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Abstract

Determinantal point processes (DPPs) enable the modeling of repulsion: they provide
diverse sets of points. The repulsion is encoded in a kernel K that can be seen, in a
discrete setting, as a matrix storing the similarity between points. The main exact algo-
rithm to sample DPPs uses the spectral decomposition of K, a computation that becomes
costly when dealing with a high number of points. Here we present an alternative exact
algorithm to sample in discrete spaces that avoids the eigenvalues and the eigenvec-
tors computation. The method used here is innovative, and numerical experiments show
competitive results with respect to the initial algorithm.
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Determinantal point processes (DPPs) are processes that capture negative correlations. The
more similar two points are, the less likely they are to be sampled simultaneously. Then DPPs
tend to create sets of diverse points. They naturally arise in random matrix theory [22] or in the
modeling of a natural repulsive phenomenon such as the repartition of trees in a forest [31].
Ever since the work of Kulesza and Taskar [27], these processes have become more and more
popular in machine learning, because of their ability to draw subsamples that account for the
inner diversity of data sets. This property is useful for many applications, such as summarizing
documents [14], improving a stochastic gradient descent by drawing diverse subsamples at
each step [45], or extracting a meaningful subset of a large data set to estimate a cost function
or some parameters [3, 6, 44]. Several issues are under investigation, such as learning DPPs,
for instance through maximum likelihood estimation [10, 28], or sampling these processes.
Here we will focus on the sampling question and we will only deal with a discrete and finite
determinantal point process Y , defined by its kernel matrix K, a configuration particularly
adapted to machine learning data sets.

The main algorithm to sample DPPs is a spectral algorithm [24]: it uses the eigendecompo-
sition of K to sample Y . It is exact and in general quite fast. However, the computation of the
eigenvalues of K may be very costly when dealing with large-scale data. That is why numer-
ous algorithms have been conceived to bypass this issue. Some authors have tried to design
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Exact sampling of DPPS without eigendecomposition 1199

a sampling algorithm adapted to specific DPPs. For instance, it is possible to speed up the ini-
tial algorithm by assuming that K has a bounded rank: see Gartrell, Paquet, and Koenigstein
[15] and Kulesza and Taskar [26]. They used a dual representation of the kernel so that almost
all the computations in the spectral algorithm are reduced. One can also deal with another class
of DPPs associated with kernels K that can be decomposed into a sum of tractable matrices:
see Dupuy and Bach [14]. In this case the sampling is much faster, and Dupuy and Bach stud-
ied inference on these classes of DPPs. Finally, Propp and Wilson [37] used Markov chains
and the theory of coupling from the past to sample exactly particular DPPs: uniform spanning
trees. Adapting Wilson’s algorithm, Avena and Gaudillière [5] provided another algorithm to
efficiently sample a parametrized DPP kernel associated with random spanning forests.

Another type of sampling algorithms is the class of approximate methods. Some authors
have approached the original DPP with a low-rank matrix, either by random projections [21,
27] or using the Nyström approximation [1]. The Monte Carlo Markov chain methods also
offer nice approximate sampling algorithms for DPPs. It is possible to obtain satisfying con-
vergence guarantees for particular DPPs, for instance k-DPPs with fixed cardinality [4, 32] or
projection DPPs [17]. Li, Sra, and Jegelka [33] even proposed a polynomial-time sampling
algorithm for general DPPs, thus correcting the initial work of Kang [25]. These algorithms
are commonly used as they save significant time, but the price to pay is the lack of precision
of the result.

As one can see, except for the initial spectral algorithm, no algorithm allows for the exact
sampling of a general DPP. The main contribution of this paper is to introduce such a general
and exact algorithm that does not involve the kernel eigendecomposition, to sample discrete
DPPs. The proposed algorithm is a sequential thinning procedure that relies on two new results:
(i) the explicit formulation of the marginals of any determinantal point process, and (ii) the
derivation of an adapted Bernoulli point process containing a given DPP. This algorithm was
first presented in [29] and was, to our knowledge, the first exact sampling strategy without
spectral decomposition. MATLAB R© and Python implementations of this algorithm (using the
PyTorch library in the Python code) are available online (https://www.math-info.univ-paris5.fr/
~claunay/exact_sampling.html) and hopefully soon in the repository created by Guillaume
Gautier [18] gathering exact and approximate DPP sampling algorithms. Let us mention that
three very recent papers, [36], [20], and [13], also propose new algorithms to sample gen-
eral DPPs without spectral decomposition. Poulson [36] presents factorization strategies of
Hermitian and non-Hermitian DPP kernels to sample general determinantal point processes.
Like our algorithm, it relies heavily on Cholesky decomposition. Gillenwater et al. [20] use
the dual representation of L-ensembles presented in [27] to construct a binary tree containing
enough information on the kernel to sample DPPs in sublinear time. Dereziński, Calandriello,
and Valko [13] apply a preprocessing step that preselects a portion of the points using a regular-
ized DPP. Then a typical DPP sampling is done on the selection. This is related to our thinning
procedure of the initial set by a Bernoulli point process. However, note that Dereziński et al.
report that the overall complexity of their sampling scheme is sublinear, while ours is cubic due
to Cholesky decomposition. Finally, Błaszczyszyn and Keeler [8] present a similar procedure
based on a continuous space: they use discrete determinantal point processes to thin a Poisson
point process defined on that continuous space. The point process generated offers theoretical
guarantees on repulsion and is used to fit network patterns.

The rest of the paper is organized as follows. In the next section we present the general
framework of determinantal point processes and the classic spectral algorithm. In Section 2 we
provide an explicit formulation of the general marginals and pointwise conditional probabilities
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of any determinantal point process, from its kernel K. Using these formulations, we first intro-
duce a ‘naive’, exact but slow, sequential algorithm that relies on the Cholesky decomposition
of the kernel K. In Section 3, using the thinning theory, we accelerate the previous algorithm
and introduce a new exact sampling algorithm for DPPs that we call the sequential thinning
algorithm. Its computational complexity is compared with that of the two previous algorithms.
In Section 4 we display the results of some experiments comparing these three sampling algo-
rithms, and we describe the conditions under which the sequential thinning algorithm is more
efficient than the spectral algorithm. Finally, we discuss and conclude on this algorithm.

1. DPPs and their usual sampling method: the spectral algorithm

In the next sections we will use the following notation. Let us consider a discrete finite
set Y = {1, . . . , N}. This set represents the space on which the point process is defined. In
point process theory, it can be called the carrier space or state space. In this paper we choose a
machine learning term and refer to Y as the ground set. For M ∈RN×N a matrix, we will denote
by MA×B, for all A, B⊂Y , the matrix (M(i, j))(i,j)∈A×B and the short notation MA =MA×A.
Suppose that K is a Hermitian positive semi-definite matrix of size N ×N, indexed by the
elements of Y , so that any of its eigenvalues is in [0, 1]. A subset Y ⊂Y is said to follow a
DPP distribution of kernel K if

P(A⊂ Y)= det (KA) for all A⊂Y .

