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SUMMARY

Existing penalty-based haptic rendering approaches are
based on the penetration depth estimation in strictly
translational sense and cannot properly take object rotation
into account. We propose a new six-degree-of-freedom
(6-DOF) haptic rendering algorithm which is based on
determining the closest-point projection of the inadmissible
configuration onto the set of admissible configurations.
Energy is used to define a metric on the configuration
space. Once the projection is found the 6-DOF wrench can
be computed from the generalized penetration depth. The
space is locally represented with exponential coordinates to
make the algorithm more efficient. Examples compare the
proposed algorithm with the existing approaches and show
its advantages.

KEYWORDS: haptics; haptic rendering; six degrees of
freedom; generalized penetration depth.

1. Introduction

A number of 6-degree-of-freedom (6-DOF) haptic devices
have recently appeared on the market. They provide an
improved touch-based human-machine interface, superior
to the more common 3-DOF devices. However, the more
realistic rendering of haptic scenes is achieved at the expense
of increased complexity of calculations involved in force
rendering algorithms.

Since 6-DOF haptic devices are relatively recent, 6-DOF
force rendering algorithms are still an active research area;
researchers are trying to improve the existing algorithms both
in terms of realism as well as stability of haptic rendering.
Thus, no ‘standard’ 6-DOF force rendering algorithm has
emerged yet.1,2

Our work focuses on improving the realism of haptic
rendering. The algorithm we propose is essentially a penalty-
based method in which contact forces are computed as a
function of current and desired configurations of a rigid
body. Similarly to other approaches, the desired configuration
is the configuration that takes a rigid body out of the
collision. However, while most other approaches only
consider translation, we compute the desired collision-free
configuration based on the energy metric that properly takes
into account the full rigid-body configuration. Subsequently,
haptic feedback forces and torques are computed as in 3-
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DOF penalty-based methods using the computed generalized
penetration depth.

The paper is organized as follows: related previous work is
discussed in Section 1.1; in Section 2 we describe our haptic
rendering algorithm; in Section 3 we discuss implementation-
related issues; and in Section 4 we present simple numerical
examples comparing the proposed ideas to the existing
approaches. We conclude the paper with the discussion in
Section 5 and outline possible future work in Section 6.

1.1. Related work
A popular approach to computing contact forces for the 3-
DOF haptic rendering are penalty-based methods.3 In this
approach, once a collision between rigid bodies is detected,
the penetration depth is estimated, where the penetration
depth is defined as the shortest translation needed to separate
the two bodies. Estimated penetration depth is used to
compute the magnitude of the contact force, for example, as
the sum of the proportional, integral, and differential terms
with appropriate coefficients which can be changed to model
various kinds of surfaces. The direction of the contact force
is determined by the contact normal. This approach is also
known as direct rendering and its main advantage is that
the motion of the object entirely depends on the user of the
haptic device, there is no need to consider the dynamics of the
object. On the other hand, the method has its disadvantages,
among them the pop-through artifacts and possible instability
due to the force discontinuities.

Similar approach can be used for 6-DOF haptic rendering.4

Contact torques in this case are computed as a cross product
between the vector from the center of mass of the object
to the contact point and the force vector. To increase the
stability, this approach can be modified5 by introducing a
model of the object to which the calculated forces and torques
are applied. This model interacts with the real haptic device
through virtual coupling.6

Constraint-based methods7,8 for contact force computation
are based on the notion of a substitute virtual object. The
virtual object never penetrates the virtual environment and its
dynamics is constantly updated. Feedback force is calculated
so that the user-controlled object is dragged toward the
substitute virtual object. These methods can produce more
accurate results at the expense of increased computational
complexity. However, some recent results9 promise to
overcome some limitations of constraint-based methods.

Impulse-based techniques10 implement the contact
between two rigid bodies as a series of micro-collisions,
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514 Generalized penetration depth

and impulses are applied in order to prevent interpenetration.
These techniques produce visually appealing but haptically
unconvincing results.10 Another approach is to combine
penalty-based and impulse-based techniques.10

Another approach to 6-DOF haptic rendering is voxel
sampling.11 In this approach, the bodies in the scene are
represented by voxels. The interaction forces and torques are
computed for colliding voxels, subsequently summed up, and
displayed to the user through a virtual coupling to filter out
discontinuities.

The use of energy in haptic rendering has been considered
in the extension of penalty methods12 designed specifically
for displaying haptic interaction between two textured
models. Elastic penetration energy is considered, and haptic
feedback forces and torques are defined as the gradient of
elastic penetration energy.

Recently, attempts have been made13 to extend the notion
of penetration depth to take into account both translational
and rotational motion to separate the intersecting objects.
The underlying distance metric is defined as the length
of the longest displacement vector over the corresponding
vertices of the model between two configurations. Practical
algorithms14,15 for the computation of such generalized
penetration depth have been proposed, but for convex
models the generalized notion agrees with translation-based
computations and thus shares the same shortcomings.

