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Abstract

As one of the research hotspots in the field of rehabilitation robotics, the upper limb exoskeleton robot has been
widely used in the field of rehabilitation. However, the existing methods cannot comprehensively and accurately
reflect the motion state of patients, which may lead to overtraining and secondary injury of patients in the process of
rehabilitation training. In this paper, an upper limb exoskeleton control method based on mixed perception model
of motion intention and intensity is proposed, which is based on the 6 degree-of-freedom upper limb rehabilita-
tion exoskeleton in the laboratory. First, the kinematic information and heart rate information in the rehabilitation
process of patients are collected, corresponding to patients’ motion intention and motion intensity, and fused to
obtain the mixed perception vector. Second, the motion perception model based on long short-term memory neural
network is established to realize the prediction of upper limb motion trajectory of patients and compared with back-
propagation neural network to prove its effectiveness. Finally, the control system is built, and both offline and online
test of the control method proposed are implemented. The experimental results show that the method can achieve
comprehensive motion state perception of patients, realize real-time and accurate prediction trajectory according
to human motion intention and intensity. The average prediction accuracy is 95.3%, and predicted joint angle error
is less than 5 degrees. Therefore, the control method based on mixed perception model has good robustness and
universality, which provides a new method for the active control of upper limb exoskeleton.

1. Introduction

As an emerging robot product, upper limb exoskeleton robot is widely used in the field of rehabilitation
medicine [1-3]. Stroke patients can use exoskeletons for rehabilitation training to promote the rebuilt of
connection between limbs and damaged central nervous [4, 5]. During the later stage of rehabilitation
training, patients have a certain initiative motion intention yet the muscle lacks strength [6, 7]. Therefore,
the exoskeleton is required to predict the motion trajectory of next cycle in real time according to current
human motion state and provide assistance. When considering the control method of exoskeletons for
rehabilitation, reliability and safety should be emphatically considered to prevent the secondary injury
to patients [8, 9]. At present, researchers have done a lot of research on structural design and intention
perception of exoskeleton [10, 11], and further research on the human—robot interaction process of
upper limb exoskeleton and the design of human—robot collaborative control system have been carried
out [12, 13].

In terms of structure, Gull et al. [14] presented a mechanical design and PD-based trajectory track-
ing control method for a 4 degree-of-freedom (DOF) wheelchair mounted upper limb exoskeleton.
Zhang et al. [15, 16] introduced elastic components into the passive sliding pair for improving the
motion uncertainty and cooperativity caused by the introduction of passive joints, which improved the
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human—robot compatibility in structural design. Based on the existing upper limb exoskeleton, Giorgia
et al. [17] designed a new generation of upper limb robotic exoskeletons for neurologic rehabilitation.
They improved the structure of exoskeletons and develop human—robot cognitive interfaces. The pro-
cess of rehabilitation exercise should not only consider the accuracy of trajectory prediction but also
consider the safety and comfort of patients. Appropriate motion intensity can effectively improve the
effect of rehabilitation training. Lorenzo et al. [18] presented a semi-passive upper limb exoskeleton for
worker assistance and collected the heart rate signal of patients to evaluate the effects of the device.
Andrej et al. [19] collected heart rate signal as one of the indicators to discuss the effect of a perfor-
mance augmenting exoskeleton on the metabolic cost of an able-bodied user during periodic squatting,
and experimental results showed that an exoskeleton device will significantly reduce the metabolic cost.
Ziaei et al. [20] measured heart rate and energy expenditure of 20 waste collectors as the physiological
strain to determine the biomechanical and physiological effect of the passive exoskeleton Ergo-Vest,
which ultimately proved its usability and ergonomic design features. These studies only collect human
heart rate signal without real-time adjustment of exoskeleton trajectory according to motion intensity.
In terms of control method, Tadej et al. [21, 22] proposed a control method based on human arm mus-
cular manipulability without considering its biomechanics operability. Laurettid et al. [23, 24] proposed
an upper limb exoskeleton motion planning system based on learning from demonstration. The system
can successfully assist patients to carry out daily living activities in unstructured environments while
ensuring that the entire workspace meets the anthropomorphic standards. Su and Gutierrez-Farewik [25]
designed a gait trajectory and gait phase prediction method based on long short-term memory (LSTM)
for lower limb exoskeleton, which can reliably predict the five gait phases. The inertial measurement
unit (IMU) is used to collect motion information, without considering patients’ physiological state. Zhu
et al. [26, 27] used multilayer perceptron and LSTM neural network to study the influence of differ-
ent characteristic parameters of surface electromyographic (SEMG) signal on the accuracy of human
motion pattern recognition under the mixed control mode, and the experimental results showed that the
LSTM neural network had better effect, but the effect of motion intensity is not considered in the exper-
iment. Compared with other control methods, the mixed perception control method can make full use
of the advantages of multimodal information input and multidimensionally perceive the motion state of
patients. At the same time, combined with the advantages of LSTM in time series, the mixed perception
control method can realize real-time trajectory prediction and improve the human—robot interaction
effect. Aiming at the need of exoskeleton to quickly identify the wearer’s motion pattern under mixed
control mode, the research group has certain research foundation in the direction of human—robot coop-
erative control for upper limb exoskeleton robots and published relevant academic papers [28-30]. In
this paper, a control method of upper limb exoskeleton based on mixed perception model is proposed
for patients with upper limb muscular weakness. The mixed perception model collects the informa-
tion of human motion intention and motion intensity at the same time and makes advanced prediction
of exoskeleton joint motion trajectory according to human physiological state, which provides a new
method for human—robot cooperative control of upper limb exoskeleton.