The spectral algorithm is standard for drawing a determinantal point process. It relies on
the eigendecomposition of its kernel K. It was first introduced by Hough et al. [24] and is also
presented in a more detailed way by Scardicchio [40], Kulesza and Taskar [27], or Lavancier,
Møller, and Rubak [31]. It proceeds in three steps. The first step is the computation of the
eigenvalues λj and the eigenvectors vj of the matrix K. The second step consists in randomly
selecting a set of eigenvectors according to N Bernoulli variables of parameter λi, for i=
1, . . . , N. The third step is drawing sequentially the associated points using a Gram–Schmidt
process.

Algorithm 1 The spectral sampling algorithm

1. Compute the orthonormal eigendecomposition (λj, vj) of the matrix K.

2. Select a random set of eigenvectors. Draw a Bernoulli process X ∈ {0, 1}N with
parameter (λj)j. Let n denote the number Bernoulli samples equal to one,
{X= 1} = {j1, . . . , jn}. Define the matrix V = (vj1 vj2 · · · vjn ) ∈RN×n and let Vk ∈Rn

denote the kth line of V , for k ∈Y .

3. Return the sequence Y = {y1, y2, . . . , yn} sequentially drawn as follows.
For l= 1 to n:

• Sample a point yl ∈Y from the discrete distribution

pl
k =

1

n− l+ 1

(
‖Vk‖2 −

l−1∑
m=1
|〈Vk, em〉|2

)
for all k ∈Y .

• If l < n, define el =wl/‖wl‖ ∈Rn, where wl = Vyl −
∑l−1

m=1〈Vyl , em〉em.

https://doi.org/10.1017/jpr.2020.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.56


Exact sampling of DPPS without eigendecomposition 1201

This algorithm is exact and relatively fast, but it becomes slow when the size of the ground
set grows. For a ground set of size N and a sample of size n, the third step costs O(Nn3) because
of the Gram–Schmidt orthonormalization. Tremblay, Barthelmé, and Amblard [43] proposed
speeding it up using optimized computations and they achieved the complexity O(Nn2) for
this third step. Nevertheless, the eigendecomposition of the matrix K is the heaviest part of
the algorithm, as it runs in time O(N3), and we will see in the numerical results that this first
step generally comprises more than 90% of the running time of the spectral algorithm. As the
amount of data continues to explode, in practice the matrix K is very large, so it seems relevant
to try to avoid this costly operation. We compare the time complexities of the different algo-
rithms presented in this paper at the end of Section 3. In the next section we show that any DPP
can be exactly sampled by a sequential algorithm that does not require the eigendecomposition
of K.

2. Sequential sampling algorithm

Our goal is to build a competitive algorithm to sample DPPs that does not involve the
eigendecomposition of the matrix K. To do so, we first develop a ‘naive’ sequential sampling
algorithm, and subsequently we will accelerate it using a thinning procedure, presented in
Section 3.

2.1. Explicit general marginal of a DPP

First we need to specify the marginals and the conditional probabilities of any DPP. When
I −K is invertible, a formulation of the explicit marginals already exists [27]; it implies deal-
ing with a L-ensemble matrix L instead of the matrix K. However, this hypothesis is reductive:
among others, it ignores the useful case of projection DPPs, when the eigenvalues of K are
either 0 or 1. We show below that general marginals can easily be formulated from the associ-
ated kernel matrix K. For all A⊂Y , we let IA denote the N ×N matrix with 1 on its diagonal
coefficients indexed by the elements of A, and 0 anywhere else. We also let |A| denote the
cardinality of any subset A⊂Y and let A ∈Y be the complementary set of A in Y .

Proposition 1. (Distribution of a DPP.) For any A⊂Y , we have

P(Y = A)= (− 1)|A| det (IA −K).

Proof. We have
P(A⊂ Y)=

∑
B⊃A

P(Y = B).

Using the Möbius inversion formula (see Appendix A), for all A⊂Y,

P(Y = A)=
∑
B⊃A

(− 1)|B\A|P(B⊂ Y)

= (− 1)|A|
∑
B⊃A

(− 1)|B| det (KB)

= (− 1)|A|
∑
B⊃A

det ((−K)B).

Furthermore, Kulesza and Taskar [27] state in their Theorem 2.1 that, for all L ∈RN×N ,∑
A⊂B⊂Y

det (LB)= det (IA + L) for all A⊂Y .
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Then we obtain

P(Y = A)= (− 1)|A| det (IA −K). �

By definition we have P(A⊂ Y)= det (KA) for all A, and as a consequence P(B∩ Y =∅)=
det ((I −K)B) for all B. The next proposition gives, for any DPP, the expression of the general
marginal P(A⊂ Y, B∩ Y =∅), for any A, B disjoint subsets of Y , using K. In what follows, HB

denotes the symmetric positive semi-definite matrix

HB =K +KY×B((I −K)B)−1KB×Y .

Theorem 1. (General marginal of a DPP.) Let A, B⊂Y be disjoint. If

P(B∩ Y =∅)= det ((I −K)B)= 0,

then
P(A⊂ Y, B∩ Y =∅)= 0.

Otherwise the matrix (I −K)B is invertible and

P(A⊂ Y, B∩ Y =∅)= det ((I −K)B) det (HB
A).

Proof. Let A, B⊂Y be disjoint such that P(B∩ Y =∅) �= 0. Using the above proposition,

P(A⊂ Y, B∩ Y =∅)=
∑

A⊂C⊂B

P(Y =C)=
∑

A⊂C⊂B

(− 1)|C| det (IC −K).

For any C such that A⊂C⊂ B, we have B⊂C. Hence, by reordering the matrix coefficients
and using Schur’s determinant formula [23],

det (IC −K)= det

(
(IC −K)B (IC −K)B×B

(IC −K)B×B (IC −K)B

)

= det

(
(I −K)B −KB×B

−KB×B (IC −K)B

)

= det ((I −K)B) det ((IC −HB)B).

Thus
P(A⊂ Y, B∩ Y =∅)= det ((I −K)B)

∑
A⊂C⊂B

(− 1)|C| det ((IC −HB)B).

According to Theorem 2.1 of Kulesza and Taskar [27], for all A⊂ B,∑
A⊂C⊂B

det (−HB
C)= det ((IA −HB)B).

Then the Möbius inversion formula ensures that, for all A⊂ B,∑
A⊂C⊂B

(− 1)|C\A| det ((IC −HB)B)= det (−HB
A)= (− 1)|A| det (HB

A).
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Hence

P(A⊂ Y, B∩ Y =∅)= det ((I −K)B) det
(
HB

A

)
. �

With this formula, we can explicitly formulate the pointwise conditional probabilities of
any DPP.

Corollary 1. (Pointwise conditional probabilities of a DPP.) Let A, B⊂Y be two disjoint sets
such that P(A⊂ Y, B∩ Y =∅) �= 0, and let k /∈ A∪ B. Then

P({k} ⊂ Y | A⊂ Y, B∩ Y =∅)= det
(
HB

A∪{k}
)

det
(
HB

A

)
=HB(k, k)−HB{k}×A

(
HB

A

)−1
HB

A×{k}. (1)

This is a straightforward application of the previous expression and the Schur determinant
formula [23]. Note that these pointwise conditional probabilities are related to the Palm distri-
bution of a point process [12], which characterizes the distribution of the point process under
the condition that there is a point at some location x ∈Y . Shirai and Takahashi proved in [41]
that DPPs on general spaces are closed under Palm distributions, in the sense that there exists
a DPP kernel Kx such that the Palm measure associated to DPP(K) and x is a DPP defined on
Y with kernel Kx. Borodin and Rains [9] also provide similar results on discrete spaces, using
L-ensembles, that Kulesza and Taskar adapt in [27]. They condition the DPP not only on a
subset included in the point process but also, similarly to (1), on a subset not included in the
point process. Like Shirai and Takahashi, they derive a formulation of the generated marginal
kernel L.