2. Proposed Algorithm

Our proposed algorithm falls into the class of penalty-based
methods. The distinguishing feature of the new algorithm
is a new method for computing the penetration depth
during the collision between two rigid bodies. While the
existing approaches essentially base the computation of
the penetration depth only on the translational motion, we
consider full rigid-body configuration (both translation and
rotation). Formally, the penetration depth is described as
a distance between two configurations of the rigid body,
so it is necessary to define a metric on the configuration
space to compute it. Motivated by the work in computational
mechanics16 we argue that the kinetic energy provides the
appropriate metric and guarantees some desirable invariant
properties of the computed penetration depth.

2.1. Motivation
To better understand the need for including the rotation in the
penetration depth computation, consider two different haptic
scenarios (Fig. 1.).

In both cases the cube controlled by the user through a
haptic device lies on the plane. In case (a) the user is trying to
push the cube into the surface and applies force F to the center
of the contact plane whereas in case (b) the user is trying to

rotate the cube into the surface so the force is applied at
the edge of the cube. Existing penalty-based methods4,5,10,17

would yield and send to the controller of the haptic device
roughly the same contact force (albeit different torques)—the
force that is perpendicular to the surface of the plane and is a
function of the penetration depth defined in strictly transla-
tional sense. In reality, however, when the user applies pure
torque to the object (with force components of the wrench
being equal to zero), as in case (b), the computed contact force
should not be the same as in (a); pure instantaneous torque
applied to the object should correspond to the contact wrench
that has only torque components. We thus argue that rather
than basing the penetration depth computation on the transla-
tion only, a new approach is needed that can take into account
full rigid-body configuration (both translation and rotation).

2.2. Formal description of rigid body motion
For kinematic and dynamic modeling we follow the approach
based on configuration space description.18,19 Let us consider
a rigid body moving in space. Assume that there is a fixed
inertial reference frame S and a reference frame T attached
to the rigid body. In general, in order to describe the rigid
body configuration one has to know both its position and
orientation, that is the position and orientation of frame T

with respect to frame S. All possible orientations of the rigid
body form SO(3), the special orthogonal group in R

3 (in ref.
[18]):

SO(3) = {
R ∈ R

3×3| RRT = I3×3, det R = 1
}
. (1)

In a similar fashion in order to unambiguously represent
all possible configurations (including both position and
orientation) of the rigid body, members of SE(3), the special
Euclidean group in R

3 (in ref. [18]), can be used:

SE(3) =
{[

R d

01×3 1

]
∈ R

4×4|R ∈ SO(3), d ∈ R
3

}
. (2)

It can be shown that both SO(3) and SE(3) are indeed groups
under the operation of matrix multiplication18 and they are
smooth three- and six-dimensional manifolds, respectively,
and therefore Lie groups.20

At the identity element of a Lie group the tangent space
has the structure of a Lie algebra which completely captures
the local structure of the group. The Lie algebra of SO(3) is
given by ref. [18]

so(3) = {� ∈ R
3×3|�T = −�}. (3)

Each element � ∈ so(3) can be identified with a vector
ω ∈ R

3 so that �x = ω × x, where the symbol × denotes
the cross product of two vectors. We will also write � = ω̂.

F

(a)

T

(b)

Fig. 1. When the penetration depth for haptic rendering is based on the translation only, forces in cases (a) and (b) are equal.
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Fig. 2. Two rigid bodies in a virtual environment.

Similarly, the Lie algebra of SE(3) is given by ref. [18]

se(3) =
{[

� v

01×3 0

]
∈ R

4×4|� ∈ so(3), v ∈ R
3

}
. (4)

An element of se(3) is referred to as a twist. Each twist can be
identified with a vector ξ = [vT ωT ]T ∈ R

6 where � = ω̂.
The vector ξ ∈ R

6 represents the twist coordinates of the
twist �, and we write � = ξ̂ .

Every possible rigid body configuration is represented
by an element g of SE(3) which in turn can be locally
described by a 6 × 1 vector ξ of exponential coordinates
through the (matrix) exponential mapping,18 g = exp(̂ξ ), ξ̂ ∈
se(3).

2.3. Penetration depth computation
Consider two rigid bodies A and B moving relative to each
other (Fig. 2). The rigid body A is controlled by the user
through the haptic device and the rigid body B is an obstacle
in the virtual environment. Let us denote the configuration
space of the system by Q. To keep things simple we only
consider the relative position of object A with respect to
object B, and we assume that there are no boundary surfaces
so that the configuration space is Q = SE(3). Let A(q) be
the subset of R

3 occupied by the object A at configuration
q ∈ Q. Then the admissible configuration set C is given by
a set of all possible configurations q ∈ Q for which the two
bodies do not collide:

C = {q ∈ Q|A(q) ∩ B = ∅}. (5)

Consider the situation when the body A is in collision with
the body B. We denote this inadmissible configuration by p.
Assuming that the admissible set C ⊂ Q is nonempty we can
define the distance function16 as

dC(p) = min {d(p, q) | q ∈ C}, (6)

which returns the distance between any inadmissible confi-
guration p and the admissible set C. Here the function d(p, q)
is the distance metric function21 between configurations p

and q.
For every inadmissible configuration p we can find an

admissible configuration q such that q ∈ PC(p), where

PC(p) = {q ∈ C | dC(p) = d(p, q)}. (7)

We use C to denote the closure of C. The configuration q is
called a closest-point projection16 of p onto C.

