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SUMMARY
This investigation describes the mechanical configuration
and control environment for a novel cart-seesaw system. This
mechanism is called a super articulated mechanical system
(SAMS). The system comprises a cart that slides on the
pneumatic rodless cylinder. The rodless cylinder is double-
acting with the carrier bracket, on which a cart is a pinion
mechanism for the tracks. The cart-seesaw system brings
the cart from any initial position to a desired position on
the seesaw by applying an appropriate force to the cart and
thus adjusting the angle of the seesaw. The position of a cart
denotes the first degree of freedom, which is activated by a
pneumatic proportional valve, and the angle of the seesaw
indicates the second degree of freedom that is not actuated.
Consequently, the proposed new pneumatic cart-seesaw
system is straightforward to construct and direct to operate
in different scenarios of performance. A state feedback
controller is applied for stabilization of the equilibrium
point of the system. Moreover, this study adds a supervisory
controller that takes control action in extreme situations. Test
results reveal excellent properties in control performance.
The proposed product can be extensively applied in SAMS
and pneumatic control for robotics control laboratory.
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1. Introduction
Underactuated mechanisms have recently attracted signific-
ant attention, owing to their ability not only to represent a rich
class of control system from a control stand point but also to
reduce the cost of robots by decreasing the link mass and the
number of robot actuators.1 In contrast to the system with full
controls, a super articulated mechanical system (SAMS) is
a controlled underactuated mechanical system in which the
dimension of the configuration space exceeds the dimension
of the control input space. For example, inverted pendulum
on a cart, ball and beam problem, mass sliding on a cart
and robots with joint elasticity, underactuated bipedal robot,
nonholonomic mobile robot, etc., all is SAMS.2

A super-articulated mechanical system presents challenges
that are not found in a system with full controls, in which the
dimensions of the configuration space equals the dimension
of the control input space. For instance, controllability is not
easy to determine locally in an SAMS, since it is generally
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implied in a system with full control. Control synthesis is
also more complex in an SAMS than in a system with
full control.3 Literature4–6 on motion planning and control
of nonholonomic systems has indicated the difficult yet
interesting features of control synthesis for SAMS.

Control design for underactuated bipedal robot is a
fascinating topic in robotics.7,8 A planar underactuated
bipedal robot with an impulsive foot model is considered
in ref. [7]. A feedback design method is proposed that
integrates actuation in the single and double support phases.
Nevertheless, this paper presents a simple feedback control
design with no supervisory control to take control action
in extreme situations. Similarly, the robust control of
underactuated bipeds using sliding modes is demonstrated
in ref. [8]. A sliding mode control law has been developed
for the biped to follow a human-like gait trajectory while
keeping the torso nearly upright. The control law is too
complicated to understand for the undergraduate students.
Moreover, it lacks experimental implementation to verify the
control algorithms.

The ball-and-beam system is a common undergraduate
control laboratory experiment.9 Control of the ball-and-beam
system has been widely discussed in teaching and research
literature—many classical control solutions can be found on
the Internet and in introductory control textbooks. However,
discovering a control law to stabilize the system remains an
active topic of research discussion.

The ball-and-beam mechanism generally comprises a
beam with a ball on it. The ball rolls on the beam according
to the changing angle of the beam. A ball moving on a beam
is a typical nonlinear dynamic system, which is often adapted
to proof-test diverse control methods.10 Such a system may
be adopted as a control-training tool by engineering students
to test industrial processes and their applications.

Moreover, the “ball and the beam” system is well
documented as an example of a system that requires an
active control system to maintain the ball at a desired
beam position. Several approaches have been presented to
control the ball-and-beam system during the past decades,
for example, input–output feedback linearization,10 robust
nonlinear control,11,12 and fuzzy logic control.13–15 However,
all of the above papers are based on the same conventional
ball-on-beam plant, in which the ball is rolling on the beam
according to the changing angle of the beam. The system
lacks a new mechanism for other control purposes.

