,  J} to 
development years (I  $  J). We assume that the ultimate claim for accident year 
i  ! {0,  …,  I} is given by Ci, J. This means we assume that there is no develop-
ment after development year J.  

At time I  +  t, t  $  0, we have observations denoted by 

 ; , , .C i j I t i I j J0 0D ,I t i j # # # # #= + ++ $ .

This corresponds to the runoff  situation because no new accident years i are 
added to DI  +  t after year I. The period (t  –  1, t] is called accounting year t and 
DI  +  t is the information available at the end of accounting year t.

Claims reserving is basically a prediction problem and we are mostly inter-
ested in the prediction of the ultimate claim Ci, J . The Bayesian predictor for 
the ultimate claim Ci, J, given DI  +  t, is defi ned by 

 ,i J ,i JC .CE DI t= +
( )t

8 B  (1.1)

Note that this predictor is unbiased and has minimal (conditional) L2-uncer-
tainty among all DI  +  t-measurable predictors and is therefore often called 
“best-estimate” predictor.  

The difference in successive ultimate claim predictions resulting from an 
information update DI  "  DI  +  1, see Figure 1, determines the CDR in the fi rst 
accounting year (0,1]. 

Defi nition 1.1. The CDR for accident year i  =  I  –  J  +  1,  …,  I in the fi rst accounting 
year is defi ned by

 , ,i iJ Ji C CCDR = - .( )0 ( )1
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For a further description we refer to Section 3 in Bühlmann et al. [1]. Making 
use of the martingale property of successive ultimate claim predictions (under 
the assumption that the fi rst moments exist) we obtain from (1.1) 

 iCDR 0.E I =D6 @

Therefore, in the profi t and loss statement the CDR is predicted by zero. The pre-
diction variance (conditional mean square error of prediction) is given by, see 
Wüthrich-Merz [16],

 CDR CDR
i

msep (0) 0 Var .E Di I i I= - =CDR DI| D
2

_ _i i9 C

The prediction variance is probably one of the easiest risk measures that can 
be calculated. An analytical formula for this second moment is derived in 
Bühlmann et al. [1]. For gaining more insight into the distribution of the CDR 
we aim to calculate higher moments of this CDR.

2. BAYES CHAIN LADDER MODELS

In this section we consider two different distributional models for the Bayes CL 
model. Both models are such that the distributions belong to the exponential 
dispersion family with associate conjugate priors (see e.g. Bühlmann-Gisler [2]). 
This choice allows for closed form solutions for posterior distributions. To begin, 
we defi ne the individual claims development factors by 

 
j

j 1
,F C

C
j =

+

,i

,i
,i

for i  ! {0,  …,  I} and j  ! {0,  …,  J  –  1}. The cumulative claims Ci, j are then given 
by

 F1 = ,i ,C C ,i k
k

j

0
0=

,i j + %

where Ci, 0 refers to the initial value of  the stochastic process (Ci, j )j  =  0, …, J and 
the Fi, j’s describe the individual multiplicative changes from development year 
to development year. Next, we defi ne the two different distributional models 
for the individual claims development factors Fi, j. First, we study the Gamma-
Gamma Bayes CL model also considered in Salzmann-Wüthrich [15].

2.1. Gamma-Gamma Model

Model 2.1. (Gamma-Gamma Model)

Assume that cj  >  0,  j  =  0,  …,  J  –  1 are given fi xed constants.
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(a) Conditionally, given Q  =  (qj)0  #  j  #  J  –  1, (Ci, j)j  $  0 for i  =  0,  …,  I are independ-
ent Markov processes with conditional distributions 

  ,j jj
2 2- -

j

j 1

j

+
.F C

C
,

,
i j

C ,i

+ c cG=
Q,

,

i

i
qa k

(b) qj are independent G(gj,  fj (gj  –  1))-distributed with given prior constants 
fj  >  0, gj  >  1.

(c) Q and Ci, 0 are independent and Ci, 0  >  0, P-a.s.

 ¡

Remark. The gamma distribution is denoted by G(g, c). In particular for X  +   
G(g, c) with g, c  >  0 we have that E[X ]  =  g/c and Var(X )  =  g/c2. The gamma 
distribution has the following moments:

 X
kk-

( )
( )

cE k G
=

+
gG

g
,6 @  (2.1)

for k  !  Z with   –  k  <  g and G(x) denotes the gamma function. This determines 
for which k the moments of X exist.

Under Model 2.1 we have the following properties:

 (2.2)
          

j

j

jVar jj

1

,i

j j j j j j

j j j j

1

1

+

+

,

Var .

C C C F C C

C C C F C C

E E

,i
2 2c

= =

= =

-

-

q

q

, , , , , ,

, , , ,

i i i i i i

i i i i
2

, ,

, ,

Q Q

Q Q
2

a `k j

8 8B B

 (2.3)

Remarks. 

• From formula (2.2) we see that qj
 –1 plays the role of the development factor 

(see Mack [12]). The variance (2.3) is quadratic in the observation an there-
fore our assumptions differ from the classical distribution-free CL model of 
Mack [12]. As a consequence there is no prior difference in risk w.r.t. the 
volume between two different portfolios having the same prior parameters 
cj and qj. Furthermore, the conditional coeffi cient of variation is given by 

  j .Cj j
j j

j j
1

1

1
,Q+

+

+
Vco |

Var
C

C C

C C

E
= =, ,

, ,

, ,
i i

i i

i i
c

/1

,

,

Q

Q
2

`
`

j
j

8

9

B

C

• The assumptions on the distributions of the qj’s refl ect our prior knowledge 
about the true parameters. For gj  "  1 we are in the non-informative case 
where we have no prior knowledge. Note that we need gj  >  2 for the prior 
second moment of qj

 –1 to exist. 
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2.2. Lognormal-Normal Model

Secondly, we consider a lognormal distribution for the individual development 
factors Fi, j and for the prior distribution we choose a normal distribution.