Naturally, the question comes up of what distance metric
function to choose for the computation of d(p, q). It is
important for the metric not to be affected by the scaling of the
objects. This is important because if, for example, an object
P is a scaled version of an object Q, they would look identical
to the user in a haptic simulation since the scale used for the
graphic display of the virtual environment is not absolute.
Therefore, the computed closest-point projections qP and
qQ should also look the same, with the translational part of
one being the scaled version of the translational part of the
other. This condition rules out d(p, q) = d(I4×4, p

−1q) =
||ξp−1q ||2 as a possible solution, where ξp−1q represents
the exponential coordinates of the configuration p−1q. An
attractive solution is to define the distance metric as the
kinetic energy needed to move between configurations p

and q in a unit of time:

d(p, q) = T = Ṽ TMṼ , (8)

where Ṽ is defined below and roughly corresponds to the
twist coordinates of the body velocity of the rigid body A

moving from p to q, while M is the generalized inertia
matrix. To compute the body velocity Ṽ represented in the
twist coordinates we use the fact that if g(t) ∈ SE(3) describes
the motion of a rigid body, then the body velocity V̂ ∈ se(3)
of the rigid body is18

V̂ = g−1 dg

dt
. (9)

To compute Ṽ , take g to be the configuration located at the
midpoint between p and q, that is

g = p exp

([
ξp−1q

2

]∧)
. (10)

The derivative of g can be approximated by

dg

dt
= q − p

�t
. (11)

The time interval �t it takes to get from the inadmissible
configuration p to an admissible configuration q is assumed
to be the same for each possible configuration q considered.
Therefore, without a loss in generality we can assume that
�t = 1 so that dg/dt ≈ q − p. We thus have the final
expression:

[
Ṽ

]∧ = exp

([
−ξp−1q

2

]∧)
p−1(q − p), (12)

where Ṽ are the twist coordinates of
[
Ṽ

]∧
.

Recall that the generalized inertia matrix M in the case
where the body reference frame is placed at the center of
mass of a rigid body is given by

M =
[

mI3×3 03×3

03×3 H

]
, (13)

where m is the mass of the object and H is the inertia tensor.
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The distance metric defined through Eqs. (8) and (12) is
insensitive to the scaling of the objects. Another important
property of this distance metric is its bi-invariance: no matter
how the inertial frame and the body reference frame are
chosen, the distance metric d(p, q) remains the same. This
is due to the nature of the kinetic energy. Formally, the bi-
invariance means that

d(p, q) = d(ap, aq) = d(pb, qb), (14)

where a, b ∈ SE(3). The bi-invariance of the distance metric
is sufficient for the metric to be well-defined.21 Therefore,
there is no need to stay in the neighborhood of the identity
element of SE(3) when measuring the distance between two
configurations. It is also worth mentioning that the mass
properties of the object will not affect the metric, but it does
depend on the shape of the object. The latter can be seen as
an advantage over the approach in ref. [4], where the reaction
wrench is independent of the shape of the object.

Note that using the metric in Eq. (8), out of all possible
motions between the current configuration p and configu-
rations in the admissible set C, the motion between p and
its closest-point projection q requires the least amount of
kinetic energy. The above defined closest-point projection is
therefore energy optimal.

2.4. Wrench computation
Suppose we determine the optimal admissible configuration
q as the closest-point projection onto the admissible set C in
accordance with Eq. (7). Then the penalty-based approach
for the wrench computation can be used. First we compute
the vector ε of the differences between the twist coordinates
of the (current) inadmissible configuration p and the optimal
admissible configuration q. Note that in order for the result
to be independent of the chosen inertial reference frame, we
compute the difference at the identity element of SE(3):

ε = ξp−1q − ξp−1p = ξp−1q . (15)

One can think of the vector ε as the generalized penetration
depth. It is equal to zero if and only if p = q. This can only
happen when p ∈ C which means that the rigid body is not
in collision.

Once the penetration depth has been computed, any appro-
priate scheme can be used to compute the wrench. Motivated
by the existing approaches, we use the proportional-integral-
derivative (PID) control law. Accordingly, the wrench
WT (t) = [f T(t) τT(t) ]T at each time instance is computed
as

WT (t) = KP ε(t) + KI

∫ t

0
ε(τ )dτ + KD

dε(t)

dt
, (16)

where KP , KI , KD are 6 × 6 matrices. In fact, the matrices
KP and KD have the physical interpretation as the stiffness
and damping matrices, respectively. Even though the
stiffness matrix KP is in general asymmetric,22 for the
sake of simplicity one can assume that it is symmetric and
diagonal. It can be therefore written as KP = kP I6×6, so
that a single stiffness parameter kP is needed. The same
simplification can be made for matrices KI and KD .

The wrench WT (t) is expressed in the body coordinate
frame. The same wrench expressed in the global coordinate
frame is WS(t) = AdT

p−1WT (t), where for p = (R, d) ∈
SE(3), the adjoint transformation Adp : R

6 → R
6 is

Adp =
[

R d̂R

0 R

]
.

The wrench WS(t) is the nominal wrench sent to the haptic
device.

3. Implementation

The procedure for computation of the six-dimensional
wrench is described by Algorithm 1. The data flow diagram
for the algorithm is given in Fig. 3. In order to find the
closest-point projection onto the admissible set C in line 4 of
Algorithm 1, it is necessary to minimize the function d(p, q).
There are two different ways of approaching this problem:
numerical optimization and analytical methods.