Pneumatic cylinders are sometimes considered to offer
a better alternative to electrical or hydraulic actuators for
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certain types of applications. The pneumatic cylinder is
being widely employed as an important driving element in
industrial applications due to its simple, cheap, and excellent
performance. The development of control technology
increases the requirement for control precision. Pneumatic
actuators are often adopted in applications requiring high
power-to-weight ratio, combined with low price and clean
operation. They are also suitable for clean environments,
and are safe and easier to use. Unfortunately, owing to the
compressibility of air, highly nonlinear behavior, and time
delay resulting from the slow propagation of pressure waves,
position and force control of these actuators are difficult.16

Researchers have tried controlling the pneumatic actuators
using different approaches, including adaptive control17,18

and sliding mode control,19–22 during the past decade.
However, controlling the position and force of these actuators
in applications that require high bandwidth is difficult. This is
mainly due to the compressibility of air and highly nonlinear
flow through pneumatic system components.

The review of the above papers indicates that no
researchers have attempted to control a ball-and-beam
mechanism by a pneumatic cylinder for actuation. Hence, the
main goal of this research is to develop a new ball-and-beam
mechanism for laboratory exercises and student projects
in subjects covering robot control. This new mechanism
is defined as a cart-seesaw system. The experimental
implementation is setup to verify the proposed control
methodology. The seesaw can rotate only in a vertical plane
with one degree of freedom, and the cart slides along the
seesaw by applying a force with a pneumatic device. The
objective of this experiment is to achieve a desired sliding
mass position on the cart. This study investigation serves
as a reference of the achievable control behavior for the
underactuated mechanism, and covers the extension of the
curriculum to the control of the underactuated robots. Finally,
the proposed product in this paper can be extensively applied
in SAMS and pneumatic control for a robotics control
laboratory.

2. System Configuration

2.1. System description
The ball-and-beam mechanism consists of a beam and
a ball on it. The ball rolls on the beam according to
the changing angle of the beam. The proposed ball-and-
beam-like mechanism replaces the ball is replaced with a
cart, which slides “frictionlessly” on the pneumatic rodless
cylinder. The proposed cart-seesaw system consists of one
sliding cart, which is coupled via rack and pinion mechanism
to tracks mounted on a seesaw. Forces are applied to the cart
via pneumatic actuator. The seesaw is joined and frees to
rotate in unison about the pivot point. Figure 1 illustrates the
conceptual model of a pneumatic cart-seesaw system.

Pneumatic servos have been less widely analyzed
than hydraulic servos, particularly because the equations
for compressible flow are more difficult than for the
incompressible flow to handle. The difference in performance
arises because pneumatic servos use a very compressible
fluid. For example, air is introduced into a cylinder when the

Fig. 1. Conceptual model of a pneumatic cart-seesaw system.

valve is opened, and sufficient gas must then flow into the
cylinder volume to raise the pressure and build up sufficient
force to overcome any spring preload or static friction.
In hydraulic systems, a very small valve displacement
causes pressure in the cylinder to rise immediately. Hence,
a hydraulic system has a rapid initial response, while a
pneumatic system exhibits a time delay. Since the fluid is
compressible, the servo lacks stiffness, especially to external
load disturbances. To achieve the stiff characteristics of
hydraulics, these systems must either be large enough to
absorb any load variation with a small change in pressure,
or be provided with a large servo-valve that is capable of
rapidly adding or removing gas.23 However, the difficulty
of the pneumatic system is not a main issue in this paper.
Future work will address the difficulty problem of pneumatic
systems.

The experimental pneumatic system was composed of a
pneumatic rodless cylinder 240 mm long, two controlled
proportional valves, a measurement system comprising of
two sensors (rotary potentiometer and linear potentiometer),
a personal computer (PC), and a source of compressed air.
The cylinder was double-acting, and had a carrier bracket on
which a sliding cart was attached to the tracks by a pinion
mechanism. The air supply to the cylinder was manipulated
by an electro-pneumatic transducer that provided an air
pressure proportional to the supply voltage. Each direction
of motion was selected by appropriate actuation of the two
3/2-way electro-valves (model type: SMC VEF 3121-1),
which converted the electrical signal to proportional airflow.
Figure 2 displays the pneumatic circuit.