Model 2.2. (Lognormal-Normal Model)

Assume that sj
2  >  0, j  =  0,  …,  J  –  1 are given fi xed constants.

(a) Conditionally, given m  =  (mj)0  #  j  #  J  –  1, (Ci, j)j  $  0 for i  =  0,  …,  I are independ-
ent Markov processes with conditional distributions 

  jLj
j

1
j

j

, .F C
C 2

,i

(+= m sN,
,

,
i

i

i j +
)

,m C

(b) mj are independent N(zj, nj
2)-distributed with given prior constants zj and 

nj  >  0.

(c) m and Ci, 0 are independent and Ci, 0  >  0, P-a.s.

Remarks.

• LN( m, s2) denotes the lognormal distribution and N( m, s2) the normal dis-
tribution. 

• Model 2.2 inherits similar features as Model 2.1 since there is no volume 
term Ci, j in the distribution of the Fi, j. The only modifi cation is that we have 
different distributional assumptions.

• In Model 2.1, the gamma distributed parameter qj enters the model recipro-
cally (c.f. (2.2)-(2.3)). We know that inverse gamma distributions lie in the 
Fréchet maximum domain of attraction (see McNeil et al. [14]). Therefore 
they belong to the family of heavy-tailed distributions with infi nite higher 
moments. As a consequence, this may lead to heavy-tailed distributions for 
the CDR w.r.t. DI for Model 2.1, i.e. higher order moments thereof may not 
exist. On the other hand, as we will see in Section 3 all moments exist for the 
distribution of the CDR w.r.t. DI resulting from the lognormal distribution 
of  Model 2.2. We refer to such distributions as being moderately heavy-
tailed, see also McNeil et al. [14]. 

• The structural parameters cj and sj are assumed to be fi xed constants,
see Model 2.1 and Model 2.2. Only this assumption will allow for closed 
form solutions for higher moments of the CDR. We will derive and discuss 
plug-in estimators for these structural parameters in Section 4.

• Similar to Model 2.1, letting nj  "  3 corresponds to the non-informative 
case, i.e. we have no prior knowledge about the parameter mj.

Under Model 2.2 we have the following properties:

 j /s+j j j j j1+ 2expC C C F C CE E ,i j j
2=, , , , ,i i i i i,m = , ,m ma k6 6@ @  (2.4)
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 j jjC ,j j i1+Var ( 1exp expC C 2 j
2 2= + -s s, ,i i ), ,m 2 m` a `j k j  (2.5)

 jj j1+Vco | ( 1 .expC C
/2 1 2

= -s, ,i i ),m` aj k  (2.6)

Unlike qj in Model 2.1, mj is not directly associated with the CL factor which 
is now given by exp (mj  +  sj

2/2), (c.f. (2.4)) and thus depends on sj .

3. POSTERIOR DISTRIBUTIONS AND HIGHER MOMENTS

In this section we are going to exploit the recursive structure (see Bühlmann 
et al. [1]) of the different Bayes CL models presented in Section 2 in order to 
fi nd closed form solutions for higher moments of  the CDR, fi rst for single 
accident years and second for the aggregated case. 

3.1. Posterior Distributions

Since Model 2.1 and Model 2.2 belong to the exponential dispersion family 
with associate conjugate priors, the Bayesian estimators coincide with the linear 
credibility estimators (exact credibility case). Moreover, it is possible to explic-
itly calculate the posterior distributions of Q and m, given DI  +  t. In the same 
spirit of Theorem 3.2 of Gisler-Wüthrich [6], we state the following proposition 
for the two different models. The proofs are provided in the appendix.

Proposition 3.1 (Exact Credibility Case). (a) Under the assumptions of Model 2.1, 
given DI  +  t with t  =  0, 1, the posterior distributions of Q  =  (qj)0  #  j  #  J  –  1 are inde-
pendent gamma distributions with parameters
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(b) Under the assumptions of Model 2.2, given DI  +  t with t  =  0, 1, the posterior 
distributions of m  =  (mj)0  #  j  #  J  –  1 are independent normal distributions with 
parameters
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3.2. Credibility CL Factors

This section revisits important results needed for the calculation of  higher 
moments of the CDR. 

3.2.1. Gamma-Gamma Model 

For Model 2.1, Proposition 3.1 implies for i  >  I  –  J  +  t that 

j,i
,j

J E
t

E 1
I t+, ,j i iI t+C .C C C

c
1D D

,j I i t

J

jj I i t

J1 1
= = =

-
= - +

-
-

= - +

-

,i q
t

I i t I i t- + - +
( )t

g6 9@ C% %

 (3.1)

Defi ne the posterior estimates of  the CL factors for j  =  0,  …,  J  –  1 by Fj
(t)  =

E [qj
– 1| DI  +  t ]. From straightforward calculation we obtain the following

corollary:

Corollary 3.2. Assume Model 2.1, then for t  #  j  #  J  –  1 with t  =  0, 1 the posterior 
estimates Fj

(t) are given by the weighted average 

 j a ,j j,j tF a ( ) ,f,t j t= + -1f( )t  (3.2)

for t  =  0,1 with 

 i 0= F
,

,
j t

i j
=

I j t1- - +

I j t- +
,f

/

and credibility weight at time I  +  t

 
j

,j ta
( 1)

.
I j t

I j t

jc
=

- + + -

- +
2 g

 (3.3)

Remark. The estimator fj, t corresponds to the maximum likelihood estimator 
(MLE) of qj

  – 1 at time I  +  t.
Similar to Theorem 2.1 in Bühlmann et al. [1] we obtain for the posterior 

estimates of the CL factors in the Gamma-Gamma model the recursive struc-
ture for the updating procedure. 

