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SUMMARY
Parallel mechanisms possess several advantages such as the possibilities for high acceleration and
high accuracy positioning of the end effector. However, most of the proposed parallel manipulators
suffer from a limited workspace. In this paper, a novel 6-DOF parallel manipulator with coaxial
actuated arms is introduced. Since parallel mechanisms have more workspace limitations compared
to that of serial mechanisms, determination of the workspace in parallel manipulators is of the
utmost importance. For finding position, angular velocity, and acceleration, in this paper, inverse and
forward kinematics of the mechanism are studied and after presenting the workspace limitations,
workspace analysis of the hexarot manipulator is performed by using MATLAB software. Next,
using the obtained cloud of points from simulation, the overall borders of the workspace are
illustrated. Finally, it is shown that this manipulator has the important benefits of combining a large
positional workspace in relation to its footprint with a sizable range of platform rotations.
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1. Introduction
In the design of parallel manipulators, much concern is given to the workspace factor. Parallel
mechanisms typically exhibit low inertia, allowing high load capability and high acceleration
compared to serial manipulators of the same size. An extensive number of 6-DOF parallel
manipulators have been proposed1–5 after the introduction of Stewart platform manipulator.6

However, most of the parallel kinematic mechanisms suffer from the small workspace in relation
to the manipulator footprint. Moreover, the range of platform rotations is almost always significantly
limited compared to serial robots. One approach to increase the size of the positional workspace is to
utilize coaxial actuated arms that can rotate infinitely around a central base column.7 Such mechanisms
include the planar manipulators introduced in previous patents8–10 and research works.11,13

Generally, there are many solution methods to solve the robot inverse kinematics problem, for
example, analytic solution,14–18 geometric method,19 efficient inverse kinematics method,20 iterative
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Fig. 1. Hexarot mechanism and the vectorial representation of the ith arm.

inverse kinematics method,21 and screw theory.22 It is well-known that the forward kinematic solutions
of a parallel mechanism is difficult to obtain.23 This, however, is because the independent equations
describing the geometric relationship between different chains which are related to one another in
nonlinear manners. Many solutions proposed in the past have concentrated on numerical methods,
such as Newton-Raphson,24,25 and learning networks.26 By having position inverse solution at hand,
a simple way of determining the workspace of a parallel manipulator is to use discretization
methods.27–30 In these methods, the workspace boundary is usually determined in a spherical
coordinate system by discretizing the range of azimuth and zenith angles.31 Bonev and Ryu,32

Pernkopf and Husty,33 Huang et al.34, and Gosselin35 put forward discrete algorithms for calculating
position workspace of different six degrees of freedom parallel mechanisms. Majid et al.,36 Tahmasebi
and Tsai,37 Zhu et al.38, and Masory and Wang39 also studied the workspace of various parallel
machine tools by utilizing position inverse solution.

This paper analyses a different 6-DOF platform manipulator based on six coaxial actuated upper
arms. Kinematic analysis of a parallel mechanism is the basis for all researches on mechanism, and
hence in this research, first inverse and forward kinematic models of hexarot mechanism are developed
and also simulated by the code written in MATLAB. The results obtained by theoretical method are
further verified by kinematic analysis under Working Model software. Then the limitations of joints
and arms are considered in all points of the workspace. Finally, by having the kinematic relations
of mechanism and the limitations of workspace at hand, workspace determination is performed by
programming and the overall scope of the workspace is displayed in CATIA software.

2. Description of Hexarot Mechanism
The hexarot mechanism consists of a triangular platform, a cylindrical base column, and six actuated
rotating arms with coinciding axes of rotation (Fig. 1). Each arm connects by a 5-DOF link to a
manipulated platform at its connection point Ui (i = 1 to 6). The platform is triangular, and the three
pairs of joints on the rotating arms approximately form a triangle. The two triangles compose the
two sides of an octahedron. There are six actuated rotational joints Ri between the central cylindrical
base column and the upper arms ai . Each upper arm is connected to a lower arm li by a spherical
joint Si . There are six universal joints Ui between the lower arm li and the manipulated platform. The
location and orientation of the moving platform frame {P} is specified according to the base frame
{W}. ai and li are respectively the length vectors of the upper and lower arms in the base frame of
the reference. The physical specifications of the manipulator are presented in the Appendix 1.

The actuators are placed on the base column, and since the lower arms are not susceptible to bending
or torsion, so their design can be lightweight. Hence, the total moving mass of the octahedral hexarot is
low. The proposed mechanism has six manipulated DOFs. The possibility of using identical drivelines,
identical upper arms, and identical lower arm links ensures that the number of different components
can be kept low, which would reduce the cost of manufacturing the manipulator. Hexarotcould

https://doi.org/10.1017/S0263574714000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000988


1688 Kinematic analysis and workspace determination

be useful in haptics or for working inside cylindrical spaces, such as repairing work inside pipes,
positioning, or assembling tasks inside the body of an airplane.