Now we have all the necessary expressions for the sequential sampling of a DPP.

2.2. Sequential sampling algorithm of a DPP

This sequential sampling algorithm simply consists in using (1) and updating the point-
wise conditional probability at each step, knowing the previous selected points. It is presented
in Algorithm 2. We recall that this sequential algorithm is the first step toward developing
a competitive sampling algorithm for DPPs: with this method we no longer need eigen-
decomposition. The second step (Section 3) will be to reduce its computational cost.

Algorithm 2 Sequential sampling of a DPP with kernel K

• Initialization: A←∅, B←∅.
• For k= 1 to N:

1. Compute HB
A∪{k} =KA∪{k} +KA∪{k}×B((I −K)B)−1KB×A∪{k}.

2. Compute the probability pk given by

pk = P({k} ⊂ Y | A⊂ Y, B∩ Y =∅)=HB(k, k)−HB{k}×A

(
HB

A

)−1
HB

A×{k}.

3. With probability pk, k is included, A← A∪ {k}, otherwise B← B∪ {k}.
• Return A.
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The main operations of Algorithm 2 involve solving linear systems related to (I −K)−1
B .

Fortunately, here we can use the Cholesky factorization, which alleviates the computational
cost. Suppose that TB is the Cholesky factorization of (I −K)B, that is, TB is a lower triangular
matrix such that (I −K)B = TB(TB)∗ (where (TB)∗ is the conjugate transpose of TB). Then,
denoting JB = (TB)−1KB×A∪{k}, we simply have HB

A∪{k} =KA∪{k} + (JB)∗JB.

Furthermore, at each iteration where B grows, the Cholesky decomposition TB∪{k} of (I −
K)B∪{k} can be computed from TB using standard Cholesky update operations, involving the
resolution of only one linear system of size |B|. See Appendix B for the details of a typical
Cholesky decomposition update.

In comparison with the spectral sampling algorithm of Hough et al. [24], we require com-
putations for each site of Y , and not just one for each sampled point of Y . We will see at the
end of Section 3 and in the experiments that it is not competitive.

3. Sequential thinning algorithm

In this section we show that we can significantly decrease the number of steps and the run-
ning time of Algorithm 2: we propose first sampling a point process X containing Y , the desired
DPP, and then making a sequential selection of the points of X to obtain Y . This procedure will
be called a sequential thinning.

3.1 General framework of sequential thinning

We first describe a general sufficient condition for which a target point process Y – it will
be a determinantal point process in our case – can be obtained as a sequential thinning of
a point process X. This is a discrete adaptation of the thinning procedure on the continuous
line of Rolski and Szekli [38]. To do this, we will consider a coupling (X, Z) such that Z ⊂ X
will be a random selection of the points of X and that will have the same distribution as Y .
From this point onward, we identify the set X with the vector of size N with 1 in the place
of the elements of X and 0 elsewhere, and we use the notations X1:k to denote the vector
(X1, . . . , Xk) and 01:k to denote the null vector of size k. We want to define the random vector
(X1, Z1, X2, Z2, . . . , XN, ZN) ∈R2N with the following conditional distributions for Xk and Zk:

P(Xk = 1 | Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)= P(Xk = 1 | X1:k−1 = x1:k−1),

P(Zk = 1 | Z1:k−1 = z1:k−1, X1:k = x1:k)= 1{xk=1}
P(Yk = 1 | Y1:k−1 = z1:k−1)

P(Xk = 1 | X1:k−1 = x1:k−1)
.

(2)

Proposition 2. (Sequential thinning.) Assume that X,Y, Z are discrete point processes on Y that
satisfy, for all k ∈ {1, . . . , N} and all z, x ∈ {0, 1}N,

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0

implies P(Yk = 1 | Y1:k−1 = z1:k−1)≤ P(Xk = 1 | X1:k−1 = x1:k−1). (3)

Then it is possible to choose (X, Z) in such a way that (2) is satisfied. In that case Z is a thinning
of X, i.e. Z ⊂ X, and Z has the same distribution as Y.

Proof. Let us first discuss the definition of the coupling (X, Z). With the conditions (3), the
ratios defining the conditional probabilities of (2) are ensured to be between 0 and 1 (if the
conditional events have non-zero probabilities). Hence the conditional probabilities allow us
to construct sequentially the distribution of the random vector (X1, Z1, X2, Z2, . . . , XN, ZN) of
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length 2N, and thus the coupling is well-defined. Furthermore, as (2) is satisfied, Zk = 1 only
if Xk = 1, so we have Z ⊂ X.

Let us now show that Z has the same distribution as Y . By complementarity of the events
{Zk = 0} and {Zk = 1}, it is enough to show that for all k ∈ {1, . . . , N}, and z1, . . . , zk−1 such
that P(Z1:k−1 = z1:k−1) > 0,

P(Zk = 1 | Z1:k−1 = z1:k−1)= P(Yk = 1 | Y1:k−1 = z1:k−1). (4)

Let k ∈ {1, . . . , N}, (z1:k−1, x1:k−1) ∈ {0, 1}2(k−1), such that

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0.

Since Z ⊂ X, {Zk = 1} = {Zk = 1, Xk = 1}. Suppose first that

P(Xk = 1 | X1 = x1, . . . , Xk−1 = xk−1) �= 0.

Then

P(Zk = 1 | Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

= P(Zk = 1, Xk = 1 | Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

= P(Zk = 1 | Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1, Xk = 1)

× P(Xk = 1 | Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)

= P(Yk = 1 | Y1:k−1 = z1:k−1) by (2).

If P(Xk = 1 | X1:k−1 = x1:k−1)= 0, then

P(Zk = 1 | Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)= 0,

and using (3),
P(Yk = 1 | Y1:k = z1:k)= 0.

Hence the identity

P(Zk = 1 | Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1)= P(Yk = 1 | Y1:k−1 = z1:k−1)

is always valid. Since the values x1, . . . , xk−1 do not influence this conditional probability, one
can conclude that given (Z1, . . . , Zk−1), Zk is independent of X1, . . . , Xk−1, and thus (4) is
true. �

The characterization of the thinning defined here allows both extreme cases: there can be no
preselection of points by X, meaning that X =Y and that the DPP Y is sampled by Algorithm 2,
or there can be no thinning at all, meaning that the final process Y can be equal to the dom-
inating process X. Regarding sampling acceleration, a good dominating process X must be
sampled quickly and with a cardinality as close as possible to |Y|.