Algorithm 1 Haptic rendering algorithm.
1: loop

2: if A and B in collision then

3: Let p be the current inadmissible configuration.
4: Using the proposed kinetic energy metric, find the

admissible configuration q = arg minr∈C d(p, r).
5: Compute the configuration matrix p−1q corres-

ponding to the relative displacement between p and
q.

6: Compute the difference vector ε = f1(p, q) using
Eq. (15).

7: Compute the body wrench WT = f2(ε) using Eq.
(16) and find the corresponding spatial wrench WS .

8: Set the wrench WS to be the nominal input for the
controller of the haptic device.

9: end if

10: end loop

Generically, assuming fast refresh rates, either vertex-face
or edge-edge collision configurations are possible.23 We will
describe the computations for the vertex-face collision and

simulation

COLLISION
DETECTION

CHECK

ENERGY OPTIMAL
ADMISSIBLE CONFIGURATION

SOLVER
W=f (ε)

HAPTIC DEVICE
CONTROLLER

continue

yes

no

p ε W

Fig. 3. Data flow diagram for the 6-DOF wrench computation.
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subsequently show that the edge-edge collision can be dealt
with in a similar fashion.

3.1. Computing the distance using numerical optimization
There are many well-known optimization methods that
can be applied to finding the optimal (minimum distance)
configuration of the rigid body. The main requirement is that
the optimization procedure is as fast and efficient as possible.
If the minimization is done directly in SE(3) then a full 4 × 4
configuration matrix must be searched for. However, since
not every 4 × 4 matrix is a member of SE(3), we can use this
information to lower the number of unknown optimization
parameters. In particular, we can represent the configuration
space SE(3) in the neighborhood of the current inadmissible
configuration p with exponential coordinates which in turn
correspond to vectors in R

6. Also, it is convenient to start the
optimization with the last recorded admissible configuration
as an initial guess.

The main limitation of the proposed algorithm is its
computational cost: even simple numerical examples take
around 4 sec to run in Matlab on a 1 GHz CPU. While this
time can be reduced through compilation it is clear that the
optimization-based approach can be quite computationally
demanding. Therefore, even though the approach is general
and simple to implement, the computational complexity of
applying direct numerical optimization in complex virtual
environments might be prohibitively high for real-time
implementation.

3.2. Analytical solution in 2D
As an alternative to the numerical optimization we propose
an analytical approximation of the solution that is fairly
accurate and can be computed at sufficiently high rates. We
first describe the method for a two-dimensional case, where
the analytical solution is exact. Then we discuss how to use
these results in a general three-dimensional case.

In a two-dimensional case a planar body can only move on
a plane and rotate around the axis perpendicular to the plane.
Let us assume that the body is a convex polygon. Let us also
assume that only one vertex of the body is in collision. This
is virtually always the case for real-time simulations with
refresh rates of several hundred hertz. After the collision is
detected the body resides in some inadmissible configuration
p. Such situation is depicted in Fig. 4, where the region below
the x-axis coincides with the planar obstacle. Here, T is the
body reference frame placed at the center of mass of the
body, h is the y-coordinate of the reference frame T , and ϕ

x

y

T
h

ϕ

Fig. 4. Inadmissible configuration of a planar body after collision.

T

x

y

β
θ

Fig. 5. Minimum energy admissible configuration of a planar body.

is the angle between the reference frame T and the global
reference frame.

We are looking for the admissible configuration q ∈ PC(p)
of the body that is a closest-point projection of configuration
p onto the admissible set C. Such a configuration q

minimizes the distance metric given by Eq. (8). Configuration
q (Fig. 5) can be parametrized by the y-coordinate β of the
body reference frame T and the angle θ between the reference
frame T and the main spatial reference frame. Using energy
considerations it can be shown that the x-coordinate of the
reference frame T corresponding to the optimal configuration
q is the same as the x-coordinate of p.

In this general setup the body velocity V can be evaluated
according to the expression in Eq. (12), and

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(β − h) sin

(
θ + ϕ

2

)

(β − h) cos

(
θ + ϕ

2

)
0

0

0

2 sin

(
θ − ϕ

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17)

Then, according to Eq. (8),

T = m(β − h)2 + 4H3,3 sin2

(
θ − ϕ

2

)
, (18)

where H3,3 is the (3, 3) element of the inertia tensor matrix
H . Given parameters h and ϕ, we can find β and θ in
the admissible set such that the expression in Eq. (18) is
minimized. Given β and θ , the desired configuration q is
then computed as

q =

⎡
⎢⎣

cos θ − sin θ 0 p1,4

sin θ cos θ 0 β

0 0 1 0
0 0 0 1

⎤
⎥⎦ , (19)

where p1,4 is the (1, 4) element of the original configuration
matrix p.

Using energy considerations it can be shown that in the
optimal configuration, the y-coordinate of the vertex v is
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y

x
Tv γ

θ

Fig. 6. An example of a situation that has to be accounted for in
optimization constraints.

equal 0. This results in

β = −vx sin θ − vy cos θ, (20)

where vx and vy are x- and y-coordinates of the vertex v in
the body reference frame, respectively. To prevent situations
like the one depicted in Fig. 6, we also need to satisfy the
constraint

0 ≤ θ ≤ π − γ, (21)

where γ is the internal angle of the planar body associated
with the vertex v. This constraint will be used later to
check whether the obtained solution is in the admissible
configuration set.