Corollary 3.3. Assume Model 2.1, then for 1  #  j  #  J  –  1

 jj ,I j j- +F F1 ,Fj j= -b b( ) ( )1 0
` j

with DI -measurable credibility weight 

 
j1 ( 1)

.
I j

1
j

jc
=

- + + 2 -
b

g
 (3.4)
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3.2.2. Lognormal-Normal Model

Analogous results hold true for Model 2.2, if  we defi ne Yi, j  =  log Fi, j  =
log(Ci, j  + 1 /Ci, j ) and Yj

(t)  =  E [ mj |DI  +  t ]. Given m and Ci, j, we see that Yi, j is 
normally distributed with Yi, j |m,Ci, j

  + N (mj,  sj ) which immediately implies the 
next corollary.

Corollary 3.4. Assume Model 2.1, then for t  #  j  #  J  –  1 with t  =  0,1 the posterior 
estimates Yj

(t) are given by the weighted average 

 jj , ,j j,j t r jt trY )(Y z= = -+ z1 ,( )t ( )t  (3.5)

with
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 (3.6)

Moreover, we obtain the following recursive structure in this case.

Corollary 3.5. Assume Model 2.2, then for 1  #  j  #  J  –  1

 j jj j,I j-Y Y( ) ,Y j= -k k1+
( )1 ( )0

with credibility weight 
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Due to the assumptions of Model 2.2 and the posterior independence of the 
parameter m  =  (mj)0  #  j  #  J  –  1 according to Proposition 3.1 we thus obtain

 (3.8)
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Moreover, with Corollary 3.5 we get

 j Y Y(1 )- k+
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,I j- j
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 (3.10)
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Note that in the above formula YI  –  j, j is the only term which is not DI-meas-
urable.

3.3. Higher Moments Single Accident Years

Proposition 3.1, Corollary 3.3 and Corollary 3.5 allow for the calculation of 
higher moments of the ultimate claim predictor ,i JC ( )1  given DI for both models.

Proposition 3.6. Choose i  >  I  –  J.

(a) Assume Model 2.1 and let Ni  =  min{gI  –  i, 0, …,  gJ  –  1, 0}. For n  !  N with n  <  Ni 
we obtain 
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where credibility weight bj is given by (3.4) and for j  =  I  –  i,  …,  J  –  1 and 0  #  l  #  n
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with cj, 0 and gj, 0 given by Proposition 3.1.

(b) Assume Model 2.2. We obtain
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with zj, 0 and nj, t given by Proposition 3.1 and kj given by (3.7) for j  >  I  –  i and 
kI  –  i  =  1.

Remarks. 

•  In Proposition 3.6 we calculate moments of ,i JC ( )1  given DI . To get moments of 
CDRi we have to consider moments of ,i JC ( )0   –  ,i JC ( )1 . Since ,i JC ( )0  is DI-measur-
able this can be done easily. For instance, the second moment of CDRi is 
given by

 
  , , , ,i i i iJ J J JC C C CCDR .E E ED D Di I I I

2 2 2
= - = -

) ) ) ) 21 1 00( ( ( (
a a ak k k6 ; ;@ E E
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 Therefore, moments of CDRi given DI are determined by moments of ,i JC ( )1 . 

• Moreover we can calculate the skewness and excess kurtosis of CDRi. In 
the case study in Section 5 we change signs for the CDR such that losses in 
the CDR correspond to positive values (and are in-line with the classical 
defi nition of  risk measures). Therefore, the skewness and excess kurtosis 
thereof are given by 

  skewness   =   
2

3
i

iCDR

CDR

E

E

I

I-
3

D
/2

D

^ h6

6

@

@
,  excess kurtosis   =   

4

i

i
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CDR
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E

E

I

I
2
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D

D
2

^ h6

6
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@

 Note that the moments in the above formulas for the skewness and the 
excess kurtosis are moments relative to the mean which in our case is given 
by E[CDRi|DI]  =  0. 

• Skewness smaller than zero may indicate distributions with heavier left tail 
than right tail whereas skewness greater than zero may indicate that the 
right tail is heavier. Excess kurtosis measures the excess of the kurtosis over 
the kurtosis of  a normal distribution. Excess kurtosis greater than zero 
indicates that the distribution is more peaked and has a heavier tail than a 
normal distribution.

Linear combinations of independent normally distributed random variables are 
again normally distributed. It is therefore possible for Model 2.2 to get a closed 
form solution for the distribution of ,i JC ( )1 , given m and DI, according to the 
following proposition.

Proposition 3.7. Choose i  >  I  –  J. Assume Model 2.2. Conditionally, given m and 
DI, ,i JC ( )1  has the following distribution
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with kj given by (3.7) for j  >  I  –  i and kI  –  i  =  1 and
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3.4. Higher Moments Aggregated Accident Years

To study uncertainties in the CDR for aggregated accident years, we consider 
moments of ,JC:

( )1  defi ned by 

 ,i, JCJC .
i I J

I

1
:

= - +

)( ) 11 (
= /
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The following theorem gives closed form solutions for both models.

Theorem 3.8. For n  !  N and k0,  …,  kJ  –  1  !  {0, 1,  …,  n} defi ne hs  =  u 0= uks/

(a) Assume Model 2.1. For n  <  min{g0, 0,  …,  gJ  –  1, 0} we obtain
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where Kl, j are given by Proposition 3.6 (a), bj is given by (3.4) and the last sum 
is set equal to Kks,  J  –  1  –  s if n  –  hs  =  0.

(b) Assume Model 2.2. We obtain
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and kj is given by (3.7).

4. ESTIMATION OF STRUCTURAL PARAMETERS

The structural parameters cj and sj play an important role in the two models 
and have strong implications on the distribution of the individual claims devel-
opment factors Fi, j . Furthermore, if  one has no prior knowledge about these 
constants (e.g. expert opinion or industry wide data), the most reasonable thing 
to do is to estimate them from internal data. To model them stochastically 
similar to qj or mj is no feasible alternative as we will explain later. Therefore, 
we need to make some remarks about the estimation of cj and sj . 

