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Tetraspanins, also called tetraspans or the transmembrane 4 superfamily
(TM4SF), are cell-surface proteins that span the membrane four times and are
found on many different cell types in many organisms. They display numerous
properties that indicate their physiological importance in cell adhesion, motility,
activation and proliferation, as well as their contribution to pathological
conditions such as metastasis or viral infection. A major characteristic of
tetraspanins is their ability to form cell-surface complexes with other molecules
participating in cell adhesion, either to the extracellular matrix (ECM) or to
other cells, and with molecules required for signalling. It is not yet known how
the structure of the complexes might affect the functions of other molecules or
what basic biochemical mechanisms allow their formation and regulation.
Nevertheless, an intriguing association between tetraspanin expression and
metastatic potential indicates that these molecules may provide novel insights
into tumour progression.

The existence of a superfamily of molecules that
was later called tetraspans, tetraspanins or the
transmembrane 4 superfamily (TM4SF) became
evident in the early 1990s after gene cloning of
several cell-surface molecules identified up to a
decade earlier using monoclonal antibodies
(mAbs). The tetraspanins are integral membrane

proteins characterised by the presence of
four hydrophobic (transmembrane) domains
delimiting two extracellular regions of unequal
sizes (Fig. 1). An important sequence homology
with conserved amino acids distinguishes them
from other proteins with four transmembrane
domains: all tetraspanins have four, six or eight
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cysteine residues with a CCG motif in the large
extracellular domain (Refs 1, 2, 3).

The tetraspanin superfamily has now grown
to 25 members. Among these are the leukocyte
differentiation antigens CD9, CD37, CD53, CD63,

CD81/TAPA-1, CD82/Kai1 and CD151/PETA-3.
Other tetraspanins include: CO-029 and SAS,
which were discovered on nonhaematopoietic
tumours (Refs 4, 5); the uroplakins UP1a and
UP1b, which are constituents of the asymetric

Figure 1. Schematic drawing of the predicted structure of the tetraspanins. The structure proposed here
is based on primary amino acid sequence and has yet to be confirmed by crystallographic studies. The conserved
amino acids are indicated as circles (blue = conserved amino acids; magenta = conserved cysteine residues of
the EC2 domain; orange = charged amino acids found in the third or fourth transmembrane domains). The size
of the circles indicates whether there are one (small circle) or more (large circle) amino acids conserved at this
position; x indicates a position where all amino acids are potentially accepted. The tetraspanins are composed
of 210 (tetraspanin SAS) to 347 (tetraspanin RDS, encoded by the retinal dystrophy syndrome gene) amino
acids. The highest level of homology is found within the hydrophobic (transmembrane) domains. The small
extracellular loop (EC1) contains 20–28 amino acids, whereas the large extracellular loop (EC2) contains
76–131 amino acids. The cytoplasmic tails contain fewer than 15 amino acids, although the tetraspanins RDS
and NET-2 have approximately 60 amino acids in their C-terminal cytoplasmic domains (Refs 7, 9). Most
tetraspanins are potentially glycosylated in EC2, except for CD9, which is glycosylated in EC1 (Ref. 97), and
CD81 (Ref. 13), which is not glycosylated. Although the tetraspanins are acylated, the cysteine residues involved
have not yet been identified (fig001cbv).

Schematic drawing of the predicted structure of the tetraspanins
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unit membranes of the urothelium (Ref. 6); and
the proteins encoded by the retinal dystrophy
syndrome genes, RDS/peripherin and Rom1,
which are found in the photoreceptor outer
segment disc (Ref. 7). Analysis of human cDNA
databases by several laboratories has also lead
to the discovery of ten new members, variously
called Tspan-1–6 (Ref. 8), NET-1–7 (for ‘new
EST tetraspanin’; Ref. 9) and TM4-B (Ref. 10).
The molecules L6 and IL-TMP also have four
transmembrane domains and were originally
considered as tetraspanins, but the discovery and
sequence analysis of two closely related molecules
(L6D and TM4SF5) suggest that they constitute a
separate superfamily (Ref. 11). KRAG/sarcospan,
a protein of the dystrophin/dystroglycan
complex, has also been suggested to belong

to the tetraspanin superfamily on the basis of
structure; however, this molecule has a very low
level of homology with genuine tetraspanins (Ref.
12). Figure 2 shows a dendrogram of 25 human
tetraspanins created from a Blast2 search of cDNA
sequences in GenBank, indicating the molecular
distance between them. The superfamily of
tetraspanins is old in evolutionary terms since
the invertebrates Drosophila, Schistosoma and
Caenorhabditis elegans also express these molecules.
Such conservation of tetraspanin gene structure
strengthens the assumption that these molecules
derive from a common ancestor.

