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The interface formation model is applied to describe the initial stages of the
coalescence of two liquid drops in the presence of a viscous ambient fluid whose
dynamics is fully accounted for. Our focus is on understanding (a) how this model’s
predictions differ from those of the conventionally used one, (b) what influence the
ambient fluid has on the evolution of the shape of the coalescing drops and (c) the
coupling of the intrinsic dynamics of coalescence and that of the ambient fluid. The
key feature of the interface formation model in its application to the coalescence
phenomenon is that it removes the singularity inherent in the conventional model at
the onset of coalescence and describes the part of the free surface ‘trapped’ between
the coalescing volumes as they are pressed against each other as a rapidly disappearing
‘internal interface’. Considering the simplest possible formulation of this model, we
find experimentally verifiable differences with the predictions of the conventional
model showing, in particular, the effect of drop size on the coalescence process.
According to the new model, for small drops a non-monotonic time dependence
of the bridge expansion speed is a feature that could be looked for in further
experimental studies. Finally, the results of both models are compared to recently
available experimental data on the evolution of the liquid bridge connecting coalescing
drops, and the interface formation model is seen to give a better agreement with the
data.
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1. Introduction
Coalescence, which is the process of two liquid volumes merging into one, is

central to numerous natural phenomena and a variety of technological applications
of fluids (Kovetz & Olund 1969; Grissom & Wierum 1981; Dreher et al. 1999;
Bellehumeur, Biaria & Vlachopoulos 2004). In order to develop these technologies,
it is necessary to have a mathematical model of the process that would allow one
to reliably describe its dynamics and hence minimize the time and resources on
experimentation. The current trend towards miniaturization of the fluid volumes
undergoing coalescence in various applications, e.g. in biotechnologies (Squires &
Quake 2005; Seeman et al. 2012) and additive manufacturing (Derby 2010; Singh
et al. 2010), makes it vital to accurately model the initial stages of coalescence
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for which a mathematically singular description (Hopper 1984; Richardson 1992;
Sprittles & Shikhmurzaev 2012a, 2014) would not be acceptable. The latter has been
reinforced by recent experiments (Paulsen, Burton & Nagel 2011), which employed a
new experimental technique that made it possible to probe the coalescence dynamics
on the ‘microfluidic’ spatio-temporal scales inaccessible to traditional optical methods
used so far (Wu, Cubaud & Ho 2004; Aarts et al. 2005; Thoroddsen, Takehara &
Etoh 2005).

The experimental breakthrough achieved in Paulsen et al. (2011) made it possible to
test various mathematical models of the process, and the first one to be tested was the
‘conventional’ model used in most studies (Eggers, Lister & Stone 1999; Duchemin,
Eggers & Josserand 2003). This model assumes that coalescence takes place on a
length scale below that of continuum mechanics, so that, from the viewpoint of
continuum mechanics, at the very onset of the process, one already has a single body
of fluid consisting of the two volumes that were brought into contact and a smooth,
albeit infinitesimal, liquid bridge connecting them. This scheme implies an intrinsic
singularity at the start of the process (Hopper 1984, 1990; Richardson 1992; Hopper
1993a,b) and, as was shown in a numerical study that considered the conventional
model in its entirety (Sprittles & Shikhmurzaev 2012a), it fails to describe the newly
available experimental data: the model strongly overpredicts the speed at which the
bridge connecting the coalescing volumes expands. The situation was not remedied
even when, for the first time, the dynamics of the viscous gas surrounding the
coalescing volumes was fully accounted for (Sprittles & Shikhmurzaev 2014). This
makes it worth while to examine how the conventional model could be generalized to
incorporate some additional physics that would allow one to describe the coalescence
process in a singularity-free way.

A generalization of the conventional model considered in Sprittles & Shikhmurzaev
(2012a) is known as the interface formation model (Shikhmurzaev 2007). In the case
of coalescence, this model suggests that, as two liquid volumes are pressed against
each other, a part of the free surface becomes ‘trapped’ between them, forming an
‘internal interface’ (figure 1). This interface gradually (although, in physical terms,
very quickly) disappears, losing its specific ‘surface’ properties, such as the surface
tension, as the fluid particles forming this interface adjust to their new environment
and turn into ‘ordinary’ bulk particles. When the disappearance of the internal
interface separating the two volumes is complete, the coalescence as such is over,
one has a single body of fluid with a finite-sized smooth bridge connecting the
initial volumes, and the conventional model can take over without giving rise to any
mathematical singularities associated with the ‘smooth but infinitesimal’ bridge it
uses to start the process. Notably, before the internal interface disappears, the residual
surface tension associated with it can sustain a (gradually disappearing) angle in the
free surface, and, once the coalescence is complete and the residual surface tension
is gone, the free surface becomes smooth, as required by the conventional model,
which from that moment onwards can take over.

Simplifications outlined in § 4 will allow us to consider the ambient fluid to be
either a gas or a second immiscible liquid. Notably, it has already been shown that
an ambient gas affects the flow described using the conventional model (Sprittles &
Shikhmurzaev 2014), even at surprisingly small gas-to-liquid viscosity ratios, as the
presence of the gas can qualitatively change the free-surface evolution in the early
stages of the process, in particular suppressing the formation of a toroidal bubble
anticipated by earlier studies (Oguz & Prosperetti 1989; Duchemin et al. 2003), where
the ambient gas was regarded as inviscid and dynamically passive. Given that in the
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(a) (b) (c)

disappearing
‘internal interface’

FIGURE 1. Sketch illustrating the scheme used in the interface formation/disappeance
theory. The initial contact point (a) is followed by a fraction of the free surface being
‘trapped’ between the bulk phases, forming a gradually disappearing ‘internal interface’ (b),
and, as the ‘internal interface’ disappears and the ‘contact angle’ θd, which is initially
equal to 180◦, relaxes to its ‘equilibrium’ value of 90◦, the conventional mechanism
takes over (c). The interface formation/disappearance model provides boundary conditions
on interfaces, which are modelled as zero-thickness ‘surface phases’; these interfaces,
including the ‘internal interface’ in (b), are shown as finite-width layers for graphical
purposes only.

interface formation model there is a cusp formed when the volumes first touch, which
then evolves into a corner, one may expect a different effect of the gas dynamics than
in the case of the conventional model, where the interface is assumed to be smooth
immediately after the onset of the process. This aspect will be investigated.