4.1. Maximum a Posteriori Estimators

Since there is no canonical method how to estimate the constants cj and sj , 
we rely on a semi ad-hoc method based on maximum a posteriori (MAP) 
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estimators which are canonical estimators within a Bayesian framework.
We start with Model 2.2 since this setup allows for an analytical solution. 
Similarly, we can determine estimators for Model 2.1 but for their calculation 
we have to rely on numerical optimization techniques.

Remark. The assumptions of Model 2.1 and Model 2.2 allow for a mathemat-
ically consistent methodology to determine posterior estimates of qj

– 1 and mj 
(i.e. Fj

(t) and Yj
(t), c.f. (3.2) and (3.5)), respectively. These minimum mean 

squared error (MMSE) estimators for qj
– 1 and mj involve the structural param-

eters cj and sj , respectively, which are assumed to be given fi xed constants in 
Model 2.1 and Model 2.2. This means that we have to determine the constants 
cj and sj before we can calculate MMSE estimators for qj

– 1 and mj . As we will 
see MAP estimators for cj and sj depend on qj

– 1 and mj , respectively, which 
leads to implicit solutions only. Therefore we have to calculate MAP estimators 
for qj

– 1 and mj as well to get MAP estimators for cj and sj which we then use 
as plug-in estimators for cj and sj in order to obtain MMSE estimators for 
qj

– 1 and mj in Model 2.1 and Model 2.2.

Model 2.2: To apply the MAP method, we have to choose a prior distribution 
for sj

2. Having no prior information about the parameter we simply assume 
that all possible values for sj

2 lie in an interval [0, M ] and are equally likely. 
Therefore, we assume that sj are independent uniformly distributed on [0, M ]. 
Hence under Model 2.2 we obtain
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In the case study of  Section 5 we analyze a portfolio of  one line of  business 
(LOB) which is split into different business units (BU), e.g. into different 
regions. Since we assume that BU’s have the same prior underlying risk char-
acteristics, we will work with overall portfolio estimators for the LOB. This 
means that we assume that each BU conforms to the same model with the 
same prior parameters and the same fi xed constants. Denote by n the number 
of  BU’s and assume that these are independent conditional on the model 
parameters. This provides that the joint posterior distributions of  (m, s2)  =
(mj, sj

2)0  #  j  #  J  –  1 are independent. Therefore, we consider the density
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for the estimation of the overall parameters mj and j
2s . ,i jF ( )k  denotes the indi-

vidual development factor of the k-th BU for k  !  {1,  …,  n}. To simplify cal-
culation we assume that M is chosen suffi ciently large, such that the mode in 

j
2s  lies in [0, M ], and we set the indicator function in formula (4.1) equal to 1.  

The MAP parameters are then estimated by fi nding mj and j
2s  such that

 LOB
j jjj

jj

,
,m s

, ( ) .argmax L2 2
D

2
=m s m sAP

I

M APM
b lY \

By considering the log-likelihood function w.r.t. DI and setting the fi rst partial 
derivatives equal to zero we have to solve the following system of equations
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The solution thereof involves solving a polynomial equation of order 3. How-
ever, for non-informative priors, i.e. nj

2
  "  3, the terms including nj

– 2 in (4.2) 
vanish and the MAP estimator for mj converges in limit to the MLE for mj . 
Therefore we obtain in the non-informative prior case
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By plugging in (4.4) in (4.3) we get an estimator for j
2s  in the case of non-

informative priors.

Model 2.1: For Model 2.1 we consider the following posterior likelihood function 
over all BU’s, i.e. k  !  {1,  …,  n}
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In this case we cannot fi nd analytical solutions for j
APMqX  and jc2 APM[ . There-

fore, with the same simplifi cation as above, i.e. setting the indicator function 
equal to 1, we have to numerically solve the optimization problem
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4.2. Ad-hoc Estimators

In the following section, we derive another set of ad-hoc estimators for the 
structural parameters. These estimators serve as reference values and we
use them to initialize the optimization algorithm of the MAP estimators for 
Model 2.1. In the case study of Section 5 we are going to compare results for 
the MAP estimators with results for the ad-hoc estimators.

Model 2.1: First we derive the estimators for single BU’s. From the coeffi cient 
of variation we obtain for each BU for k  !  {1,  …,  n}
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From this we derive estimators for j
( )k2c  by 
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 (4.5)

where ,j 0f ( )k  is given by Corollary 3.2. To get overall (LOB) estimators for jc2 , 
we take the arithmetic mean of  the estimators (4.5) over all single BU’s (see 
Bühlmann-Gisler [2], Section 4.8), i.e.

 j j
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Model 2.2: Similar to Model 2.1, Model 2.2 has variance proportional to the 
mean squared (c.f. (2.4) and (2.5)). Therefore the CL factor is estimated by the 
empirical mean as presented in Mack [13]. Hence we introduce 
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and derive an estimator for the coeffi cient of variation (2.6) by 
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From this we derive an estimator for j
2s  w.r.t. the k-th BU by 
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Again, we take the arithmetic mean over all BU’s to get the overall estimator 

j
hoc-2s

adY .

Remark. By using the estimators above we lose nice properties, e.g. unbiased-
ness. However, since there is no feasible alternative we have to rely on such 
methods. To mitigate this weakness one could think of considering full Bayes 
models, i.e. all the necessary parameters are modeled stochastically. As a con-
sequence, it is then no longer possible to calculate the posterior distributions 
in closed form as in Proposition 3.1, i.e. one has to proceed with Markov 
Chain Monte Carlo methods. Because of nested structures direct simulation 
of the CDR turns out to be too time consuming. Therefore, we cannot exploit 
full Bayes models for an investigation of the distribution of the CDR, unless 
we have a closed form solution for the CDR.

