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Performance, Revision, and Extension of the National Nosocomial 
Infections Surveillance System's Risk Index in Brazilian Hospitals 

Fernando Martin Biscione, MD, PhD;1 Renato Camargos Couto, MD, PhD;1 Tania M. G. Pedrosa, MD, PhD1 

OBJECTIVE. To assess the benefit of using procedure-specific alternative cutoff points for National Nosocomial Infections Surveillance 
(NNIS) risk index variables and of extending surgical site infection (SSI) risk prediction models with a postdischarge surveillance indicator. 

DESIGN. Open, retrospective, validation cohort study. 

SETTING. Five private, nonuniversity Brazilian hospitals. 

PATIENTS. Consecutive inpatients operated on between January 1993 and May 2006 (other operations of the genitourinary system 
[n = 20,723], integumentary system [n = 12,408], or musculoskeletal system [n = 15,714] and abdominal hysterectomy [n = 11,847]). 

METHODS. For each procedure category, development and validation samples were defined nonrandomly. In the development samples, 
alternative SSI prognostic scores were constructed using logistic regression: (i) alternative NNIS scores used NNIS risk index covariates 
and cutoff points but locally derived SSI risk strata and rates, (ii) revised scores used procedure-specific alternative cutoff points, and (iii) 
extended scores expanded revised scores with a postdischarge surveillance indicator. Performances were compared in the validation samples 
using calibration, discrimination, and overall performance measures. 

RESULTS. The NNIS risk index showed low discrimination, inadequate calibration, and predictions with high variability. The most 
consistent advantage of alternative NNIS scores was regarding calibration (prevalence and dispersion components). Revised scores performed 
slightly better than the NNIS risk index for most procedures and measures, mainly in calibration. Extended scores clearly performed better 
than the NNIS risk index, irrespective of the measure or operative procedure. 

CONCLUSIONS. Locally derived SSI risk strata and rates improved the NNIS risk index's calibration. Alternative cutoff points further 
improved the specification of the intrinsic SSI risk component. Controlling for incomplete postdischarge SSI surveillance provided con­
sistently more accurate SSI risk adjustment. 
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The National Nosocomial Infections Surveillance (NNIS) sys- sidered and was arbitrarily defined (see "Methods").1 In ad-
tem's risk index is the most widely used methodology world- dition, the failure of the index to account for incomplete 
wide for adjusting the risk of surgical site infection (SSI) in postdischarge follow-up has been a major concern.6"8 As many 
daily surveillance.1 Unlike its immediate precursor, the Study as 12% to 84% of SSIs are detected after patients are dis-
on the Efficacy of Nosocomial Infection Control (SENIC) charged from the hospital, and an ever-increasing proportion 
project risk index, the NNIS risk index was not developed o f S S I s m a n i f e s t s a f t e r discharge, driven by the progressively 
with a multivariate modeling technique.2 Indeed, the NNIS s h o r t e r k n g t h o f p o s t o p e r a t i v e hospital stay of surgical pa-
risk index is best viewed as a convenience adaptation of the ^ ^ T h e C e n t g r s fof D i s £ a s e C o n t r o l a n d P r e v e n t i o n c u r . 

SENIC risk index, one aimed at making the basic conclusions ,, , ^ r , , . , .„ 
. . . . . „ „ . „ _ . . . . ,. , , . rently recommends the use of postdischarge surveillance to 

already drawn by the SENIC risk index more applicable in „„T r • i m™ „T„TT„ • , • , 
x. . , detect SSIs after operative procedures. The NNIS risk index, 

routine practice.' . . . . . . . . r. 
The value of the NNIS risk index as a benchmarking tool h o w e v e r ' d o e s n o t e x P l l c l t 1 ^ reC0f™ t h e P r o b l e m o f l n c o m -

has been criticized in many settings.35 One of the main pur- P l e t e Postdischarge surveillance. • 
ported advantages of the NNIS risk index over the SENIC I n t h i s s t u d v ' w e s o u § h t t 0 e x P l o r e w h e t h e r u s i n 8 a l t e r " 
risk index is that it is procedure specific—that is, the risk of n a t i v e c u t o f f P o i n t s f o r t h e variables in the NNIS risk index 
SSI is adjusted within predefined operative procedure cate- would improve its predictive accuracy. We also aimed at in-
gories.1 However, despite being procedure specific, the cat- vestigating whether using a postdischarge surveillance indi-
egorization of each variable that composes the NNIS risk cator in SSI risk prediction scores would provide any benefit 
index is the same irrespective of the operative procedure con- in terms of predictive ability. 
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Box 1: Measures of Model Performance 