It has been shown (Sprittles & Shikhmurzaev 2012a) that the interface formation
model’s predictions are in better agreement than the conventional model’s with the
experimental data on the early stages of coalescence (Paulsen et al. 2011), and
this fact justifies its further investigation. In Sprittles & Shikhmurzaev (2012a) only
a direct comparison of theory with experimental data was provided, without any
parametric study of the model, which will be rectified here by (a) investigating how
the surface variables evolve and depend on the constants characterizing material
properties of the liquid–fluid system, (b) considering the effect of the ambient fluid
on the coalescence process and (c) determining the coupling between the dynamics
of the interfaces and that of the ambient fluid. The main emphasis throughout will
be on highlighting the specific features of the coalescence process, as described by
the interface formation model, that distinguish it from the conventional model, with
experimental verification of these effects in mind. Only once this has been achieved
will we consider a comparison to the experimental data with the effect of the ambient
gas now fully accounted for.

2. Problem formulation
Consider the axisymmetric coalescence of two drops that are grown from two

syringes and start coalescing when each of them reaches the shape of a hemisphere
(figure 2). Both the liquid forming the drops and the ambient fluid, whose dynamics
we will also take into account, will be described as incompressible Newtonian fluids
with constant densities ρ, ρg and viscosities µ, µg, respectively. The problem will
initially be formulated for the case in which the ambient fluid is a gas, hence the
subscripts ‘g’, but we will later see that, under certain simplifying assumptions,
this formulation is equivalent to the case in which the ambient fluid is a second
immiscible liquid.

The problem has an axial symmetry and symmetry with respect to the plane
tangential to the drops at the moment of their initial contact, so that it is sufficient
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FIGURE 2. Sketch indicating aspects of the problem formulation for the coalescence of
two identical hemispheres grown from syringes.

and convenient to consider the flow only in the first quadrant of the (r, z) plane of
the suitably chosen cylindrical coordinate system (figure 2) and use the appropriate
symmetry conditions on the axis and the plane of symmetry. Using the initial radius
of the drops R as the characteristic length scale, Uv = σ1e/µ (where σ1e is the
equilibrium surface tension of the fluid–liquid interface) as the scale for velocities,
Tv = R/Uv = µR/σ1e as the time scale, and σ1e/R as the scale for pressure, we have
that the (dimensionless) bulk velocities u, ug and pressures p, pg in the liquid and the
ambient fluid satisfy the Navier–Stokes equations, which in the dimensionless form
are given by

∇ · u= 0, Re
[
∂u
∂t
+ u · ∇u

]
=∇ · P, P =−pI + [∇u+ (∇u)T

]
, r ∈Ω,

(2.1a–c)

∇ · ug = 0, ρ̄Re
[
∂ug

∂t
+ ug · ∇ug

]
=∇ · Pg, Pg =−pgI + µ̄[∇ug + (∇ug)

T], r ∈Ωg.

(2.2a–c)

Here t is time; P and Pg are the stress tensors in the liquid and the fluid, respectively;
I is the metric tensor of the coordinate system; and Ω and Ωg indicate the regions
occupied by the liquid and the ambient fluid (figure 2). The non-dimensional
parameters are the Reynolds number Re= ρσ1eR/µ2 based on the liquid’s properties,
the fluid-to-liquid density ratio ρ̄ = ρg/ρ and the corresponding viscosity ratio
µ̄=µg/µ.

The interface formation model (Shikhmurzaev 2007), which we will be using to
formulate the boundary conditions, states that part of the free surface trapped between
the drops (∂Ω in figure 2) does not lose its specific surface properties, such as the
surface tension, instantly, so that, until it does, one will have a gradually disappearing
‘internal interface’ whose (residual) surface tension can sustain an angle in the free
surface (figure 1). Pictorially, one has a process analogous to dynamic wetting where
the drops ‘spread’ over the separating plane of symmetry, with the ‘contact line’
at r = rc(t), z = 0 leaving behind a gradually disappearing interface. Using this
analogy, the point in the (r, z) plane at which the free surface of the upper drop
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meets the plane of symmetry will be referred to as the ‘contact line’ and the angle
θd between this free surface and the symmetry plane z= 0 will be called the ‘contact
angle’. As the contact angle reaches its ‘equilibrium value’ of 90◦, the free surface
becomes smooth and the conventional model takes over as the interface formation
model simply reduces to it.