5. CASE STUDY

In the following case study we analyze the data-set from Gisler-Wüthrich [6], 
pages 598-600 which records one LOB that is separated into 6 different regions, 
i.e. BUA,  …,  BUF. Mainly due to different volumes and scarce data, we detect 
strong random fl uctuations in the claims development pattern on a regional 
level (see Gisler-Wüthrich [6], Section 8, Numerical Example). First of all, we 
determine the prior parameters fj , gj , zj and nj and the MAP estimates as well 
as the ad-hoc estimates for the squares of the structural parameters cj and sj 
(see Section 4). Table 1 gives an overview of the parameters for Model 2.1 and 
Model 2.2. For Model 2.1 we use the same prior values for fj as in Gisler-
Wüthrich [6], which are derived from similar techniques as in e.g. Section 4.8 
of Bühlmann-Gisler [2]. Furthermore, note that we work with vague priors for 
Q and m, i.e. gj and nj (see Table 1) are chosen such that the credibility weights 
aj, 0 and rj, 0, respectively, (c.f. (3.3) and (3.6)) are close to 100%. 

As described in Section 4, we take the arithmetic mean of  the ad-hoc 
 estimators for single BU’s to get an overall ad-hoc estimator for the LOB.
In particular, this means that despite BUF shares only a relatively small pro-
portion of the whole portfolio it contributes equally to the total uncertainty 
of  the LOB. Since BUF is subject to strong random fl uctuations (see also 
Gisler-Wüthrich [6]) this partly explains the higher values for ad-hoc estima-
tors for j  =  0, 1 compared to MAP estimators.

5.1. Single Accident Years

First we provide an analysis of  higher moments of  single accident years.
In particular, by considering the skewness and the excess kurtosis of CDRi we 
get an idea about the shape and the riskiness of the distribution of the CDR 
for each single accident year. The moments of the CDR depend on the estima-
tion/choice of the structural parameters. Therefore we compare the results for 
the MAP estimators with the results for the ad-hoc estimators from Section 4. 
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FIGURE 2: Skewness and excess kurtosis of CDRi for accident years i  =  11,  …,  20 for Model 2.1 and 
Model 2.2 w.r.t. MAP estimators (solid line) and w.r.t. ad-hoc estimators (dashed line).

Figure 2 summarizes the results for Model 2.1 and Model 2.2. Since for both 
models there is no volume term in the parametrization of the distribution of 
the individual development factors Fi, j we observe almost identical results for 
all different BU’s and therefore it is suffi cient to consider the results for BUA 
as a representative. Skewness and excess kurtosis are increasing for more recent 
accident years which is in-line with the observation that most of the develop-
ment takes place in the fi rst development years. Moreover we see that the 
results are sensitive to the estimation/choice of jc2  and j

2s . Especially for the

TABLE 1

PRIOR PARAMETERS AND ESTIMATES OF STRUCTURAL PARAMETERS FOR BOTH MODELS.
THE CREDIBILITY WEIGHTS ARE CALCULATED W.R.T. jc2 APM[  AND j

2s
APMY , RESPECTIVELY.

j 0 1 2 3 4 5 6 7 8 9

Model 2.1

fj 2.111 1.129 1.033 1.013 1.004 1.001 0.993 0.998 1.000 0.999 

j
APM( ) 1q -X 3.053 1.182 1.056 1.016 0.996 1.002 0.996 1.002 1.000 1.001 

gj 2.1 2.1 2.2 2.1 3.4 2.1 2.1 3.4 7.7 7.5 

jc2 APM[ 0.4270 0.0515 0.0119 0.0041 0.0004 0.0025 0.0024 0.0001 0.0001 0.0002 

j
hoc-

c
ad2[ 0.6891 0.0773 0.0106 0.0049 0.0003 0.0025 0.0020 0.0001 0.0001 0.0002 

aj, 0 97.59% 99.69% 99.92% 99.97% 99.99% 99.98% 99.98% 100.00% 99.99% 99.99%

Model 2.2

zj 0.8900 0.1411 0.0483 0.0139 0.0030 0.0005 – 0.0005 – 0.0002 – 0.0010 – 0.0006 

j APm MY 0.8947 0.1411 0.0483 0.0139 0.0029 0.0005 – 0.0048 – 0.0002 – 0.0010 – 0.0006 

nj 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 

js2 APMY 0.2270 0.0384 0.0108 0.0035 0.0004 0.0024 0.0025 0.0001 0.0001 0.0002

hoc
j

-
s

ad2Y 0.3250 0.0682 0.0104 0.0048 0.0003 0.0025 0.0020 0.0001 0.0001 0.0002

rj, 0 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
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most recent accident years i  =  19,20, we observe that higher values of 
hoc

j
-

c2ad[  
and 

hoc
j

-2s
adY , compared to jc2 APM[ and j ,2s

APMY  lead to higher skewness and excess
kurtosis. As mentioned in Section 2, Model 2.1 involves the inverse gamma 
distribution which may lead to heavy-tailed distributions for the CDR given 
DI and higher moments thereof may fail to exist. In fact for this example we 
observe that the minimum order (over all accident years and BU’s) up to which 
moments exist is n  =  48 w.r.t. MAP estimators and n  =  31 w.r.t. ad-hoc estima-
tors. On the other hand we point out that for Model 2.2 all moments exist.

5.2. Aggregated Accident Years

In the following we consider the results for aggregated accident years. We calcu-
late higher moments according to Theorem 3.8 and derive the values for the 
skewness and the excess kurtosis. To highlight the infl uence of the considera-
tion of skewness and excess kurtosis in the uncertainty analysis of the CDR 
we then fi t a distribution from the 4-parameter Johnson family of distributions 
(see Johnson et al. [11]), which includes the shifted lognormal distribution as 
a special case, to the fi rst four moments of the CDR and compare the results 
for the standard shifted lognormal fi t taking only the fi rst two moments into 
account as proposed in Solvency II. The Johnson fi t can either be calculated 
by the help of tables (see Johnson [10]) or by iterative methods as described
in Elderton-Johnson [4]. For this case study we made use of  the function 
JohnsonFit implemented in the R-package SuppDists for which a fi t by 
moments, presented in Hill et al. [8], is applied. In the following we restrict our 
consideration to results w.r.t. MAP estimators which are more robust com-
pared to ad-hoc estimators.