At present, most of the existing control methods of upper limb exoskeletons only consider the
motion intention of human upper limb without comprehensive consideration of human physiological
state as the input information of the control method, which limits the safety of exoskeleton to a certain
extent. Compared with traditional one-dimensional information perception method, the mixed percep-
tion model can perceive the patient’s motion state more comprehensively, thus improving the control
effect of exoskeleton [31]. In this paper, the kinematic signal and heart rate signal are simultaneously
collected, corresponding to patients’ motion intention and motion intensity, respectively. As the input of
the mixed perception model, multimodal information fusion is carried out at the feature level to achieve
comprehensive and effective feature extraction and utilization. Based on LSTM neural network, patients’
motion trajectories are comprehensively predicted according to their motion intention and physiological
state, and the real-time control of upper limb exoskeleton is designed and realized to enhance the robust-
ness and real-time performance of the control system. It is helpful to improve the safety of human—robot
cooperative motion of upper limb exoskeleton.
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Figure 1. Schematic diagram of mixed vector construction.

2. Design of mixed perception vector
2.1. Mixed perception vector construction strategy

According to the definition of medical theory, human motion intensity refers to the degree of force and
body tension when performs the action, Motion intensity directly affects the stimulation effect of cur-
rent motion on human body, and reasonable motion intensity can effectively promote the improvement
and recovery of human body function. However, if the motion intensity is too high and exceeds the
limit that body can withstand for a long time, it will cause the body function decline [32, 33]. In the
process of rehabilitation training for patients, keeping appropriate motion intensity effectively can not
only enhance human body function but also prevent secondary injury caused by overtraining, thereby
improving the safety of rehabilitation training. The measurement standard of motion intensity is mainly
based on physiological and motion state of patients [34].

As a kind of kinematic information, attitude signal has the advantages of strong robustness and high
recognition rate, which can reflect the motion intention of human upper limbs, but at the same time it
has hysteresis. Heart rate information, as a kind of physiological information, has the advantages of high
universality and changes with human motion intensity, so it can reflect the human motion intensity that
cannot be reflected by kinematic information. By fusing the two signals at the feature level, the comple-
mentary advantages are realized as the input of the mixed perception model, so as to ensure the compre-
hensiveness of human motion state prediction and improve the safety of exoskeleton control system.