A linear potentiometer was utilized to measure the position
of the sliding cart. Additionally, the cart position r was
measured from the seesaw center, and was positive if the
cart was on the right side of the seesaw. Similarly, the
rotary potentiometer was adopted to measure the seesaw
angle. The seesaw angle θ was positive if the seesaw rotated
counterclockwise from horizon.

The proposed system applies two mechanical stabilization
systems: static balance and dynamic equilibrium. Structural
bias or loading unbalance disturbances prevent the system
sensor from accurately measuring the equilibrium point. For
instance, the seesaw angle should ideally be zero when the
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Fig. 2. Pneumatic circuit for cart-seesaw system.

cart moves to the center of the seesaw. This point is called
the equilibrium point. However, due to the bias or loading
unbalance disturbances existing in the original mechanism,
the sensor for equilibrium point cannot accurately show the
zero value. To solve this problem, an adjustable weight rod
was installed as a counterbalance. This mechanism is called
static balance apparatus. The counterweight modification
method can guarantee that the seesaw angle equals zero
when the cart position is located at the center of the seesaw.
However, sensor system must adapt their sensing value
during the experiment.

Furthermore, the seesaw falls to the definite direction
instantaneously if the cart runs to a particular place,
thus creating instantaneous dynamic instability. Hence, in
dynamical improvement aspect, several torsion springs are
installed underneath the seesaw to serve as a damping
mechanism to absorb the impact and shock energy. Two
torsion springs are installed underneath the seesaw in such
a system. Figure 3 depicts the visualization of this cart-
seesaw system, and indicates some important devices in such
a system.

Fig. 3. Visualization of cart-seesaw system.

Fig. 4. Free-body diagram of the cart-seesaw system.

2.2. Rotation center and center of gravity
The designation of the rotation center determines the
dynamic stability of the whole system. An inappropriately
positioned rotation leads to an inherently unstable system.
Hence, the overall cart-seesaw system can tilt while the cart
is sliding. As revealed in Fig. 4, the distance of the rotation
center to the center of gravity of the cart-seesaw system is
l. The cart should move to the right as the seesaw rotates
counterclockwise with angle θ to prevent the seesaw from
tilting to the left. The distance between the cart and the
rotation center is assumed to be r in this case. To prevent the
cart-seesaw system from tilting, the moment of the clockwise
side should be greater than that of the counterclockwise side.
The resulting equation has the following form:

mg(r cos θ − l sin θ) > Wl sin θ (1)

where W denotes the total weight of the seesaw, and m

represents the sliding cart.
Therefore, Eq. (1) can be rewritten as

mgr cos θ > (mg sin θ + W sin θ)l. (2)

Equation (2) demonstrates that a longer distance between
the center of gravity and the rotation center l requires a
larger value for r , i.e, the distance between the cart and
the center of gravity. However, the mass of the sliding cart
m is much smaller than the total weight of the seesaw W

(mg �W ). Therefore, the rotation center and the center
of gravity are collocated on the same line in the proposed
system, so that the distance between the center of gravity
and the rotation center l is very small (l � 0). This coincides
with the requirement of Eq. (2), and can enhance the dynamic
stability and prevent the cart-seesaw system from tilting.
Hence, the mechanical configuration follows this concept to
set up the system (Fig. 5).

Seesaw

Pneumatic cylinderSliding cart

Rotation center and center of gravity on line

Fig. 5. Side view for the cart-seesaw system.
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Fig. 6. Dynamic model for pneumatic cart-seesaw mechanism.

3. Dynamic Modeling
In this section, a mathematical model of the pneumatic cart-
seesaw mechanism is obtained from independently known
dynamics. Consider the cart-seesaw system illustrated in
Fig. 6. The cart-seesaw system brings the cart from any
initial position with any initial speed to a desired position
on the seesaw by applying an appropriate force to the cart,
and thus adjusting the angle of the seesaw. The cart sliding
on the seesaw indicates the first degree of freedom, which is
actuated by a pneumatic proportional control valve, and the
angle of a seesaw represents the second degree of freedom,
which is not actuated.