3. Inverse Kinematics
Inverse kinematic problem of the platform involves determination of the rotation, angular velocity,
and acceleration of six arms through considering a specified position, velocity, and acceleration of
the moving platform center.

Considering a vectorial representation of the mechanism, position vector of the ith spherical joint
with the reference in base frame, ai , can be obtained as:

ai = [
ai cos φi ai sin φi hi

]T
, (1)

where φi is the angle between the ith upper arm and X axis of the reference frame {W} and indicates
the rotation of ith upper arm around the base column.

Considering the moving platform as an equilateral triangle, and taking into account s1 as the length
of its sides and s2 as the distance between the universal joint and the vertex, the position of each
universal joint, P pi , with reference in frame {P} can be presented as:

Pp1 =
[

(s1 − s2)

2

(−s1 + 3s2)

2
√

3
0
]T

, Pp2 =
[

s2

2

(2s1 − 3s2)

2
√

3
0
]T

,

Pp3 =
[

(s1 − 2s2)

2

−s1

2
√

3
0
]T

, Pp4 =
[ −(s1 − 2s2)

2

−s1

2
√

3
0
]T

, (2)

Pp5 =
[ −s2

2

(2s1 − 3s2)

2
√

3
0
]T

, Pp6 =
[ −(s1 − s2)

2

(−s1 + 3s2)

2
√

3
0
]T

.

These vectors can be expressed in the base frame of reference by a translation and rotation
transformation as follows:

pi = X + R Ppi (3)

in which pi = [pix , piy , piz] is the position of each universal joint in frame {W}, X = [x, y, z] is the
position vector of the geometrical center of the moving platform in base frame and R = RZYZ is the
rotation matrix which can be obtained as:

R =
⎡
⎣ cos θ1 cos θ2 cos θ3 − sin θ1 sin θ3 − cos θ1 cos θ2 sin θ3 − sin θ1 cos θ3 cos θ1 sin θ2

sin θ1 cos θ2 cos θ3 + cos θ1 sin θ3 − sin θ1 cos θ2 sin θ3 + cos θ1 cos θ3 sin θ1 sin θ2

− sin θ2 cos θ3 sin θ2 sin θ3 cos θ2

⎤
⎦

(4)

in which θ1, θ2 and θ3 are the Euler angles.
The length of the ith lower arm, li , can be expressed as:

l2
i = |pi − ai |2 . (5)

Substituting Eqs. (1) and (3) into Eq. (5) gives the following equation:

di1 + di2 sin φi + di3 cos φi = 0 (6)

in which

di1 = x2 + y2 + (z − hi)
2 − l2

i + a2
i + p2

ix + p2
iy + p2

iz + 2(z − hi) piz cos θ2

− 2(z − hi) pix sin θ2 cos θ3 + 2z(z − hi) piy sin θ2 sin θ3

− 2x (pix sin θ1 sin θ3 + piy sin θ1 cos θ3 − piz cos θ1 sin θ2)
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+ 2y (pix cos θ1 sin θ3 + piy cos θ1 cos θ3 + piz sin θ1 sin θ2)

+ 2x cos θ1 cos θ2 cos θ3(pix − piy) + 2ypix sin θ1 cos θ2 cos θ3

− 2ypiy sin θ1 cos θ2 sin θ3, (7)

di2 = −2ai(y + pix cos θ1 sin θ3 + piy cos θ1 cos θ3 + piz sin θ1 sin θ2

+ pix sin θ1 cos θ2 cos θ3 − piy sin θ1 cos θ2 sin θ3), (8)

di3 = −2ai(x − pix sin θ1 sin θ3 − piy sin θ1 cos θ3 + piz cos θ1 sin θ2

+ pix cos θ1 cos θ2 cos θ3 − piy cos θ1 cos θ2 sin θ3). (9)

φi can be obtained by substituting Eqs. (7)–(9) into Eq. (6), which yields:

φi = −2 arctan

[(
di2 −

√
−d2

i1 + d2
i2 + d2

i3

)/
di1 − di3

]
for i = 1, 2, 5, 6,

φi = −2 arctan

[(
di2 +

√
−d2

i1 + d2
i2 + d2

i3

)/
di1 − di3

]
for i = 3, 4. (10)

Considering Eq. (3), ai can be obtained as:

li = X + RPpi − ai . (11)

Considering ni as the unit vector of the ith lower arm (i.e., li = lini) and taking the derivative with
respect to time on both sides of Eq. (11), and then taking the derivative with respect to time on both
sides of the resulting equation, yields:

(ai × ni) . ϕ̇i = Ẋ · ni + (RPpi × ni) · ω, (12)

where Ẋ and ω are, respectively, the linear and angular velocity of the moving platform center in the
base frame. ϕ̇i is also the angular velocity of the ith upper arm.