Both the free surface and the internal interface will be described as two-dimensional
‘surface phases’ characterized by their surface tensions σi, surface densities ρs

i and
surface velocities vs

i , where i = 1, 2, with subscripts 1 and 2 hereafter labelling the
surface parameters of the free surface and the internal interface, respectively. We will
scale the surface velocities with Uv, the surface tensions with σ1e and the surface
densities with a characteristic surface density ρs

(0).
On the free surface, besides the standard normal and tangential stress boundary

conditions,

n · (P − Pg) · n= σ1∇ · n, (2.3)
n · (P − Pg) · (I − nn)+∇σ1 = 0, (2.4)

where n is a unit normal pointing into the liquid, one has (a) the kinematic condition

∂f
∂t
+ vs

1 · ∇f = 0, (2.5)

where f (r, z, t)= 0, with the a priori unknown function f , describes the evolution of
the free-surface shape and vs

1 is the corresponding velocity, (b) the surface equation
of state, which in both interfaces will be taken in the simplest linear form

σi = λ(1− ρs
i ) (i= 1, 2), (2.6)

where λ is a constant and ρs
i is the dimensionless surface density, (c) the surface

continuity equation incorporating the mass exchange between the bulk and surface
phases, and the corresponding equation for the normal component of the bulk velocity,

ε

[
∂ρs

1

∂t
+∇ · (ρs

1vs
1)

]
=−(ρs

1 − ρs
1e), (u− vs

1) · n=Q(ρs
1 − ρs

1e), (2.7a,b)

where ε, ρs
1e and Q are constants, (d) the kinematic condition for the normal

component of the ambient fluid velocity,

(ug − vs
1) · n= 0, (2.8)

and (e) equations relating the tangential components of the bulk velocities and stresses
on the two sides of the interface, the surface velocity and the gradients of surface
tension,

1
2 ᾱn · (P + Pg) · (I − nn)= A(u− ug) · (I − nn), (2.9)

[vs
1 − 1

2(u+ ug)− ᾱ∇σ1] · (I − nn)= 0, (2.10)

where ᾱ and A are constants. The constant β̄, which has been introduced in previous
works (Shikhmurzaev 2007), is β̄=Aᾱ−1. The non-dimensional constants appearing in
(2.5)–(2.10) incorporate the corresponding material constants whose physical meanings
and values for some systems are described elsewhere (see Shikhmurzaev 2007).
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The location of the internal interface is known, z= 0, and hence vs
2 · ns = 0, where

ns is a unit normal to the plane of symmetry (figure 2). Then, on this interface one
has only the tangential stress condition

ns · P · (I − nsns)+∇σ2 = 0, (2.11)

analogous to (2.4); the surface continuity equation together with the corresponding
condition on the normal component of the bulk velocity,

ε

[
∂ρs

2

∂t
+∇ · (ρs

2vs
2)

]
=−(ρs

2 − 1), u · ns =Q(ρs
2 − ρs

2e), (2.12a,b)

analogous to (2.7); and the equation

[4A(vs
2 − u)− ᾱ(1+ 4A)∇σ2] · (I − nsns)= 0, (2.13)

which relates the difference between the tangential components of the surface and bulk
velocity to the surface tension gradient in the surface phase.

At the moving ‘contact line’, r= rc(t), z=0, we have the conditions of continuity of
the surface mass flux and the force balance in the projection on the symmetry plane,

ρs
1(vs

1 −Uc) ·m1 + ρs
2(vs

2 −Uc) ·m2 = 0, (2.14)
σ2 + σ1 cos θd = 0, (2.15)

where Uc = drc/dt; the unit vectors mi are normal to the contact line and inwardly
tangential to the free surface (i = 1) and the plane of symmetry (i = 2); and θd is
the ‘contact angle’ (figure 2). Equation (2.15) is analogous to the well-known Young’s
equation (Young 1805) that introduces and determines the contact angle in the process
of dynamic wetting. Notably, the surface continuity equation (2.12) together with (2.6)
and (2.15) ensure that the completion of the coalescence process associated with the
internal interface reaching its equilibrium state (ρs

2= 1) results in the disappearance of
this interface (σ2=0) and the restoration of the familiar smooth free surface (θd=90◦),
thus allowing the conventional model to take over.

For the ambient fluid phase, on the plane of symmetry z= 0 one has conditions of
impermeability and zero tangential stress,

ug · ns = 0, ns · Pg · (I − nsns)= 0 (r ∈ ∂Ωg), (2.16a,b)

and, for the liquid phase, at the axis of symmetry r = 0 one has the appropriate
symmetry conditions,

u · na = 0,
∂

∂r
[u · (I − nana)] = 0, vs

2 · na = 0, (2.17a,b)

where na is a unit normal to the axis of symmetry in the (r, z) plane. At the point in
the (r, z) plane where the (initially hemispherical) free surface meets the syringe tip
we have a pinned contact line:

f (1, 1, t)= 0 (t > 0). (2.18)

It is assumed that, in the far field, the exterior fluid and the liquid inside the syringe
are at rest, whilst on the cylinder’s surface, the no-slip condition is applied to both
phases, so that

u, ug→ 0 as r2 + z2→∞, u= ug = 0 at r= 1, z > 1. (2.19a,b)
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As the initial conditions, we set that both the liquid and the fluid are at rest, the
free surface is in equilibrium,

u= ug = 0, ρs
1 = ρs

1e (t= 0), (2.20a,b)

and the free surface has the shape of a hemisphere,

f (r, z, 0)= r2 + (z− 1)2 − 1= 0. (2.21)

For computations using the conventional model, the formulation described above can
still be used if the parameter ε is set to zero so that the interface formation dynamics
is ‘turned off’.

3. Computational details
In order to solve the problem, we employ the finite-element-based computational

platform described in Sprittles & Shikhmurzaev (2012c, 2013), where one can find
a user-friendly step-by-step algorithm for its implementation (see appendix A of the
present paper for a small correction to Sprittles & Shikhmurzaev 2013). In the present
work, we only need (a) to extend it to incorporate the dynamics of the ambient fluid,
which can be done in a straightforward way, and (b) to adjust the problem formulation
described above for the numerical treatment. The latter means, firstly, truncating the
computational domain by introducing the ‘far-field’ boundary at a large but finite
distance from the origin. This far-field boundary is shown schematically in figure 2,
where rfar and zfar have to be sufficiently far away from the origin for their location
and the soft boundary conditions we impose there to have a negligible effect on the
coalescence dynamics.