The multimodal fusion perception vector is designed as shown in Fig. 1, which is based on the con-
cept of mixing motion intention and motion intensity as model input. The angle, angular velocity, and
acceleration information of human upper limb joint are collected directly by the attitude signal sensor
to evaluate motion intention. The heart rate information is collected by the heart rate signal sensor, and
the time-domain standard deviation, frequency-domain standard deviation, and sample entropy are col-
lected through feature engineering for evaluation of motion intensity. First, the time-domain standard
deviation is obtained as

Zii] |xi - /'L|2
N

SD =

D

where x; is the pulse waveform signal value collected by the heart rate sensor; N is the time series
sampling points of the current sliding window; and p is the average value of the current sliding
window signal. In addition, considering the periodicity and real-time performance of heart rate signal,
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the high-frequency noise is filtered by using fast Fourier transform and modulus operation, and the
frequency-domain standard deviation is calculated.

Sample entropy is a method to measure the complexity of time series. It is widely used in the process
of heart rate signal processing and can well characterize the sequence complexity of heart rate infor-
mation [35, 36]. For time series {x (n)} =x(1),x(2),...,x (N) with length N, it is reconstructed as
X, (),....,.X(N—m+1),where X,, ) ={x @ ,x({@+1),...,x({+m— 1)}. The absolute value of
the maximum difference between X,, (i) and X,, (j) is calculated as

d[X, (). X, ()] = _max_(lx(i+k) —x(+h)D @)

For a given X,, (i), count the number of j (1 <j <N, j # i) whose distance between X,, (i) and X,, (j)
is less than or equal to r, denoted by B;, and determine B! (r) and B™ (r) as

B! (r) = ]ﬁ& 3)
B™ (r) = ﬁzsz & @)
Increasing the dimension to m + 1, similarly
Al (= ﬁAi ®)]
A™ (r) = ]ﬁzt"h (r) 6)

When N is finite, sample entropy is defined as

@)

A™ (r)
SampEn (m, r,N) = —In

B(m) (r)

Finally, the mixed perception vector is collected by fusing the collected six-dimensional information
at feature level and is used as the input of the mixed perception model.

2.2. Mixed perception vector data collection

In the process of collecting signals, the difference between motion intention and motion intensity infor-
mation should be fully considered. The control system carrier in this paper is a 6-DOF upper limb
exoskeleton in the laboratory. Motors at joint are the disc actuator of INNFOS, and its control cycle is
100 ms. However, it is too short to extract heart rate information to reflect motion intensity. In order to
solve this problem, a double cycle input method is adopted for the mixed perception model. The control
cycle is divided into two layers, the first layer is short cycle of 100 ms, and the second layer is long cycle
of 2000 ms. The sampling rate of attitude information and heart rate information in perception system
are both 1000 Hz. When collecting the multimodal information vector, the system updates attitude infor-
mation and eigenvalue of heart rate information every 100 and 2000 ms, respectively. The process of
double cycle input method for the mixed perception model is shown in Fig. 2. During the operation of
system, the attitude information is collected in each short cycle and eigenvalues of heart rate information
are collected in each long cycle. After collecting the information required, fuse the information at the
feature level and transfer it to PC for processing and preservation.

The layout of sensors is shown in Fig. 3. In this paper, the finger clip photoelectric pulse sensor
heart rate clamp is selected and worn on fingertip to collect the heart rate signal. Compared with elec-
trocardiograph, it is compact and does not affect the rehabilitation training effect. It can obtain pulse
waveform by detecting the changes of blood absorption of near infrared light during pulse beating.
The signal is converted into digital signal through filtering, amplification, and A/D conversion, and
then input to the perception system through serial port transmission. The 9-axis IMU sensors WT-901C
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produced by WitMotion Company are selected as the attitude signal sensor, which is placed at the shoul-
der and elbow joints, respectively. In order to solve the problem of large fluctuation of angular velocity
and acceleration information caused by external disturbances and sensor working conditions, the fourth-
order Butterworth filter is used to filter its high frequency noise. Set low pass cutff frequency f, = 10 Hz,
the transfer function is