The angular velocity of upper arm is only in the Z direction. Therefore, only the Z parameter of
(ai × ni) will be considered in the dot product of ϕ̇i . By considering anzi as the Z parameter of
(ai × ni) , this parameter can be defined as:

anzi = ainiy cos φi − ainix sin φi. (13)

The angular velocity of the ith upper arm can be obtained by substituting Eq. (13) into Eq. (12),
which yields:

ϕ̇ = J−1

[
Ẋ
ω

]
(14)

in which J−1 is the inverse Jacobian matrix and can be expressed as:

J−1 =

⎡
⎢⎣

(n1/anz1)T (RPp1 × n1/anz1)T

...
...

(n6/anz6)T (RPp6 × n6/anz6)T

⎤
⎥⎦

6×6

. (15)

Taking the derivative of Eq. (14) with respect to time, the angular acceleration of the ith upper
arm, φ̈i , can be calculated from:

φ̈i(ainiy cos φi − ainix sin φi) − φ̇i(ainixφ̇i cos φi + ainiyφ̇i sin φi)

+ φ̇i(ainixωlzi cos φi + ainiyωlzi sin φi − ainizωlyi sin φi − ainizωlxi cos φi)

= {Ẍ + (ω × Ẋ) + (Ẋ × ωli) + [ω × (ω × RPpi) + (ω × RPpi) × ωli] + (α × RPpi)} · ni (16)
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Fig. 2. Hexarot model in Working Model software, and relevant joint elements and chords.

Fig. 3. Path 1; angular positions of six upper arms obtained by analytical approach and Working Model software.

where Ẍ and α are, respectively, the linear and angular acceleration of the moving platform center in
the base frame of reference and ωli = [ωlxi ωlyi ωlzi ]T is the angular velocity of the ith lower arm.

In order to demonstrate the results of the formulation, a case study is performed for a typical hexarot
mechanism with physical specifications presented in Appendix 1. For this purpose, the formulation
has been implemented in a programme written in MATLAB for inverse kinematics of hexarot parallel
manipulator. Initial conditions taken for the simulations are given in Appendix 2.

At first, a simple straight line path with a constant velocity profile is considered and the orientation
of the platform is conserved during the simulation (Path 1, Appendix 2). The angular positions,
velocities and accelerations of the six arms obtained by the current model are simulated. In order
to corroborate the results of analytical method, kinematics of the six arms are also obtained by
using Working Model software (Design Simulation Technologies, Inc.). For this purpose, a three-
dimensional model of the mechanism was developed in Solidworks. The model was exported to
Working Model software and collisions between bodies were deactivated. Joint elements were created
and relevant boundary conditions were applied (Fig. 2). Finally, kinematic analysis was performed
to obtain positions, velocities and accelerations of the six arms. The results of both simulations are
illustrated in Figs. 3–5, respectively.

Figure 3 illustrates the displacement of the six arms during simple time dependent motion of
the platform from its reference point to the final position in 10 s. It is shown that the arms 1, 2, 5,
and 6 move counter clock wise, while the arms 3 and 4 move in the opposite direction to satisfy
the mentioned path. Moreover, Figs. 4 and 5, respectively, show the change in angular velocity and
acceleration of the six arms during motion in the mentioned path. The results of simulation under

https://doi.org/10.1017/S0263574714000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000988


Kinematic analysis and workspace determination 1691

Fig. 4. Path 1; angular velocities of six upper arms obtained by analytical approach and Working Model software.

Fig. 5. Path 1; angular accelerations of six upper arms obtained by analytical approach and Working Model
software.

Fig. 6. Path 2; angular positions of six upper arms obtained by analytical approach.

MATLAB have also been verified by the simulation of the same path under Working Model software,
and the results of both simulation methods are in good agreement.

In order to further investigate the kinematic characteristics of six arms, a circular path with
constant speed is used for computer simulation. Moreover, the orientation of the moving platform is
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Fig. 7. Path 2; angular velocities of six upper arms obtained by analytical approach.

Fig. 8. Path 2; angular accelerations of six upper arms obtained by analytical approach.

Fig. 9. Path 3; angular positions of six upper arms obtained by analytical approach.

kept unchanged during the simulation (Path 2, Appendix 2). The results of simulation for motion of
platform in circular path are illustrated in Figs. 6–8.