The second adjustment that we have to make is to introduce a small but finite
radius rmin of the initial contact of the two drops, so that initially we have the internal
interface at 0< r< rmin, z= 0, where we will use the initial condition

ρs
2 = ρs

1e, (3.1)

stating that the trapped part of the free surface has not yet started relaxing towards its
eventual equilibrium state of ρs

2= 1 (at which point the surface has no tension σ2= 0).
As the initial shape of the free surface, we will take simply a truncated sphere or
hemisphere satisfying z(rmin)= 0,

(r− rmin)
2 + (z− z0)

2 = z2
0, (3.2)

where z0= [1+ (1− rmin)
2]/2, so that, if there is no base, i.e. rmin= 0, one has z0= 1

and hence r2 + (z− 1)2 = 1, thus recovering (2.21).
If the conventional model is used, as described in detail in Sprittles & Shikhmurzaev

(2012a), the initial free-surface shape is taken from the analytic solution in Hopper
(1984), obtained for Stokes flow, to be

r(θ) = √2{(1−m2)(1+m2)−1/2[1+ 2m cos(2θ)+m2]−1}(1+m) cos θ, (3.3)

z(θ) = √2{(1−m2)(1+m2)−1/2[1+ 2m cos(2θ)+m2]−1}(1−m) sin θ, (3.4)

for 0 < θ < θu, where m is chosen such that r(0) = rmin is the initial bridge radius,
which we choose, and θu is chosen such that r(θu)= z(θu)= 1. Notably, for rmin→ 0
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we have m→ 1 and r2 + (z − 1)2 = 1, i.e. the drop’s profile is a semicircle of unit
radius that touches the plane of symmetry at the origin as required.

Importantly, unlike the conventional model, for the interface formation model the
limit rmin→ 0 does not give rise to a singularity (Shikhmurzaev 2007), so that here
a non-zero value of rmin is used for convenience of the computations and no special
shape is required to artificially enforce smoothness of the free surface. We will look
at how the value of rmin influences the outcome of computations in § 5.1.

4. Simplifications for Q, ᾱ→ 0 with A=O(1)

For the case of an inviscid dynamically passive ambient fluid, the full model, set out
in § 2, has been studied in Sprittles & Shikhmurzaev (2012a). The results of this study
suggest an asymptotic simplification that facilitates the computations. Before extending
the earlier work to include the full dynamics of the viscous ambient gas or liquid,
we take the limit ᾱ→ 0 with A = O(1). As shown by experiments (Shikhmurzaev
1996; Blake & Shikhmurzaev 2002), α ∼ µ−1 and, given that ᾱ = αµ/R, for the
class of liquids considered in the present work, αµ≈ 10−9 m (Blake & Shikhmurzaev
2002), so that ᾱ = 10−9 (m)/R (m) and, for drops that are larger than a micrometre,
R> 10−6 m, we have ᾱ < 10−3� 1. Importantly, unlike the case of dynamic wetting
(Shikhmurzaev 2007), the solution to the coalescence problem remains singularity-free
in the limit ᾱ→ 0, A= O(1), so that, to leading order, we can simply set ᾱ = 0 in
the above formulation.

The computations in the framework of the simplified system have been compared
to results for the full system of equations as computed in Sprittles & Shikhmurzaev
(2012a). In the range of parameters considered in Sprittles & Shikhmurzaev (2012a),
and therefore those considered here, curves for all the relevant quantities proved to be
very close for the two systems and, consequently, henceforth the simpler system will
be used. It is important to note, however, that as much smaller scales are approached,
such a simplification may no longer be valid.

The essence of what this asymptotic limit is about is very simple. From (2.9) and
(2.10), it can be seen that, in this limit, the differences between the components of
velocity tangential to the free surface on either side of the surface as well as between
these components and the surface velocity itself become negligible, u‖ = ug‖ = vs

1‖.
(Here subscript ‖ denotes the component of a vector tangential to a surface, i.e. it
represents the convolution of the vector with the tensor (I − nn) which extracts the
tangential components of vectors and tensors.) In other words, in this limit we recover
the classical condition of continuity of the tangential component of velocity across
an interface. Similarly, on the internal interface, from (2.13), we have that u‖ = vs

2‖.
Basically, the limit ᾱ→ 0, A=O(1) in our system of equations leads to the transport
of surface mass along the interfaces being due to the bulk velocity tangential to that
interface, rather than to surface tension gradients acting inside the interface, i.e. to the
situation one has in the classical fluid mechanics model.

When extending this approach from an inviscid dynamically passive gas to the case
of a viscous gas, as with the conventional model, the effect of the gas now manifests
itself only through the balance of stress terms (2.3) and (2.4), with Pg composed of
a dynamic pressure and non-zero viscous terms.

