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Scaling arguments are presented to quantify the widely used diapycnal (irreversible)
mixing coefficient I" = €pg/€ in stratified flows as a function of the turbulent Froude
number Fr = €/Nk. Here, N is the buoyancy frequency, k is the turbulent kinetic
energy, € is the rate of dissipation of turbulent kinetic energy and epg is the rate of
dissipation of turbulent potential energy. We show that for Fr>> 1, I" o Fr—2, for Fr~
O(1), I' <« Fr~! and for Fr <« 1, I' o< Fr°. These scaling results are tested using high-
resolution direct numerical simulation (DNS) data from three different studies and are
found to hold reasonably well across a wide range of Fr that encompasses weakly
stratified to strongly stratified flow conditions. Given that the Fr cannot be readily
computed from direct field measurements, we propose a practical approach that can be
used to infer the Fr from readily measurable quantities in the field. Scaling analyses
show that Fr o< (Ly/Ly)~2 for Ly/Lo > O(1), Fr o< (Ly/Ly)~" for Ly/Lo ~ O(1), and
Froc(Ly/Lo)~%? for Ly /Lo < O(1), where Ly is the Thorpe length scale and Lo is the
Ozmidov length scale. These formulations are also tested with DNS data to highlight
their validity. These novel findings could prove to be a significant breakthrough not
only in providing a unifying (and practically useful) parameterization for the mixing
efficiency in stably stratified turbulence but also for inferring the dynamic state of
turbulence in geophysical flows.
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1. Introduction

Diapycnal (irreversible) mixing is critical for maintaining the oceanic meridional
overturning circulation and other important related issues such as global mass and heat
budgets, ocean productivity etc. (Munk & Wunsch 1998). Hence, an accurate estimate
of mixing in oceanic flows is essential but remains challenging due to complexities
associated primarily with density stratification and limitations associated with direct
measurements of pertinent turbulence quantities (Venayagamoorthy & Koseff 2016;
Gregg et al. 2018). For instance, it is well known that internal wave motions are
prevalent in density stratified flows and hence contaminate flux measurements. Thus,
a number of indirect techniques are commonly used in practice in oceanography to
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infer turbulent heat and momentum fluxes. For example, the popular Osborn (1980)
model recasts the diapycnal diffusivity for a homogeneous and stationary flow as

€

K, =T

(1.1)
where I' = R;/(1 — Ry) is a mixing coefficient and R, is the mixing efficiency, €
is the rate of dissipation of turbulent kinetic energy and N = /(—g/p)(d{p)/dz) is
the buoyancy frequency. Assuming that both € and N are readily measurable in the
ocean (albeit based on some underlying assumptions such as local isotropy of small
scales and choices on how N is computed; see, for example, Arthur et al. (2017) for a
discussion on N), then clearly the only remaining quantity that needs to be quantified
for computing K, is the mixing coefficient I". In practice, I" is typically considered
to have a canonical constant value of 0.2 (R, ~ 0.17) (Osborn 1980). The constancy
of I has been the subject of extensive debate over the last few decades (Gregg et al.
2018). In fact, a number of different parameterizations for the mixing efficiency have
been proposed that are primarily based on one of three fundamental dimensionless
parameters. These are the gradient Richardson number Ri, the buoyancy Reynolds
number Re, and the turbulent Froude number Fr. We note that it has been argued that
a multi-parameter framework might be necessary to adequately parameterize mixing
(Mater & Venayagamoorthy 2014; Monismith, Koseff & White 2018). However, from
a practical standpoint, it is useful to identify an optimal single parameter that can be
used to infer the state of turbulence and mixing efficiency. This is the primary impetus
behind this current study.