In Path 3 (Appendix 2), to consider a realistic motion of hexarot mechanism, a screwing motion
of platform with constant acceleration is taken into account. This motion, moreover, requires rolling
and displacement of the platform including changes in position and orientation of the platform
simultaneously. The results for the motion of the platform in the third path are presented in Figs.
9–11 for angular position, velocity, and acceleration of the platform, respectively.
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Fig. 10. Path 3; angular velocities of six upper arms obtained by analytical approach.

Fig. 11. Path 3; angular accelerations of six upper arms obtained by analytical approach.

Fig. 12. Path 4; angular positions of six upper arms obtained by analytical approach.

In order to check the kinematic characteristics of six arms under change in orientation of platform
and without any change in its position, yawing is considered for platform motion (Path 4, Appendix
2). It should be noted that this motion is one of the most preferred motions of 6-DOF mechanisms,
in which the position remains constant and the orientation changes with constant angular velocity.
Figures 12–14 respectively illustrates changes in angular position, velocity, and acceleration of the
arms during yawing motion.
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Fig. 13. Path 4; angular velocities of six upper arms obtained by analytical approach.

Fig. 14. Path 4; angular accelerations of six upper arms obtained by analytical approach.

4. Forward Kinematics
The forward kinematic problem of the platform is to determine of the position, velocity, and
acceleration of the moving platform center through considering a specified rotation, angular velocity,
and acceleration of the six arms. Therefore, in forward kinematics unknown parameters are divided
in to two groups of position and orientation of the moving platform. Therefore, there will be six
unknown parameters which are x, y, z, θ1, θ2, and θ3.

By substituting Eqs. (7)–(9) into Eq. (6), the function fi(xn) can be expressed as:

fi(xn) = εi = x2 + y2 + (z − hi)
2 − l2

i + a2
i + p2

ix + p2
iy + p2

iz + 2(z − hi) piz cos θ2

− 2(z − hi) pix sin θ2 cos θ3 + 2z(z − hi) piy sin θ2 sin θ3

− 2x (pix sin θ1 sin θ3 + piy sin θ1 cos θ3 − piz cos θ1 sin θ2)

+ 2y (pix cos θ1 sin θ3 + piy cos θ1 cos θ3 + piz sin θ1 sin θ2)

+ 2x cos θ1 cos θ2 cos θ3(pix − piy) + 2ypix sin θ1 cos θ2 cos θ3

− 2ypiy sin θ1 cos θ2 sin θ3 − 2ai sin φi(y + pix cos θ1 sin θ3 + piy cos θ1 cos θ3

+ piz sin θ1 sin θ2 + pix sin θ1 cos θ2 cos θ3 − piy sin θ1 cos θ2 sin θ3)

− 2ai cos φi(x − pix sin θ1 sin θ3 − piy sin θ1 cos θ3 + piz cos θ1 sin θ2

+ pix cos θ1 cos θ2 cos θ3 − piy cos θ1 cos θ2 sin θ3) (17)

https://doi.org/10.1017/S0263574714000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000988


Kinematic analysis and workspace determination 1695

in which εi is the error for coordination of the ith joint. The output of forward kinematics is X =
[x y z θ1 θ2 θ3 ]T. By replacing the value of X in Eq. (17), the evaluation function is determined and
the more X approaches to its real value, the more the function approaches to zero, so that error stays
in the desired domain. Regarding six rotating joints, it should be noted that Eq. (17) must be used for
calculation of each joint.

In this study, for solving the equation, the Newton-Raphson method is utilized, because this method
only needs repeating the prior calculation. This feature leads to stability of the calculations and also
to convergence of the method hence producing the final answer in less time and with less errors.

fi(x) = f ′
i (x) [xn+1 − xn] , (18)

where xn and xn+1 are respectively the available values and the value obtained from xn. f ′
i (x) is the

fractional derivative of fi(xn) which can be calculated as:

f ′
i (xn) = ∂fi(xn)

∂xn

= ∂εi

∂xn

=

⎡
⎢⎢⎢⎢⎣

∂ε1

∂xn

∂ε1

∂yn

∂ε1

∂zn

∂ε1

∂θ1n

∂ε1

∂θ2n

∂ε1

∂θ3n
...

...
...

...
...