3.2. Sequential thinning algorithm for DPPs

In this section we use the sequential thinning approach, where Y is a DPP of kernel K on the
ground set Y , and X is a Bernoulli point process (BPP). BPPs are the fastest and easiest point
processes to sample. X is a Bernoulli process if the components of the vector (X1, . . . , XN) are

https://doi.org/10.1017/jpr.2020.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.56
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independent. Its distribution is determined by the probability of occurrence of each point k,
which we denote by qk = P(Xk = 1). Due to the independence property, (3) simplifies to

P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0 implies P(Yk = 1 | Y1:k−1 = z1:k−1)≤ qk.

The second inequality does not depend on x, so it must be valid as soon as there exists a vec-
tor x such that P(Z1:k−1 = z1:k−1, X1:k−1 = x1:k−1) > 0, that is, as soon as P(Z1:k−1 = z1:k−1) >

0. Since we want Z to have the same distribution as Y , we finally obtain the conditions

P(Y1:k−1 = y1:k−1) > 0 implies P(Yk = 1 | Y1:k−1 = y1:k−1)≤ qk for all y ∈ {0, 1}N .

Ideally, we want the qk to be as small as possible to ensure that the cardinality of X is as
small as possible. So we look for the optimal values q∗k , that is,

q∗k = max
(y1:k−1) ∈ {0,1}k−1 s.t.
P(Y1:k−1 = y1:k−1) > 0

P(Yk = 1 | Y1:k−1 = y1:k−1).

A priori, computing q∗k would raise combinatorial issues. However, due to the repulsive nature
of DPPs, we have the following proposition.

Proposition 3. Let A, B⊂Y be two disjoint sets such that P(A⊂ Y, B∩ Y =∅) �= 0, and let
k �= l ∈ A∪ B. If P(A∪ {l} ⊂ Y, B∩ Y =∅) > 0, then

P({k} ⊂ Y | A∪ {l} ⊂ Y, B∩ Y =∅)≤ P({k} ⊂ Y | A⊂ Y, B∩ Y =∅).
If P(A⊂ Y, (B∪ {l})∩ Y =∅) > 0, then

P({k} ⊂ Y | A⊂ Y, (B∪ {l})∩ Y =∅)≥ P({k} ⊂ Y | A⊂ Y, B∩ Y =∅).
Consequently, for all k ∈Y , if y1:k−1 ≤ z1:k−1 (where ≤ stands for the inclusion partial order)
are two states for Y1:k−1, then

P(Yk = 1 | Y1:k−1 = y1:k−1)≥ P(Yk = 1 | Y1:k−1 = z1:k−1).

In particular, for all k ∈ {1, . . . , N}, if P(Y1:k−1 = 01:k−1) > 0 then

q∗k = P(Yk = 1 | Y1:k−1 = 01:k−1)

=K(k, k)+Kk×{1:k−1}((I −K){1:k−1})−1K{1:k−1}×k.

Proof. Recall that by Proposition 1,

P({k} ⊂ Y | A⊂ Y, B∩ Y =∅)=HB(k, k)−HB{k}×A(HB
A)−1HB

A×{k}.

Let l /∈ A∪ B∪ {k}. Consider TB the Cholesky decomposition of the matrix HB obtained with
the following ordering of the coefficients: A, l, the remaining coefficients of Y \ (A∪ {l}). Then
the restriction TB

A is the Cholesky decomposition (of the reordered) HB
A , and thus

HB{k}×A(HB
A)−1HB

A×{k} =HB{k}×A(TB
A (TB

A )∗)−1HB
A×{k} = ‖(TB

A )−1HB
A×{k}‖22.

Similarly,
HB{k}×A∪{l}(HB

A∪{l})−1HB
A∪{l}×{k} = ‖(TB

A∪{l})−1HB
A∪{l}×{k}‖22.
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Now note that solving the triangular system with b= (TB
A∪{l})−1HB

A∪{l}×{k} amounts to solving

the triangular system with (TB
A )−1HB

A×{k} and an additional line at the bottom. Hence we obtain

‖b‖22 ≥ ‖(TB
A )−1HB

A×{k}‖22.

Consequently, provided that P(A∪ {l} ⊂ Y, B∩ Y =∅) > 0, we have

P({k} ⊂ Y | A∪ {l} ⊂ Y, B∩ Y =∅)≤ P({k} ⊂ Y | A⊂ Y, B∩ Y =∅).
The second inequality is obtained by complementarity in applying the above inequality to the
DPP Y with B∪ {l} ⊂ Y and A∩ Y =∅. �

As a consequence, an admissible choice for the distribution of the Bernoulli process is

qk =
{
P(Yk = 1 | Y1:k−1 = 01:k−1) if P(Y1:k−1 = 01:k−1) > 0,

1 otherwise.
(5)

Note that if, for some index k, P(Y1:k−1 = 01:k−1) > 0 is not satisfied, then for all the sub-
sequent indexes l≥ k, ql = 1, that is, the Bernoulli process becomes degenerate and contains
all the points after k. In the remainder of this section, X will denote a Bernoulli process with
probabilities (qk) given by (5).

As discussed in the previous section, in addition to being easily simulated, one would like
the cardinality of X to be close to the one of Y , the final sample. The next proposition shows
that this is verified if all the eigenvalues of K are strictly less than 1.

Proposition 4. (|X| is proportional to |Y|.) Suppose that P(Y =∅)= det (I −K) > 0 and let
λmax(K) ∈ [0, 1) denote the maximal eigenvalue of K. Then

E(|X|)≤
(

1+ λmax(K)

2(1− λmax(K))

)
E(|Y|). (6)

Proof. We know that

qk =K(k, k)+K{k}×{1:k−1}((I −K){1:k−1})−1K{1:k−1}×{k},

by Proposition 1. Since

‖((I −K){1:k−1})−1‖Mk−1(C) = 1

1− λmax(K{1:k−1})

and λmax(K{1:k−1})≤ λmax(K), we have

K{k}×{1:k−1}((I −K){1:k−1})−1K{1:k−1}×{k} ≤ 1

1− λmax(K)
‖K{1:k−1}×{k}‖22.

Summing all these inequalities gives

E(|X|)≤ Tr(K)+ 1

1− λmax(K)

N∑
k=1

‖K{1:k−1}×{k}‖22.

The last term is the Frobenius norm of the upper triangular part of K, so it can be bounded by

1

2
‖K‖2F =

1

2

N∑
j=1

λj(K)2.
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Since λj(K)2 ≤ λj(K)λmax(K), we obtain

N∑
j=1

λj(K)2 ≤ λmax(K)Tr(K)= λmax(K)E(|Y|). �

We can now introduce the final sampling algorithm, which we call the sequential thinning
algorithm (Algorithm 3). It presents the different steps of our sequential thinning algorithm
to sample a DPP of kernel K. The first step is a preprocess that must be done only once for
a given matrix K. Step 2 is trivial and fast. The critical point is to sequentially compute the
conditional probabilities pk = P({k} ⊂ Y | A⊂ Y, B∩ Y =∅) for each point of X. Recall that
in Algorithm 2 we use a Cholesky decomposition of the matrix (I −K)B, which is updated
by adding a line each time a point is added in B. Here the inverse of the matrix (I −K)B

is only needed when visiting a point k ∈ X, so we update the Cholesky decomposition by
a single block, where the new block corresponds to all indices added to B in one iteration
(see Appendix B). The MATLAB R© implementation used for the experiments is available
online (https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html), together with a
Python version of this code, using the PyTorch library. Note that very recently Guillaume
Gautier [16] proposed an alternative computation of the Bernoulli probabilities, that gener-
ate the dominating point process in the first step of Algorithm 3, so that it only requires the
diagonal coefficients of the Cholesky decomposition T of I −K.