It might be argued that a popular dimensionless number for parameterization of
mixing is the buoyancy Reynolds (or Gibson) number Re, = ¢/vN?, where v is the
kinematic viscosity. This is mainly because it is readily computable from quantities
that are measurable in the ocean. It has been argued that in strongly stratified flows,
I' is generally constant (typically assumed to be ~ 0.2 in practice) up to some
critical value of Re, and then gradually decreases like I" Reb_l/ ? as stratification
weakens (Shih et al. 2005; Lozovatsky & Fernando 2013; Salehipour & Peltier 2015;
Monismith et al. 2018). However, there is no consensus on a definitive critical value
of Re, at which the transition from a constant value to a functional dependence
on Re, occurs as evident from analysis of data obtained from different numerical
simulations and field measurements. For example, Shih et al. (2005) and Salehipour
& Peltier (2015) found a critical Re, of order 10° while Lozovatsky & Fernando
(2013) found this transition to occur around 10*. Using different data sets, Monismith
et al. (2018) noticed that for high value of Re,, mixing efficiency is not constant and
varies with Re,. However, there is no unique relation of R, with Re,. On the other
hand, parameterizations based on the gradient Richardson number Ri = N?/S* (where
S is the mean shear rate) suggest that Ry increases with Ri in the shear-dominated or
weakly stratified flow up to a critical value of gradient Richardson number (Ri~ 0.25)
(Linden 1979) and approaches a constant value for high-Ri regime (Venayagamoorthy
& Koseff 2016). However, it should be noted that Ri is restricted to shear-driven
turbulence and hence is not practically useful for quantifying mixing in the absence
of mean shear. Therefore, while Ri and Re, may appear to be convenient parameters
for quantifying mixing, they may not be useful for robust characterizations of the local
state of turbulence and associated mixing in stratified flows for the aforementioned
reasons.

The turbulent Froude number Fr=¢€/Nk (where k is the turbulent kinetic energy) is
perhaps a better-suited parameter (Ivey & Imberger 1991; Shih et al. 2000), but least
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investigated in the context of oceanography because it is difficult to compute directly
from measurable quantities in the field. It is worth noting that Fr can be viewed
as a competition of time scales (i.e. between the turbulence time scale T, = k/e
and the buoyancy time scale N~'). Hence, Fr is indicator of the local state of
turbulence in a stably stratified flow. For high Fr (weak stratification), it has been
shown using simple scaling analysis that I" ~ Fr=2, and this has been verified using
direct numerical simulation (DNS) results (Maffioli, Brethouwer & Lindborg 2016).
For strongly stratified flows (i.e. for Fr < 1), DNS data show that I" approaches a
constant value provided the irreversible definition is used (i.e. I" = epg/€) (Peltier &
Caulfield 2003; Venayagamoorthy & Stretch 2010). However, to our knowledge, no
physically based quantitative arguments have been presented to support the constancy
of I' in the low-Fr limit as well as how I" should vary in the transition region
between the low-Fr and the high-Fr limits. In the present work, our key goal is
to show that the turbulent Froude number is indeed likely to be an optimal single
parameter of choice that can provide a basis for inferring the state of turbulence and
for parameterizing the irreversible mixing efficiency in stratified flows.

In the light of the discussions presented above, it is clear that despite the numerous
studies on this topic, there is still no universal consensus on what the optimal
parameter of choice is for quantifying I” (Mater & Venayagamoorthy 2014; Gregg
et al. 2018), and, more importantly, a robust and practically useful parameterization
of I (or equivalently the mixing efficiency R,) remains elusive. In what follows, we
present a new formulation for the mixing efficiency in stably stratified turbulence
using scaling arguments in § 2. This is followed by a brief description of the DNS
data that are used for testing the proposed formulations in § 3. Results to highlight
the fidelity of the proposed scaling relationships are presented in §4 and concluding
remarks are made in §5.

