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Abstract

Recently, interest in integrated assembly sequence planning (ASP) and assembly line balan-
cing (ALB) began to pick up because of its numerous benefits, such as the larger search space
that leads to better solution quality, reduced error rate in planning, and expedited product
time-to-market. However, existing research is limited to the simple assembly problem that
only runs one homogenous product. This paper therefore models and optimizes the inte-
grated mixed-model ASP and ALB using Multi-objective Discrete Particle Swarm
Optimization (MODPSO) concurrently. This is a new variant of the integrated assembly
problem. The integrated mixed-model ASP and ALB is modeled using task-based joint pre-
cedence graph. In order to test the performance of MODPSO to optimize the integrated
mixed-model ASP and ALB, an experiment using a set of 51 test problems with different dif-
ficulty levels was conducted. Besides that, MODPSO coefficient tuning was also conducted to
identify the best setting so as to optimize the problem. The results from this experiment indi-
cated that the MODPSO algorithm presents a significant improvement in term of solution
quality toward Pareto optimal and demonstrates the ability to explore the extreme solutions
in the mixed-model assembly optimization search space. The originality of this research is on
the new variant of integrated ASP and ALB problem. This paper is the first published
research to model and optimize the integrated ASP and ALB research for mixed-model
assembly problem.

Introduction

Assembly sequence planning (ASP) and assembly line balancing (ALB) are classified as impor-
tant activities in assembly optimization although it occurs in different stages (Marian, 2003).
Recently, there are efforts to integrate and optimize both activities concurrently because of the
benefits of reduced planning error and reduced cost in manufacturing (Tseng and Tang, 2006).
The use of an integrated scheme in engineering provides huge benefits (Penciuc et al., 2016).
A recent study that compared the sequential and integrated optimization approaches for ASP
and ALB concluded that the integrated approach is preferable for better solution quality
because of larger search space (Ab. Rashid et al., 2017). Additionally, the integrated optimiza-
tion can also speed up time-to-market for a product (Lu and Yang, 2016).

Assembly line problems are categorized into simple (SALBP) and generalized ALB problem
(GALBP) (Becker and Scholl, 2006). The SALBP only considers the production of one homo-
geneous product on serial line layout, while the GALBP includes all of the problems that are
not SALBP, such as mixed-model, parallel, U-shaped, and two-sided lines with stochastic
dependent processing times (Tasan and Tunali, 2008; Jusop and Ab Rashid, 2015).

There are works on optimization of integrated ASP and ALB problem focusing on SALBP.
Chen et al. proposed a hybrid Genetic Algorithm (GA) to optimize the integrated ASP and
ALB, where GA is combined with heuristic search (Chen et al., 2002). Tseng and Tang studied
combining ASP together with ALB based on assembly “connectors” (i.e. the connector basis)
by using GA. However, when using this approach, whenever the number of connectors is
increased, a few of the parameters that govern GA performance need to be reset (Tseng
and Tang, 2006). Another work by Tseng et al. on integrated ASP and ALB was done in
2008. This work adopted Hybrid Evolutionary Multi-objective Algorithms (HEMOA) that
was also based on GA (Tseng et al., 2008). In the recent work of integrated ASP and ALB opti-
mization, GA-based algorithms performed well in optimizing the problem with low and
medium difficulties. However, the performance of GA-based algorithms deteriorates when
faced with high difficulty problems, especially for problems with a large number of tasks
(Ab Rashid et al., 2012). Besides that, the researcher also implemented Ant Colony
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Optimization (ACO) for integrated ASP and ALB (Lu and Yang,
2016). However, it was tested with only small task numbers.

There has been, thus far, no work on integrated ASP and ALB
optimization beyond SALBP type. This work therefore aims to
initiate the optimization of integrated ASP and ALB for
GALBP, more specifically, the class of mixed-model assembly
problems. A mixed-model assembly line runs different product
models in arbitrarily intermixed sequence on a single assembly
line (Roshani and Nezami, 2017). This type of assembly line is
widely used in various industries to produce a wide variety of pro-
ducts (Zhu et al., 2012). The mixed-model assembly line is impor-
tant in the industry because of the significant cost savings made
possible by sharing different models of products in the same
assembly line. The mixed-model assembly line can also absorb
significant fluctuation of demand of the different models using
an assembly line (Hu et al., 2008). It is crucially important to
set-up the assembly line for a long-term period. Any changes in
the existing assembly line will incur a lot of cost to the manufac-
turer (Shankar et al., 2017). Therefore, by integrating the ASP and
ALB optimization for mixed-model assembly, the benefits from
integrated optimization and mixed-model assembly can be
obtained.