Area under the receiver operating characteristic curve (Asoc). AROC provides an indication of how well a model can discriminate between patients 
who develop SSI and patients who do not.25,26 The AROC is the probability of concordance between outcomes and predictions. For binary outcomes 
(eg, SSI), this is the probability that a randomly chosen individual with an SSI will have a higher predicted probability than a randomly chosen 
individual without an SSI. An AROC of 0.5 indicates random predictions, whereas values higher and significantly different from 0.5 indicate discriminatory 
power, with 1 indicating perfect discrimination. Comparisons between AROC values were made using DeLong's test, and significance was adjusted for 
multiple comparisons using Sidak's correction. 

Cox's calibration regression. Calibration refers to the accuracy of predictions compared with the observed data. To quantify the degree of mis-
calibration between observed and predicted probabilities, Cox27 proposed fitting an ordinary logistic regression model in the validation sample (ie, 
with the observed outcomes as the dependent variable) and the predicted risk as the only independent variable. This model has the general form 
observed log odds = a + /3 x predicted log odds, so that a and /3 reflect the degree of agreement between observed and predicted risk. For a model 
with perfect calibration, a = 0 and j8 = 1. The value of /3 represents the degree of variability in the predicted probabilities. If 0 < /3 < 1, predicted 
probabilities are too extreme (ie, predicted probabilities are lower for low-risk patients, higher for high-risk patients, or both). If/3 > 1, predicted 
probabilities show the right general pattern of variation but do not vary enough. In general, a > 0 when predicted probabilities are globally low and 
a < 0 when they are globally high, compared with the observed risk. Likelihood ratio statistics were used to test each type of unreliability, with P 
values less than .05 indicating a significant lack of calibration: 

• Significant overall unreliability {H0: a = 0, 0 = 1); 
• Significant unreliability due to overall prevalence error (H0: a = 0|/3 = 1); and 
• Significant unreliability due to incorrect degree of variation, given prevalence correction (H„: /3 = 1 \a). 

Goodman-Kruskal statistic (G). G is a nonparametric correlation coefficient for ordinal data that measures the strength of the association between 
2 cross-classified ordered polytomies, in our case the SSI risk stratum as defined by the scores and the actual SSI status.28 G ranges from — 1 (perfect 
negative correlation) to +1 (perfect positive correlation), with 0 indicating no significant correlation. 

Yates's decomposition of Brier's score. Yates29 demonstrated that Brier's score, which is the mean square error between outcomes and predictions, 
can be decomposed into informative components: 

• The excess variance of predictions (VaJ Vrain), which represents the degree of unnecessary variation in the predictions. It is calculated by decomposing 
the total variance of the predictions, V(p), as Vmin + Vexc, where Vmin represents the minimum variance possible for predictions that would be just 
as good as the actual predictions, and Vac represents the excess variance of the predictions above this minimum. For perfect predictions, Vexc = 
Vmin, so that VmIVmi„ = 0. 

• The covariance of outcome and prediction (Cov (7, p)), which is a measure of how accurately the predictions correspond to the outcomes and is 
closely related to discrimination. For perfect predictions, Cov (7, p) equals the variance of the observed outcome (V(Y)), so that 
Cov(Y,p)/V(Y) = 1. 

Trend across ordered groups (Cuzick's test). This is a nonparametric test that measures the trend across ordered groups, in our case the risk of 
SSI across risk scores strata.30 Test statistics above 11.961 and associated P values less than .05 indicate a significant trend. The higher the test statistic 
(and the lower the associated P values), the higher the trend. 

Model x2. This statistic is a measure of overall model performance.31 It is based on a likelihood ratio test and measures how better it is to use 
the probabilities predicted by the risk scores than simply forecasting the mean risk of SSI for every patient. Test statistics above 3.84 and associated 
P values less than .05 indicate that using the model is better than predicting the mean SSI risk. The higher the test statistic (and the lower the 
associated P values), the better the model performance. 

M E T H O D S 

Patients and Setting 

This study was performed using data collected from 60,692 
operative procedures belonging to 1 of 4 selected NNIS 
operative procedures categories:13 other operations of the gen­
itourinary system (OGU; n = 20,723), abdominal hysterec­
tomy (HYS; n = 11,847), other operations of the integu­
mentary system (OSK; n = 12,408), and other operations of 
the musculoskeletal system (OMS; n = 15,714). Data were 
prospectively collected from January 1993 to May 2006 at 5 
private, nonuniversity, secondary or tertiary care healthcare 
facilities (range, 49-230 beds) located in Belo Horizonte, Bra­

zil. These institutions are general acute care hospitals or in­
stitutions devoted to the care of women's health. 