Let the moment of inertia of the seesaw be J , the mass
of the sliding cart be M , and the gravity acceleration g. The
torsion spring k is attached on the underneath of the seesaw
to serve as the vibration damper in order to absorb the impact
and shock energy. Selecting the beam angle θ and slide cart
position r as generalized position coordinates for the system,
using the Lagrangian formulation, the dynamic equations are
given by

Mr̈ + Mg sin θ − Mrθ̇2 = τ

(Mr2 + J )θ̈ + 2Mrṙ θ̇ + Mgr cos θ + kθ = 0.
(3)

The detailed derivation procedure of Eq. (3) is indicated
as Appendix. Moreover, Eq. (3) can also be written in matrix
form

[
M 0
0 Mr2 + J

] [
r̈

θ̈

]
+

[
0 −Mrθ̇

Mrθ̇ Mrṙ

] [
ṙ

θ̇

]

+
[

0 0
0 k

] [
r

θ

]
+

[
Mg sin θ

Mgr cos θ

]
=

[
τ

0

]
. (4)

Compared with the robotic dynamics formulation, M =
[M 0

0 Mr2 + J
] is the inertia matrix; C = [ 0 −Mrθ̇

Mrθ̇ Mrṙ ] denotes the
Coriolis/centripetal matrix; K = [0 0

0 k
] represents the stiffness

matrix, and G = [ Mg sin θ
Mgr cos θ ] is the gravity vector.

Furthermore,

Ṁ − 2C =
[

0 0
0 2Mrṙ

]
−

[
0 −2Mrθ̇

2Mrθ̇ 2Mrṙ

]

=
[

0 2Mrθ̇
−2Mrθ̇ 0

]

indicates a skew-symmetric matrix.
By defining the state vector x = [r ṙ θ θ̇ ]T =

[x1 x2 x3 x4]T , the state space form is described as

ẋ =

⎡
⎢⎣

ẋ1

ẋ2

ẋ3

ẋ4

⎤
⎥⎦ =

⎡
⎢⎣

ṙ

r̈

θ̇

θ̈

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎣

x2

−g sin x3 + x1x
2
4 + (1/M)τ

x4

−2Mx1x2x4

Mx2
1 + J

− gx1 cos x3

Mx2
1 + J

− kx3

Mx2
1 + J

⎤
⎥⎥⎥⎥⎦

= f (x, τ ) = f (x) + g(x)τ (5)

where

f (x) =

⎡
⎢⎢⎢⎢⎢⎣

x2

−g sin x3 + x1x
2
4

x4

−2Mx1x2x4

Mx2
1 + J

− gx1 cos x3

Mx2
1 + J

− kx3

Mx2
1 + J

⎤
⎥⎥⎥⎥⎥⎦

,

g(x) =

⎡
⎢⎢⎣

0
(1/M)

0
0

⎤
⎥⎥⎦ .

This system is easily linearized by the assumptions
cos(xi) ≈ 1, sin(xi) ≈ xi , and that any product of states (i.e.,
x1x

2
4 ) is very small or approximately zero.
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4. Controller Design
The grey theory used in ref. [24] to optimize the parameters of
a PID controller for a robotic manipulator attached to a com-
pliant base (one of SAMS types). Such a system is known as
the macro–micro system, characterized by the number of con-
trol actuators being less than the number of state variables.
However, the methodology requires a limited known data and
needs to investigate the sensitivity of the control parameters,
and then to predict the PID controller parameters. Therefore,
a different approach will be proposed for stabilization of
the equilibrium point of the system in this section: a state
feedback controller [linear quadratic regulator (LQR)] plus a
supervisory controller that will take control action in extreme
situations for such a new pneumatic cart-seesaw system.

4.1. State feedback controller
Suppose that the realization of an equilibrium-to-equilibrium
transfer maneuver of the sliding block is required in a
finite time interval [ti , tf ]. This is achieved by introducing
a controlled displacement from given initial equilibrium
positions, (r(ti), θ(ti)), toward a second equilibrium position,
(r(tf ), θ(tf )).