Using Eqs. (18) and (20), our optimization function is

J = m(−vx sin θ − vy cos θ − h)2 + 4H3,3 sin2

(
θ − ϕ

2

)
.

(22)

To find the critical value θ̃ of the parameter θ minimizing the
functional given by Eq. (22), the following equation needs to
be solved:

∂J

∂θ

∣∣∣∣
θ=θ̃

= m
(
v2

x − v2
y

)
sin 2θ + 2mvxvy cos 2θ

+ 2mh(vx cos θ − vy sin θ)

+ 2H3,3 sin(θ − ϕ) = 0. (23)

It can be shown that solving Eq. (23) for θ̃ results in

θ̃ = 2 arctan x, (24)

where x is a solution of a quartic equation

A1x
4 + B1x

3 + C1x
2 + D1x + E1 = 0, (25)

where

A1 = mvxvy − mvxh + H3,3 sin ϕ, (26)

B1 = 2
(
H3,3 cos ϕ − mhvy − mv2

x + mv2
y

)
, (27)

C1 = −6mvxvy, (28)

D1 = 2
(
H3,3 cos ϕ − mhvy + mv2

x − mv2
y

)
, (29)

E1 = mvxvy + mvxh − H3,3 sin ϕ. (30)

Closed form solutions of quartic equations can be obtained
using for example the classic Ferrari’s method24 which is fast
and reliable.

After solving Eq. (25) for x and obtaining the critical value
θ̃ of θ the constraint described by Eq. (21) has to be checked
and the value Tθ=θ̃ of the energy function in Eq. (18) has
to be computed. Also, the border values Tθ=0 and Tθ=π−γ

of the energy function have to be computed for θ = 0 and
θ = π − γ . If the obtained θ̃ satisfies the constraint, then the
optimal value θ0 of θ is

θ0 = arg min
θ

{Tθ=0, Tθ=θ̃ , Tθ=π−γ }. (31)

If the obtained θ̃ does not satisfy the constraint described by
Eq. (21), then

θ0 = arg min
θ

{Tθ=0, Tθ=π−γ }. (32)

From here, the optimal values of βθ=θ0 and qθ=θ0 could be
obtained as shown in Eqs. (20) and (19).

3.3. Approximation of analytical solution in 3D
We will obtain a solution for the 3D case by combining
solutions for 2D cases. If we have a 3D virtual environment
with a user-controlled convex rigid body A, then we can
apply the 2D technique described in Section 3.2 to any cross
section of the rigid body containing the vertex v in collision.

Without loss of generality let us arrange the axes X, Y ,
and Z so that the plane XZ is the surface of the obstacle and
some vertex v collided with it. The projection of the rigid
body on the XY -plane thus corresponds to Fig. 4.

Now consider the family of planes � = {Pδ | δ ∈ [0, π)}
obtained by rotating the XY plane around the line parallel
to the Y -axis and containing the vertex v. Each plane Pδ of
the family is thus parametrized by its rotation angle, δ =
� (Pδ, XY ). Figure 7 shows an example of two distinct planes
Pδ1 and Pδ2 belonging to the family �.

Each δ generates a planar cross-section Pδ ∩ A. Con-
sidering this cross-section to be a 2D body, it is possible to
compute the optimal solution of the rigid body constrained
to Pδ using the procedure described in Section 3.2. The plane
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0 50
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–40

–20

0

20

40

60

80

100

–100

–50

0

50

100x

y

z

Fig. 7. Example of two bisecting planes Pδ1 and Pδ2 in family �.
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Pδ passing through the vertex v is given by the equation

Pδ(v) = A2x + C2z + D2 = 0, (33)

where

A2 = tan δ, (34)

C2 = 1, (35)

D2 = −vx tan δ − vz, (36)

and vx and vz are x- and z-coordinates, respectively, of the
vertex v in the global reference frame.

In order to follow the procedure in Section 3.2, the internal
angle γ of the planar cross-section of the rigid body needs to
be computed. Let us assume that the rigid body A is described
by a set of triangles �1, �2, . . . , �m (as it is common
in computer graphics) and consider a sequence of points
Nv = {v1, v2, . . . , vn} such that ∀i ∈ Nv a triplet of points
{v, vi, vi+1} (where vn+1 ≡ v1 by convention) describes a
triangular face �i adjacent to the vertex v. Given a plane Pδ ,
the angle γ can be then computed using Algorithm 2.

Algorithm 2 Algorithm for computing the cross-section
angle γ .