Certain tetraspanins have a restricted pattern
of expression (for example CD53 is highly
restricted to leukocytes). Others, such as the
leukocyte differentiation antigens CD81 and
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Dendrogram comparing amino acid identity of human tetraspanins
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Figure 2. Dendrogram comparing amino acid identity of human tetraspanins. The relative branch length
of this dendrogram (or distance tree) indicates the distance (% of amino acid differences) between the different
tetraspanins. Comparisons were based on the whole amino acid length of each tetraspanin found by Blast2
search of cDNA sequences in Genbank. Abbreviations: NET, new EST tetraspanins; RDS, retinal dystrophy
syndrome; UP, uroplakin (fig002cbv).
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CD82, which were originally described on
haematopoietic cells, can be found on most
studied cultured cells. All studied mammalian
cells express several members of the tetraspanin
family, with the exception of red blood cells, which
express none (Ref. 3).

Elucidating tetraspanin functional
properties

What do tetraspanins do? Three different types
of experiments have yielded information on
their functional properties. The first approach
has been the analysis of the cellular effects of
anti-tetraspanin antibodies, the second evaluates
the effects of overexpression by transfection and
the third relates the phenotype of genetic defects
caused either by gene knockout or by human
genetic diseases. The molecular mechanims of
the pleiotropic cellular effects are not known
but may rely, as discussed in a later section,
on the existence of a network of molecular
interactions orchestrated by tetraspanins.

Anti-tetraspanin antibodies
The targeting of tetraspanins by specific mAbs has
yielded a variety of functional effects. For instance,
anti-CD81 mAbs inhibit cell proliferation (Ref.
13), anti-CD82 (Ref. 14), -CD81 and -CD53 (Ref.
15) mAbs costimulate lymphoid cells, anti-CD81
and -CD151 mAbs inhibite neurite outgrowth
(Ref. 16), anti-CD9 mAbs induce homotypic
cellular adhesion (Ref. 17), and a variety of anti-
tetraspanin antibodies inhibit or stimulate cell
migration (Ref. 10; Table 1). The induction of
human platelet activation/aggregation by anti-
CD9 mouse IgG1 is initiated by the crosslinking
of the platelet FcγRII (Refs 18, 19). However, this
mechanism does not seem to be involved in other
major effects of tetraspanin antibodies.

Experiments aimed at identifying the surface
molecules that control migration of cultured
tumour cells yielded the first indication that a
tetraspanin, CD9, is involved in cell migration.
Among the 3000 hybridoma antibodies produced
against the lung adenocarcinoma cell line
MAC8, the strongest inhibition of cell motility
was found with an antibody that was shown to
recognise CD9 (Ref. 20). This was repeatedly
confirmed for CD9 and other tetraspanins in
various cellular models (Ref. 10). In addition, a
correlation between the level of expression of the
tetraspanin CD63 in transfected melanoma cells
and the inhibition of migration by anti-CD63

mAbs has been reported (Ref. 21). Furthermore,
particular experimental conditions may lead to a
stimulation of cell migration, as for Schwann cells
on axons by anti-CD9 antibodies (Ref. 22), MDA-
MB231 breast carcinoma cells by several anti-
tetraspanin antibodies (Ref. 23) and endometrial
carcinoma cells by anti-CD9 antibodies (Ref. 24).

Overexpression of tetraspanins
The ectopic expression of tetraspanins in cultured
cell lines induces apparently contradictory
effects on cell migration. Tetraspanin expression
seems to reduce migration when no extracellular
matrix (ECM) component is added (Refs 6, 21, 25),
whereas motility seems to increase in the
presence of some β1 integrin substrates (Refs 10,
17, 21, 26). Cell motility is a complex process that
is influenced, on the one hand, by the nature of
the ECM and the presence of growth factors,
proteinases and other components and, on the
other hand, by the pattern of expression and
state of activation of cell-surface receptors (Refs
27, 28). These parameters were not controlled
in the reported experiments; in addition, as
discussed below, ECM substrates such as laminin,
fibronectin and matrigel do not necessarily
reproduce the composition and structure of
ECM found in tissues. Thus, results of in vitro
experiments must be interpreted cautiously
regarding their in vivo relevance.