Data Collection and Definitions 

The participating institutions implemented prospective SSI 
surveillance programs based on the NNIS system's protocols 
and definitions913 in early 1992. For each patient who un­
derwent an operation, the NNIS system's risk index variables 
(ie, duration of surgery, American Society of Anesthesiolo­
gists' physical status [ASA-PS] score, and wound class) were 
prospectively recorded shortly after completion of the surgery. 
All variables were recorded in their original form (ie, in 
minutes for duration of surgery, 1-5 for ASA-PS score, and 
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TABLE 1. Characteristics of Development and Validation Samples and Description of Alternative Risk Indexes and Weights 

OGU OSK OMS HYS 

Development samples 

Period 
Size 
No. of SSIs 
Measured SSI risk, 
Effective PDS, % 

Period 
Size 
No. of SSI 
Measured SSI risk, 
Effective PDS, % 

% 

% 

1993-2002 
14,506 
415 
2.86 

62.59 

2002-2006 
6,217 
144 
2.32 
68.97 

1993-2000 
5,682 
166 
2.92 
56.44 

Validation 

2000-2006 
6,726 
100 
1.49 

39.21 

1993-2003 
11,000 

259 
2.35 
36.77 

samples 

2003-2006 
4,714 
109 
2.31 
35.87 

1993-2002 
8,293 
426 
5.14 

69.60 

2002-2006 
3,554 
122 
3.43 
71.58 

Selected cutoff points and weighting for alternative risk indexes 

Cutoff Weight3 Cutoff Weight8 Cutoff Weight* Cutoff Weight3 

Alternative NNIS risk index 
Surgery length, minutes 
Wound class 
ASA-PS score 

Revised risk index 
Surgery length, minutes 

Wound class 
ASA-PS score 

Extended risk index 
Surgery length, minutes 

Wound class 
ASA-PS score 
Effective PDS 

>T(120) 
Co/I 
NS 

60-120 
>120 

Cl/Co/I 
>2 

60-120 
>120 

Cl/Co/I 
>2 

Present 

NA 
NA 

2 
4 
1 
1 

1 
3 
1 
1 
5 

>r ( i20) 
Co/I 
>3 

61-230 
>230 

CC/Co/I 
>2 

61-230 
>230 

CC/Co/I 
>2 

Present 

1 
1 
2 

1 
3 
1 
2 

1 
2 
1 
1 
2" 

>T(180) 
Co/I 
>3 

>120 

Co/I 
>2 

>120 

Co/I 
>2 

Present 

1 
1 
3 

NA 

NA 
NA 

1 

2 
1 
3 

>T(120) 
Co/I 
NS 

>120 

Cl/Co/I 
>2 

>120 

Cl/Co/I 
>2 

Present 

1 
7 

1 

3 
1 

1 

3 
2 
3 

NOTE. ASA-PS, American Society of Anesthesiologist's physical status; CC, clean-contaminated; CI, clean; Co, contam­
inated; HYS, abdominal hysterectomy; I, infected; NA, not applicable (logistic coefficients of covariates were very similar, 
so no weighting was applicable); NS, not selected (variable was not selected in the logistic regression models; see "Risk 
Score Development"); OGU, other operations of the genitourinary system; OMS, other operations of the musculoskeletal 
system; OSK, other operations of the integumentary system; PDS, postdischarge surveillance; SSI, surgical site infection. 
a For unweighted risk indexes, nonreference categories count 1 point. All reference categories count 0 points. 
b As suggested by the bias-corrected maximum likelihood method (see "Risk Score Development"). 

clean, clean-contaminated, contaminated, and infected for 
wound class). 

The outcome variable for the NNIS risk index is the oc­
currence of SSI within 30 days after surgery, and this was 
also the time span used in this study. The 1992 Centers for 
Disease Control and Prevention's surveillance criteria for SSI 
were used as case definitions throughout the study.9 Case 
finding included in-hospital and postdischarge surveillance. 
A detailed description of the surveillance methods used at 
our institutions can be found elsewhere.8,14 