From Table 2 we observe skewness to the right and positive excess kurtosis 
in all cases. The distribution fi t resulting from JohnsonFit lies in the so-called 
SU-system represented by

 1- ,sinhZ
X z

= +
-

g d l
' 1

where Z has standard normal distribution, for more details see Johnson et al. 
[11]. As documented in the help fi le of the R-package SuppDists fi tting by 
moments is diffi cult and the function JohnsonFit may report an error in 
some cases which happens for BUA (see Table 2) in our example. For the other 
BU’s we see that the fi tted Johnson distributions fi t the skewness and excess 
kurtosis very close whereas the values for the fi tted shifted lognormal distribu-
tions signifi cantly deviate. Note that the shifted lognormal fi t currently used 
in insurance industry provides substantially lower skewness and excess kurto-
sis. As a representative for all BU’s Figure 3 illustrates the fi tted densities for 
BUC for Model 2.1 and Model 2.2.

In summary, we calculate exact moments for Model 2.1 and Model 2.2. For 
these moments we then fi t the standard shifted lognormal distribution to the 
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fi rst two moments as proposed in Solvency II. Comparing this approximation 
to the 4-parameter Johnson approximation, using the exact skewness and 
excess kurtosis resulting from Model 2.1 and Model 2.2 respectively, shows that 
the approximation for the standard shifted lognormal distribution is too
symmetric and fails to fi t the skewness and the excess kurtosis of the distribu-
tion of the CDR (see Table 2). This has signifi cant infl uence in setting confi -
dence levels or choosing risk adjustment estimation techniques as discussed in 
IASB [9]: Figure 4 shows quantiles for the Johnson and the shifted lognormal 
approximation as a function of  the confi dence level for both models w.r.t. 
BUC. For both models the quantiles of the Johnson fi t are smaller than the 
quantiles of the shifted lognormal approximation for confi dence levels below 
90%. Slightly above the 90% confi dence level they become equal and then start 
to signifi cantly deviate (values up to confi dence level 99.5% used in Solvency II 
are provided), where the quantiles of the Johnson fi t are larger compared to 
the quantiles of the shifted lognormal approximation. 

TABLE 2

SKEWNESS (S) AND EXCESS KURTOSIS (EK) OF THE AGGREGATED CDR W.R.T. THEOREM 3.8
FOR THE FITTED JOHNSON DISTRIBUTION (J) AND FOR THE FITTED SHIFTED LOGNORMAL

DISTRIBUTION (LN) W.R.T. MAP ESTIMATORS.

Model 2.1 Model 2.2

S SJ SLN EK EKJ EKLN S SJ SLN EK EKJ EKLN

BUA 1.36 NA 0.23 3.08 NA 0.09 1.56 1.57 0.18 4.92 4.93 0.06

BUB 0.79 0.79 0.10 1.42 1.41 0.02 0.80 0.81 0.09 1.88 1.90 0.01

BUC 1.01 1.01 0.13 2.01 2.00 0.03 1.12 1.11 0.11 3.03 3.01 0.02

BUD 0.89 0.89 0.10 1.68 1.68 0.02 0.96 0.97 0.09 2.43 2.44 0.01

BUE 0.75 0.75 0.12 1.22 1.22 0.02 0.82 0.83 0.10 1.78 1.81 0.02

BUF 0.74 0.74 0.11 1.30 1.30 0.02 0.31 0.32 0.08 0.40 0.41 0.01

FIGURE 3: Fitted densities for the Johnson family of distributions (solid line) and the shifted lognormal 
distribution (dashed line) for Model 2.1 and Model 2.2 w.r.t. BUC and MAP estimators.
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FIGURE 4: Quantiles for the Johnson fi t (solid line) and quantiles for the shifted lognormal distribution 
(dashed line) as a function of the confi dence level w.r.t. BUC  and MAP estimators. Residuals of quantiles 

for the two approximations.

As an example we think of two insurers (Insurer A and B) assessing the uncer-
tainty of the CDR for BUC. Insurer A calculates moments up to order four 
(e.g. calculated w.r.t. Model 2.1) and considers the Johnson fi t and Insurer B 
calculates the fi rst two moments (w.r.t. Model 2.1) and considers the shifted 
lognormal fi t. If  both choose a quantile slightly on the 90% confi dence level 
as risk measure they will report about equal risk adjustments. We know that 
the two approximations result in different values for skewness and excess kur-
tosis. This means that in our example the requirement of paragraph B94 in 
IASB [9] that risk adjustments have to be larger for probability distributions 
that are more skewed would be violated. Insurer A that calculated moments 
up to order four knows that the distribution of the CDR is rather skewed and 
according to paragraph B95 in IASB [9] he concludes that the confi dence level 
technique is not appropriate and considers other techniques, e.g. the conditional 
tail expectation, to estimate the risk adjustment. On the other hand Insurer B 
that considers the shifted lognormal fi t may wrongly account the confi dence 
level technique to be viable. Therefore, taking factors such as the shape of the 
distribution into account signifi cantly infl uences the assessment of the uncer-
tainty of the CDR as discussed in IASB [9]. 

Considering high quantiles for the two approximations, e.g. the VaR at the 
99.5% confi dence level listed in Table 3, shows that the VaR for the shifted log-
normal distribution is signifi cantly lower compared to the VaR for the Johnson 
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fi t in all cases. However, the fi rst four moments do not tell much about the tail 
behavior of the distribution of the CDR. Therefore a comprehensive assess-
ment of the risk in the tails should take into account techniques from extreme 
value theory as e.g. presented in Embrechts et al. [5].