Genetic defects in tetraspanins
The consequence of the absence of CD81, CD37
and CD9 has been investigated using gene-
knockout mice. CD81 knockout leads to reduced
expression of the B-cell antigen CD19 and is
associated with decreased calcium mobilisation
following CD19 engagement (Refs 2, 29, 30).
Two groups have observed a reduction of B-1
lymphocytes in the peritoneum (Refs 29, 30) and
a third group reported an apparent reduction in
T helper 2 (Th2)-dependent IgG1 production (Ref.
31). Mice deficient in CD37, which is a tetraspanin
expressed on mature B cells, exhibited a reduced
humoral response to T-cell-dependent antigens,
suggesting a role for CD37 in mediating B- and
T-cell interactions (Ref. 32). CD9 knockout led
to severely reduced female fertility linked to a
defect in sperm/egg fusion without other gross
abnormalities (Refs 33, 34, 35). In wild-type
mice, CD9 is strongly expressed on the surface
of oocytes (Ref. 36). It was initially hypothesised
that CD9 could play a role in the fusion process
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Table 1. Tetraspanins and cell migration (tab001cbv)

(a) Inhibition of migration by anti-tetraspanin antibodies

Tetraspanin Cell type Refs

CD9 Adenocarcinoma 20

CD9, CD81, CD82 Haematopoietic cells 17, 43, 98

CD9 Keratinocytes 99

CD9 Colon carcinoma 85

CD63 Melanoma 21

CD9, CD81, CD151 Endothelial cells 100, 101

CD151 Neutrophils 57

CD151 Carcinoma 26

(b) Stimulation of migration by anti-tetraspanin antibodies

Tetraspanin Cell type Substrate Ref.

CD9 Schwann cells Living axons 22

CD9, CD53, CD81, CD151 Carcinoma Matrigela 23

CD9 Endometrial carcinoma Matrigel 24

(c) Effect of transfection on cell migration/motility

Assay and effect on
Tetraspanin Cell type Substrate/medium spontaneous cell motilityb Ref.

CD9 Adenocarcinoma BSA Cell penetration 25
and CHO cell line and phagokinesis (–)

CD9 Raji cells BSA Cell penetration (=) 17

Laminin/Fn Cell penetration (+) 17

CD63 Melanoma FCS Cell penetration (–) 21

Fn Cell penetration (+) 21

CD82 Colon carcinoma BSA Phagokinesis (–) 102

Matrigel Cell penetration (–) 102

CD151 Hela Matrigel Cell penetration (+) 26

a Matrigel is a solubilised basement membrane matrix extracted from the EHS mouse tumour, which is rich in
basement membrane proteins (laminin, collagen I, entactin, heparan sulfate proteoglycan) and also contains
growth factors, matrix metalloproteinases and other proteases (Refs 103, 104).
b (–) Indicates a reduced motility; (+) indicates an increased motility; (=) indicates no change.
Abbreviations: BSA, bovine serum albumin; CHO, Chinese hamster ovary; FCS, fetal calf serum; Fn, fibronectin.
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by regulating the interaction between the sperm
ADAM protein fertilin and the oocyte integrin
α 6β1 [with which CD9 associates (Ref. 37)];
however, this has been challenged by the recent
finding that integrin α6β1 is not required for
sperm/egg fusion (Ref. 38). Therefore, another
mechanism involving CD9 appears to be required
for fusion to occur.

In addition to gene-knockout data, there is
evidence that a translocation [t(X;2)] disrupting
the tetraspanin gene encoding TALLA-1/TM4SF2
is associated with a case of X-linked mental
retardation (Ref. 39), which has prompted the
study of other patients with this disease. Studies
of two other families have found, respectively, a
truncating mutation and a C to A mutation
resulting in a non-conservative amino acid
substitution (P172H) in a consensus motif present
in several tetraspanins – this points to a critical
functional site in the TALLA-1/TM4SF2 protein
(Ref. 39). In addition, numerous mutations of
RDS/peripherin are associated with retinal
dystrophies that often result in a dominant
phenotype (Ref. 7).

Therefore, knockout and genetic data have
already confirmed the physiological importance
of four tetraspanins: CD9, CD37, CD81 and
TALLA-1. In particular, the CD9-associated
fusion defect might prove to be an interesting
model for the dissection of molecular interactions
controlled by tetraspanins. The loss of function
as a consequence of a single amino acid mutation
observed with TALLA-1 raises the possibility of
a specific and unidentified TALLA-1 partner
that could lose its connection to a ‘tetraspanin
web’ (as described in the next section). CD37
and TALLA-1 have a restricted pattern of
expression – CD37 is found on mature B
lymphoid cells in humans (there are no mAbs
available for murine CD37) and TALLA-1 is
found within the nervous system. It is therefore
not surprising that genetic defects lead to
pathological conditions limited to these organs.
The situation is different for CD9 and CD81,
which have a wide tissue distribution and for
which gene knockout induces an abnormal
phenotype limited to a single tissue. In such
cases, compensation of their loss by substitution
with molecules of the same family or by other
mechanims have to be considered. Generation
of mice that have double or triple tetraspanin
gene knockouts might help to resolve this
question.