1

L+ (@/0)™

where N is the order of Butterworth filter, N = 4; w, represents the cutoff angular frequency, w. = 2xf.,.
The angular velocity collection information is shown in Fig. 4.

|H (w)]> = (8)

3. Mixed perception model of motion intention and motion intensity based on LSTM

In the process of predicting the motion state of human upper limb, the motion intensity information
and human joint motion information cannot be described by a linear model, which makes relationship
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Figure 4. Angular velocity information collection.

between the mixed perception vector and joint trajectory nonlinear. In order to ensure accuracy
of the trajectory prediction model, it is essential to find an appropriate nonlinear algorithm as its
kernel when establishing the mixed perception model. The algorithm needs to meet the following
requirements:

1. The input of the model is multidimensional time series information, and the output is tra-
jectory information, Therefore, the algorithm needs to be suitable for processing time-series
information.

2. The input of the model is real-time attitude information and heart rate information, and the
algorithm output needs to be predictive to eliminate the time delay in the process of data
collection.

3. There is a relationship between heart rate information and human motion state; however, no
equation can directly show the relationship between these until now. Therefore, the algorithm
needs to have strong applicability and trainability.

Finally, the LSTM, a branching model of recurrent neural network (RNN), is selected as the core algo-
rithm of the mixed perceptual model. The biggest difference between LSTM and ordinary RNN is its
unique gating mechanism [37]. There are several significant components that control a LSTM cell, such
as forget gate, update gate, and output gate, and these unique “gates” give LSTM the ability to forget
and update timely.

3.1. Forward and back propagation of LSTM neural network

In the process of LSTM neural network forward propagation, a basic LSTM cell is first built. The LSTM
cell has its unique gating mechanism as shown in Fig. 5. Where I"<”; is the forget gate, I'<",, is the update
gate, and ', is the output gate. The input is x=*, and the output is y<">. ¢ is the hidden state of the
cell, a=* is the memory state of the cell. Through the above gating mechanism, exoskeleton can switch
and update motion state timely.

There are many states in the process of human upper limb motion, such as swinging upward, down-
ward, and stop, also include acceleration, deceleration, and uniform speed. The purpose of this article is
to ensure trajectory prediction accuracy under continuous switching of different motion states, which is
also one of predominant characteristics of the LSTM neural network. Based on the process of exoskele-
ton switching from swinging upward to swinging downward, main components of LSTM cell are briefly
introduced.
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(1) Forget gate

When the upper limb exoskeleton switches from swinging upward to swinging downward, the forget
gate is designed to delete the memory value of previously stored swinging upward state.

Ff<t> — o,(vvf[a<t—l>’x<t>] + bf) (9)
1) = 10
o= (10)
where W; is the weight of the forget gate, by is bias vector, and o represents the activation function of

sigmoid.

(2) Update gate and update cell

When the exoskeleton “forgets” swinging upward state, the update gate is applied to update its state
for reflecting the current motion state.

Fu<t> — O,(Wu[a<rfl>’x<t>] + bu) (11)

where W, is the weight of the update gate, and b, is the bias vector.
In order to update the system state, a new vector needs to be created and added to the previous cell
state. The formula for updating the cell is

¢ =tanh (W, [a™"", x| +b,) (12)
1 —e™
tanh (¢) = o (13)

where W. is the corresponding weight of the update cell, b. is the bias vector, and tanh represents the
function shown in Eq. (13).
Combined with the update gate and the update cell, the update state of the cell can be formulated as

C<t> — Ff<t>c<t—l> + 1—1u<t>c<t> (14)
(3) Output gate
Equations (15) and (16) can determine which output to use
L =o(W,la™ ™", x* 1 +b,) (15)
a~” =T -tanh (c*) (16)
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Table I. Parameter of LSTM neural network.

Parameter Meaning Number
input_dim Dimension input 6

units Dimension output 50
timesteps Length of time series 1

where W, is the weight of output gate, b, is the corresponding bias vector, and a=" is the memory state
output of LSTM cell.