...
∂ε6

∂xn

∂ε6

∂yn

∂ε6

∂zn

∂ε6

∂θ1n

∂ε6

∂θ2n

∂ε6

∂θ3n

⎤
⎥⎥⎥⎥⎦

6×6

, (19)

which yields:

∂εi

∂x
= 2x − 2pix sin θ1 sin θ3 − 2piy sin θ1 cos θ3 + 2piz cos θ1 sin θ2

+ 2pix cos θ1 cos θ2 cos θ3 − 2piy cos θ1 cos θ2 sin θ3 − 2ai cos φi, (20)

∂εi

∂y
= 2y − 2pix cos θ1 sin θ3 − 2piy cos θ1 cos θ3 + 2piz sin θ1 sin θ2

+ 2pix sin θ1 cos θ2 cos θ3 − 2piy sin θ1 cos θ2 sin θ3 − 2ai sin φi, (21)

∂εi

∂z
= 2z − 2hi + 2piz cos θ2 + 2piy sin θ2 sin θ3 − 2piz cos θ1 sin θ2 − 2pix cos θ1 cos θ2 cos θ3,

(22)

∂εi

∂θ1
= 2x (pix cos θ1 sin θ3 − piy cos θ1 cos θ3 − piz sin θ1 sin θ3)

− 2y(pix sin θ1 sin θ3 + piy sin θ1 cos θ3 − piz cos θ1 sin θ2)

+ 2y cos θ1 cos θ2 cos θ3(pix − piy) − 2xpix sin θ1 cos θ2 cos θ3

+ 2xpiy sin θ1 cos θ2 sin θ3 + 2ai sin φi(pix sin θ1 sin θ3 + piy sin θ1 cos θ3

− piz cos θ1 sin θ2 − pix cos θ1 cos θ2 cos θ3 + piy cos θ1 cos θ2 sin θ3)

+ 2ai cos φi(pix cos θ1 sin θ3 + piy cos θ1 cos θ3 + piz sin θ1 sin θ2

+ pix sin θ1 cos θ2 cos θ3 − piy sin θ1 cos θ2 cos θ3), (23)

∂εi

∂θ2
= 2piz(hi − z) sin θ2 + 2xpiz cos θ1 cos θ2 + 2ypiz sin θ1 cos θ2 + 2zpix cos θ2 cos θ3

+ 2zpiy cos θ1 sin θ3 + 2hipix cos θ2 cos θ3 − 2hipiy cos θ2 sin θ3 − 2xpix cos θ1 sin θ2 cos θ3

+ 2xpiy cos θ1 sin θ2 sin θ3 − 2ypix sin θ1 sin θ2 cos θ3 + 2ypiy sin θ1 sin θ2 sin θ3

− 2ai sin φi(−pix sin θ1 sin θ2 cos θ3 + piy sin θ1 sin θ2 sin θ3 + piz sin θ1 cos θ2)

− 2ai cos φi(−pix cos θ1 sin θ2 cos θ3 + piy cos θ1 sin θ2 sin θ3 + piz cos θ1 cos θ2), (24)
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∂εi

∂θ3
= −2xpix cos θ1 cos θ3 + 2xpiy sin θ1 sin θ3 + 2ypix cos θ1 cos θ3

− 2ypiy cos θ1 sin θ3 − 2zpix sin θ2 sin θ3 + 2zpiy sin θ2 sin θ3

− 2hipix sin θ2 sin θ3 − 2hipiy sin θ2 cos θ3 − 2xpix cos θ1 cos θ2 sin θ3

− 2xpiy cos θ1 cos θ2 cos θ3 − 2ypix sin θ1 cos θ2 sin θ3 − 2ypiy sin θ1 cos θ2 cos θ3

− 2ai sin φi(pix cos θ1 cos θ3 − pix sin θ1 cos θ2 sin θ3 − piy cos θ1 sin θ3

− piy sin θ1 cos θ2 sin θ3) − 2ai cos φi(pix sin θ1 cos θ3 − pix cos θ1 cos θ2 sin θ3

+ piy sin θ1 sin θ3 − piy cos θ1 cos θ2 cos θ3). (25)

By substituting Eqs. (20) to (25) into Eq. (19) and then by substituting the resulting equation and
Eq. (17) into Eq. (18), xn+1 can be calculated from xn.

In this step, there are six linear equations and six unknown parameters in which using the Gauss-
Jordan method, it is possible to obtain xn+1 from xn. This repeating continues till the error get in the
desired domain which is assumed to be 10−3 (mm) in this study.

Taking the product of the two sides of Eq. (14) with anzi J, gives:

[
Ẋ
ω

]
= anziJφ̇. (26)

Therefore, using the Jacobin matrix, which is obtained from the position of the platform, and using
the angular velocity of the spherical joints as well, it is possible to calculate the velocity of the moving
platform center.