Tetraspanin molecular complexes:
‘the tetraspanin web’

One of the properties peculiar to the tetraspanins
is their capacity to associate with a significant
number of other cell-surface molecules. Among
the molecules associated with the known
tetraspanins are the lymphoid antigens CD4/CD8
(Ref. 40) and CD19 (Refs 41, 42), the β1 integrins
(Refs 43, 44), the membrane precursor of heparin-
binding epidermal growth factor (HB-EGF) (Refs
45, 46), the HLA-DR major histocompatibility
complex (MHC) antigens (Ref. 47) and the
tetraspanins themselves (Refs 37, 48).

Although the association of the tetraspanins
with β1 integrins was first reported for CD9
and CD63 (Refs 43, 44, 49), this association has
subsequently been confirmed for other
tetraspanins (Refs 37, 50, 51). Analysis of the
complexes after overexpression of the tetraspanin
CD9 in the Burkitt cell line Raji showed that
CD9 did not compete with the tetraspanin CD81
but was added to the preformed complexes (Ref.
37). This type of interaction suggests that the
tetraspanins take part in a network of molecular
interactions on the surface of the cells, termed the
‘tetraspanin web’ (Ref. 37). Other arguments in
favour of this assumption include the large size
of tetraspanin-containing immunoprecipitated
complexes (Ref. 50), the presence of several copies
of the same tetraspanin in these complexes
(Ref. 37) and the presence of at least two types of
tetraspanin-associated molecules (integrins and
HLA-DR) in the same complexes (Ref. 37). The
fact that the associated tetraspanins and molecules
are recognised by antibodies having similar
functional effects (Ref. 15) suggests that these
complexes occur physiologically on the cell
surface.

Analysis of the complexes isolated using
different detergents has been extremely
informative (Ref. 51; Fig. 3). Whereas large
complexes could be isolated using mild detergents
such as CHAPS or Brij96/97, cell lysis with
digitonin showed a much more restricted pattern
of interactions involving one tetraspanin and one
or a few specific immunoprecipitated partner
molecules (Ref. 52). Under these conditions, the
following associations were reported: (1) CD151
with the integrins α3β1 

 or α6β1 (Ref. 52); (2) CD81
with the integrin α4β1 (Ref. 52) or the B-cell
lymphoid antigen CD19 (Ref. 53); (3) CD9 and
CD81 with CD9P-1, the 135 kDa product of the
KIAA1436 gene (the human orthologue of
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Figure 3. Detergent-dependent co-immunoprecipitation of two different types of tetraspanin complexes
(see next page for legend) (fig003cbv).
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Figure 3. Detergent-dependent co-immunoprecipitation of two different types of tetraspanin complexes.
The pattern of co-immunoprecipitation observed after surface labelling with biotin and extraction with the mild
detergents (a) digitonin and (b) Brij96/97 suggests that tetraspanins (in red-filled squares) may exist in two
different types of molecular complexes (Ref. 52). First-order complexes, indicated by a solid or dotted black
line, revealed by digitonin extraction contain only a single tetraspanin and its specific co-immunoprecipitation
partner(s) (e.g. CD81 and its partner α4β1 integrin). (b) By contrast, second-order large complexes, co-
immunoprecipitated following Brij96/97 extraction, comprise first-order complexes associated through
tetraspanin–tetraspanin interactions by an unknown mechanism indicated by red dashed lines. An arbitrary
arrangement of the molecules within the complexes is shown in both (a) and (b). Immunoprecipitation partners
are grouped as follows: orange ovals = integrins; brown squares = unidentified molecules; red-filled rectangles
= tetraspanins; green circles = the B lymphoid antigen CD19; dark blue heptagons = the HLA-DR major
histocompatibility complex; pink circle = CD9P-1. The CD21 antigen, which is linked indirectly through CD19 to
the tetraspanin complexes, is shown as a blue triangle. In the digitonin extract, question marks indicate that no
specific partners have yet been found for the corresponding tetraspanins (CD63 and CD82). In the Brij extract,
question marks indicate that no tetraspanin has been found specifically associated with proteins linked to
tetraspanin complexes (p75 or HLA-DR). In both (a) and (b), linked question marks (i.e. tetraspanin and partner)
indicate that there are new tetraspanins, such as NET/Tspan proteins, that still require characterisation at this
protein level (fig003cbv).