The forward propagation of LSTM neural network is composed of several LSTM cells in series,
and the number of cells is related to the time step of program operation. In the process of exoskeleton
operation, the mixed perception vector is input into perception model in current cycle to obtain the
trajectory of next cycle, which is accomplished by the forward propagation of LSTM neural network.

In the process of LSTM neural network training, the weight of the model needs to be updated continu-
ously through iterative calculation until the loss function reaches the global minimum or local minimum.
In order to complete the process of weight update, calculation of the partial derivative of model is neces-
sary for most optimization algorithms, which is completed by back propagation. The back propagation
process of LSTM neural network is more complex than that of RNN, and the main changes are the
additional gating mechanism: forget gate I'~,, update gate I'~"”,, and output gate I'~">,. Similar to for-
ward propagation, it is necessary to start with LSTM cell when understanding back propagation, and the
back propagation of entire neural network is composed of several cells in series. The back propagation
process is completed by the Python Keras framework, which is not repeated here.

3.2. Construction of mixed perception model based on LSTM neural network

Due to its unique double-layer input mechanism, the mixed perception model based on LSTM neural
network designed in this paper needs to discard the data of the first long period in the process of training
neural network, that is, the data after the first long period (2 s) is included in the training data set.
In the process of single joint training, the input of perception model is six dimensions, and the final
output is one dimension angle information. The training of mixed perception model bases on Keras 2.0
framework of Python 3.7, which can build LSTM neural network quickly. Data collection is completed
by the perception system, which stores the collected information in the form of .txt. The weights of the
trained neural network are stored in the form of .h5, and then converted into C++ readable .txt file to
facilitate the replication of the forward propagation of LSTM neural network.

Figure 6 shows the structure of multinetwork superposition model. The first layer is LSTM layer,
whose parameters are shown in Table I. The second layer is flatten layer, which is used for the transition
between the LSTM layer and the fully connected layer. It is used to flatten input vector, namely to
transform the multidimensional data into one dimension. The third layer is dense layer, namely the
fully connected layer, which is used to output the trajectory prediction results. According to the LSTM
cell shown in Fig. 5, the LSTM layer is applied to update parameters a~"'>, ¢='>, =, and ¢, the
dense layer is applied to update the prediction of y<*, and the flatten layer is used for smooth transition
between the two layers. According to the model constructed in this paper, there are 11,400 parameters in
the LSTM layer, including the weight matrix and bias vectors of each gate, and the initial values of a<*>
and ¢<*. Since the output of the LSTM layer is already one-dimensional vector, number of parameters
of the flatten layer for this model is 0. The dense layer has 51 parameters, including one-dimensional
weight vector and bias vector.

3.4. Training and testing of mixed perception model

The control system designed in this paper aims to perceive the motion intention and motion intensity of
patients with upper limb muscular weakness and assist them during rehabilitation training. According to
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Figure 6. Schematic diagram of multinetwork superposition model.

Figure 7. Schematic diagram of training motion.

the application scene, the action of drinking water is selected as the basic training motion, as shown in
Fig. 7, which is a common arm motion in daily life. In order to simulate patients with upper limb mus-
cular weakness, five healthy volunteers (2224 years old) are selected to wear sandbags for simulation
training. The proper weight sandbag (2 kg) is selected. Sandbag 1 is bound to the junction of exoskeleton
forearm and wrist, and sandbag 2 is bound to the middle of exoskeleton upper arm as shown in Fig. 7.
In the process of sample collection, human upper limb trajectory should be collected first. Volunteers
wear exoskeleton and sandbags and move according to the instructions without the assistance of
exoskeleton, which is used to simulate patients with upper limb muscular weakness. At the same time,
the disc motor records the angle of the joint. A set of experiments is set for 240 s. During the experiment,
the volunteers are required to repeat the training action, and then rest for the next set of experiments.
Each volunteer carries out five groups of experiments. By collecting data from multiple volunteers, var-
ious states of human upper limb swinging can be generally collected, which makes the training set of the
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Figure 8. Partial trajectory prediction comparison.

mixed perception model more comprehensive, and improves the universality of the model from the step
of data collection. To improve the accuracy of the model, the data of five volunteers are combined, and
2000 sets of data are selected for each volunteer. Therefore, there are 10,000 sets of data for the mixed
perception model in this paper. The first 8000 sets of data are selected as the training set, the second
2000 sets of data are selected as the testing set, and the training frequency is set to 2000 steps.