Considering:

ui = ainiyωlzi sin φi − ainizωlyi sin φi + ainixωlzi cos φi

− ainizωlxi cos φi − ainixφ̇i cos φi − ainiyφ̇i sin φi (27)

and taking the product of the two sides of Eq. (16) with J, gives:

[
Ẍ
α

]
= J(anziφ̈i) + J(uiφ̇i) − J

dJ−1

dt

[
Ẋ
ω

]
(28)

Therefore, using the Jacobin matrix, which is obtained from moving platform position, and using
the angular velocity and acceleration of spherical joints as well as velocity of the platform, it is
possible to calculate the acceleration of moving platform center.

5. Workspace Limitations
In parallel mechanism, finding the workspace has limitations in which all of the conditions must take
into consideration for all points. These limitations lie in to two parts including joints and arms. In
this section, the limitations due to the joints are considered and in the next step, the limitations of the
arms will be discussed.

5.1. Limitations existed in joints
In this mechanism, there are three kinds of joints, thus there will be three limitations. The first kind is
rotational joint in which mechanism force is fulfilled by this joint. Angle of these joints about X axis
of the mechanism coordinate system is determined using Eqs. (7)–(10). For joints including 1, 2, 5,
and 6 it must be 0 < φi < π/2 and for joints 3 and 4 it must be −π/2 < φi < 0. If the φi for rotational
arms exceeds the values, then lack of alignment in arms attached to each other in vectorial chain will
lead to aligning of forces applied to the arms fixed to the platform and consequently bending and
buckling effects in the joints will be increased.
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Fig. 15. (a) Spherical joint between upper and lower arms; (b) universal joint between lower arms and manipulated
platform.

The second type of joints used in the mechanism is spherical joint which provides three degrees
of freedom movement (Fig. 15a).

In Fig. 15, nli is the unit vector of ith lower arm (i.e., nli = li /li). nai is also the unit vector normal
to the ith upper arm and can be expressed as follows:

nai = [ sin φi − cos φi 0 ]T for i = 1, 2, 5, 6,

nai = [− sin φi cos φi 0 ]T for i = 3, 4. (29)

αni is the angle between nai and nli , and can be obtained as:

αni = cos−1 (nai · nli). (30)

Regarding the rotational limitation of the spherical joints, the value of this angle is between 0 and
π/2.

The third type of joints used in the mechanism is universal joints with two degree of freedom
which fix lower arms to platform (Fig. 15b).

np is the unit vector which is normal to the platform, and can be obtained as:

np = (Pp4 − Pp1) × (Pp5 − Pp1). (31)

αpi is also the angle between the inverse direction of nli and np, and can be obtained as:

αpi = cos−1
[
(−nli) · np

]
. (32)

5.2. Limitations existed in arms
There are two kinds of limitations in arms of this mechanism. The first limitation is due to the length
of arms, in which, in a specified configuration, the lengths of arms obtained from inverse kinematic
equations, must not exceed the value obtained by designer. For this purpose, the arm length, li , is
calculated by Eq. (5) and compared with its real value. If the theoretical value for arm length is more
than the real length of arm, then the considered point lies out of workspace.

The second limitation is due to the collision of the arms which is classified into three groups. The
first is lower arms to upper arms collision. In this case there is a possibility of collision between
arms including: a1 with l2, a2 with l1, a3 with l4, a4 with l3, a5 with l6, a6 with l5, a2 with l5, and a5

with l2. The second one is due to potential collision of lower arms to each other. In this case there
is a possibility of collision between arms including: l1 with l2, l3 with l4, l5 with l6, and l2 with l5.
The third one is the possible collision between lower arms and the base. Therefore, each type of the
collisions have to be taken into account to obtain the existence of a point in workspace.

Considering all the base column and the upper and lower arms as cylindrical bodies, and vectors
uB and vB as the point to the endpoints of the centerline of each body. All positions on the centerline
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of each body, cB , can be described as:

cB = uB + SB(vB − uB). (33)

Equation (33) is obtained in order to consider the collision of the arms in which 0 ≤ SB ≤ 1.
The position vector between the centerline of two bodies Bi and Bj is called Bij and can be

obtained as:

Bij = cBj − cBi = uBj − uBi + SBj (vBj − uBj ) − SBi(vBi − uBi). (34)

In Equation (34), variables including SBi and SBj are unknown. Using the concept of finding
extremes of two variable functions, the minimum answer of Eq. (34) can be obtained by taking the
derivative with respect to the both SBi and SBj from the two sides of the equation, and equaling the
resulting equation with zero which gives a system of two equations, as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
(vBjx − uBjx)(uBix − vBix) + (vBjy − uBjy)(uBiy − vBiy) + (vBjz − uBjz)(uBiz − vBiz)