prostaglandin F2a receptor regulatory protein
(FPRP) (Refs 52, 110, 111); and (4) CD53 with
an unidentified molecule p70 (Ref. 52). Because
no tetraspanin–tetraspanin complexes were
observed in digitonin-soluble fractions, it could
be suggested that digitonin only extracts primary
complexes (one tetraspanin with one specific
partner), whereas larger (secondary) complexes
are preserved by milder detergents.

Thus, it is possible to consider a model in
which each tetraspanin would link its molecular
partner(s) to the other tetraspanins and their
own partners, thereby organising the positioning
of cell-surface proteins so as to allow signal
transduction, cell adhesion or motility. In this
context, the tetraspanins would play the role of
‘surface organisers’ (Ref. 37), adaptors (Ref. 54)
or facilitators (Ref. 2). As a first step towards
defining this model further, the molecular
requirements for the interaction of tetraspanins
with their specific partners has been partially
studied. This has highlighted the role of the
large extracellular region (EC2) in interactions
between CD19 and CD81 (Refs 41, 55), CD9 and
proHB-EGF (Refs 15, 56), and CD151 and α3β1
(Ref. 57).

Tetraspanins and viruses
There have been several examples of tetraspanins
playing a role in the viral life cycle. Anti-
tetraspanin antibodies inhibit syncytium
formation and/or virus production. This was
observed for the tetraspanins CD81 and CD82
with human T-lymphotropic virus 1 (HTLV-1)
(Ref. 40), and for the tetraspanin CD9 with the

feline immunodeficiency virus (Ref. 58) and the
canine distemper virus (Refs 59, 60).

Importantly, the tetraspanin CD81 might
play a role in the aetiopathogenesis of hepatitis
C virus (HCV), which infects 170 million people
worldwide. HCV is responsible for the disease
hepatitis C, which can evolve to a hepatocellular
cirrhosis and carcinoma, and also for immune
diseases related to lymphoid B cells (e.g.
cryoglobulinaemia, lymphoproliferative disorder,
autoantibody production) (Ref. 61). Recently,
it has been shown that HCV particles fix CD81,
probably via binding of the viral envelope protein
E2 to the tetraspanin EC2 loop (Ref. 62), and in
this way could allow the virus entry into the cell.
On the basis of sequence comparison between
human and monkey CD81, combined with
mutagenesis studies, it was shown that certain
amino acids are essential for CD81 recognition of
E2 (Ref. 63); however, it was also shown that
recognition is not predictive of a productive
infection (Ref. 64).

Tetraspanins and malignancy
Tetraspanins as differentiation
markers in tumours
Some tetraspanins have been viewed as useful
markers for the characterisation of tumoural
cells. CD9 was initially described on the surface
of cells of B-lineage acute lymphoblastic
leukaemia (Ref. 65). It is expressed on 90% of
B-lineage acute leukaemias, and on 50% of acute
myeloid leukaemias and B-lineage chronic
lymphoid leukaemias (Ref. 66). In particular, CD9
is a constant marker of acute promyelocytic
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leukaemia, in association with the CD13+/CD33+/
HLA-DR− phenotype (Ref. 67).

The tetraspanin TALLA-1 is expressed in acute
neuroblastomas and T-lymphoid leukaemias
(Ref. 68). The expression of this tetraspanin is
correlated in leukaemic cell lines with that of the
Tal1 transcription factor, whose gene is rearranged
and expressed in certain translocations observed
in T-cell acute leukaemias. The Tal1 transcription
factor acts in cooperation with the rhombotin gene
products cofactors RBTN1 and RBTN2, and
transfection of Tal1 and RBTN1 can induce the
expression of tetraspanin TALLA-1 (Ref. 69). The
antigen CO-029 was discovered in colorectal
carcinomas (Ref. 4), while the antigen L6 is
overexpressed in breast, lung, colon and ovary
tumours (Ref. 70). Correlations such as these,
together with others described in Table 2, indicate
a possible role for tetraspanins in tumour growth,
as described below.