In order to compare and verify the effectiveness of the model proposed, the back-propagation (BP)
neural network is used as the core algorithm of the model to predict the trajectory for comparison. The
trajectory prediction results of the different models are shown in Fig. 8. It can be seen from the figure
that the prediction accuracy of the model based on LSTM is better than that based on BP and the average
trajectory prediction accuracies § calculated by using the relative root mean square error are 95.3% and

89.1%, respectively.

N

5= 1—M x 100% (17
Z,‘=1 (|yl|)

where y; is the ith actual trajectory collected and y; is the ith predicted trajectory of model. The maximum
error of the BP-based model is also larger. The maximum local errors are located at the peak and trough,
which are 4.91° and 11.05°, respectively. In addition, it can be learned from the zoom view of figure that
the model based on LSTM neural network has better real-time performance, and the predicted trajectory
is slightly ahead of the actual trajectory, which is caused by the characteristics of LSTM neural network.
Based on the mixed perception control method, the predicted trajectory is smooth and stable, and the
overall trend of the predicted curve is same as that of the original collected trajectory.

When using LSTM neural network for trajectory prediction, the six-dimensional multimodal infor-
mation vector collected at the current time step is taken as the input of the model, and joint rotation angle
recorded by the disc motor of next time step is taken as the output, which makes the model itself has
certain predictability. Therefore, the trajectory information input to the motor position loop is exactly
the trajectory to which the next time step motor should move, which just eliminates the time-delay error
in the data collection process and improves the real-time performance and accuracy of position control.
After testing, the running time of the algorithm of data collection, multimodal information fusion, and
trajectory prediction based on mixed perception model is about 1500 ms, less than the first data col-
lection cycle (2000 ms) in which collected data are discarded, and the thread resource occupancy rate
meets the expectation. Therefore, the designed method is feasible to be used for prediction of patients’
upper limb trajectory.
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The prediction result above is based on the unfiltered trajectory data. In the process of collecting
original trajectory data, due to the jitter of the sensors and effects of sensors accuracy, there will be some
disturbances and affect smoothness of the trajectory. In order to filter out the external disturbance factors,
reduce the effect of sensor accuracy and simulate a smoother trajectory, the collected original data are
processed by fourth-order Butterworth filter and input into the trained LSTM neural network model
in Fig. 9, where the green dash line is the original trajectory, the blue dash line is the trajectory after
filtering, and the red curve is the prediction trajectory. It can be learned from Fig. 9 that the trajectory
after filtering presents a sine-like curve after filtering, and similar to the predicted trajectory curve.
With the filtered trajectory data as the input, the predicted trajectory is smoother, but compared with the
original trajectory, the position error of trajectory curve is significantly increased.

As shown in Fig. 9, although there are large errors in several crests and troughs, they all have one char-
acteristic: the extreme points of the prediction curve are closer to the original trajectory curve than the
filtered trajectory curve. This is because the input of the perception model in this paper is a multimodal
vector based on attitude and heart rate information, which is not only determined by the joint trajectory
alone but also the eigenvalues of heart rate information. Here, only the trajectory information is filtered,
other information does not change. The comprehensive influence of multidimensional information leads
to difference between the filtered trajectory and prediction results in some positions. Human motion in
exoskeleton is a complex human—robot collaborative motion process, and some unexpected conditions
will cause dimension distortion in the multidimensional vector. Due to the multidimensional character-
istics of the mixed perception vector, the error of the prediction trajectory can be reduced to a certain
extent, which also ensures that the system can remain a stable state when sensors receive interference
or the sensitivity decreases.