1: if Pδ coincides with a face �i then

2: �w1 = vi − v

3: �w2 = vi+1 − v

4: else

5: if Pδ passes through two distinct edges (v, vi) and
(v, vj ) then

6: �w1 = vi − v

7: �w2 = vj − v

8: else

9: if Pδ passes through an edge (v, vi) and bisects a
face �j then

10: �w1 = vi − v

11: �w2 = vj + s(vj+1 − vj ) − v where

s = A2vj,x + C2vj,z + D2

A2vj,x + C2vj,z − A2vj+1,x − C2vj+1,z

12: else

13: if Pδ bisects two distinct faces �i and �j then

14: �w1 = vi + s(vi+1 − vi) − v where

s = A2vi,x + C2vi,z + D2

A2vi,x + C2vi,z − A2vi+1,x − C2vi+1,z

15: �w2 = vj + s(vj+1 − vj ) − v where

s = A2vj,x + C2vj,z + D2

A2vj,x + C2vj,z − A2vj+1,x − C2vj+1,z

16: end if

17: end if

18: end if

19: end if

20: γ = arccos �w1· �w2

| �w1|| �W2|

Next, we discuss how the 2D solutions for δ ∈ [0, π) can
be combined to form a general 3D solution. As we have seen,
for a given object with the known mass, inertia matrix, center
of mass, and coordinates of the vertices, a 2D problem can
be solved for each value of the angle δ (and the bisecting

plane Pδ) using the procedure in Section 3.2. Let us denote
the obtained solution as

G2D(δ) =
[

βδ

θδ

]
. (37)

Recall that θδ is the optimal angle of rotation in the plane Pδ .
It is easy to see that the corresponding axis of rotation ωδ

expressed as a vector in 3D for a particular value of δ can be
determined as ωδ = [ sin δ 0 cos δ ]T.

Solution in Eq. (37), obtained in 2D, can be expressed in
3D by adding the information about the rotation axis ωδ . Let
us denote

G3D(δ, G2D(δ)) =
⎡
⎣ βδ

θδ

ωδ

⎤
⎦ . (38)

For each G3D(δ, G2D(δ)) there is the corresponding
3D configuration q(G3D(δ, G2D(δ))) and the distance
metric d(p, q(G3D(δ, G2D(δ)))). Then the optimal solution
[βδ0 ωδ0 θδ0 ]T which describes the closest point projection of
p can be determined by

δ0 = arg min
δ∈[0,π)

d(p, q(G3D(δ, G2D(δ)))). (39)

In practice, δ0 can be found by appropriately discretizing the
interval [0, π) and finding the maximum over the resulting
discrete set �:

δ0 ≈ arg min
δ∈�

d(p, q(G3D(δ, G2D(δ)))). (40)

A convenient choice for � is � = {
nπ
Nδ

∣∣n = 0,

1, . . . , Nδ − 1
}

where Nδ is the number of discretization
points.

3.4. Edge-edge collision
We next show that the edge-edge collision (Fig. 8) can be
dealt with similarly to the vertex-face collision considered
earlier. Assume that the edges in contact are a and b, and
that they belong to rigid bodies A and B, respectively. To
simplify the problem consider the edges to be infinite lines
in space.

It can be seen that there are only two rotational degrees
of freedom that are necessary to bring the rigid body A out
of collision. To illustrate this, consider the plane Q such
that a ⊂ Q and b||Q (the singular case when the two edges

A

B

a

b

Fig. 8. A general edge-edge collision configuration.
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coincide can be treated as two vertex-face contacts). It is then
obvious that the rotation of A in the plane Q is not energy
optimal. A similar argument shows that only the translation
in the direction perpendicular to Q should be used to compute
the closest-point projection.

Upon closer inspection, the parameters that describe
the closest-point projection in the edge-edge case are
thus identical to the vertex-face collision. Due to the
same parametrization the two problems thus have identical
solution, so the edge-edge collision can be treated similarly to
the vertex-face case. In particular, taking the bisection of the
object A with a plane P perpendicular to Q and containing
the common normal of the edges a and b, we obtain exactly
the configuration described by Fig. 4. The closest-point
projection restricted to P can be thus computed as described
in Section 3.2. The 3D solution can be subsequently obtained
by rotating the plane P along the common normal of the
edges a and b and combining the 2D solutions as outlined in
Section 3.3.

3.5. Computational performance of analytical
approximation
One of the most important requirements for any haptic
rendering algorithm is its ability to provide results in the
specified time interval. In haptics, 1 kHz is the de facto
standard refresh rate. Studies have shown that the absolutely
minimal acceptable haptic refresh rate is 500 Hz.25

We have analyzed the performance of the proposed
analytical method on a 1 GHz CPU. For the purpose of
this analysis the proposed method can be divided into three
stages:

1. Computation of a 2D solution. The query rate for this stage
only was measured to be about f1 = 60 kHz. It is roughly
constant for all possible cases.

2. Computation of the angle γ of each planar cross-
section. The query rate for this stage in the worst case
scenario corresponding to lines 14–15 in Algorithm 2 was
measured to be at least f2 = 226 kHz. For other cases it
was greater than this value.

3. The procedure for combining the family of 2D solutions
into a 3D optimal solution. The query rate for this stage is
very high compared to the other two stages, so this stage
can generally be neglected.

Query rate for stages 1 and 2 combined is therefore

f = (
f −1

1 + f −1
2

)−1 = 47 kHz. (41)

The computation in stages 1 and 2 should be performed
Nδ times, so, taking into account the overhead in stage 3, the
effective query rate is

f0 ≤ f

Nδ

. (42)

For realistic haptic rendering we need to make sure that
f0 ≥ 1 kHz, therefore in our case Nδ ≤ 47. This would give
us the step size �δ ≥ 3.8◦ which gives sufficient degree of
accuracy. It is worth mentioning that the computations in
stages 1 and 2 can be performed in parallel. In particular,
the algorithm can easily take the advantage of the modern
multi-core processors so we argue that it is a feasible
alternative to the haptic rendering algorithms currently in
use.