Tetraspanins, tumour progression
and metastasis
CD63, the first tetraspanin to be cloned, is strongly
expressed at early stages of melanoma formation
and is downregulated at advanced stages (Ref. 71).
The role of CD9 in the tumour process was
investigated following the initial work on cell
motility mentioned above, since motility is
considered to be an essential component of the
mechanism of metastasis (Ref. 20). Moreover, the
search for tumour suppressor genes unexpectedly
revealed the suppressor role of the tetraspanin
CD82 in prostate cancer metastasis (Ref. 72). CD82
expression is reduced during the tumoural
progression of prostate, lung, pancreas and
colorectal cancers (Refs 73, 74, 75, 76). Accordingly,
it has been shown in various tumours that the
level of expression of these three tetraspanins can
be linked to the stage of tumour progression and
can be used as prognostic factors. Moreover, it
was found that the rate of survival of patients with
non-small-cell carcinomas of the lung is higher
at 5 years when the two antigens CD9 and
CD82 are coexpressed (86%, versus 31% when
these two antigens are not expressed) (Ref. 77). In
addition, a new tetraspanin, C4.8 (identical to
Tspan-1/NET-1), has been identified as a possible
marker of progression of the cervix tumours
induced by papillomavirus (Ref. 78).

The expression of CD9 in breast (Ref. 79) and
oesophagus (Ref. 80) carcinomas, and of CD82
in prostate (Ref. 73), pancreas (Refs 74, 81),

hepatocellular (Refs 74, 82), oesophagus (Ref. 80)
and colon carcinomas (Refs 76, 83), was found to
be frequently lower on metastasis compared with
the primary tumour. An inverse correlation
between the expression of CD9 in the primary

Table 2. Tetraspanins and cancer:
correlations (tab002cbv)

Tetraspanin Cell type Refs

(a) Examples of where the level of tetraspanin
expression is inversely related to the
metastatic potential

CD9 Melanoma 105

Breast carcinoma 79, 106

Lung carcinoma 46

Colon carcinoma 107

CD63 Melanoma 71

CD82 Prostate carcinoma 72, 73

Pancreas carcinoma 74, 81

Lung carcinoma 75

Colon carcinoma 83

(b) Examples of where the level of tetraspanin
expression is a good prognosis factora

CD9 Breast carcinoma 79, 106

Lung carcinoma 46

Colon carcinoma 107

Pancreas carcinoma 108

CD82 Prostate carcinoma 72, 73

Lung carcinoma 75

Colon carcinoma 76

Hepatoma 74, 82

Lung non-small-cell 109
carcinoma

Breast carcinoma 84

a Simultaneous reduction of CD9 and CD82 has an
additive effect on metastatic potential and is a bad
prognosis factor (Refs 77, 84).
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tumour and the appearance of metastases in
melanomas, colon, lung and breast cancers has
been reported (Table 2). In lung cancer (Ref. 77)
and breast cancer (Ref. 84), the reduction in CD9
expression associated with that of CD82 was
correlated with an increased metastatic potential
compared with when the expression of only
one of these two antigens is reduced. Similarly,
the level of CD9 was lower in cell lines derived
from metastasis of colon carcinoma as compared
with cell lines derived from the primary tumour
(Ref. 85).

Experimentally, it was shown that transfection
of CD9 or CD63 into melanoma cells induced a
reduction of the metastatic potential of these
cells (Refs 25, 86). This phenomenon was also
observed following the transfection of CD82 into
prostate cancer cells (Ref. 72). With regard to the
tetraspanin CO-029, induction of its expression
was observed in the metastasising subclones of
rat cell lines derived from carcinomas of the colon
or pancreas (Ref. 87). Furthermore, transfection
of CO-029 into low-metastasising cells induces an
increase in their metastatic potential (Ref. 87).

Putative relationship between tetraspanin
complexes and metastasis
Malignant transformation is associated with
changes in cell adhesion and motility. Many
cell-surface molecules involved in cell–ECM
or cell–cell interactions have been described,
including cadherins, selectins, immunoglobulin-
like receptors, integrins and proteoglycans. These
molecules act in a complex and coordinated way
to hold the cells in place or, alternatively, to sustain
cell movement. Adhesion molecules function in
bidirectional signalling pathways required for
many cellular functions, such as transcription,
cytoskeletal organisation and proliferation.
Among the adhesion molecules, integrins are
major ECM receptors and are also involved in cell–
cell interactions. There have been many reports
showing the critical role of integrins in tumour
development, invasion or metastasis (for reviews
see Refs 27, 88, 89), and it is possible that this is
somehow linked to tetraspanins.