A further simplification is also to consider Q→ 0 in (2.7), that is, to assume that
the flux of mass into or out of the interface affects only the surface dynamics, rather
than the bulk flow also. In other words, as in the classical case, the normal velocity is
also now continuous across an interface so that on the free surface u ·n=ug ·n= vs

1 ·n
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and at the plane of symmetry u ·ns= vs
2 ·ns= 0. Given that Q=ρs

(0)/(ρστµ), estimates
suggest that Q∼ 10−2� 1 for the liquids considered, so that the effect of taking Q= 0
is also negligible. Simulations with a finite Q have confirmed this. As a result, one
has the conventional formulation used for capillary flows in which the surface tension
on an interface is considered dynamic combined with an equation of state (2.6) and
the surface continuity equation,

ε

[
∂ρs

i

∂t
+∇ · (ρs

i u)
]
=−(ρs

i − ρs
ie), i= 1, 2, (4.1)

where ρs
2e = 1. As the single surface equation only contains first-order derivatives in

space, (2.14) is no longer applicable and a single boundary condition is applied on
the surface density where each interface meets the axis of symmetry or the syringe
tip. In contrast with the case of dynamic wetting, where the motion of the contact
line relative to the solid forces the mass flux through the contact line, in the case of
coalescence the contact line moves as if to minimize the stress in its vicinity and does
so by becoming a stagnation line for the bulk flow (in the reference frame moving
with the contact line). As a result, condition (2.14) appears to be satisfied with both
terms on the left-hand side equal to zero.

In taking the aforementioned simplifications, the interface formation model is
stripped down to its simplest form which has the advantage that (a) there are fewer
free parameters that have to be estimated and (b) it becomes easier to isolate the key
features of the interface formation model that distinguish it from the conventional
model’s predictions. A notable consequence of the simplified formulation is that the
ambient fluid can be either a viscous gas or an immiscible liquid, in contrast to the
case of Q 6= 0 where a second liquid would mean that the mass exchange on both
sides of the interface would have to be considered (Shikhmurzaev 2007).

5. Parametric study of the model

To establish an appropriate parameter range, and to compare to experimental data
from Paulsen et al. (2011) in § 6, consider the parameter values based on water–
glycerol drops, and initially take them to have R= 2 mm radii. These mixtures have
the advantage that their surface tension with air σ = 65 mN m−1 and density ρ =
1200 kg m−3 remain approximately constant, whilst the viscosity can range over three
orders of magnitude µ = 10−3–1 Pa s. Then the Reynolds number is in the range
Re= 10−1–105. For coalescence in air of density ρg= 1.2 kg m−3 and viscosity µg=
18 µPa s, the gas-to-liquid density ratio is ρ̄= 10−3 throughout and the viscosity ratio
will be in the range µ̄= 10−5–10−2.

Since our problem is both nonlinear and multi-parametric, a sensible strategy
for exploring it would be to use the estimates for the material constants of the
interface formation model obtained from experiments on dynamic wetting (Blake &
Shikhmurzaev 2002), where the model was used without any alterations, as a ‘base
case’ and to investigate how a variation of these parameters influences the model’s
predictions. The experimental results in Blake & Shikhmurzaev (2002) suggest that
for the class of fluids considered, i.e. water–glycerol mixtures, the relaxation time
of the interface τ = τµµ, where τµ is approximately constant across all the mixtures
considered, so that the dimensionless parameters are ε = στµ/R, ρs

1e = (ρs
1e)dim/ρ

s
(0)

and λ = γρs
(0)/σ1e. Using previous estimates for these parameters as our base state

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
4.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2014.313


Coalescence in a viscous fluid: interface formation model 489

r

100

100 101

10–1

10–1

10–2

10–2

10–3

10–3

10–4

10–4

10–5

10–5

10–6

t

3

2

1

FIGURE 3. Effect of decreasing initial bridge radius for the base case (Re0= 68 and µ̄0=
4× 10−4) with: 1, rmin = 10−4; 2, rmin = 10−5; and 3, rmin = 10−6. As expected, the value
of rmin becomes insignificant shortly after the start of the process.

(denoted with a subscript ‘0’), about which the parameters can be varied to identify
their role, we have

ε0 = 3.3× 10−5, (ρs
1e)0 = 0.4, λ0 = (1− ρs

1e)
−1, (5.1a–c)

where τµ=10−6 m2 N−1, consistent with previous estimates in Blake & Shikhmurzaev
(2002), so that the relaxation time for a viscosity of µ = 10−3 Pa s (water) is 1 ns
whilst for µ = 1 Pa s (roughly, pure glycerol) it is τ = 1 µs. In our comparison to
experiment in § 6, values from (5.1) will be used across all liquids, in contrast to
Sprittles & Shikhmurzaev (2012a) where ρs

1e was fitted. At present, no study has been
conducted on the influence of this parameter on the mixture’s properties, so, again, the
simplest possibility is considered.

In order to further our understanding of the mechanisms governing the interface
formation/disappearance process, we will look into how varying these parameters
around their base state influences the propagation of the liquid bridge connecting the
coalescing drops for the intermediate viscosity of µ = 48 mPa s, so that Re0 = 68
and µ̄0 = 4× 10−4.

5.1. Influence of initial conditions
Before considering the effect of the interface formation parameters on the coalescence
event, we would like to establish the effect that our initial conditions, in particular the
finite bridge radius rmin at which the computations are started, have on the subsequent
dynamics. In figure 3 the effect of the initial radius rmin in (3.2) is shown, and it
can be seen that after a certain time, or distance, all the curves fall on top of each
other. Specifically, one can see that after around r = 10rmin the effect of the initial
conditions has diminished and the curves begin to fall onto a single line. A similar
result has been obtained for the conventional model. Thus, henceforth, computational
results will be shown from r = 10rmin so that the range under consideration has not
been affected by the finite initial radius, i.e. the same curve would be obtained for
smaller rmin. This reinforces the point that it is not the amount of trapped interface
that is initially formed that matters, but the subsequent dynamics.
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FIGURE 4. Influence of interface formation parameters on the evolution of the contact
angle θd for Re0 = 68 and µ̄0 = 4 × 10−4. Curve 1 is the base case used in previous
calculations; curve 2 is for 10ε0; and curve 3 is for λ=10λ0. The last two curves highlight
the existence of three distinct stages of the process: (a) the very initial stage where the
drops ‘touch’ with their free surface forming a cusp, (b) the relaxation stage where there
is an evolving corner between free surfaces and (c) the ‘equilibrium’ stage when the
conventional model takes over.