To ensure notational and analytical simplicity in linear
system analysis and design, the linear system equations
are often transferred such that the nominal (equilibrium)
point is the origin of the state-space. The same action
can be performed for nonlinear systems about a specific
equilibrium point. Assume that the nominal (equilibrium)
point of interest is x∗. The second equation in Eq. (4) yields
the following implicit differential equation for the required
nominal angular displacement, θ∗(t), in terms of the nominal
longitudinal displacement, r∗(t).

(Mr∗(t)2 + J )θ̈∗(t) + 2Mr∗(t)ṙ∗(t)θ̇∗(t)

+ Mgr∗(t) cos θ∗(t) + kθ∗(t) = 0. (6)

Then, by introducing a new variable

x1,δ = r − r∗, x2,δ = ṙ − ṙ∗, x3,δ = θ − θ∗,

x4,δ = θ̇ − θ̇∗, uδ = τ − τ ∗.

The linearization of the system around the nominal
trajectory (r∗, ṙ∗, θ∗, θ̇∗, τ ∗) is of the form

ẋδ = Axδ + Buδ + εh(xδ, uδ) (7)

where xδ = [x1,δ x2,δ x3,δ x4,δ]T , A= ( ∂f (x,τ )
∂x

)(x = 0,τ = 0),
B = ( ∂f (x,τ )

∂τ
)(x = 0,τ = 0), and h ∼= f (x, τ ) − Axδ − Buδ . ε ∈

[0, 1] is a scalar parameter.
Significantly, for ε = 0, the nonlinear system in Eq. (5)

becomes linear, while for ε = 1, the linearized system in
Eq. (7) corresponds to the original system. The control gain
is easily obtained by assuming that ε = 0.

The following well-known approach is employed for a
continuous linear quadratic regulator (LQR). Let the constant
matrices Q and R be nonnegative and positive-definite,

respectively. Define the performance index as

J (xδ, uδ) =
∞∫

0

(
xT

δ Qxδ + uT
δ Ruδ

)
dt (8)

and the minimization problem as the task of finding an
optimal control u∗

δ (•), which minimizes J . To ensure the
solvability of the problem, the pair (A, B) is required to
be stabilizable. Therefore, the optimal control at time t is
uniquely given by the control law

u∗
δ (t) =−R−1BT Kxδ(t) (9)

where matrix K denotes the solution to the algebraic matrix
Riccati equation (AMRE)

AT K + KA − KBR−1BT K + Q = 0. (10)

Hence, this investigation develops a linear state feedback
controller for the stabilization of the linearized system, with
the form

uδ =−kT xδ = −k1x1,δ − k2x2,δ − k3x3,δ − k4x4,δ (11)

with feedback gains {k1, k2, k3, k4} selected so that the
characteristic polynomial of the closed-loop system matrix,
computed as d(λ) = det[λI − A + BkT ], exhibits constant
coefficients that coincide with those of a Hurwitz polynomial
of the form d(λ) = λ4 + γ4λ

3 + γ3λ
2 + γ2λ + γ1, whose

roots are strictly in the left-half complex plane. Therefore,
the main control action based on LQR is the PD controller.

However, for nonzero values of ε, Eq. (7) represents
a nonlinear problem whose solution is typically difficult
to obtain. Some near-optimum control designs have been
developed to resolve this difficulty.25 Nevertheless, the
derivation procedure shown in those studies are laborious and
time-consuming, particularly for a process with a nonlinear
system. Hence, to avoid tedious and time-consuming tasks,
the proposed system incorporates a supervisory controller.

4.2. Design of the supervisory controller
This section lists the details of how to construct a
supervisory controller for a nonlinear control system where
the state feedback controller already exists, and proposes
modifications to the supervisory control such that it gradually
switches to the supervisory mode. More specifically, this
investigation designs a controller whose main control action
is uδ , and with a closed-loop system that is globally stable
in the sense that the state x is uniformly bounded, i.e.,
|x(t)| ≤ Mxδ

, ∀t > 0, where Mxδ
denotes a constant given by

the designer.
For this task, a supervisory controller us , which is nonzero

only when the state x hits the boundary of the constraint set
{x : |x| ≤ Mxδ

}, we append the PD controller uδ. Thus, the
control law is

u =uδ + I ∗us (12)

where the indicator function I ∗ = 1 if |x| ≥ Mxδ
, and I ∗ = 0

if |x|<Mxδ
. Therefore, the main control action remains the
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Fig. 7. Block diagram for the control structure.