Study Design 

An open, retrospective, validation cohort study was con­
ducted. Within each operative procedure category, develop­
ment and validation samples were defined nonrandomly so 

that they would differ from each other by a systematic char­
acteristic. Because we wanted to test the external validity of 
our risk models, surgeries performed in more recent years 
were allocated to the validation samples, which amounts to 
challenging the historical component (and, to a lesser extent, 
the methodological component) of external validity.1516 The 
size of the validation samples was defined so that at least 30% 
of the original sample and at least 100 SSIs would be retained 
in the validation samples17,18 and at least 20 SSIs per candidate 
degree of freedom would be guaranteed for the logistic re­
gression models in the development samples19 (see "Risk 
Score Development"). 
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TABLE 2. National Nosocomial Infections Surveillance (NNIS) and Alternative Risk Indexes in the Validation Samples 

SSI risk, 

No." Observedb Predicted' 

Other operations of the genitourinary system 

NNIS risk index 
0 
1 
2-3 

Alternative NNIS risk index 
Unweighted 

0 
1 
2 

Revised risk index 
Unweighted 

0 
1 
2 
3-4 

Weighted 
0-1 
2 
3 
4 
5-6 

Extended risk index 
Unweighted 

0 
1 
2 
3 
4-5 

Weighted 
0-1 
2-3 
4-5 
6-7 
>8 

NNIS risk index 
0-3 

Alternative NNIS risk index 
Unweighted 

0 
1 
2-3 

Weighted 
0 
1 
2 
3-4 

Revised risk index 
Unweighted 

0 
1 
2 
3-4 

Weighted 
0 
1 
2-3 
>4 

5,725 
467 

25 

5,788 
420 

9 

1,221 
3,294 
1,450 

252 

1,677 
2,895 
1,211 

277 
157 

483 
1,728 
2,678 
1,151 

177 

1,473 
399 
795 

3,246 
304 

6,726 

5,028 
1,519 

179 

5,028 
1,400 

141 
157 

2,642 
2,726 
1,098 

260 

2,642 
2,253 
1,571 

260 

2.17 
3.85 
8.00 

2.19 
3.81 

11.11 

0.98 
2.13 
3.38 
5.16 

1.49 
1.97 
3.63 
3.97 
4.46 

0 
0.75 
2.61 
4.43 
5.65 

0.07 
0.5 
1.89 
3.48 
4.28 

0.36 
0.85 
2.92 

2.64 
4.98 

15.38 

1.65 
2.58 
3.71 
6.36 

1.69 
2.67 
3.42 
4.88 
6.63 

0.46 
1.03 
3.32 
5.09 
7.29 

0.48 
1.56 
2.82 
3.99 
6.67 

Other operations of the integumentary system 

1.49 

1.03 
2.37 
6.70 

1.03 
2.43 
3.55 
5.73 

0.57 
1.87 
2.46 
2.69 

0.57 
1.95 
2.16 
2.69 

1.29 

2.39 
3.61 

10.68 

2.39 
3.56 
5.47 

13.56 

1.59 
2.44 
4.46 

10.97 

1.59 
2.39 
4.28 

10.97 
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TABLE 2 {Continued) 

SSI risk, % 

No." Observedb Predicted' 

Extended risk index 
Unweighted 

0 
1 
2 
3 
4-5 

Weighted 
0-1 
2 
3 
4 
>5 

NNIS risk index 
0 
1 
2-3 

Alternative NNIS risk index 
Unweighted 

0 
1 
2-3 

Weighted 
0 
1 
>2 

Revised risk index 
Unweighted 

0 
1 
2-3 

Extended risk index 
Unweighted 

0 
1 
>2 

Weighted 
0 
1-2 
3-4 
>5 

NNIS risk index 
0 
1 
2-3 

Alternative NNIS risk index 
Unweighted 

0 
1-2 

Weighted 
0 
1 
>1 

Revised risk index 
Unweighted 

0 
1 
2-3 

1,607 
2,633 
1,845 

534 
107 

3,205 
1,752 
1,281 

395 
93 

4,083 
541 
90 

4,083 
541 
90 

4,083 
429 
202 

2,620 
1,633 

461 

1,675 
1,991 
1,048 

1,675 
1,255 
1,592 

192 

3,039 
498 

17 

3,063 
491 

3,063 
478 

13 

2,464 
889 
201 

0.19 
0.72 
2.71 
4.68 
2.80 

0.31 
1.03 
3.75 
5.57 
2.15 

0.28 
1.53 
3.15 
7.60 

12.78 

0.49 
2.07 
4.20 
7.48 

12.80 

Other operations of the musculoskeletal system 

1.37 
7.95 

11.11 

1.37 
7.95 

11.11 

1.37 
8.16 
8.91 

1.07 
3.06 
6.72 

0.36 
2.11 
5.82 

0.36 
2.95 
3.33 
6.77 

0.63 
0.94 
1.78 

2.06 
4.50 
4.85 

2.06 
3.73 
7.14 

1.88 
2.64 
5.88 

0.38 
3.16 
5.06 

0.38 
2.33 
4.36 
5.40 

Abdominal hysterectomy 

3.39 
3.21 

17.65 

3.36 
3.87 

3.36 
3.77 
7.69 

3.00 
4.39 
4.48 

1.36 
2.32 
5.17 

4.86 
6.28 

4.86 
6.05 

25.00 

4.52 
5.54 
9.55 
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TABLE 2 {Continued) 