Anti-tetraspanin antibodies have major
effects on cell migration (as listed above) and
tetraspanins are known to form large complexes
that include integrins. It is tempting to speculate
that a link exists between tetraspanin expression
and metastasis potential, involving effects on
cell motility and molecular associations with

integrins. A direct or indirect effect of tetraspanins
on integrin function might lead to alterations of
adhesion or migration properties of the malignant
cells that could modify their metastatic potential.
The possible influence of tetraspanins on integrin
function has been suggested by the observation
that ligation of anti-tetraspanin antibodies can
affect tyrosine phosphorylation of focal adhesion
kinase (FAK), either positively or negatively
depending on the experimental conditions (Ref.
54). Another interesting aspect is the topology of
tetraspanins during cell motion: they tend to be
localised at the leading edge of spreading
cells, like integrins, and also in intracellular
vesicles. These data suggest that tetraspanins
might interfere with integrin movements in cell
motility. This hypothesis is supported by the
association of tetraspanin–integrin complexes
with phosphatidylinositol 4-kinase (PI 4-kinase)
(Ref. 90), which is involved in the production of
phosphatidylinositol-4,5-bisphosphate (4,5-PIP2),
a regulator of cytoskeletal architecture. Finally,
anti-tetraspanin antibodies, such as anti-α 3
integrin antibodies, induce PI 3-kinase-dependent
production of matrix metalloproteinase 2
(MMP-2) in MDA-MB231 breast carcinoma cells
(Ref. 23); this indicates that tetraspanins are
involved in the control of a matrix proteinase that
allows malignant cells to invade adjacent tissues
by destruction of the ECM.

However, the mechanisms underlying the
effects of anti-tetraspanin antibodies on cell
migration are unknown and it has not been
demonstrated clearly that integrin functions can
be directly modulated by tetraspanins, despite
the experimental data on cell migration described
above suggesting that this could be the case. It
should also be noted that the choice of substrates
for in vitro experiments might not have been
appropriate since, in vivo, the composition of
the ECM can vary considerably in a tumoural
environment (Refs 91, 92). For instance, the
appearance of new isoforms of fibronectin or
laminin, particularly embryonic isoforms, has
been reported and no tetraspanin studies with these
substrates have been performed. The importance
of the substrate is supported by experiments
demonstrating that integrin α 3β1-dependent
neurite outgrowth on laminin-5 (the ligand for
α3β1) was strongly inhibited by anti-CD151 and
anti-CD81 antibodies, whereas it was not inhibited
on laminin-1 or fibronectin, on which α3β1 is not
engaged (Ref. 16).
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Regulation of tetraspanin gene
expression in tumours
The observation that a reduced level of expression
of tetraspanins is associated with an increased
metastatic potential of tumours raises the question
of how they are downregulated. In cancer of the
oesophagus, in which prognosis is linked to the
expression of CD82, no mutations have been
observed in the gene encoding CD82 (Ref. 93);
thus, downregulation is not a result of mutation.
For CD82/Kai1, it has been suggested that the
gene encoding this protein is controlled by the p53
tumour suppressor such that, in the presence of
mutant p53, CD82/Kai1 gene expression is
downregulated (Ref. 94). Although this was not
confirmed by other reports (Refs 95, 96), the
frequent differential expression of tetraspanins in
metastatic and non-metastatic cells should
encourage studies on the regulation of tetraspanin
gene expression in these cirumstances.

Despite the vast amount of work devoted to
the relationship of tetraspanin expression with the
prognosis of tumours, tetraspanins are not used
as markers in routine practice for assessing the
prognosis of cancer in patients. Thus, there are no
protocols that correlate tetraspanin status with the
results of different treatment regimens. The
difficulty is technical since the quantification of
tetraspanins relies on subjective evaluation of the
intensity of labelling in frozen tissue sections.
Furthermore, the epitopes recognised by the
available antibodies do not resist the fixation
procedures used in pathology laboratories. On the
other hand, the use of reverse transcriptase
polymerase chain reaction (RT-PCR) to quantify
tetraspanin mRNA is usually not applicable since
the tumour cells are contained in an environment
of stromal and inflammatory cells, which express
tetraspanins themselves and bias the dosage of
the tetraspanin mRNA detected. However, these
difficulties could be overcome by the production
of new reagents more adapted to clinical use.

Another aspect of research into tetraspanins
and malignancy would be to investigate the
development of drugs that might positively or
negatively modulate biological properties of
tetraspanins such as the formation of cell-surface
molecular complexes. However, it is perhaps too
early to propose this type of therapeutic research
since some of the basic mechanisms underlying
the ability of tetraspanins to modulate cellular
functions still require elucidation. Nevertheless,
the search for therapeutic methods/agents that

might mimic the effect of tetraspanin loss on
tumour cells could become a new area of research
for anticancer drugs.