PD control action. The value of us needs to be set such
that |x(t)| ≤ Mxδ

for all t > 0. If the main control action can
perform successful control, then the supervisor just observes,
and does not take any action. Otherwise, the supervisory
controller begins operation. In this paper, the integral control
action us = kI

∫
xδ dt is adopted for supervisory controller.

Hence, the control structure with supervisory is the PID
control form in this paper. Figure 7 displays the block
diagram for the control structure.

As indicated above, the PD control is very effective if all
the parameters of the system are known and no disturbance
occurs. However, classical control theory states that PD
control gives a nonzero steady-state error in the presence
of constant disturbances. Consequently, the proposed system
incorporates an integrator into the control loop—the super-
visory control can be removed using the PID control law.

This seems to be because PID controllers, despite their
simple structure, achieve acceptable performance for a wide
range of industrial plants, and their usage (the tuning of their
parameters) is well known among industrial operators.

5. Results and Discussions

5.1. Experiment implementation
Figure 8 shows the experimental setup. The seesaw can
rotate only in a vertical plane with one degree of freedom,

Fig. 8. Experimental apparatus for pneumatic cart-seesaw system.

Table I. Parameters of the system.

Parameters Values

Moment of inertia of the beam, J 0.0904 (Nm)/s2

Mass of the slide, M 0.368 kg
Torsion spring constant, k 0.1568 N/deg
Seesaw dimensions 566 × 126 × 18 (mm)

(length × width × height)

and the cart slides along the seesaw by applying a force
onto a pneumatic device. The aim of the experiment was to
achieve a desired sliding mass position on the cart. Double
solenoid proportional direction control valves were used to
drive two double-acting pneumatic rodless cylinders. Table I
presents the common properties of the test apparatus. The
air supply was regulated to 6 bar (6 kgf/cm2). The sampling
time was 1 ms. The controller of the cart-seesaw system is
composed of two NI DAQ boards (PCI-MIO-16E-4 and PCI-
6174) with a host personal computer. The controller board
with its real-time software interface permits rapid control
prototyping in connection with LabVIEW, thus enabling a
quick implementation of the proposed supervisory control
approach on the basis of the real-time block model applied
in LabVIEW.

5.2. Results
This section describes the experimental results of the
proposed control scheme. The stabilization control for the
equilibrium point is first presented. Figure 9 shows the
performance of the proposed feedback controller based
on approximate linearization around the equilibrium point.
Figure 9(a) compares the cart’s position in time response
with and without supervisory control. This figure reveals
that an LQR (the PD control form in this paper) had
good transient tracking performance in this experiment.
The feedback gains for LQR control were chosen as
k1 = 6.73, k2 = 2.23, k3 =−0.38, and k4 =−0.16 in the
experiment. The values for control gains followed the LQR
algorithm and attempted to achieve those values. However,
Fig. 9(a) demonstrates that the performance significantly
improved while the supervisory controller was being applied.
The overshoot and steady-state error declined significantly.
For such a case, the supervisory controller is selected as an
integral control action, and its control gain is set to kI = 1.

Figure 9(b) depicts the seesaw’s angle response for
the proposed control methodology. The tentative study
[Fig. 9(b)] still demonstrates the performance of tracking
with a large steady-state error under LQR control.
However, a substantial improvement was achieved during
tracking tasks by employing the proposed supervisory
modification scheme. The supervisory controller increased
the convergence rate and reduced the steady-state error. These
results indicate that the use of a supervisory controller not
only improves the tracking performance, but also eliminates
control chattering. However, if the tracking controller cannot
control the system well, then the supervisor takes control
actions to prevent major problems. The tracking controller
learns to collect the mistakes and regains control during this
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Fig. 9. Stabilization and control for equilibrium point. (a) Cart
position. (b) Seesaw angle.

period. The supervisor becomes an observer again after the
system returns to normal.