3.3. Computational complexity

Recall that the size of the ground set Y is N and the size of the final sample is |Y| = n. Both
algorithms introduced in this paper have running complexities of order O(N3), as the spectral
algorithm. However, if we get into the details, the most expensive task in the spectral algorithm
is the computation of the eigenvalues and the eigenvectors of the kernel K. As this matrix is
Hermitian, the common routine for doing so is the reduction of K to some tridiagonal matrix
to which the QR decomposition is applied, meaning that it is decomposed into the product
of an orthogonal matrix and an upper triangular matrix. When N is large, the total number
of operations is approximately 4

3 N3 [42]. In Algorithms 2 and 3, one of the most expensive
operations is the Cholesky decomposition of several matrices. We recall that the Cholesky
decomposition of a matrix of size N ×N costs approximately 1

3 N3 computations when N is
large [34]. Concerning the sequential Algorithm 2, at each iteration k, the number of operations
needed is of order |B|2|A| + |B||A|2 + |A|3, where |A| is the number of selected points at step
k so it is lower than n, and |B| is the number of unselected points, bounded by k. Then, when
N tends to infinity, the total number of operations in Algorithm 2 is lower than

n

3
N3 + n2

2
N2 + n3N

or O(nN3), as in general n�N. Concerning Algorithm 3, the sequential thinning from X,
coming from Algorithm 2, costs O(n|X|3). Recall that |X| is proportional to |Y| = n when the
eigenvalues of K are smaller than 1 (see (6)) so this step costs O(n4). Then the Cholesky
decomposition of I −K is the most expensive operation in Algorithm 3 as it costs approxi-
mately 1

3 N3. In this case the overall running complexity of the sequential thinning algorithm
is of order 1

3 N3, which is four times less than the spectral algorithm. When some eigenvalues
of K are equal to 1, equation (6) no longer holds, so in that case the running complexity of
Algorithm 3 is only bounded by O(nN3).
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Algorithm 3 Sequential thinning algorithm of a DPP with kernel K

1. Compute sequentially the probabilities P(Xk = 1)= qk of the Bernoulli process X.

• Compute the Cholesky decomposition T of the matrix I −K.

• For k= 1 to N:

− If qk−1 < 1 (with the convention q0 = 0),

qk =K(k, k)+ ‖T−1
{1,...,k−1}K{1,...,k−1}×{k}‖22.

− Else, qk = 1.

2. Draw the Bernoulli process X. Let m= |X| and k1 < k2 < · · ·< km be the points of X.

3. Apply the sequential thinning to the points of X.

• Attempt to add sequentially each point of X to Y .

Initialize A←∅ and B←{1, . . . , k1 − 1}.
For j= 1 to m:

− If j > 1, B← B∪ {kj−1 + 1, . . . , kj − 1}.
− Compute the conditional probability pkj = P({kj} ⊂ Y | A⊂ Y, B∩ Y =∅) (see (1)).

∗ Update TB the Cholesky decomposition of (I −K)B (see Appendix B).

∗ Compute JB = (TB)−1KB×A∪{kj}.
∗ Compute HB

A∪{k} =KA∪{kj} + (JB)tJB.

∗ Compute pkj =HB(kj, kj)−HB{kj}×A(HB
A)−1HB

A×{kj}.
− Add kj to A with probability pkj/qkj or to B otherwise.

• Return A.

We will retrieve this experimentally as, depending on the application or on the kernel K,
Algorithm 3 is able to speed up the sampling of DPPs. Note that in the above computations we
have not taken into account the possible parallelization of the sequential thinning algorithm. As
a matter of fact, the Cholesky decomposition is parallelizable [19]. Incorporating these parallel
computations would probably speed up the sequential thinning algorithm, since the Cholesky
decomposition of I −K is the most expensive operation when the expected cardinality |Y| is
low. The last part of the algorithm, the thinning procedure, operates sequentially, so it is not
parallelizable. These comments on the complexity and running times depend on the imple-
mentation, on the choice of the programming language and speed-up strategies, so they mainly
serve as an illustration.

4. Experiments

4.1. DPP models for runtime tests

In the following section we use the common notation of L-ensembles, with matrix L=
K(I −K)−1. We present the results using four different kernels.

(a) A random kernel. K =Q−1DQ, where D is a diagonal matrix with uniformly distributed
random values in (0, 1) and Q is a unitary matrix created from the QR decomposition of
a random matrix.
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(b) A discrete analog to the Ginibre kernel. K = L(I + L)−1 where, for all x1, x2 ∈Y =
{1, . . . , N},

L(x1, x2)= 1

π
e−

1
2 (|x1|2+|x2|2)+x1x2 .

(c) A patch-based kernel. Let u be a discrete image and Y =P a subset of all its patches, i.e.
square sub-images of size w×w in u. Define K = L(I + L)−1 where, for all P1, P2 ∈P ,

L(P1, P2)= exp

(
−‖P1 − P2‖22

s2

)
,

where s > 0 is called the bandwidth or scale parameter. We will detail the definition and
use of this kernel in Section 4.3.

(d) A projection kernel. K =Q−1DQ, where D is a diagonal matrix with the n first coef-
ficients equal to 1 and the others equal to 0, and Q is a random unitary matrix as for
model (a).

It is often essential to control the expected cardinality of the point process. For case (d)
the cardinality is fixed to n. For the other three cases we use a procedure similar to the one
developed in [7]. Recall that if Y ∼DPP(K) and K = L(I + L)−1,

E(|Y|)= tr(K)=
∑
i∈Y

λi =
∑
i∈Y

μi

1+μi
,

where (λi)i∈Y are the eigenvalues of K and (μi)i∈Y are the eigenvalues of L [24, 27]. Given an
initial matrix L=K(I −K)−1 and a desired expected cardinality E(|Y|)= n, we run a binary
search algorithm to find α > 0 such that∑

i∈Y

αμi

1+ αμi
= n.

Then we use the kernels Lα = αL and Kα = Lα(I + Lα)−1.

4.2. Runtimes

For the following experiments, we ran the algorithms on a laptop HP Intel(R) Core(TM)
i7-6600U CPU and we used the software MATLAB R© R2018b. Note that the computational
time results depend on the programming language and the use of optimized functions by the
software. Thus the following numerical results are mainly indicative.

First let us compare the sequential thinning algorithm (Algorithm 3) presented here with
the two main sampling algorithms: the classic spectral algorithm (Algorithm 1) and the ‘naive’
sequential algorithm (Algorithm 2). Figure 1 presents the running times of the three algorithms
as a function of the total number of points of the ground set. Here we have chosen a patch-based
kernel (c). The expected cardinality E(|Y|) is constant, equal to 20. As predicted, the sequential
algorithm (Algorithm 2) is far slower than the two others. Whatever the chosen kernel and the
expected cardinality of the DPP, this algorithm is not competitive. Note that the sequential
thinning algorithm uses this sequential method after sampling the particular Bernoulli process.
But we will see that this first dominating step can be very efficient and lead to a relatively fast
algorithm.