]
SBj

+ [
(uBix − vBix)2 + (uBiy − vBiy)2 + (uBiz − vBiz)2

]
SBi

= (vBix − vBjx)(vBix − uBix) + (vBiy − vBjy)(vBiy − uBiy) + (vBiz − vBjz)(vBiz − uBiz)[
(uBix − vBix)(vBjx − uBjx) + (uBiy − vBiy)(vBjy − uBjy) + (uBiz − vBiz)(vBjz − uBjz)

]
SBi

+ [
(vBjx − uBjx)2 + (vBjy − uBjy)2 + (vBjz − uBjz)2

]
SBj

= (vBix − vBjx)(uBix − vBix) + (vBiy − vBjy)(uBiy − vBiy) + (vBiz − vBjz)(uBiz − vBiz).
(35)

The minimum distance of the two bodies Bi and Bj can be obtained by substituting SBi and SBj

which are obtained from Eq. (35) into Eq. (34).
By considering rBi and rBj as two radiuses of the body, if

∣∣Bij

∣∣
min > rBi + rBj then there will

be no collision and considered point exists in the workspace. It should be noted that the considered
condition should be checked for all 18 cases so that lack of collision would be verified.

5.3. Singular conditions
If the determinant of the inverse Jacobian matrix in Eq. (15) equals to zero, det (J−1) = 0, the
platform will be in singular point which cannot be considered as a point within the workspace. In the
mentioned condition, manipulator gains extra DOFs and goes to be out of control. Moreover, when
the determinant of the forward kinematics Jacobian matrix in Eq. (26) equals to zero, det (J) = 0,
other possible singular conditions occur which reduce the DOFs of the mechanism. Note that in some
configurations both the determinants of the inverse and forward kinematics Jacobian matrices may
be zero. This, therefore, is synthetic singular condition which can be expressed as having platform
motion in situation when there are no actuating forces, or when there are the actuation forces in the
arms without any motion of the platform.

In order to investigate the singularity-free workspace of the mechanism, when the above mentioned
determinants become less than 0.001, i.e., det (J−1) < 0.001 or det (J) < 0.001, the point is considered
as a singular point and not taken into account as a point within the workspace of the mechanism.

6. Manipulator Workspace
In order to assign a whole gamut of workspace, 10 different configurations are chosen and illustrated
in Fig. 16 (all the quantities are given in SI units). This figure includes (a) reference configuration,
closed arms (0.6, 0, 1.275) without change in orientation (0, 0, 0); (b) upmost position, maximum in Z
direction (0.8, 0, 1.8), orientation kept unchanged (0, 0, 0); (c) maximum in Y direction and the nearest
to the reference (0.8, −0.3, 1.275), without change in orientation (0, 0, 0); (d) maximum possible
rotation in all directions (π/4,π/4,π/4), without change in YZ plane and the nearest to the reference
(0.8, 0, 1.275); (e) maximum possible rotation in all directions (π/4,π/4,π/4) without change in YZ
plane and the farthest to the reference (1.6, 0, 1.275); (f) maximum possible rotation in all directions
(1.48, 1.48, 1.48), without change in Y direction and minimum in X direction and maximum in Z
direction (0.8, 0, 1.7); (g) maximum possible rotation in all directions (1.31, 1.31, 1.31), without
change in Y direction and maximum in X direction and maximum in Z direction (1.4, 0, 1.55); (h)
maximum possible rotation in all directions (0.87, 0.87, 0.87), without change in Z direction and
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Fig. 16. Different configurations of moving platform within the workspace borders.

Fig. 17. Three dimensional plot of hexarot workspace, without rotation.

minimum in XY plane (0.8, −0.3, 1.275); (i) maximum possible rotation in all directions (1.13, 1.13,
1.13), without change in Z direction and maximum in XY plane (1.4, −0.6, 1.275); and (j) maximum
in X direction, open arms (1.8, 0, 1.275) orientation kept unchanged (0, 0, 0).

In order to demonstrate the workspace of the mechanism, a simulation study is performed for a
hexarot manipulator. For this purpose, the formulation has been implemented in a programme written
in MATLAB for the inverse kinematics and workspace analysis of hexarot mechanism.

This programme has six loops, and examines all points of the mechanism workspace considering
the limitations mentioned in section five of this paper. The existence of six loops in the code is due to
the existence of six degrees of freedom of the hexarot mechanism. This provides movement in three
directions and rotation of platform about the X, Y, and Z axes. By applying the inverse kinematics
of position, the written code first calculates angles of rotational joint of all arms. The first applied
condition regarding the limitations of workspace is related to arm’s length in which by satisfying
the length, the code will step into the next loop. In the other case it will get out of the loop and the
point will not be considered within workspace of the mechanism. The programme will also consider
the next point and investigate the limitations at that point. In the next step, the extreme conditions
of the joints and arms collision are examined; moreover, the conditions for singularity which were
investigated in Section 5.3 are taken into account. Finally, if all conditions are satisfied then the
considered point will be known as a point within the workspace of the manipulator.