The integrated mixed-model ASP and ALB problem is more
challenging compared with the mixed-model ALB and integrated
simple ASP and ALB. Separate ASP and ALB problems are indi-
vidually categorized as NP-hard combinatorial problems, where
the solution space is excessively increased when the number of
tasks increased (Lin et al., 2012). When the optimization of
both activities is performed together, the problem difficulties
will be increased since all the related factors, such as geometric
information, assembly tool, and time, are concurrently considered
in this stage (Tseng et al., 2008). Furthermore, compared with the
simple assembly problem, it is more difficult to achieve an opti-
mum solution for all models in the mixed-model assembly prob-
lem (Becker and Scholl, 2006; Zhong, 2017). Therefore, a
formulation of the integrated mixed-model ASP and ALB prob-
lem will be more challenging to solve and to optimize, when com-
pared with the optimization of mixed-model ALB and also
integrated ASP and ALB for simple assembly.

The main contribution of this work is a new model of inte-
grated mixed-model ASP and ALB problem. Later, we implement
the Multi-objective Discrete Particle Swarm Optimization
(MODPSO) algorithm to optimize this problem. Section
“Integrated mixed-model ASP and ALB” presents the modeling
of the integrated mixed-model ASP and ALB, including the objec-
tive functions for this problem. Section “Multi-objective Discrete
Particle Swarm Optimization” explains the mechanism of
MODPSO algorithm. Section “Experiment design” presents the
experimental design and performance indicators for optimization
algorithms. Section “Results of computational experiment” pres-
ents the results of the experiment and section “Discussion of
results” discusses these results that analyze various algorithms
to optimize the integrated mixed-model ASP and ALB problems.
Finally, section “Conclusions” concludes the findings from this
work.

Integrated mixed-model ASP and ALB

An example of a mixed-model assembly line is found in vehicle
production, where the assembly line runs one specific car type,
but with different model variants, such as right- or left-hand
drive and manual or automatic transmission. In addition, some

of the cars require additional accessories to fulfill specific cus-
tomer requirements. In this assembly line, there is only one
product, that is, a specific car type, but the assembly process
will vary due to differences between models. Assembly problems
are commonly represented by assembly precedence graphs and
assembly data table. The precedence graph consists of a set of
nodes and arcs that represent assembly tasks and their precedence
constraints. The outgoing arc from node i toward node j meaning
the assembly task i must be completed before starting the assem-
bly task j. Meanwhile the assembly data table represents the
assembly information such as assembly direction, tool, and time
for the particular assembly tasks.

The most common approach to express the mixed-model
assembly problem is by transforming the precedence graphs
into a joint graph as used in many existing mixed-model ALB
works (Kara et al., 2011; Buyukozkan et al., 2016). The joint
graph represents the precedence constraint for all models.

When the precedence diagram of model y is represented by a
graph Gy = (Vy, Cy), where Vy is the set of tasks of model y and
Cy is the set of precedence relations, the combined graph is G =
(V, C), where V =Uy Vy and C =Uy Cy. An arc (i, j) is redundant
if there exists another path from i to j in G. The mixed-model
defines the number of units to be produced from each model dur-
ing a shift of T time units. The processing time of y ∈V is equal to
the total time required for the processing of this task in a given
mixed-model.

For example, an assembly line runs two models of the product,
Model A and Model B. The precedence graphs for both models
are shown in Figure 1(a) and (b). To establish the joint graph,
the followers for specific tasks in each model are bundled together
in one graph. For example, in Figure 1, the followers for task 1 in
Model A are tasks 2 and 3, while tasks 3 and 4 in Model B. The
combination of task 1 followers from both models is tasks 2, 3,
and 4 as shown in the joint graph. The joint graph is updated
by removing the shortest repetitive routes from the graph. In
the example below, the route connecting tasks 4 and 7 in
Model B is removed from the Joint Model because task 7 cannot
be started although task 4 has been performed, because there is
dependence on completion of task 6 in Model A. Once the
joint graph has been established, similar representation scheme
as in simple assembly line problem can be used, except for assem-
bly data representation.