Weighted 
0 
1 
2-3 
4-5 

Extended risk index 
Unweighted 

0 
1 
2 
3-4 

Weighted 
0-1 
2-3 
4-5 
6 
7-9 

REVISION AND EXTENSION OF NNIS RISK INDEX 129 

No.a 

2,464 
738 
277 

75 

660 
2,079 

682 
133 

727 
2,052 

559 
176 
40 

SSI risk, % 

Observedb 

3.00 
3.93 
6.14 
2.67 

0.45 
3.99 
4.11 
6.02 

0.55 
4.04 
4.11 
5.68 
5.00 

Predicted' 

4.52 
5.39 
6.92 

16.77 

2.51 
4.99 
6.24 

12.21 

2.57 
5.10 
6.13 
8.97 

20.45 

NOTE. NNIS, National Nosocomial Infections Surveillance; SSI, surgical site infection. 
" Size of the validation samples. 
b Risk of SSI as observed in the validation samples. 
c For the alternative risk indexes, this is the risk of SSI as predicted by the development samples. For the NNIS risk index, 
predicted values for 2004 are shown," but annually updated values in the NNIS system's reports were used for performance 
assessment (see "Risk Score Performance and Validation"). 

Risk Score Development 

For each operative category, three alternative SSI risk indexes 
were developed in the development samples, beginning with 
binary logistic regression models for selection and weighting 
of covariates. The alternative risk models differed by the can­
didate explanatory variables considered for inclusion in these 
models, as follows: 

1. The alternative NNIS risk models used the original 
cutoff points of the NNIS risk index—that is, an ASA-PS 
score of more than or equal to 3 (vs less than 3), a surgical 
wound classified as contaminated or infected (vs clean or 
clean-contaminated), and an operation lasting more than T 
hours (vs less than T hours), with T representing the ap­
proximate 75th percentile of operation length and depend­
ing on the operative procedure performed. 

2. For the revised risk models, the NNIS risk index variables 
were recategorized using procedure-specific alternative cutoff 
points, which were defined using visual inspection of density 
histograms, contingency table analysis, and decision tree anal­
ysis with the exhaustive CHAID (x2 automatic interaction 
detector) algorithm as the growing method.20 Cutoff points 
defined in the ordinal sense of the variables were given pri­
ority. We constrained up to 2 categories for ASA-PS and 
wound class and up to 3 categories for surgery length. 

3. The extended risk models expanded the revised models 
to account for the proportion of procedures with incomplete 
30-day postdischarge surveillance. To accomplish this task, a 
postdischarge surveillance indicator was created, which was 
assigned the value +1 whenever the patient did not develop 
an SSI during hospitalization and was reached by the post-

discharge surveillance efforts (ie, effective postdischarge sur­
veillance) and 0 otherwise. In this way, the model recognizes 
that patients reached by postdischarge surveillance will ob­
viously be more likely to have an SSI detected and will have 
a higher measured SSI risk than patients not reached. More 
details about this strategy can be found elsewhere.8 

Because the occurrence of an SSI is a rare event, which 
may bias logistic regression coefficients (/3 coefficients), we 
conducted sensitivity analysis by comparing the results of 
three methods of inference for the /3 coefficients: the (as­
ymptotic) unconditional maximum likelihood method,21 the 
conditional exact method,22 and the rare-event, finite-sample, 
bias-corrected maximum likelihood method described in 
King and Zeng.23 Manual backward elimination was used for 
covariate selection, starting with the models with all candidate 
predictors and retaining in the final models those with a P 
value less than or equal to .15 in at least 1 exact hypothesis 
test (ie, conditional probability, conditional score, or exact 
likelihood ratio). 