Notably, although with the interface formation model rmin = 10−5 can easily
be resolved, so that r > 10−4 becomes independent of rmin, these values cannot
be achieved with computations of the conventional model, where the radius of
curvature at the bridge front becomes prohibitively small for rmin < 10−4, owing to
the requirement that, in the framework of this model, the bridge must be smooth. As
a result, although in the parametric study we look at r> 10−4, in order to ensure that
both the conventional and interface formation models are treated on an equal footing
in our comparison with experiments in § 6, computed curves and experimental results
are considered from r = 10−3 following a limitation imposed by the conventional
model.

5.2. Role of the interface formation parameters
From figure 4, one can see that the stage during which the interface formation
dynamics is occurring, i.e. the period in which the free surface is not smooth
(θd 6= 90◦), comprises different regimes. In what we will refer to as the very initial
stages, around t < Tini = 10−3 for the base state (curve 1), the angle at which the
free surface meets the plane of symmetry stays approximately constant, θd ≈ 180◦.
This can be seen most clearly in curves 2 and 3. Then one has the ‘relaxation stage’,
around Tini < t < Trel = 10−2 for the base state, where the angle relaxes to θd ≈ 90◦,
after which the interface formation model turns into the conventional one, as can be
seen in figure 6.

Figure 5 shows the time dependence of the surface tension at the contact line σcl

on each interface. As we can see, in the very initial stage σ1 = σ2 = σini(t), evolving
from σini(t) = 1 at t = 0 imposed by our initial conditions to σini(t) ≈ 0.6 at t =
Tini= 10−3. This is a very interesting feature, as it indicates that both the free surface
and the internal interface are being stretched, approximately in equal measure, as the
process of coalescence goes through its very initial stage. From the force balance at
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FIGURE 5. Evolution of the surface tension where the free surface meets the plane of
symmetry (at the ‘contact line’) on: 1, the free surface; and 2, the internal interface
obtained for Re0 = 68 and µ̄0 = 4 × 10−4. The very initial stage where the two surface
tensions evolve together due to the stretching of both interfaces by the bulk flow is
followed by the relaxation stage where they evolve towards their equilibrium values. Once
these values are reached, the conventional model takes over.
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FIGURE 6. Influence of interface formation parameters at Re0 = 68 and µ̄0 = 4 × 10−4.
Curve 1 is the base case used in previous calculations; curve 2 is for 10ε0; and curve 3
is for λ= 10λ0. The dashed line is the conventional model’s prediction.

the contact line (2.15), σ1= σ2 leads immediately to θd = 180◦, as already noted from
figure 4.

At time t = Tini, the relaxation stage takes over, during which the liquid–fluid and
internal interface approach their equilibrium states of σ1= 1 and σ2= 0 at t=Trel. For
the liquid–fluid interface, which started in equilibrium but was then driven out of this
state by the coalescence process, this relaxation stage involves an increase in surface
tension, whilst for the internal interface, the surface tension continues to decrease until
it reaches a state where this interface has effectively ‘disappeared’ and no longer has
surface properties that would distinguish it from the bulk phase. In other words, the
process of coalescence as modelled by the interface formation model is complete when
t = Trel. Given that the process naturally divides into these different stages, we now
consider the effect of the interfacial parameters in each, as illustrated in figure 6.
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FIGURE 7. Effect of the viscosity ratio on bridge propagation, with all other parameters
set to their base values: 1, µ̄= 10−4; 2, µ̄= 10−2; and 3, µ̄= 1. Strikingly, although the
gap between the free surfaces is narrowest in the very initial stage of the process, the
ambient fluid-to-liquid viscosity ratio has no effect there.

The two parameters that we vary, ε and λ= 1/(1− ρs
1e), can be seen from figure 4

to affect the time during which θd ≈ 180◦, i.e. the time scale of the very initial stages
t< Tini. Roughly, a factor of 10 increase in either ε (curve 2) or λ (curve 3) is seen
to increase the time of the very initial stage by a factor of 10. From figure 6, we can
see that the longer the coalescence process spends in this initial stage, the slower the
initial motion.

The two controlling parameters are seen to have a similar effect on the relaxation
stage, with this period extending by a factor of 10 to Trel≈ 10−1, as opposed to Trel≈
10−2 for the base case, when either ε or λ are increased by a factor of 10. Figure 6
confirms what one may expect, that the earlier the interface formation process is over,
the faster the bridge speed propagation will be. This is to be expected, as in the limit
Trel → 0, in which θd = 90◦ in an infinitesimal time, we have the dynamics of the
conventional model, which is known to have a singular velocity at the start of the
process, so that larger Trel must give a slower coalescence speed. Notably, we see
that, for t> 0.1, all the curves coincide, as the conventional model takes over so that
the interfacial parameters no longer have an influence on the dynamics.

5.3. Influence of the ambient fluid
To consider the influence of the ambient fluid on the coalescence process, all the base
parameters remain fixed with the exception of µ̄ and ρ̄, which are now allowed to
vary. For ρ̄ 6 0.01, corresponding to the range of realistic liquid–gas systems, which
are our main focus here, the influence of the finite gas density on the dynamics of
coalescence is seen to be negligible so that, henceforth, we will consider only the
effect of the viscosity ratio µ̄.