2. Theoretical analysis
2.1. Parameterization of I' as a function of Fr

In the limit of high Fr, considering a balance between advection and background
stratification terms in the buoyancy equation, Maffioli et al. (2016) have shown that
I' o« Fr=2. Their DNS data also suggest that I" approaches a constant for low Fr.
Here, we use different scaling arguments that consider dominant time scales governing
the flow for different stratified conditions (i.e. from weak to strong stratification) to
derive the functional dependence of I" on Fr. It is important to clarify that a strongly
stratified flow (Fr < 1) can be classified into two different regimes depending on the
value of Re,, viz., viscosity-affected regime (Re, < 1) and strongly stratified regime
(Re, > 1). Note the viscosity-affected regime is virtually non-turbulent (Brethouwer
et al. 2007). Given that the focus is on turbulent flows that are affected by buoyancy,
the viscosity-affected region can be neglected without loss of generality in the
discussion that follows (i.e. flow with Re, < 1). Hence, it might be instructive to
classify stably stratified flows into roughly three flow regimes based on the turbulent
Froude number. As such, it can be expected that the functional relationship of I”
and Fr should be different for each of these different regimes. This is because, the
transition between weakly stratified regime and strongly stratified regime does not
happen at one single value of Fr. There should be an intermediate regime in between
which is influenced by buoyancy (i.e. moderately stratified), where both stratification
and turbulence are important. We note that Rehmann (2004) has also suggested three
different regimes for quantifying R, as a function of grid Richardson number for
weak, moderate and strong stratification, respectively.
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2.1.1. Weakly stratified regime (Fr > O(1))
For a weakly stratified fluid or in the limit of high Fr, it is clear that density acts
as a passive scalar since the flow is nearly isotropic and hence there is very little
to negligible diapycnal mixing (Holford & Linden 1999). The dominant time scale
is therefore the turbulent time scale, 7, = k/e. Thus, the vertical displacement of
fluid particles Ly, ~ w'T;, where w' is the vertical velocity. From this, the density
fluctuation p’ ~ w'T (9{p)/0z), where d{p)/dz is the background density gradient.
Hence, the buoyancy flux B=—(g/p)(p'Ww') ~ —(g/p)W?T.(3(p)/0z) = w>N>*T;. Also
for this case, the turbulent kinetic energy k ~w’ and its rate of dissipation € ~w?/T,
by assuming that dissipation rate of k is independent of buoyancy effects. Based on
these arguments, it follows that the mixing coefficient for the weakly stratified regime

should scale as
r B €pE N W/ZNZTL

= Fr 2. 2.1
€ € w? /Ty g .1

We note that the end result shown in (2.1) is identical to that found in the DNS study
by Maffioli et al. (2016) for weakly stratified turbulent flows.

2.1.2. Moderately stratified regime (Fr~ O(1))

For a moderately stratified turbulent flow, it is reasonable to assume that buoyancy
effects would begin to influence the dynamics during the active mixing period.
Hence, both the buoyancy time scale N~! and turbulent time scale 7, are important
but are not necessarily equal. We assume that buoyancy time scale sets the
vertical displacement of fluid particles, i.e. Ly, ~ w'/N and the density fluctuation
p'~ (W' /N)(3(p)/dz). Hence, the buoyancy flux B~ —(g/p)(w?/N)(3(p)/dz) =w">N.
By assuming independence of the dissipation rate of k from buoyancy effects (i.e. the
relevant time scale is 7;), it follows that

/ZN
VZ/T — P!, 2.2)
w L

~

This is a new scaling result for the transition region that is sandwiched between the
weakly stratified and strongly stratified flow regimes.

2.1.3. Strongly stratified regime (Fr < O(1))

In the limit of strong stratification, the buoyancy effects will be dominant and hence
it is reasonable to assume that the dominant time scale will be only the buoyancy time
scale N~!. This implies that a bulk of the turbulent kinetic energy dissipates within
one buoyancy period. From this, it follows that € ~ w?N. Also here, Ly, ~ w'/N,
o' ~ (W /N)(d(p)/dz) and B~ w?*N. Hence, the mixing efficiency scales as

W,ZNN71 0
I ~ ——— =const. ~ Fr. 2.3)
w

We note that this new scaling result provides a physically based underpinning for
what has been observed from different data obtained from DNS, field and laboratory
experiments concerning the constancy of the irreversible mixing efficiency in the
strongly stratified regime.
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2.2. Inferring Fr from Ozmidov and Thorpe length scales

As we have argued, the turbulent Froude number can be used to diagnose the state of
turbulence and parameterize the mixing efficiency in stably stratified turbulent flows.
However, its use is limited in practice due to reasons already mentioned. Here, we
propose a novel approach to estimate Fr using measurable turbulent length scales in
oceanic flows.