Conclusions
Data summarised in this review clearly indicate
that the tetraspanins are involved in important
biological functions. The abundance of
experimental and biochemical data, together with
clinical observations, provides hints that might
help to fill the conceptual gap between the
observation of molecular associations and how
they affect basic cellular or organ functions.
Among the avenues of possible research, it seems
essential to determine what keeps the tetraspanins
together and how a loss of one tetraspanin
might affect the function of its partner molecule.
Even if the hypothesis of a conformational change
was confirmed for proHB-EGF, the difficulty of
demonstrating a similar effect for integrins
suggests that tetraspanins could indirectly affect
the functions of these molecules. A closer look at
how tetraspanin complexes could modulate the
integration of signalling pathways or regulate the
traffic of cell-surface molecules will certainly
provide some insights into membrane biology.

A better understanding of tetraspanin function
could lead to improved methods for prognosis
prediction or even treatment of malignant
tumours. New tools, such as mAbs that are usable
in fixed tissues, need to be developed to assess
more easily, by routine analysis, the level and
pattern of tetraspanin expression by tumour cells.
The mechanism that links the level of tetraspanin
expression to tumour progression needs to be
further investigated. There are some indications
that it could be mediated by modulation of
integrin functions but other hypotheses, such as
a link with the regulation of growth factor receptor
signalling, have to be explored. Further insights
into these mechanisms could pave the way to new
treatments for the prevention of metastasis.
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Further reading, resources and contacts

The Mutation Database of Retina International’s Scientific Newsletter provides updated information about
mutations observed in the RDS/peripherin gene. Maps of the mutations are also available.

http://www.retina-international.org/sci-news/mutation.htm

Tetraspan Central is a new website designed to be a central hub for information about the tetraspanin
superfamily (TM4SF). It provides useful information and entries related to the field and should be
developed rapidly.

http://www.ksu.edu/tetraspan/thepage.htm

Protein Reviews on the Web (PROW) is an online resource that features PROW Guides. The Guides are
authoritative, short, structured reviews on proteins and protein families and provide approximately 20
standardised categories of information (abstract, biochemical function, ligands, references, etc.) for each
protein.

http://www.ncbi.nlm.nih.gov/prow/
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Features associated with this article

Tables
Table 1. Tetraspanins and cell migration (tab001cbv).
Table 2. Tetraspanins and cancer: correlations (tab002cbv).

Figures
Figure 1. Schematic drawing of the predicted structure of the tetraspanins (fig001cbv).
Figure 2. Dendrogram comparing amino acid identity of human tetraspanins (fig002cbv).
Figure 3. Detergent-dependent co-immunoprecipitation of two different types of tetraspanin complexes

(fig003cbv).

Citation details for this article

Claude Boucheix, Guy Huynh Thien Duc, Claude Jasmin and Eric Rubinstein (2001) Tetraspanins and
malignancy. Exp. Rev. Mol. Med. 31 January, http://www-ermm.cbcu.cam.ac.uk/01002381h.htm

https://doi.org/10.1017/S1462399401002381 Published online by Cambridge University Press

https://doi.org/10.1017/S1462399401002381

	Contents
	Abstract
	Figure 1. Schematic drawing of the predicted structure of the tetraspanins (fig001cbv).
	Figure 2. Dendrogram comparing amino acid identity of human tetraspanins (fig002cbv).
	Elucidating tetraspanin functional properties
	Anti-tetraspanin antibodies
	Overexpression of tetraspanins
	Genetic defects in tetraspanins
	Table 1. Tetraspanins and cell migration (tab001cbv)
	Tetraspanin molecular complexes: ‘the tetraspanin web’
	Figure 3. Detergent-dependent co-immunoprecipitation of two different types of tetraspanin complexes (fig003cbv).
	Tetraspanins and viruses
	Figure 3 legend (fig003cbv).
	Tetraspanins and malignancy
	Tetraspanins as differentiation markers in tumours
	Tetraspanins, tumour progression and metastasis
	Table 2. Tetraspanins and cancer: correlations (tab002cbv)
	Putative relationship between tetraspanin complexes and metastasis
	Regulation of tetraspanin gene expression in tumours
	Conclusions
	Acknowledgements and funding
	References
	Further reading, resources and contacts
	Features associated with this article
	Citation details for this article