Furthermore, we see that the VaR at the 99.5% confi dence level for Model 2.1 
is signifi cantly higher than for Model 2.2 for all BU’s. This can partly be 
explained by the fact that Model 2.1 involves inverse gamma distributions 
leading to heavy tailed distributions for the CDR for which higher moments 
fail to exist whereas Model 2.2 results in moderately heavy tailed distributions 
for which all moments exist. 

Remarks.

• Another approach to estimate the VaR taking moments up to order four 
into account, is provided by the Cornish-Fisher expansion, see e.g. Hill-
Davis [7]. In contrast to the Johnson transformation this approach does not 
rely on distributional assumptions.

• Note that fi rst moments (from which we can calculate the reserves) w.r.t. 
Model 2.2 are rather sensitive on the structural parameters sj (c.f. (3.8)) 
whereas for Model 2.1 deviations in the estimation of cj have only marginal 
infl uence (via posterior parameters, see Proposition 3.1 and (3.1)). Therefore 
we conclude that Model 2.1 is more stable for prediction.

• As an extension to the presented 4-parameter approximation within the 
Johnson family of distributions one could implement non-parametric approx-
imations such as Edgeworth expansions or saddlepoint approximations 
based on higher moments. An essential assumption to apply such techniques 
is the existence of higher moments which is the case for Model 2.2 but for 
Model 2.1 higher moments may fail to exist. For an overview on this topic 
we refer to Butler [3]. 

TABLE 3

VAR AT 99.5% CONFIDENCE LEVEL AND RESERVES FOR MODEL 2.1 AND MODEL 2.2
W.R.T. MAP ESTIMATORS, FOR THE FITTED JOHNSON DISTRIBUTION (J) AND THE FITTED

SHIFTED LOGNORMAL DISTRIBUTION (LN ). 

Model 2.1 Model 2.2

VaRJ VaRLN reserves VaRJ VaRLN reserves

BUA NA 2110 815 2429 1668 847

BUB 1075 849 321 963 741 372

BUC 1942 1473 748 1776 1289 852

BUD 3846 2962 1498 3517 2610 1708

BUE 2081 1674 570 1914 1479 716

BUF 208 167 114 123 111 77
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CONCLUSION

We have studied the claims development result (CDR). The CDR is one of the 
major risk drivers in the profi t and loss statement of a general insurance com-
pany and therefore needs a careful and appropriate risk assessment. In addi-
tion to the existing actuarial literature we determine higher order moments of 
the CDR distribution (for two different analytical models). The consideration 
of higher moments allows insurance companies to gain more insight into the 
shape of the distribution of the CDR, by e.g. considering the skewness and 
the excess kurtosis, which is essential for the application of  techniques for 
estimating risk adjustments of future cash fl ows as discussed in IASB [9]. 

As proposed in Solvency II and applied in current practice, a proxy for the 
distribution of the CDR is obtained by fi tting a shifted lognormal distribution 
to the estimates of the fi rst two moments of the CDR. Within the 4-parameter 
Johnson family of distributions we refi ne the approximation for higher moments 
by including skewness and excess kurtosis parameters. The case study shows 
that the shifted lognormal approximation may result in too symmetric distri-
butions which fail to fi t the skewness and the excess kurtosis of the distribu-
tion of the CDR. Taking factors such as the shape of the distribution into 
account signifi cantly infl uences the estimation of risk adjustments as discussed 
in IASB [9] and therefore knowledge about higher moments of the CDR con-
tributes to a comprehensive assessment of the reserving risk.

REFERENCES

 [1] BÜHLMANN, H., DE FELICE, M., GISLER, A., MORICONI, F. and WÜTHRICH, M.V. (2009) 
Recursive credibility formula for chain ladder factors and the claims development result. 
ASTIN Bulletin, 39(1), 275-306.

 [2] BÜHLMANN, H. and GISLER, A. (2005) A Course in Credibility Theory and its Applications. 
Springer.

 [3] BUTLER, R.W. (2007) Saddlepoint Approximations with Applications. Cambridge University 
Press.

 [4] ELDERTON, W.P. and JOHNSON, N.L. (1969) System of Frequency Curves. Cambridge Uni-
versity Press.

 [5] EMBRECHTS, P., KLÜPPELBERG, C. and MIKOSCH, T. (1997) Modelling Extremal Events for 
Insurance and Finance. Springer.

 [6] GISLER, A. and WÜTHRICH, M.V. (2008) Credibility for the chain ladder reserving method. 
ASTIN Bulletin, 38(2), 565-600.

 [7] HILL, G.W. and DAVIS, A.W. (1968) Generalized asymptotic expansions of Cornish-Fisher 
type. The Annals of Mathematical Statistics, 39(4), 1264-1273. 

 [8] HILL, I.D., HILL, R. and HOLDER, R.L. (1976) Fitting Johnson curves by moments. Applied 
Statistics, 25(2), 180-189.

 [9] IASB (2010) Exposure Draft Insurance Contracts. ED/2010/8, available under http://www.
ifrs.org 

[10] JOHNSON, N.L. (1965) Tables to facilitate fi tting Su frequency curves. Biometrika, 52(3/4), 
547-558.

[11] JOHNSON, N.L., KOTZ, S. and BALAKRISHNAN, N. (1994) Continuous Univariate Distributions 
(Volume 1, 2nd Edition). Wiley series in probability and mathematical statistics.

[12] MACK, T. (1993) Distribution-free calculation of the standard error of chain ladder reserve 
estimates. ASTIN Bulletin, 23(2), 213-225.