The phenomenon above confirms the robustness of the mixed perception model to a certain extent:
the output of the predicted trajectory is determined by the multidimensional vector, and the change of
data in a certain dimension cannot completely affect result of trajectory prediction.

4. Experimental research on control method based on mixed perception model

After constructing the trained mixed perception model, build the control system for implementing tests.
In order to prevent human body injury caused by exoskeleton, the offline testing analysis is implemented
to verify the accuracy and safety of the method. Then online testing is carried out to verify the real-time
and effectiveness.

4.1. Offline testing of mixed perception model

The mixed perception model constructed in this paper is to predict the trajectory of human upper limb
joint which is very flexible. Even in the process of simple arm lifting, there will be different states such
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as abrupt acceleration, deceleration, and uniform speed. In order to simulate human upper limb motion
more realistically and verify adaptability of the model, the offline testing is implemented. Similarly, with
water drinking as the training action, volunteers need to carry sandbags for rehabilitation training within
a specified time (240 s) when collecting the training set data. The mixed perception model above includes
a total of five volunteers’ motion intention and motion intensity information. In order to verify the
universality of the model, volunteer A (24 years old) who did not participate in the collection experiment
is reselected as offline testing experimenters.

Compare collection trajectory with predicted trajectory of volunteer A’s elbow joint as shown in
Fig. 10. It can be learned that with the increase of training time and times, the peak value of volunteer
training action is gradually reduced, and the swing amplitude of upper limb is gradually reduced, mainly
in the rising peak value. The circle in Fig. 10 is an enlarged partial trajectory drawing. It can be observed
that the predicted trajectory is basically consistent with the collected trajectory, and there is a tendency
to advance. Figure 11 is the collected speed curve. It can be seen from that the fluctuation amplitude
of the velocity gradually decreased, and the acceleration gradually decreased. After the decrease of the
swing amplitude in the later stage, the velocity rebounds.

During the exercise, with the gradual increase of motion intensity, volunteers feel tired, and the fre-
quency of heart rate accelerates and loses regularity to a certain extent. Figure 12 shows the heart rate
signal (pulse waveform) of volunteer A. At the initial stage of training, the peak value and phase of
pulse waveform of A are stable, as shown in Fig. 12(a), indicating that the heart rate is stable and the
physiological condition is well. After a period of training, the pulse waveform is no longer as stable as
in the initial stage, and the heart rate is higher than that in the initial stage within the same period (10
s), with 11 heartbeats in the initial stage and an increase to 12 heartbeats in the latter stage, as shown in
Fig. 12(b).
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Figure 12. (a) Heart rate information of volunteer A in the initial stage (b) Heart rate information of
volunteer A in the latter stage.
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Figure 13. Schematic diagram of exoskeleton control method based on mixed model of motion intention
and motion intensity.

Combined with Figs. 10-12, it can be seen that with the increase of training time and times, the heart
rate and motion intensity of the subjects gradually increase, the exercise amplitude gradually decreases,
and the exercise ability gradually weakens. This further illustrates the correlation between heart rate
signal and motion intensity and proves the significance of considering motion intensity for achieving
accurate trajectory prediction of patients. At the same time, it is verified that the mixed perception model
is stable and universal through the above offline testing experiments.

4.2. Experimental study on control method based on mixed perception model input

After completing the offline test verification of the perception model, the online control experiment
is carried out. The control method is designed based on the laboratory 6-DOF exoskeleton, as shown
in Fig. 13. First, the motion intention and motion intensity information are collected by sensors and
input into the mixed perception model to get the predicted trajectory. Then, the motors get the motion
instruction to drive the exoskeleton, and coding disks return the angle and angular velocity information
to form a closed-loop negative feedback system through PI control. The mixed perception model trained
by Python is reproduced by C++-, and the sequential neural network model is reproduced in the control
program by reading the weight parameters stored in the txt file.