Unweighted alternative scores were constructed simply by 
adding up the number of factors retained in the final logistic 
regression models (and present in the patient at the time of 
surgery). This summation determined different SSI risk strata 
in the development samples. As in the NNIS risk index, when 
SSI rates for adjacent risk strata were not significantly dif­
ferent or returned low absolute frequencies, they were com­
bined into a single risk category. Weighted versions of the 
scores were similarly constructed by adding up the number 
of weighted predictors retained in the logistic models. Weight­
ing was accomplished by assigning 1 point to the predictor 
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with the lowest /3 coefficient (/3min), dividing the j3 coefficients 
of the other predictors by /3min, and then rounding to the 
nearest integer.24 

Risk Score Performance and Validation 

In the validation samples, we calculated the original NNIS 
risk index and the newly developed alternative risk indexes 
and compared predicted with observed SSI risk within each 
risk category. For the original NNIS index, the predicted risk 
of SSI was that periodically updated in the annual NNIS 
system's reports. For the alternative risk indexes, the predicted 
risk of SSI was that observed in the development samples for 
each risk stratum. Risk scores were evaluated for discrimi­
natory ability, calibration, and overall performance (see Box 
1). All analyses were performed using Stata version 9, SPSS 
version 15.0, and LogXact version 8.0.0. Institutional review 
board approval was obtained. 

RESULTS 

Table 1 shows the size, period, and risk of SSI in development 
and validation samples. The proportion of successful post-
discharge surveillance contact in the study period was nearly 
55% but varied across procedures. The table also shows the 
selected cutoff points and weighting of covariates for the 
alternative risk indexes. No alternative cutoff points were 
found for wound class in OMS and surgery length in HYS. 
In the logistic regression models, all three methods of esti­
mation (see "Risk Score Development") suggested the same 
weighting for the explanatory variables, except for effective 
postdischarge in OSK. The ASA-PS score was not admitted 
in the logistic regression models for the alternative NNIS risk 
index for OGU and HYS, and weighting was not possible for 
the alternative NNIS index for OGU and the revised index 
for OSK because the logistic regression coefficients of their 
covariates were very similar. 

Table 2 shows the NNIS index and the alternative indexes 
in the validation samples and compares observed and pre­
dicted risk of SSI. In general, the alternative risk indexes 
arranged cases across risk categories more evenly than the 
NNIS index. 

Table 3 shows the NNIS risk index and the best-performing 
alternative indexes in the validation samples. The weighted 
version of the extended score for OSK showed better per­
formance than the unweighted version for all measures. For 
the other procedures and scores, however, no consistent ben­
efit of weighting was evident. Unweighted extended scores 
showed consistently better performance than the NNIS risk 
index for all procedures and for almost all measures. Revised 
scores for OGU and OSK also performed better than the 
NNIS risk index for all measures; for OMS and HYS, revised 
scores significantly improved calibration. The most evident 
benefit of the alternative NNIS scores over the NNIS index 
was in terms of calibration, although it also performed better 
for most other measures in OSK and OMS. No alternative 

NNIS or revised risk index performed better than the cor­
responding extended index. 

D I S C U S S I O N 

In this study, we sought to explore whether using alternative 
cutoff points for the variables of the NNIS risk index would 
improve its predictive accuracy. We also aimed at investigating 
whether using a postdischarge surveillance indicator would 
provide any benefit in terms of predictive ability. We are aware 
of few studies mat have attempted to improve the NNIS risk 
index performance by selecting alternative cutoff points for 
their explanatory variables.5,32 Most studies have just focused 
on defining a locally derived T for surgery length.32 Others 
explored more structural changes to the cutoff points,5 but 
all failed to demonstrate any significant benefit over the pre­
dictive power of the NNIS risk index. 

Although a first inspection of the performance measures 
reported in Table 3 would suggest poor overall performance 
of NNIS and alternative risk indexes, interpretation of these 
measures should be approached with much caution. Most 
previous reports in the literature have judged the performance 
of NNIS or alternative risk indexes in relation to "perfect 
performance" values (see Box 1). Because all of these indexes 
aim at adjusting only for patient- and procedure-related risk 
factors, extrinsic (ie, quality of care) factors are deliberately 
excluded from the models, so they will obviously never reach 
perfect performance.4 Accordingly, it is more correct to judge 
a risk index by comparing its performance against that of 
another risk index applied to the same sample. 