In figure 7, the effect of the viscosity ratio on the bridge propagation is shown,
and what is immediately striking is that for r < 10−2 an increase of two orders of
magnitude in viscosity ratio, from µ̄= 10−4 (curve 1) to µ̄= 10−2 (curve 2), has little
effect on the speed of coalescence. Similarly, increasing by four orders of magnitude
to µ̄= 1 does not alter the bridge evolution for r< 10−3. Only after a finite time does
the initial indifference to µ̄ give way to an effect of viscosity ratio: as one would
expect, larger viscosity ratios result in a slower speed of coalescence. Comparing
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FIGURE 8. Effect of the viscosity ratio on bridge propagation for the two different models,
with all other parameters set to their base values: 1, µ̄= 10−4; 2, µ̄= 10−2; 3, µ̄= 1. The
predictions of the conventional model are shown by dashed lines, with curve numbers
labelled with a prime.
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FIGURE 9. Free-surface shapes obtained from the interface formation model (solid lines)
and the conventional model (dashed lines) at t= 10−3 and t= 2× 10−3.

µ̄ = 10−4 (curve 1) and µ̄ = 10−2 (curve 2), it can be seen that only in the period
10−2 < r< 10−1 is there a noticeable difference caused by the change in µ̄.

Figure 8 shows that the behaviour observed for the interface formation model (solid
lines) differs significantly from that computed for the conventional model (dashed
lines). In the conventional model, the effect of the viscosity ratio is instantaneously
felt and the deviation caused by the differences in µ̄ remains roughly constant (on a
log–log plot) for r < 0.1. In contrast, for the interface formation model, only after a
finite time do the curves fan out, with the distance between them increasing whilst
r< 0.1.

In an attempt to understand the observed behaviour, in figure 9, the free-surface
shape of the bridge front is shown at two instants in time, t= 10−3 and 2× 10−3, for
the two different models. It can be seen that, for the interface formation model at t=
10−3, the free surface is not smooth, and compared to the conventional model’s shape
at this time there is less of a ‘bubble’ of fluid trapped in front of the bridge. It could
be that it is this geometrical feature, present only in the interface formation dynamics,
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FIGURE 10. Effect of decreasing the radius of the drops on the bridge propagation
(plotted in two different ways) with: 1, R= 2 mm; 2, R= 200 µm; 3, R= 20 µm; and
4, R= 2 µm. The dashed line is the computed solution for the conventional model, which
for the Re= 0 case considered here is independent of drop size.

which results in the ambient fluid having less of an effect for this model than for the
conventional model where the free surface is always smooth (dashed lines). In other
words, as the process enters the relaxation stage and the angle evolves from θd= 180◦
to θd = 90◦, ambient fluid is more easily swept away from the bridge front region
and thus has little effect on the dynamics. In contrast, in the conventional model, a
bubble of fluid builds up in front of the bridge front, so that its dynamics and removal
become necessary for the bridge to propagate and thus its behaviour, governed by the
value of µ̄, alters the speed of coalescence. For the interface formation model, once
the free surface becomes smooth and matters are handed over to the conventional one,
similar effects are observed.

5.4. Effect of drop size
Consider how the speed of coalescence depends on the size of the drop R. To further
simplify matters, consider the usual base case except for Re= 0, i.e. a high-viscosity
solution. In this case, there is a universal curve describing the bridge propagation for
the conventional model; this curve is shown as a dashed line in figure 10. However,
for the interface formation model, the parameter ε = στµ/R= 6.5× 10−8 R−1 depends
on the size of the drop. Therefore, the conventional model predicts no change in the
curve relating (dimensionless) bridge radius r to (dimensionless) time t, whilst the
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FIGURE 11. Bridge speed u as a function of bridge radius for R= 2 µm, with the solid
line corresponding to the interface formation model’s predictions and the dashed line the
conventional model’s.

interface formation model could predict some effect, and it is this which will now
be quantified.

In figure 10, the bridge evolution is shown on both log–log and linear plots. From
an experimental perspective it is likely that the linear plot will prove more useful, so
it is this we shall focus on. What can be seen is that, although differences can be
observed on the log–log plot for larger drops R > 200 µm (curves 1, 2), deviations
from the conventional model’s predictions (dashed line) are relatively small on the
linear one. However, for R = 20 µm (curve 3) a noticeable deviation from the
conventional model’s universal curve is observed, and for R = 2 µm a huge change
is seen with the coalescence speed dramatically reduced.

The changes for small drops are most easily seen in figure 11, where the bridge
speed for the smallest drops considered (R = 2 µm) is plotted as a function of the
bridge’s radius. The conventional model’s universal solution predicts a monotonically
decreasing speed throughout the coalescence process, whilst the interface formation
model predicts a clear maximum around r= 0.25. From an experimental perspective,
it may be easier to observe this maximum in the bridge speed for small drops, rather
than trying to compare the bridge evolution across different sized drops as shown in
figure 10.

Figure 11 highlights the key difference between the two models’ predictions: the
conventional model is singular, whilst the interface formation model is singularity-
free. Specifically, in the case of the interface formation model, in figure 11 we can
see that the initial speed of coalescence is very small, and only over a finite and
relatively large time does the bridge front accelerate to a maximum, before relaxing
towards its equilibrium (static) shape. In contrast, the initial speed for the conventional
model is singularly large and it can only go down as free-surface curvature and hence
the capillary pressure that drives the pressure decreases. Although such features are
present in all calculations, it is only when the drop’s size becomes comparable to the
scales on which the interface formation physics acts that these effects visibly change
the global motion of the drops.