From now on, we restrict the comparison to the spectral and sequential thinning algorithms
(Algorithms 1 and 3). In Figures 2 and 3 we present the running times of these algorithms as
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FIGURE 1: Running times of the three studied algorithms as a function of the size of the ground set, using
a patch-based kernel.

a function of the size of |Y| in various situations. Figure 2 shows the running times when the
expectation of the number of sampled points E(|Y|) is equal to 4% of the size of Y: it increases
as the total number of points increases. In this case we can see that whatever the chosen kernel,
the spectral algorithm is faster as the complexity of sequential part of Algorithm 3 depends
on the size |X| that also grows. In Figure 3, as |Y| grows, E(|Y|) is fixed at 20. Except for
the right-hand side kernel, we are in the configuration where |X| stays proportional to |Y|;
then the Bernoulli step of Algorithm 3 is very efficient and this sequential thinning algorithm
becomes competitive with the spectral algorithm. For these general kernels, we observe that
the sequential thinning algorithm can be as fast as the spectral algorithm, and even faster when
the expected cardinality of the sample is small compared to the size of the ground set. The
question is: When and up to which expected cardinality is Algorithm 3 faster?

Figure 4 displays the running times of both algorithms as a function of the expected cardi-
nality of the sample when the size of the ground set is constant, equal to 5000 points. Note that,
concerning the three left-hand side general kernels with no eigenvalue equal to one, the sequen-
tial thinning algorithm is faster under a certain expected number of points – which depends on
the kernel. For instance, when the kernel is randomly defined and the range of desired points
to sample is below 25, it is relevant to use this algorithm. To conclude, when the eigenvalues
of the kernel are below one, Algorithm 3 seems relevant for large data sets but small samples.
This case is quite common, for instance to summarize a text, to work only with representative
points in clusters, or to denoise an image with a patch-based method.

The projection kernel (when the eigenvalues of K are either 0 or 1) is, as expected, a com-
plicated case. Figure 3(d) shows that our algorithm is not competitive when using this kernel.
Indeed, the cardinality of the dominating Bernoulli process X can be very large. In this case the
bound in (6) is not valid (and even tends to infinity) as λmax = 1, and we necessarily reach the
degenerated case when, after some index k, all the Bernoulli probabilities ql, l≥ k, are equal to
1. Then the second part of the sequential thinning algorithm – the sequential sampling part – is
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FIGURE 2: Running times in log-scale of the spectral and sequential thinning algorithms as a function of
the size of the ground set |Y|, using ‘classic’ DPP kernels: (a) a random kernel, (b) a Ginibre-like kernel,
(c) a patch-based kernel, and (d) a projection kernel. The expectation of the number of sampled points is

set to 4% of |Y|.

done on a larger set which significantly increases the running time of our algorithm. Figure 4
confirms this observation, as in that configuration the sequential thinning algorithm is never
the fastest.

Figure 5 illustrates how efficient the first step of Algorithm 3 can be at reducing the size of
the initial set Y . It displays Bernoulli probabilities qk, k ∈ {1, . . . , N} (equation (5)) associated
with the previous kernels, for different expected cardinality E(|Y|). Observe that the probabili-
ties are overall higher for a projection kernel. For such a kernel, we know that they necessarily
reach the value 1, at the latest from the item k=E(|Y|). Indeed projection DPPs have a fixed
cardinality (equal to E(|Y|)) and qk computes the probability of selecting the item k given that
no other item has been selected yet. Note that, in general, considering the other kernels, the
degenerated value qk = 1 is rarely reached, even though in our experiments the Bernoulli prob-
abilities associated with the patch kernel (c) are sometimes close to one, when the expected
size of the sample is E(|Y|)= 1000. In contrast, the Bernoulli probabilities associated with the
Ginibre-like kernel remain fairly close to a uniform distribution.

In order to understand more precisely to what extent high eigenvalues penalize the efficiency
of the sequential thinning algorithm (Algorithm 3), Figure 6 compares its running times with
that of the spectral algorithm (Algorithm 1) as a function of the eigenvalues of the kernel
K. For these experiments, we consider a ground set of size |Y| = 5000 items and an expected
cardinality equal to 15. In the first case (a), the eigenvalues are either equal to 0 or to λmax, with
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FIGURE 3: Running times in log-scale of the spectral and sequential thinning algorithms as a function of
the size of the ground set |Y|, using ‘classic’ DPP kernels: (a) a random kernel, (b) a Ginibre-like kernel,

(c) a patch-based kernel, and (d) a projection kernel. As |Y| grows, E(|Y|) is constant, equal to 20.

m non-zero eigenvalues so that mλmax = 15. It shows that above a certain λmax (� 0.65), the
sequential thinning algorithm is no longer the fastest. In particular, when λmax = 1, the running
time takes off. In the second case (b), the eigenvalues (λk) are randomly distributed between
0 and λmax so that

∑
k λk = 15. In practice, (N − 1) eigenvalues are exponentially distributed,

with expectation (15− λmax)/(N − 1), and the last eigenvalue is set to λmax. In this case the
sequential thinning algorithm remains faster than the spectral algorithm, even with high values
of λmax, except when λmax = 1. This can be explained by the fact that, by construction of
this kernel, most of the eigenvalues are very small. The average size of the Bernoulli process
generated (light grey, right axes) also illustrates the influence of the eigenvalues.

Table 1 presents the individual weight of the main steps of the three algorithms. Concerning
the sequential algorithm, logically, the matrix inversion is the heaviest part taking 74.25% of
the global running time. These proportions remain the same when the expected number of
points n grows. The main operation of the spectral algorithm is by far the eigendecomposition
of the matrix K, counting for 83% of the global running time, when the expectation of the
number of points to sample evolves with the size of Y . Finally, the sequential sampling is
the heaviest step of the sequential thinning algorithm. We have already mentioned that the
thinning is very fast and that it produces a point process with cardinality as close as possible
to the final DPP. When the expected cardinality is low, the number of selected points by the
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FIGURE 4: Running times of the spectral and sequential thinning algorithms as a function of the expected
cardinality of the process, using (a) a random kernel, (b) a Ginibre-like kernel, (c) a patch-based kernel,

and (d) a projection kernel. The size of the ground set is fixed to 5000 in all examples.

thinning process is low too, so the sequential sampling part remains bounded (86.53% when
the expected cardinality E(|Y|) is constant). On the contrary, when E(|Y|) grows, the number
of points selected by the dominated process rises as well so the running time of this step is
growing (with a mean of 89.39%). As seen before, the global running time of the sequential
thinning algorithm really depends on how good the domination is.

Thus the main case when this sequential thinning algorithm (Algorithm 3) fails to compete
with the spectral algorithm (Algorithm 1) is when the eigenvalues of the kernel are equal or
very close to 1. This algorithm improves the sampling running times when the target size of
the sample is very low (below 25 in our experiments).

In cases when multiple samples of the same DPP have to be drawn, the eigendecomposition
of K can be stored and the spectral algorithm is more efficient than ours. Indeed, in our case
the computation of the Bernoulli probabilities can also be saved, but the sequential sampling
is the heaviest task and needs to be done for each sample.