A fundamental length scale that provides a measure of overturning length scale in
a stratified flow is the well-known Ellison length scale (Ellison 1957) defined as

- (,0’2)1/2 ’
d(p)/0z

where p’ is the turbulent density fluctuation, d(p)/dz is the mean background density
gradient and () represents ensemble average. Conceptually, Lr is obtained from
three-dimensional resorting of instantaneous density fields to a reference state
of minimum potential energy (Winters et al. 1995). However, in the context of
oceanography, instantaneous density is measured using vertical profilers on moorings
or dropped from research vessels. In the limit of available one-dimensional vertical
profiles, statistically Ly represents the largest overturns in the flow and gives an
indication of the available potential energy per unit mass. A similar and relatively
simpler kinematic length scale obtained from instantaneous vertical density profiles
is the Thorpe length scale, Ly (Thorpe 1977). In a statistical sense, both Ly and
Lr represent a measure of the vertical distance travelled by fluid parcels in order to
achieve an equilibrium position through adiabatic resorting. Thus, for one-dimensional
vertical profiles, both Ly and Ly should be equivalent, a result that has been verified
in previous studies (Itsweire et al. 1993; Mater, Schaad & Venayagamoorthy 2013).
Another length scale that is often used to represent the size of a turbulent eddy
in stratified turbulence was suggested by Ozmidov (1965) through a dimensionally
constructed length scale commonly known as the Ozmidov length scale (Ly) that is
defined as

(2.4)

Lo = (e/N*)'2. (2.5)

Here L, is the length scale at which inertial forces balance the buoyancy forces, in
such a way that L, represents the largest (isotropic) eddy unaffected by buoyancy.
The ratio of these two length scales has been used to denote the age of a turbulent
event (Smyth, Moum & Caldwell 2001). Mater et al. (2013) suggested that Ly and Lo
are equivalent only for turbulent Froude number of order one. Here, we delve further
to show that the ratio of Ly/L, or, more explicitly, Lg/Lo is not only a signature
of the age of turbulence but, more importantly, is a quantitative representation of
the strength of stratification in a turbulent flow similar to the concept of a turbulent
Froude number. A quantitative relationship between Lg/L, and Fr can be derived as
follows. The ratio of the Ellison length scale to the Ozmidov length scale can be
written as I (p2) V2N (p2)\/?
A =L SN, 2.6)
Lo (0{p)/d2)e'/* €2 p
2y1/2

In the limit of strong stratification, (g/p){p represents a gravitational acceleration
term which can be expected to scale with the velocity scale k!'/? and time scale N~!,
such that (p?)'/?(g/p) ~ wN ~ k'2N. Thus, in the strongly stratified regime (Fr <
O(1)), the length-scale ratio can be written as

Lr k'2N

— 12 _ 5,172


https://doi.org/10.1017/jfm.2019.142

https://doi.org/10.1017/jfm.2019.142 Published online by Cambridge University Press

328 A. Garanaik and S. K. Venayagamoorthy

This can be rewritten to express Fr in terms of Ly/Ly as
Fr~ (Lg/Lo)™ ~ (Lr/Lo)™. (2.8)

We note that this scaling also verifies the results by Mater et al. (2013) which show
that for strongly stratified regime, Ly ~ Lyy = (k/N*)'/?, where Lyy is an overturning
length scale in the buoyancy dominated regime such that L;/Ly ~ Fr—'/2,

For the moderately stratified regime where Fr ~ O(1), it directly follows that the
length-scale ratio, Lg/Lo ~ Fr~'. Hence, Fr scales with Lg/Lo as

Fr~ (Lg/Lo)™" ~ (Lr/Lo)™". (2.9

Now, for a weakly stratified turbulent flow or in the limit of high Froude number
Fr > O(1), the Thorpe length scale as well as the Ellison length scale should scale
with the isotropic turbulent length scale L;. = k*?/e (Luketina & Imberger 1989; Ivey
& Imberger 1991). Thus, Lg ~ Ly ~ Ly =k*/* /e. With this information, the length-scale
ratio, Lg/Lo, for a weakly stratified flow can be written as

Lg k% /e 3/2 -3/2
L~ SN (kN/e)*'* = Fr—/2, (2.10)

which translates to
Fr~ (Lg/Lo)™** ~ (Ly/Lo) ™", (2.11)

similar to the scaling provided by Ivey & Imberger (1991). Given that both Ly and
Lo are directly measurable in the ocean using conductivity-temperature-depth (CTD)
and microstructure profilers, equations (2.8), (2.9) and (2.11) are key scaling results
that can be used to obtain direct estimates of Fr in the field. The scaling arguments
presented for both I and Fr are tested using three independent DNS data sets in what
follows.