Figure 17 shows hexarot workspace which is obtained by transferring cloud of points from
MATLAB software to CATIA software. In this case, rotation of platform is neglected and Euler
angles conserved in condition of (0, π/2, 0).

https://doi.org/10.1017/S0263574714000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000988


1700 Kinematic analysis and workspace determination

Fig. 18. Reachable positions in the XY plane: (a) Z = 800 (mm); (b) Z = 1000 (mm); (c) Z = 1200 (mm); and
(d) Z = 1275 (mm).

Fig. 19. Reachable positions in the YZ plane: (a) X = 800 (mm); (b) X = 1000 (mm); (c) X = 1200 (mm); (d) X
= 1400 (mm); and (e) X = 1600 (mm).

As it is seen in Fig. 17, due to symmetrical placement of arms, the system has a symmetrical plane
corresponding to plane Z = 1.275 (m). This symmetrical plane is shown in the figure in isometric and
top views. Due to rotational limitation in end part of workspace, the primary points of workspace are
narrower.

The workspace obtained by analytical method is simulated and illustrated in Figs. 18 and 19 which,
respectively, present all reachable positions in the XY plane for four different positions in Z direction
and in YZ plane and for five different positions in X direction.
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In Fig. 18 due to the existence of symmetrical plane of Z = 1.275 (m), two areas including
workspace with larger Z and workspace with smaller Z are similar. The area of workspace increases
from 0.8 (m) to 1.275 (m) when the amount of Z increases and due to similarity this amount decreases
on the other side.

In Fig. 19(a), the workspace of manipulator in YZ plane is illustrated in which its X parameter
equals to 0.8 (m). This condition includes configurations shown in Figs. 16(b)–16(d), 16(f), and
16(h). Figure 19(d) shows the workspace of hexarot in YZ plane with X = 1.4 (m) and includes
configurations (i) and (j) of Fig. 16. In Fig. 19(e), the workspace in YZ plane is shown in which its X
parameter equals to 1.6 (m) and includes configuration in Fig. 16(e). Configurations (a) and (j) in YZ
plane are only points which are not possible to show in these figures.

Regarding Figs. 18 and 19, by increasing the rotation angle in X, Y, and Z directions the size of the
workspace is reduced.

7. Conclusions
In this paper, structure of hexarot mechanism and related kinematic relations has been considered.
Then all relations of inverse and forward kinematics of position, velocity, and acceleration have
been extracted and examined. Since parallel mechanisms have more workspace limitations and
complexities compared to serial mechanisms, limitations in joints and arms have been presented in
all the points of workspace. Finally, by having all kinematic relations of mechanism and limitations
of workspace, the related algorithm for finding the workspace has been developed, and workspace of
the mechanism is obtained by programming in MATLAB software.

Appendix 1
The physical specifications of the test manipulator are as follows (all the quantities are given in SI
units):

ai = 0.961; li = 1.023;
s1 = 0.308; s2 = 0.0378;
h1 = 0.725; h2 = 0.825; h3 = 1.225;
h4 = 1.325; h5 = 1.725; h6 = 1.825

Appendix 2
The position and orientation vectors of the moving platform center, i.e., X = [x y z ]T and θ =
[ θ1 θ2 θ3 ]T, are written as functions of time, t, for each path as following:

Path 1:
The moving platform is disoriented and the orientation is kept unchanged during the simulation

X = [ 0.8 + 0.03t 0.3 + 0.05t 1.2 + 0.04t ]T,

θ = [π π/2 0 ]T.

Path 2:
The moving platform center is moving in a circular path with radius of 0.2 (m) and the orientation

of the platform is conserved during the simulation

X =
[

1 + 0.2sin
( π

12
t
)

−0.2cos
( π

12
t
)

1.2
]T

,

θ = [π π/2 0 ]T.

Path 3:
The moving platform center is moving with a constant acceleration in a straight line and the

orientation of the platform is also changing in positive rolling form at the same time, with a constant
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acceleration

X = [ 1 + 0.02t2 0 1.275 ]T,

θ =
[

π π/2
π × t2

50

]T

.

Path 4:
The moving platform center remains constant and the orientation of the platform changes in

positive yaw form.

X = [ 1 0 1.275 ]T,

θ =
[
π + π

10
t π/2 0

]T
.
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