4.3. Sampling the patches of an image

A random and diverse subselection of the set of patches of an image can be useful for
numerous image processing applications. A first obvious one is image compression. Indeed,
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FIGURE 5: Behavior of the Bernoulli probabilities qk, k ∈ {1, . . . , N}, for the kernels presented in
Section 4.1, considering a ground set of N = 5000 elements and varying the expected cardinality of the

DPP: (a) E(|Y|)= 15, (b) E(|Y|)= 100, (c) E(|Y|)= 1000.

it is possible to obtain a good reconstruction of the image from a very small portion of its
patches. It is sometimes necessary to keep only the most informative patches of the image, if
possible a small amount, and reconstruct the image and store it, using only these few patches.
Moreover, most patch-based algorithms could use such a subselection of patches to improve or
at least speed up its procedures, e.g. for denoising [11]. To do this, the selected patches must
be representative of the patches’ diversity, and this is what DPPs offer. Launay and Leclaire
[30] explore this strategy to speed up a texture synthesis algorithm.
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TABLE 1: Detailed running times of the sequential, spectral, and sequential thinning algorithms for
varying ground sets Y with |Y| ∈ [100, 5000] using a patch-based kernel.

Expected cardinality

Algorithms Steps 4% of |Y| constant (20)

sequential matrix inversion 74.25% 72.71%
Cholesky computation 22.96% 17.82%

spectral eigendecomposition 83.34% 94.24%
sequential sampling 14.77% 4.95%

sequential thinning preprocess to define q 10.07% 13.43%
sequential sampling 89.39% 86.53%
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FIGURE 6: Running times of the spectral and sequential thinning algorithms (Algorithms 1 and 3) as a
function of λmax: (a) m eigenvalues equal to λmax and N −m zero eigenvalues, (b) N random eigenvalues
between 0 and λmax. The size of the Bernoulli process X is also displayed in light grey (right axis). Here

|Y| = 5000 and E(|Y|)= 15.

Given an image u and a set P of 10 000 randomly picked patches of u, we compare the
selection strategies using either a DPP or a random uniform selection. Let us recall the patch-
based kernel (c) defined as the L-ensemble associated with

L(P1, P2)= exp

(
−‖P1 − P2‖22

s2

)
for all P1, P2 ∈P,

that is, L is a Gaussian kernel applied to the Euclidean distance between the patches of P . This
function is commonly chosen to define a similarity measure between patches. It is relevant
since in general the reconstruction error is computed as a function of the Euclidean distance
between the original image and the reconstructed image. We set the bandwidth or scale param-
eter s to be proportional to the median of the interdistances between the patches, as advised by
Aggarwal [2] and Tremblay, Barthelmé, and Amblard [44].

Figures 7 and 8 present several reconstructions of two images, obtained by uniform selec-
tion or by the DPP defined above, with various expected sample sizes. Note that while we
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FIGURE 7: Reconstruction of lighthouse image. (a) Original and reconstructions with uniformly sam-
pled patches and below, the corresponding selected patches. (b) Reconstructions with patches sampled

according to a DPP and below, the corresponding selected patches.

can control the exact cardinality of the uniform selections, the number of patches in the DPP
selections varies, as we can only control the expected cardinality during the sampling process.
These figures show how a selection from a DPP provides better reconstructions than a uniform
selection, especially when the number of patches is low. Indeed, as the DPP sampling favors
a diverse set of patches, it is less likely to miss an essential information of the image. On the
contrary, nothing prevents the uniform selection from selecting very similar patches. The pool
image in Figure 8, for cardinality equal to 5, clearly illustrates this. The number of patches in
an image depends on the size of the image and is often higher than 10 000, while the selection
needs to be small (between 5 and 100): here the use of our sequential thinning algorithm is
pertinent.
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FIGURE 8: Reconstruction of pool image. (a) Original and reconstructions with uniformly sampled
patches and below, the corresponding selected patches. (b) Reconstructions with patches sampled

according to a DPP and below, the corresponding selected patches.

5. Discussion

In this paper we have proposed a new sampling algorithm (Algorithm 3) adapted to general
determinantal point processes, which does not use the spectral decomposition of the kernel
and which is exact. It proceeds in two phases. The first one samples a Bernoulli process whose
distribution is adapted to the targeted DPP. It is a fast and efficient step that reduces the ini-
tial number of points of the ground set. We know that if I −K is invertible, the expectation
of the cardinality of the Bernoulli process is proportional to the expectation of the cardinal-
ity of the DPP. The second phase is a sequential sampling from the points selected in the
first step. This phase is made possible by the explicit formulations of the general marginals
and the pointwise conditional probabilities of any DPP from its kernel K. The sampling is
sped up using updated Cholesky decompositions to compute the conditional probabilities.
MATLAB R© and Python implementations of the sequential thinning algorithm can be found
online (https://www.math-info.univ-paris5.fr/~claunay/exact_sampling.html).
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In terms of running times, we have detailed the cases for which this algorithm is compet-
itive with the spectral algorithm, in particular when the size of the ground set is high and
the expected cardinality of the DPP is modest. This framework is common in machine learn-
ing applications. Indeed, DPPs are an interesting solution to subsampling a data set, initializing
a segmentation algorithm, or summarizing an image, examples where the number of data points
needs to be significantly reduced.

Appendix A. Möbius inversion formula

Proposition A.5. (Möbius inversion formula.) Let V be a finite subset and let f and g be two
functions defined on the power set P(V) of subsets of V. Then

for all A⊂ V, f (A)=
∑
B⊂A

(− 1)|A\B|g(B) ⇐⇒ for all A⊂ V, g(A)=
∑
B⊂A

f (B),

and

for all A⊂ V, f (A)=
∑
B⊃A

(− 1)|B\A|g(B) ⇐⇒ for all A⊂ V, g(A)=
∑
B⊃A

f (B).

Proof. The first equivalence is proved in [35], for example. The second equivalence corre-
sponds to the first applied to f̃ (A)= f (A) and g̃(A)= g(A). You will find more details on this
matter in Rota [39]. �

Appendix B. Cholesky decomposition update

To be efficient, the sequential algorithm relies on Cholesky decompositions that are updated
step by step to save computations. Let M be a symmetric semi-definite matrix of the form

M=
(

A B

Bt C

)
,

where A and C are square matrices. We suppose that the Cholesky decomposition TA of the
matrix A has already been computed and we want to compute the Cholesky decomposition TM

of M. Then set
V = T−1

A B and X =C− VtV =C− BtA−1B,

the Schur complement of the block A of the matrix M. Let TX denote the Cholesky
decomposition of X. Then the Cholesky decomposition of M is given by

TM =
(

TA 0

Vt TX

)
.

Indeed,

TMTt
M =

(
TA 0

Vt TX

)(
Tt

A V

0 Tt
X

)
=
(

TATt
A TAV

VtTt
A VtV + TXTt

X

)
=
(

A B

Bt C

)
.
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[13] DEREZIŃSKI, M., CALANDRIELLO, D. AND VALKO, M. (2019). Exact sampling of determinantal point pro-
cesses with sublinear time preprocessing. In Advances in Neural Information Processing Systems 32, eds H.
Wallach et al., pp. 11546–11558. Curran Associates.