4. Examples

We illustrate the proposed methodology with two examples.
The first example shows how the closest-point projection
can be computed for a typical collision configuration. In the
second example, the trajectories of a rigid body are computed
under the proposed haptic rendering algorithm, and under a
traditional translation-based haptic rendering algorithm. It is
shown that the two algorithms produce significantly different
torque profiles.

4.1. Example: Closest-point projection calculation
Consider a virtual environment consisting of a cube
controlled by the user’s haptic device and an obstacle in
the form of a plane. In this particular example the cube has
sides of length 50 cm and it can move freely in the half-
space {y > 0}. The mass m of the cube is 1 kg (note that the
choice of the mass does not affect the computation). Suppose
the user applies a pure torque trying to rotate the cube into
the plane. After the collision detection routine has detected
the interpenetration of the cube and the plane we have a
situation like the one depicted in Fig. 9(a). This configuration
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Fig. 9. Example: (a) a cube is rotated into the plane by the user, (b) the closest admissible configuration (in the energy optimal sense).
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is described by a configuration matrix

p =

⎡
⎢⎢⎢⎣

0.9801 0.1987 0 0

−0.1987 0.9801 0 25.0000

0 0 1.0000 0

0 0 0 1.0000

⎤
⎥⎥⎥⎦ . (43)

The exponential coordinates of p are

ξp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2.5000

24.9166

0

0

0

−0.2000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (44)

The closest-point projection on the admissible set C

described by Eqs. (6), (7) and (8) was computed through
numerical optimization. The exponential coordinates of the
energy optimal configuration q are

ξq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.1737

27.0543

0

0

0

−0.0867

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (45)

The corresponding configuration matrix is

q =

⎡
⎢⎢⎢⎣

0.9962 0.0866 0 0

−0.0866 0.9962 0 27.0712

0 0 1.0000 0

0 0 0 1.0000

⎤
⎥⎥⎥⎦ . (46)

The minimum of the energy function in Eq. (8) is found to
be Tmin = 9.6315. The difference vector can be computed as

ε = ξp−1q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2959

2.0510

0

0

0

0.1133

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

In this case we used the conjugate gradient method26 for
the numerical optimization. The configuration space SE(3)
was represented with the exponential coordinates so that
the search was performed on the space R

6. The vector
of exponential coordinates ξq0 corresponding to the last
recorded admissible configuration q0 was chosen as the initial

value for the optimization procedure:

ξq0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

25.0000

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (48)

q0 =

⎡
⎢⎢⎢⎣

1.0000 0 0 0

0 1.0000 0 25.0000

0 0 1.0000 0

0 0 0 1.0000

⎤
⎥⎥⎥⎦ . (49)

Analysis of the solution in Eq. (47) reveals that the
wrench needed to bring the cube from configuration p to
configuration q consists of forces in both Y - and X-directions
as well as a torque around the Z-axis. Comparing the
computed wrench with the one computed by the traditional
penalty-based computational approach, we see that the latter
would have only the force in the Y -direction with a greater
magnitude than in our solution (since the penetration depth
in configuration p is around 4.5 mm) as well as the torque
computed as a cross product between the vector from the
center of mass of the object to the contact point and the force
vector. The wrench computed using our proposed method is
thus quite different from the one computed by the existing
penalty-based methods. The closest admissible configuration
in the energy optimal sense is shown in Fig. 9(b).

Let us look at the same example but with dimensions of
the cube and all the coordinates of the virtual environment
scaled by a factor of 10. Thus, the inadmissible configuration
matrix

p =

⎡
⎢⎢⎢⎣

0.9801 0.1987 0 0

−0.1987 0.9801 0 250.0000

0 0 1.0000 0

0 0 0 1.0000

⎤
⎥⎥⎥⎦ . (50)

In this case our proposed procedure yields the energy optimal
configuration matrix

q =

⎡
⎢⎢⎢⎣

0.9962 0.0866 0 0

−0.0866 0.9962 0 270.7122

0 0 1.0000 0

0 0 0 1.0000

⎤
⎥⎥⎥⎦ . (51)

These configurations are depicted in Fig. 10. The obtained
solution is exactly the same as in the previous case except that
all the translational parameters are scaled by a factor of 10.
Our proposed method handles these situations appropriately
because the rigid body configuration it finds is the one that
requires the minimum amount of energy.
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Fig. 10. Example: (a) a cube is rotated into the plane by the user, (b) the closest admissible configuration (in the energy optimal sense).
The virtual environment is scaled by a factor of 10.