As demonstrated above, LQR is often appropriate for
stabilization. However, LQR produces a residual error at
the steady state due to gravity. This error can be eliminated
using the PID control law (LQR with supervisory controller).
For instance, the integral action has to be increased at the
beginning of the transient response to shorten the rise time,
and decreased when the system error is negative to reduce
the overshoot.

Figure 10 plots the time response for cart position and
seesaw angle with unexpected load disturbance, respectively.
Figure 10(a) demonstrates that a pure LQR had a high
transient tracking performance for cart position in the
experiment. If the tracking controller can perform successful
control, then the supervisory controller just observes and does
not take any action. Furthermore, the tracking performance
deteriorated when loading disturbance was applied to the
seesaw angle under pure LQR control [Fig. 10(b)]. It
also demonstrates that the seesaw angle θ performance
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Fig. 10. Stabilization and control for equilibrium point with
unexpected load disturbance. (a) Cart position. (b) Seesaw
angle.

improved significantly when the supervisory controller was
applied. The steady-state error was reduced considerably.
As before, the performance of the proposed controller
was not significantly affected by the modification of
system parameters, demonstrating the effectiveness of the
controller in minimizing steady-state error in the time
domain even when unexpected load disturbance occurs.
The proposed LQR with supervisory control seems to
have the required performance and robustness for such a
case. Moreover, the proposed control methodology is a
powerful and efficient way to cope with such a cart-seesaw
system.

Figure 11 presents the performance for the LQR and LQR
with supervisory under set point-to-point trajectory. The
tracking performance for setting the point-to-point trajectory
while applying the supervisory controller was found to be
good. The proposed control modification scheme produced
a substantial improvement in performance of the tracking
tasks.
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Fig. 11. Response for the cart position of the set point-to-point
trajectory.

6. Conclusions
A new prototype of a cart-seesaw system has been
developed in the Sensor and Control Laboratory of the
Department of Mechanical Engineering at Ching Yun
University. Modal analysis of the cart-seesaw, an interactive
controller design, and controller evaluation is performed to
demonstrate the utility of the environment as a research and
education tool. This study also demonstrates a PC/LabVIEW-
based interactive cart-seesaw control environment, which is
valuable for upgrading the research and education process.
This environment allows control system engineers and
students to analyze, design, and visualize the performance
of controllers in a complex mechanical system. A state
feedback controller is adopted to stabilize the equilibrium
point of the system. Moreover, this study incorporates a
supervisory controller into the system to take control action
in extreme situations. Experimental results indicate that
utilizing the supervisory controller significantly enhances
the performance. The overshoot and steady-state error are
also reduced considerably. Thus, the test results demonstrate
excellent control performance characteristics. The proposed
system can be extensively applied in SAMS and pneumatic
control systems in robotics control laboratories.
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Appendix
Kinetic energy of the cart:

K1 = 1

2
M(ẋ2 + ẏ2)

= 1

2
M[(ṙcθ − rθ̇sθ)2 + (ṙsθ + rθ̇cθ)2]

= 1

2
M(ṙ2 + r2θ̇2).

Kinetic energy of the seesaw:

K2 = 1

2
J θ̇2.

Potential energy of the ball:

V1 = Mgr sin θ.

Potential energy of the spring:

V2 = 1

2
kθ2.

Total kinetic energy:

K = K1 + K2.

Total potential energy:

V = V1 + V2.

Now, we derive the equations of motion by using
Lagrange’s formulation:

d

dt

∂L

∂q̇i

− ∂L

∂qi

= τ

where L =K −V and qi = [r θ ]T .
Therefore, the dynamic equation can be shown in the

following form:

Mr̈ + Mg sin θ − Mrθ̇2 = τ

(Mr2 + J )θ̈ + 2Mrṙ θ̇ + Mgr cos θ + kθ = 0.
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