[14] DUPUY, C. AND BACH, F. (2018). Learning determinantal point processes in sublinear time. In International
Conference on Artificial Intelligence and Statistics (AISTATS 2018), pp. 244–257.

[15] GARTRELL, M., PAQUET, U. AND KOENIGSTEIN, N. (2017). Low-rank factorization of determinantal point
processes. In 31st AAAI Conference on Artificial Intelligence (AAAI’17), pp. 1912–1918. AAAI Press.

[16] GAUTIER, G. (2020). On sampling determinantal point processes. Thesis, Ecole Centrale de Lille.
[17] GAUTIER, G., BARDENET, R. AND VALKO, M. (2017). Zonotope hit-and-run for efficient sampling from

projection DPPs. In Proceedings of the 34th International Conference on Machine Learning (Proceedings of
Machine Learning Research 70), eds D. Precup and Y. W. Teh, pp. 1223–1232. PMLR.

[18] GAUTIER, G., POLITO, G., BARDENET, R. AND VALKO, M. (2019). DPPy: DPP sampling with Python. J.
Mach. Learn. Res. 20, 1–7.

[19] GEORGE, A., HEATH, M. T. AND LIU, J. (1986). Parallel Cholesky factorization on a shared-memory
multiprocessor. Linear Algebra Appl. 77, 165–187.

[20] GILLENWATER, J., KULESZA, A., MARIET, Z. AND VASSILVTISKII, S. (2019). A tree-based method for fast
repeated sampling of determinantal point processes. In Proceedings of the 36th International Conference on
Machine Learning (Proceedings of Machine Learning Research 97), eds K. Chaudhuri and R. Salakhutdinov,
pp. 2260–2268. PMLR.

[21] GILLENWATER, J., KULESZA, A. AND TASKAR, B. (2012). Discovering diverse and salient threads in doc-
ument collections. In 2012 Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL ’12), pp. 710–720. ACL.

[22] GINIBRE, J. (1965). Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440.
[23] HORN, R. A. AND JOHNSON, C. R. (1990). Matrix Analysis. Cambridge University Press.
[24] HOUGH, J. B., KRISHNAPUR, M., PERES, Y. AND VIRÁG, B. (2006). Determinantal processes and indepen-

dence. Prob. Surv. 6, 206–229.
[25] KANG, B. (2013). Fast determinantal point process sampling with application to clustering. In Advances in

Neural Information Processing Systems 26, eds J. C. Burges et al., pp. 2319–2327. Curran Associates.
[26] KULESZA, A. AND TASKAR, B. (2010). Structured determinantal point processes. In Advances in Neural

Information Processing Systems 23, eds J. D. Lafferty et al., pp. 1171–1179. Curran Associates.

https://doi.org/10.1017/jpr.2020.56 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.56


Exact sampling of DPPS without eigendecomposition 1221

[27] KULESZA, A. AND TASKAR, B. (2012). Determinantal point processes for machine learning. Found. Trends
Mach. Learn. 5 (2–3), 123–286.

[28] KULESZA, A. AND TASKAR, B. (2011). Learning determinantal point processes. In Proceedings of the Twenty-
Seventh Conference on Uncertainty in Artificial Intelligence, pp. 419–427.

[29] LAUNAY, C., GALERNE, B. AND DESOLNEUX, A. (2018). Exact sampling of determinantal point processes
without eigendecomposition. Available at arXiv:1802.08429.

[30] LAUNAY, C. AND LECLAIRE, A. (2019). Determinantal patch processes for texture synthesis. In GRETSI 2019
(Lille, France, August 2019).

[31] LAVANCIER, F., MØLLER, J. AND RUBAK, E. (2015). Determinantal point process models and statistical
inference. J. R. Statist. Soc. B [Statist. Methodology] 77 (4), 853–877.

[32] LI, C., JEGELKA, S. AND SRA, S. (2016). Efficient sampling for k-determinantal point processes. In 19th
International Conference on Artificial Intelligence and Statistics (Proceedings of Machine Learning Research
51), eds A. Gretton and C. C. Robert, pp. 1328–1337. PMLR.

[33] LI, C., SRA, S. AND JEGELKA, S. (2016). Fast mixing Markov chains for strongly Rayleigh measures, DPPs,
and constrained sampling. In Advances in Neural Information Processing Systems 29, eds D. D. Lee et al., pp.
4188–4196. Curran Associates.

[34] MAYERS, D. AND SÜLI, E. (2003). An Introduction to Numerical Analysis. Cambridge University Press,
Cambridge.

[35] MUMFORD, D. AND DESOLNEUX, A. (2010). Pattern Theory: The Stochastic Analysis of Real-World Signals
(AK Peters Series). Taylor & Francis.

[36] POULSON, J. (2020). High-performance sampling of generic determinantal point processes. Phil. Trans. R. Soc.
London 378, 2166.

[37] PROPP, J. G. AND WILSON, D. B. (1998). How to get a perfectly random sample from a generic Markov chain
and generate a random spanning tree of a directed graph. J. Algorithms 27 (2), 170–217.

[38] ROLSKI, T. AND SZEKLI, R. (1991). Stochastic ordering and thinning of point processes. Stoch. Process. Appl.
37 (2), 299–312.

[39] ROTA, G.-C. (1964). On the foundations of combinatorial theory I: Theory of Möbius functions. Z.
Wahrscheinlichkeitsth. 2, 340–368.

[40] SCARDICCHIO, A., ZACHARY, C. E. AND TORQUATO, S. (2009). Statistical properties of determinantal point
processes in high dimensional Euclidean spaces. Phys. Rev. E 79 (4), 041108.

[41] SHIRAI, T. AND TAKAHASHI, Y. (2003). Random point fields associated with certain Fredholm determinants
I: Fermion, Poisson and boson point processes. J. Funct. Anal. 205 (2), 414–463.

[42] TREFETHEN, L. N. AND BAU, D. (1997). Numerical Linear Algebra. SIAM.
[43] TREMBLAY, N., BARTHELMÉ, S. AND AMBLARD, P.-O. (2018). Optimized algorithms to sample determinan-

tal point processes. Available at CoRR, abs/1802.08471.
[44] TREMBLAY, N., BARTHELMÉ, S. AND AMBLARD, P.-O. (2019). Determinantal point processes for coresets.

J. Mach. Learn. Res. 20, 1–70.
[45] ZHANG, C., KJELLSTRÖM, H. AND MANDT, S. (2017). Determinantal point processes for mini-batch

diversification. In Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence.

https://doi.org/10.1017/jpr.2020.56 Published online by Cambridge University Press

https://arXiv.org/abs/1802.08429
https://doi.org/10.1017/jpr.2020.56

	DPPs and their usual sampling method: the spectral algorithm
	Sequential sampling algorithm
	Explicit general marginal of a DPP
	Sequential sampling algorithm of a DPP

	Sequential thinning algorithm
	General framework of sequential thinning
	Sequential thinning algorithm for DPPs
	Computational complexity

	Experiments
	DPP models for runtime tests
	Runtimes
	Sampling the patches of an image

	Discussion
	M"00F6`bius inversion formula
	Cholesky decomposition update
	Acknowledgement
	References