95371_Astin42-1_15_Salzmann.indd   37695371_Astin42-1_15_Salzmann.indd   376 5/06/12   13:575/06/12   13:57

https://doi.org/10.2143/AST.42.1.2160747 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160747


 HIGHER MOMENTS OF THE CLAIMS DEVELOPMENT RESULT 377

[13] MACK, T. (1994) Measuring the variability of chain ladder reserve estimates. Casualty Actu-
arial Society Forum 1, Spring 1994, 101-182.

[14] MCNEIL, A.J., FREY, R. and EMBRECHTS, P. (2005) Quantitative Risk Management: Concepts, 
Techniques and Tools. Princeton University Press.

[15] SALZMANN, R. and WÜTHRICH, M.V. (2010) Cost-of-capital margin for a general insurance 
liability runoff. ASTIN Bulletin, 40(2), 415-451.

[16] WÜTHRICH, M.V. and MERZ, M. (2008) Stochastic Claims Reserving Methods in Insurance. 
Wiley Finance.

ROBERT SALZMANN

ETH Zurich
RiskLab Switzerland
Department of Mathematics
8092 Zurich
Switzerland

MARIO V. WÜTHRICH

ETH Zurich
RiskLab Switzerland
Department of Mathematics
8092 Zurich
Switzerland

MICHAEL MERZ 
University of Hamburg
Department of Business Administration
20146 Hamburg
Germany

95371_Astin42-1_15_Salzmann.indd   37795371_Astin42-1_15_Salzmann.indd   377 5/06/12   13:575/06/12   13:57

https://doi.org/10.2143/AST.42.1.2160747 Published online by Cambridge University Press

https://doi.org/10.2143/AST.42.1.2160747


378 R. SALZMANN, M.V. WÜTHRICH AND M. MERZ

A. APPENDIX

Proof of Proposition 3.1. We start with proving the result for Model 2.1.

(a) We denote the distribution of Ci, 0 by pi. By the chain rule of conditional 
probability and the Markov assumption in Model 2.1 the joint density of 
(Q,  DI  +  t) is given by
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 Note that g (DI  +  t  –  1) is some norming function depending on terms Ci,  j  !
DI  +  t  –  1. This implies that the posterior density of Q, given DI  +  t, satisfi es 
the following proportionality property 
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 These are independent gamma densities which proves the claim for Model 2.1.

(b) Similar as above for Model 2.2, the joint density of  (m, DI  +  t) is given as 
follows:
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 This implies that the posterior density of m, given DI  +  t, satisfi es the fol-
lowing proportionality property 
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 These are independent normal densities which proves the claim for Model 2.2.
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Proof of Proposition 3.6. Let us fi rst prove the result for Model 2.1.

(a) Due to Proposition 3.1 and Corollary 3.3 we fi nd for n  !  N that 
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 Due to posterior independence the above expression on the right can be 
written as follows: 
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 Now we consider terms of the form 
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 for 0  < k  #  n and j  =  I  –  i,  …,  J  –  1. By the assumptions of Model 2.1, the 
tower property for conditional expectations and Proposition 3.1 we get
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 The above expression is obtained by applying twice formula (2.1) for the 
moments of a gamma distributed random variable. Since the last expression 
corresponds to Kk, j, this proves the proposition for Model 2.1.
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(b) First we note that (c.f. (3.10))
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 Rearranging the terms accordingly completes the proof.
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Proof of Proposition 3.7. For i  =  I  –  J  +  1 we have that ,i JC )1(   =  Ci, I  –  i  +  1. By the 
assumptions of Model 2.2 we fi nd in this case that 
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By formula (2.4) and Proposition 3.1 we obtain for ,i JC )1(  and i  >  I  –  j  +  1
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By collecting DI-measurable terms in bj , i.e. ,
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Using the assumptions of Model 2.2 we obtain that 
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Hence we obtain
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with kj given by (3.7) for j  >  I  –  i and kI  –  i  =  1. This completes the proof.
 ¡

Before we prove Theorem 3.8 we consider the following two lemmas.

Lemma A.1. Assume Model 2.1. Choose i  >  I  –  J and let Ni  =  min{gI  –  i, 0 ,  …,  gJ  –  1,0}. 
Then for k, l  !  N with k  +  l  #  Ni we obtain
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with Km, j as in Proposition 3.6 for 0  #  m  #  n. The above term is set equal to 
Kk, I  –  i  for l  =  0.

Proof of Lemma A.1. Using Corollary 3.3 we get 
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The moments of Fi, I  –  i given DI are already calculated in the proof of Propo-
sition 3.6.
 ¡

Lemma A.2. Assume Model 2.2 and choose i  >  I  –  J  +  1, we obtain 
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Proof of Lemma A.2. Using (3.10) we get
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From the assumptions of  Model 2.2 and Proposition 3.1 we obtain for the 
expectation 
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Proof of Theorem 3.8. We consider 
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This generates a multinomial structure 
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By the independence of accident years, formula (3.1) and the defi nition of jF )1(  
(c.f. Corollary 3.2), we see that Ci, I  –  i  + 1, J 1-I i 1- + ,f( ) ( )1 1F F  are independent, given 
DI. Hence,
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(a) First we prove the result for Model 2.1. Having decoupled the problem 
into independent problems (similar to Salzmann-Wüthrich [15], proof of 
Theorem 4.9), we are left with the calculation of terms of the form

  I i-,i I i-E ,F D
l

I
( )1Fk _ i: D

 for k  +  l  #  n  <  Ni with Ni  =  min{gI  –  i, 0 ,  …,  gJ  –  1, 0} for all i  !  {I  –  J  +  1,  …,  I} 
which is done in Lemma A.1. In summary for n  <  min{g0, 0 ,  …,  gJ  –  1, 0} we 
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 where the last sum is set equal to Kks, J  –  1  –  s if  n  –  hs  =  0.

(b) Finally, we show the result for Model 2.2.

 With Lemma A.2 we obtain
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