Volunteer B (23 years old) who did not participate in the above experiment is selected for online
verification experiments, and each set of experiments is separated for 5 min to avoid fatigue. In order
to simulate different states of human muscular weakness, four groups of experiments are set up: no
sandbags, forearm bound sandbags, brachium bound sandbags, and both forearm and brachium bound
sandbags. The position of sandbags is the same as the model training stage above.

Figure 14(a) and (b) show the comparison of elbow joint motion trajectory and motor output trajectory
of volunteer B in two cases of unbound sandbag and bound two sandbags, respectively. In the figure,
the red dash line represents the upper limb trajectory data collected by volunteers B wearing attitude
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Table Il. Experimental results of trajectory prediction.

Serial number Sandbags Maximum error (°)
1 0 3.42
2 2 4.83
3 1-main arm 3.56
4 1-forearm 4.27
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Figure 14. Trajectory prediction experiment of volunteer B. (a) Unbound sandbag and (b) Bound two
sandbags.
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Figure 15. The comparison of the collection trajectory, predicted trajectory and real trajectory of
volunteer B.

sensors, and the blue solid line represents the data collected by the coding disk after motor receives
the predicted trajectory. As shown in Fig. 14, the actual trajectory track of the motor is the same as the
motion trend of the data collected by volunteer B, and the predicted trajectory is basically consistent with
the actual trajectory. The maximum error occurs at the peak and valley. In addition, with the increase
of load, the trajectory of volunteers becomes steep and the motion amplitude decreases. The maximum
error under different conditions is counted, and the results are shown in Table II. It is worth noticing
that the maximum errors of trajectory prediction by the model are all less than 5°.

In order to further analyze the trajectory, a partial enlarged detail of trajectory is amplified, and
the model prediction trajectory curve is added as shown in Fig. 15, where the green solid line is the
trajectory of human upper limb collected by attitude sensor, the red dot line is the prediction trajectory
of the model, and the blue dash line is the real trajectory returned by the motor encoder. It can be learned
that compared with the predicted trajectory, the real trajectory is more stable and smoother than the data
collected, and it is slightly lagged in the lifting stage and ahead in the falling stage. After analysis, the
reasons of this phenomenon are mainly the following two points:
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1. The motor trajectory is collected by the coding disk, and the process itself lags behind the motor
operation. Therefore, the real collection trajectory is later than the upper limb trajectory.

2. Both the upper limb exoskeleton and human upper limb are affected by gravity. The motors
receive position ring information and drive the exoskeleton, then drive the human upper limb
movement. In the lifting stage, gravity will slightly affect the human—robot cooperative motion
as a resistance. In the lowering stage, the direction of gravity and motion are at an acute angle,
which will accelerate the process of motion.

5. Discussion

In this paper, aiming at the problem of single information collection and inaccurate motion state
reflection of rehabilitation robot for patients, based on the existing 6-DOF upper limb rehabilitation
exoskeleton robot in the laboratory, the heart rate and kinematics signals of patients are collected, and
the mixed perception model of motion intention and intensity based on LSTM neural network is estab-
lished. The control system construction and experimental analysis based on the mixed perception model
are completed. The following conclusions are obtained:

1. In the process of rehabilitation training, motion intensity is relevant to the trajectory of patients’
upper limb. With the increase of motion intensity, patients feel fatigue, and the motion ampli-
tude decreases. Therefore, considering human motion intensity during rehabilitation training is
conducive to achieving more accurate trajectory prediction.

2. The mixed perception model based on motion intention and intensity can accurately predict the
motion state of human upper limb, the average prediction accuracy can reach 95.3% and the
joint angle error is within 5 degrees. The multimodal information fusion technology provides a
more stable input for the perception model, which makes the model have good robustness and
universality.

3. The mixed perception model based on LSTM neural network has certain predictability, which
can be well applied to upper limb rehabilitation exoskeleton to solve the problem of kinematic
signal delay and realize real-time trajectory prediction.

In the future, we plan to add sSEMG signals to perceive the motion intention and fatigue degree
of patients and further improve the control method to achieve a more comprehensive human—robot
interaction.
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