6. Comparison with experiments
As our base parameters have been set up in order to align with the experiments

in Paulsen et al. (2011), all that is required here is to specify the viscosity of the
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particular mixtures we will consider, which are chosen to give the widest possible
range of parameters, and these are µ = 3.3, 48, 230 mPa s. Then, the Reynolds
numbers are Re = 1.4 × 104, 68, 2.9, and for coalescence in air of density ρg =
1.2 kg m−3 and viscosity µg = 18 µPa s, the gas-to-liquid density ratio is ρ̄ = 10−3

and the viscosity ratios are, respectively, µ̄= 5.5× 10−3, 3.8× 10−4, 7.8× 10−5.
At this stage, we could look to fit our two parameters for the interface formation

model to the experimental data. In particular, in Sprittles & Shikhmurzaev (2012a)
better agreement between theoretical predictions and experiments was obtained by
varying ρs

1e as a function of fluid viscosity. It is perfectly reasonable for such a
variation to occur as the nature of the interface changes with the percentage of
glycerol in the mixture; however, here we continue our approach of considering only
the simplest possible model and thus use the same parameters across all viscosities.

In figure 12, curves obtained from both the conventional model (curves 1) and
the interface formation model (curves 2) are shown for both the case in which the
surrounding air is considered viscous and for the situation where the gas is assumed
passive (dashed curves marked with a prime). It is apparent that in all cases the
viscosity of the gas influences the conventional model’s curves, whilst it is only at
the lowest viscosity that the gas has a noticeable effect on the interface formation
model’s predictions. This is consistent with our findings in § 5.3, where we saw that
for computations with the interface formation model there is only a small window
during which the gas can have an effect on the coalescence speed, which only occurs
here at the lowest liquid viscosity, whereas in the conventional model a finite viscosity
always has an effect.

In terms of the actual agreement between the models’ predictions and the
experiments, the viscous gas does not alter the conclusions reached by Sprittles
& Shikhmurzaev (2012a): the interface formation model gives a better description
of the initial stages of coalescence across two orders of magnitude change in liquid
viscosity than the conventional model, whilst for low-viscosity mixtures both models
deviate from the experimental measurements of the later stages of coalescence. The
possibility that this discrepancy between theory and experiments is caused by the
effects of gravity, interface formation and/or the ambient fluid have all been ruled
out, suggesting progress in uncovering the reason can only be made by conducting
further theory-driven experiments.

7. Discussion
The computational simulations performed have highlighted the role of the ambient

fluid’s dynamics in the coalescence process and have shown that the effect is
different for the two models considered. Despite this, the conclusions from Sprittles &
Shikhmurzaev (2012a) remain unchanged. In particular, both the conventional model
and the interface formation model, when the latter reduces to the former, give similar
predictions for the final stages of the coalescence process, roughly on the millimetre
scale, where optical measurements are available. For the flow on the microscale,
singularities inherent in the conventional formulation lead to an overprediction of the
speed of coalescence. It is only due to the recent experimental results in Paulsen et al.
(2011) that the errors in the conventional model’s predictions could be brought to
light. In contrast, the interface formation model is singularity-free in the initial stages
and describes the experimental data better, even with the simplifying assumptions
used to reduce the number of free parameters.

An analysis of the evolution of the interface formation process sheds light on the
time scales involved during a coalescence event. Of particular note is that the time
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FIGURE 12. Comparison of the predictions of the conventional model (curve 1) and the
interface formation model (curve 2) with experiments from Paulsen et al. (2011) (error
bars) and Thoroddsen et al. (2005) (triangles), for (a) Re = 1.4 × 104, (b) Re = 68 and
(c) Re= 2.9. Curves marked with a prime are those computed for each model when the
gas is considered passive.

scales recovered are much larger than the relaxation time of the interface, which
would be an obvious initial estimate for these scales. The cause of this phenomenon
has not been fully accounted for, but it appears to be related to the unsteady nature
of the process, with rapid variations in the shape of the interfaces, combined with
the initial far-from-equilibrium configuration of the system. When combined, these
effects sustain the non-equilibrium interfacial dynamics. What would be of particular
interest is the development of an asymptotic theory for the different stages of the
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process, which may shed additional light on how the interface is maintained in its
non-equilibrium state. Furthermore, such a theory, or scaling law, could make a
comparison of the interface formation theory with experimental data a more routine
task, rather than requiring full computation at every stage.

So far, we have focused on the dynamics of the bridge of a millimetre-sized drop,
where we saw that the results obtained in the framework of different models for
the bridge dynamics on the microscale differ significantly, but these differences do
not affect the global dynamics of the drops, as the interface formation/disappearance
processes are over long before the global dynamics comes into play. In contrast,
in § 5.4 we saw that for a micro-drop the global dynamics of the drop is heavily
dependent on the model used. Consequently, theory-driven experiments in this range
can target global features of the drop coalescence process such as, say, the aspect ratio
of the drop, as often used to characterize oscillating drops (Sprittles & Shikhmurzaev
2012b). In this way, by studying smaller drops, optical measurement again becomes
a viable method for probing the physics of the coalescence process.
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Appendix A. Correction to Sprittles & Shikhmurzaev (2013)
Since publishing our user-friendly step-by-step guide to the finite element

implementation of the interface formation model in the Appendix of Sprittles &
Shikhmurzaev (2013), a typographical error has been brought to our attention, which
is present in the text, but not in the code that has been developed. In particular,
equation (53) there should read

∇
s
· as
‖ =

∂as
t

∂s
+ nas

t·r
r
, as

t·r = (as
· t)(t · er) (A 1)

and, consequently, the second term on the right-hand side of equation (63) there
should be changed from

nρs
γ ,j

drγ ,k
dt

∫
sγ e

φγ ,iφγ ,jφγ ,k dsγ ,e to nρs
γ ,jc

s
t,k

∫
sγ e

φγ ,iφγ ,jφγ ,ktr dsγ ,e, (A 2a,b)

with resulting expressions altered accordingly. It is important to stress that the correct
equations were always used in our code.
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