4.2. Example: Dynamic simulation
To illustrate the differences in the results obtained using
our proposed method and the traditional penalty-based
approaches we study the trajectories during a collision of
two rigid bodies. Consider a virtual environment as in
Example 4.1, where the cube can move freely in the half-
space {y > 0}, the other half-space representing an obstacle.
The initial inadmissible configuration is described by the
configuration matrix

p =

⎡
⎢⎢⎢⎣

0.6061 −0.7954 0 0

0.7954 0.6061 0 34.1817

0 0 1.0000 0

0 0 0 1.0000

⎤
⎥⎥⎥⎦ . (52)

The exponential coordinates of p are

ξp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

15.7174

31.7380

0

0

0

0.9196

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)

In the example we consider the case when the cube is initially
rotating with a constant body velocity

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−5

0

0

0

0.2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (54)

Then, at a certain point it collides with the obstacle plane
and the haptic rendering algorithm is run to compute the
forces and torques resulting from the collision. In this case
we used the proposed analytical approximation method to
find the optimal minimum-energy admissible configuration.
The computed forces and torques are applied to the cube
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Fig. 11. The trajectory of the rigid body and its center of mass (solid
line) projected on the XY -plane using the proposed energy-optimal
method. The initial configuration of the body is shown in bold and
the initial position of its center of mass is represented with a circle.

and affect its motion until it gets out of the collision, after
which it continues to move with a constant velocity. The
simulation was run with a sampling period of �T = 0.05sec
for Nt = 120 steps.

We ran our proposed method side by side with the
traditional penalty-based approach suitable for 6-DOF haptic
rendering4 (with kP = 1, kI = 0.5, kD = 0.1). As expected,
they yield quite different results. The trajectories obtained
using our proposed energy-optimal closest-point projection
and the traditional approach that bases the computation
on the translational penetration are shown in Figs. 11–12,
respectively.

Comparing the trajectories of the center of mass of the
body projected on XY -plane for each of these two cases
(Fig. 13) one can see that the trajectories diverge at a certain
point during the simulation. This point is exactly the instance
when the collision is detected and the haptic rendering
algorithm is executed.

The rendered forces and torques are also quite different for
each of these two cases. The force fy in the Y -direction and
the torque τz in the XY -plane are shown in Figs. 14–15,
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Fig. 12. The trajectory of the rigid body and its center of mass (solid
line) projected on the XY -plane using the existing penalty-based
method. The initial configuration of the body is shown in bold and
the initial position of its center of mass is represented with a circle.
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Fig. 13. The trajectory of the center of mass projected on the XY -
plane using the proposed energy-optimal method (solid line) and the
traditional approach (dashed line). Cross-marks show the starting
and ending points of the collision.

0 1 2 3 4 5 6
0

2

4

6

t, sec

f y
, 
N

0 1 2 3 4 5 6
0

6

4

2

t, sec

f y
, 
N

Fig. 14. The rendered force in the Y -direction computed by the
proposed energy-optimal method (solid line) and the traditional
approach (dashed line).
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Fig. 15. The rendered torque in the XY -plane using the proposed
energy-optimal method (solid line) and the traditional approach
(dashed line).

respectively. The figures show that the two approaches
produce similar forces, but that the traditional penalty-based
approach results in a significantly higher value of the torque,
possibly exceeding the admissible torque range of the haptic
device.

5. Discussion

Penalty-based haptic rendering techniques rely on
penetration depth estimation to compute forces and torques
displayed by the haptic device. Existing approaches define
penetration depth strictly in the translational sense and
might not handle the object rotations properly. This paper
proposes a method where the full configuration of the
object (translation and rotation) is taken into account when
computing the penetration depth. The presented numerical
examples show that when the rigid body is rotated into
the surface, the contact wrench computed by the proposed
method has both torque and force components but differs
substantially from the one computed using the traditional
methods. This is due to the fact that in the proposed method
full configuration is considered, not only its translational part.
We hypothesize that the proposed approach could result in a
more realistic haptic simulation, but user studies are needed
to confirm the hypothesis.

The method can be easily extended to the case of multi-
point collision by adding the wrenches computed for each
of the collision points. Other issues such as the ability to
deal with the pop-through artifacts, force discontinuities, and
friction can be dealt with in exactly the same way as in
the existing penalty-based approaches. For instance, implicit
integration5 can be used to deal with force discontinuities,
and recent work17 suggests how to take friction into account.

6. Conclusion

The proposed haptic simulation technique provides a
theoretical basis for realistic haptic rendering of 6-DOF
virtual environments. It is based on the analysis of the
configuration matrix of the user-controlled haptic object
and determining its energy optimal projection onto the
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set of admissible configurations. We have shown that the
configuration space allows for more accurate analysis of rigid
body motion.

There are two ways to implement our proposed technique:
by direct numerical optimization and using an analytical
approximation. The main limitation of direct numerical
optimization is its computational cost. It can successfully
work only on fast computers and in simple cases. As an
alternative, we describe an analytical method to approximate
the solution. In the planar case, the solution can be obtained in
the closed form. By bisecting the object with a one-parameter
family of planes, leading in each case to a planar problem,
the solution in the general case can be obtained by a one-
dimensional search. The proposed analytical approximation
is quite fast and its accuracy can be adjusted to take advantage
of the available computational power.

While the examples show that the proposed haptic
rendering algorithm produces forces and torques that might
be more appropriate for haptic simulation, an important step
in evaluating haptic algorithms are user evaluations. These
are beyond the scope of the current paper and are left for
future work. It is also worth mentioning that although the
proposed method assumes that a 6-DOF haptic device is used
for rendering, it provides a theoretical basis for studying how
a general 6-DOF wrench can be rendered with a low-degree-
of-freedom haptic device.
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