An unexpected finding of this study was that weighted 
scores did not show consistently better performance than 
their unweighted versions. In the development samples, on 
the contrary, weighted scores performed better (slightly, but 
consistently) for all procedures and for most measures (data 
not shown). The most likely explanation for this phenomenon 
is the overfitting of the weighted scores to the development 
samples. Overfitting is the degree to which a prognostic model 
fits random (ie, nonreproducible) noise rather than real pat­
terns in the data and is more likely to occur when model 
construction relies heavily on data-driven decisions,33 of 
which weighting is an example. Data-driven decisions imply 
a better fit to the data under study because model construc­
tion will make the greatest possible use of any and all idio­
syncrasies of those particular data, sometimes producing spu­
rious associations.33 However, this does not necessarily mean 
that we learned more about the underlying population. As a 
consequence, when significant overfitting occurs during 
model construction, the model will produce overoptimistic 
predictions in the model-building sample but may not gen­
eralize well in a validation sample.33 

It is remarkable that by entering the NNIS risk index var­
iables in an unconstrained form the exhaustive CHAID grow­
ing method spontaneously selected several cutoff points not 
present in the NNIS risk index (Table 1). This reinforces the 
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TABLE 3. Performance of National Nosocomial Infections Surveillance (NNIS) Risk Index and Selected Extended Alternative Risk Indexes in the Validation Samples 

by Operative Procedure Category 

Performance measure 

Model x2 

Statistic 

P 

A(OC 
Point estimate 

95% CI 

P 
Goodman-Kruskal correlation (G) 

Statistic 

P 
Trend across ordered groups (Cuzick's test) 

Statistic 

P 
Yates's decomposition of Brier's score 

V(Y)ICov(Y,p) 
V IV 
' exc' mm Cox's calibration regression 

0 
a 
H,: a = 0, /3 = 1 

Statistic 
P 

H^ a = 0 | 0 = 1 
Statistic 
P 

H0: 0 = 1 | a 
Statistic 
P 

OGU risk indexes 

NNIS 
system 

6.96 
.008 

0.53 
0.52-0.54 

.003 

0.314 
.037 

2.91 
.004 

1,879 
706 

0.660 
-0.108 

264.67 
<.001 

262.14 
<001 

2.53 
.111 

Unweighted 
extended 

70.17 
<.001 

0.68* 
0.67-0.69 
<.001 

0.518 
<.001 

7.82 
<.001 

88 
99 

1.165 
0.309 

9.23 
.010 

8.18 
.004 

1.04 
.307 

OSK risk indexes 

NNIS 
system 

0.07 
.785 

0.50 
0.50-0.50 
1.0 

NA 

NA 

-227,182 
92,646 

-2.116 
-13.397 

38.41 
<C.001 

2.25 

.134 

36.16 

<001 

Weighted 
extended 

92.80 
<.001 

0.77a 

0.76-0.78 
<.001 

0.665 
<001 

10.09 
<001 

46 
76 

0.992 
-0.429 

17.87 
<001 

17.86 
.001 

0.01 
.945 

OMS risk indexes 

NNIS 
system 

63.77 
<.001 

0.68 
0.67-0.70 
<.001 

0.718 
<.001 

10.96 
<.001 

568 
46 

2.522 
8.706 

140.95 
<.001 

114.41 
<.001 

26.54 
<.001 

Unweighted 
extended 

77.92 
<.001 

0.73" 
0.72-0.74 
<.001 

0.662 
<.001 

9.00 
<001 

66 
62 

1.200 
0.539 

2.71 
.258 

1.56 
.212 

1.15 
.284 

HYS risk indexes 

NNIS 
system 

1.61 
.201 

0.51 
0.49-0.52 

.332 

0.055 
.678 

0.93 
.352 

1,351 
952 

0.524 
-1.149 

65.07 
<.001 

63.49 
<001 

1.57 
.210 

Unweighted 
extended 

21.10 
<.001 

0.59' 
0.58-0.61 
<001 

0.340 
<.001 

3.97 
<.001 

149 
225 

1.142 
0.005 

21.92 
<001 

21.59 
<.001 

0.33 
.564 

NOTE. AROC, area under the receiver operating characteristic curve; CI, confidence interval; Cov (Y,p), covariance of outcome and prediction; HYS, abdominal hysterectomy; 
NA, not applicable; OGU, other operations of the genitourinary system; OMS, other operations of the musculoskeletal system; OSK, other operations of the integumentary 
system; V„_, excess variance of predictions; V^, minimum variance of predictions; V(Y), variance of the observed outcome. 
' P< .001 versus NNIS risk index. 
b P = .068 versus NNIS risk index. 
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previous impression that accounting for the specificities of 
each procedure category is important. To keep the alternative 
indexes as clinically credible as possible, we gave priority to 
cutoff points defined in the ordinal sense of the covariates. 
For OGU and HYS, however, clean-contaminated sites had 
lower SSI rates than the other wound classes (Table 1). A 
nonordinal increase in the risk of SSI with each increment 
of the wound class has been reported in many studies; in 
particular, many authors have observed the lowest risk of SSI 
in clean-contaminated procedures.34"36 That this association 
was observed in the development and validation samples (not 
shown) and for clinically related procedures (ie, OGU and 
HYS) suggests a real rather than a spurious association. The 
differential use of prophylactic and therapeutic antibiotics 
according to wound class is the most likely explanation for 
the nonordinal increase in the risk of SSI.37 