3. Data sources

Three independent DNS data sets are considered to test the veracity of our
proposed scaling arguments. The first data set is from our own set of DNS of
decaying homogeneous stably stratified turbulence. These simulations were carried
out using a pseudo-spectral DNS code developed by Riley, Metcalfe & Weissman
(1981) for stably stratified homogeneous turbulent flows. A cubical periodic domain
of dimension 2m with 5123 grid points was considered for all the simulations. The
turbulent flow was initialized with a Gaussian isotropic three-dimensional solenoidal
velocity field and allowed to evolve and decay under the influence of a constant
background stratification. Flow was characterized with an initial Reynolds number of
1000 defined as Rey = ugly/v, where uy =1 is the initial velocity scale and L, =1
is the initial length scale. Background stratification was characterized with an initial
Richardson number Riy = (NLy/uy)>. Four DNS simulations were performed for the
present study with Rip =0.01, 0.1, 1.0 and 10, respectively, for a duration of 5Ly/uy.
Further details of the simulations are given in Garanaik & Venayagamoorthy (2018).
The second data set was obtained from a high-resolution DNS study of stratified
turbulence by Maffioli et al. (2016). A body force was included in their numerical
simulations in order to achieve stationary turbulence. They used isotropic forcing for
most of the simulations and two-dimensional vortical forcing was used for a few
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FIGURE 1. Mixing coefficient I" as a function of turbulent Froude number Fr. The colour
bar shows values of Re,. Star: decaying DNS; circle: forced DNS of Maffioli et al. (2016);
square: sheared DNS of Shih et al. (2005). Solid lines display the scaling relations derived
in §2.1.

simulations to achieve a strongly stratified regime with buoyancy Reynolds number
greater than 10. The third data set was obtained from DNS study of homogeneous
sheared stably stratified turbulence by Shih er al. (2005). These simulations are
for temporally developing homogeneous turbulence with constant mean shear and
constant background stratification. These simulations were performed at a relatively
lower resolution (128%) compared to the other two data sets but include the effects
of background shear.

4. Results
4.1. Mixing coefficient as a function of turbulent Froude number

Figure 1 shows the mixing coefficient I" as a function of turbulent Froude number for
decaying, forced and sheared DNS data. The buoyancy Reynolds number Re, is also
shown in the colour bar for reference. There are two observations that are noteworthy.
The first key observation that can be made from figure 1 is that all the data collapse
reasonably well on to the lines given by the new scaling results for I” proposed
in §2.1. These data show that in the strongly stratified flow regime (Fr < 1), I
is approximately a constant. In the moderately stratified flow regime (Fr ~ O(1)),
I' o« Fr7!, and for the weakly stratified flow regime (Fr > 1), I o« Fr~2, which is
also in agreement with what has been previously shown by Maffioli et al. (2016) in
the limit of high Fr.

Second, it appears that there is no unique relationship between I and buoyancy
Reynolds number Re,. In order to see this point clearly, the mixing coefficient I" as
a function of Re, is shown in figure 2 for all three data sets. The Fr is also shown
in the colour bar to facilitate cross-referencing with figure 1. It can be seen that I” is
approximately constant for strongly stratified flows (i.e. low values of Fr). However,
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FIGURE 2. Mixing coefficient I" as a function of buoyancy Reynold number Re, for
decaying DNS (star), forced DNS of Maffioli er al. (2016) (circle) and sheared DNS
of Shih et al. (2005) (square). Solid line indicates the functional relation of I" and Re,
proposed by Shih et al. (2005).

it is evident that the transition of I" from a constant value to a functional dependence
on Re, is not unique. For example, for various flows which have Re, = 10°, the
measured values of I" can differ by over an order of magnitude as shown in figure 2.
These results highlight how Re, is an ambiguous parameter for quantifying mixing in
stratified flows. We note that the ambiguity associated with Re, has been discussed in
previous studies (Mater & Venayagamoorthy 2014; Holleman, Geyer & Ralston 2016;
Scotti & White 2016; Monismith et al. 2018). Based on the results shown in figures 1
and 2, it is plausible to suggest that Fr might be an optimal (single) parameter that
can be used to parameterize the mixing efficiency.

4.2. Inferring the state of turbulence

We have seen in figure 1 that the mixing coefficient is well described by the scaling
results in §2.1. However, as discussed in § 2.2, there is the impending issue of how
to estimate Fr from measurable quantities in the field. To this end, scaling arguments
to find relationships between Lg/Lo and turbulent Froude number were presented in
§2.2. The results presented in figure 3 for decaying, sheared and forced DNS data
validate the scaling results shown in (2.8), (2.9), and (2.11), respectively. The data
indicate that Fr~ (Lg/Lo)~%? for (Lg/Lo) < O(1), Fr~ (Lg/Lo)~" for (Lg/Ly) ~ O(1)
and Fr ~ (Lg/Lp)~* for (Lg/Lo) > O(1). By combining the scaling results provided
for I" and Fr (as shown in figures 1 and 3), the scaling relationship between I” and
the (field) measurable length-scale ratio Lg/L, can be also established for practical
purposes as follows: for weakly stratified regime, I" ~ (Lz/Lo)*?; for moderately
stratified regime, I' ~ (Lg/Lo)"; and for the strongly stratified regime where I" is
approximately constant, I" ~ (Lg/Lo)°. The DNS data are in good agreement with
these results, as shown in figure 4. We note that, using a least squares fitted power
law relationship, Smyth et al. (2001) found that I' ~ (L;/Lo)*®, which may be
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FIGURE 3. Froude number as a function of Lg/L, for decaying DNS (star), forced DNS
(circle) and sheared DNS (square) data with Re, in colour bar. Solid lines display the
scaling relations derived in §2.2.

acceptable for the moderately stratified regime. In a recent study, using measurements
made in the ocean, Ijichi & Hibiya (2018) have also shown that I ~ (L;/Ly)*?,
similar to the scaling provided here for Fr > O(1). The results presented here are
indeed powerful because they show that with Ly and L, known (i.e. measurable),
it is possible to estimate Fr from field measurements and hence identify the state
of turbulence in stratified flows in the field. This in turn permits the use of a more
accurate parameterization to predict I" which is crucial for obtaining robust estimates
of diapycnal mixing.

5. Concluding remarks

In this paper we first derived new scaling results for I" as a function of Fr as well
as for Fr as a function of Ly/Lo. We then used direct numerical simulation data from
three independent studies to validate the scaling results. Three significant findings can
be noted from the above discussions. First, scaling results that are validated using
high-resolution DNS data show that the mixing coefficient scales with the turbulent
Froude number in a universal manner, noting, however, that the functional dependence
on Fr is different for the three different flow regimes. Second, the results show that
Re, is an ambiguous parameter and hence parameterizations of I” based on Re, are
not unique. The third key finding is that the ratio Ly/L, not only is a representation
of the age of turbulence, as has been previously suggested (i.e. young turbulence or
old turbulence), but also represents the state of the flow (i.e. whether the flow is in a
strongly stratified regime or in a weakly stratified regime). This finding will be useful
in oceanography for inferring the state of turbulence and thereby facilitate the use
of the more appropriate parameterizations for I" that have been formulated in this
study. To the knowledge of authors, this is the first time such an analysis has been
carried out to both identify the state of turbulence and quantify the mixing efficiency
using a single parameter in an unambiguous manner. The natural next steps are to
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FIGURE 4. Mixing coefficient I" as a function of Lg/L, for decaying DNS (star), forced
DNS (circle) and sheared DNS (square) data with Fr in colour bar. Solid lines display
the scaling relations.

perform further tests with more complex forcing conditions and evaluate the utility of
the proposed parameterizations in the field.
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