To the best of our knowledge, this is one of the very few 
studies that have attempted to validate an SSI prognostic 
model in a sample other than that used for development. 
Two previous studies that externally tested alternative SSI risk 
models suggested an impairment in their performance com­
pared with the performance in the development sample.38'39 

This impairment is a common observation in validation stud­
ies and was observed in our own data (not shown), rein­
forcing the need for externally validating risk models before 
they are used in practice. Simply testing the performance of 
a model in the model-building sample is known to give an 
overoptimistic picture of performance.16,33 This is because for 
a model to perform well in a new setting all factors that 
influence outcome (including patient factors and quality of 
care) must either be included in the model or have the same 
distribution in the new setting as in the sample used to de­
velop the model. Differences between countries and over time 
make this second condition unlikely. 

From Table 3 it is evident that, although alternative indexes 
significantly improved calibration in relation to the NNIS risk 
index, most of them were still miscalibrated. However, when 
a scoring system derived from patients in one country or 
healthcare system during a given time period is applied to 
patients admitted for care in other settings or during other 
time periods, the interpretation of the lack of calibration is 
not straightforward. Moreover, the interpretation of the lack 
of calibration is further complicated for risk models that ad­
just only for intrinsic SSI risk factors because if large varia­
tions occur in the quality of care between the development 
and validation samples then prediction of SSI solely on the 
basis of intrinsic patient characteristics will be less or more 
efficient depending on the relative contribution of the ex­
trinsic component to the overall SSI risk. In fact, in our own 
hospitals fundamental changes in quality of care (eg, anti­
biotic prophylaxis and sterilization protocols) occurred dur­
ing the development years, which would make it unlikely that 
alternative risk indexes would calibrate well in the validation 
samples. However, the better calibration of the alternative 

indexes compared with the NNIS risk index still suggests a 
better specification of the intrinsic risk component. 

Almost all previous studies reporting alternative SSI risk 
indexes in the literature relied heavily on single performance 
measures, most notably the G statistic. From Table 3 we see 
that, although the unweighted extended risk index for OMS 
had a lower value for the G statistic than the NNIS risk index, 
it was clearly superior in other measures, so the alternative 
index would still be judged to be superior to the NNIS index 
if all performance measures were jointly considered. This 
raises major concerns about what we have learned from pre­
viously published articles and strengthens the need for mul­
tidimensional evaluations of SSI risk indexes. 

Incomplete postdischarge SSI surveillance is a formidable 
methodological challenge for hospital epidemiologists. Some 
authors have used an indicator variable to adjust for incom­
plete postdischarge surveillance in SSI prognostic regression 
models.4'40 We refer to a previous study for a thorough dis­
cussion about the construct validity of this approach.8 All of 
these studies have shown the importance of incorporating 
such an adjustment. However, no attempts have been made 
to transfer this adjustment into simple risk scores that are 
suitable for use in routine surveillance. The simple risk ad­
justment introduced in the extended indexes moves the pa­
tient one or more strata upward whenever postdischarge sur­
veillance was accomplished, thus acknowledging that the 
measured SSI risk will obviously be higher than if no post-
discharge surveillance was conducted. Accordingly, that the 
extended risk indexes had the best performance is not sur­
prising, since a substantial proportion of SSIs are diagnosed 
after patient discharge (in our study, approximately 70%). 
This improvement in performance forces us to acknowledge 
that, without some adjustment for incomplete postdischarge 
surveillance, a substantial proportion of the measured SSI 
risk will always remain unexplained. Factors leading to more 
or fewer SSIs being detected after discharge may influence 
the performance of the extended indexes in different settings 
and for different procedures. 

The use of alternative procedure-specific cutoff points for 
the NNIS risk index covariates can improve the specification 
of the intrinsic SSI risk component, and controlling for in­
complete postdischarge SSI surveillance can provide more 
accurate SSI risk adjustment. Further work is warranted to 
evaluate both approaches. 
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