In the mixed-model assembly line, the assembly data set
should represent the data for each model. In this case, the assem-
bly data for similar tasks within different models might be differ-
ent, depending on the actual processing task.

Objective functions and constraints

There are known objective functions to evaluate single-model
assembly problems. To evaluate the fitness in the mixed-model
assembly problem, the objective function is evaluated for every
model, and the mean of these values is used as the fitness
value. For the mixed-model assembly problem with M model:

Objective 1: Minimize the mean of the total direction changes

�ndc = 1
M

∑M
m=1

∑n−1

s=1

dms ; dms

= 1 if direction s = direction s+ 1 for mth model
0 if direction s = direction s+ 1 for mth model

{
. (1)
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Objective 2: Minimize the mean of the total tool changes

�ntc = 1
M

∑M
m=1

∑n−1

s=1

tms ;

tms = 1 if tool s = tool s+ 1 for mth model

0 if tool s = tool s+ 1 for mth model

{
.

(2)

Objective 3: Minimize the mean of cycle times

ct = 1
M

∑M
m=1

ctm;

ctm : Cycle time for mth model.

(3)

Objective 4: Minimize the number of workstations
The number of workstation (nws) is determined once the

assembly tasks assignment is completed. The number of worksta-
tion that generated for all models will be the same because similar
tasks within different models are assigned into a similar
workstation.

Objective 5: Minimize the mean of workload variations

�v = 1
M

∑M
m=1

∑nws
i=1 (ctm − ptmi )

nws
;

ptmi : processing time in ithworkstation for model m

nws : total number of workstation.

(4)

Subjected to:

∑nws
k=1

xik = 1 i = 1, . . . , n (5)

∑nws
k=1

xak −
∑nws
k=1

xbk ≤ 0 a [ n, b [ Fa (6)

∑n
i=1

tmi xik ≤ ctm ∀m, ∀k. (7)

The first constraint [Eq. (5)] ensures that an assembly task is
assigned to one workstation. This constraint also means that the
same assembly task from different models will be assembled in
a similar workstation. Equation (6) represents the precedence
constraint that needs to be followed. The Fa refers to the set of
the successor for task i. In a different word, this constraint ensures
that the successor/s for task i will be assigned in a similar or the
following workstation. The constraint in Eq. (7) ensures that the
maximum cycle time for a respective model (ctm) is obeyed. In
the case of any ctm constraint is violated, the particular assembly
task cannot be assigned into that workstation.

Multi-objective Discrete Particle Swarm Optimization

Various algorithms have been developed to optimize the combi-
natorial optimization problem. For instance, Hu et al. (2014)
implemented a new Discrete Particle Swarm Optimization for a
combinatorial problem, involving a machining scheme selection.
Besides that, the researcher also introduced a probability
increment-based swarm algorithm to optimize the combinatorial
optimization problem in a printed circuit board assembly (Zeng
et al., 2014). Another popular algorithm to optimize the combina-
torial optimization problem is GA, as implemented for scheduling
and vehicle routing problems (Mirabi, 2015; Rahman et al., 2017).

In this work, we implement MODPSO to optimize the inte-
grated mixed-model ASP and ALB (Ab. Rashid, 2013). The gen-
eral procedure of MODPSO is presented in Figure 2.

Initialization

The initialization stage starts with defining the number of parti-
cles (npar), the maximum iteration (itermax), the inertia weight
(c1), and learning coefficients (c2, c3). In this work, the default
coefficient values for PSO are used (i.e. c1 = 0.4, c2 = c3 = 1.4).
Next, the initial population is generated. The initial population
consists of npar particles. Each of the position/solution contains
random integer permutation, Xi

t = xi,1
t , xi,2

t , … xi,n
t . Since the

Fig. 1. Precedence graph of (a) Model A, (b) Model B, and (c) Joint Model.
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solution is randomly generated, the solution most probably will
violate the precedence constraint. Therefore, the sorting proce-
dure based on the earliest position in position X is applied. The
example of this procedure is presented in Figure 3.

Evaluation

The evaluation is conducted using five objective functions as
explained in section “Objective functions and constraints”. Since
we use the Pareto approach, the objective functions are calculated
independently. Next, we conduct non-dominated sorting to iden-
tify the non-dominated solutions. The detail of the non-
dominated sorting procedure is available in Deb (2002).

Update Pbest and Gbest

The Pbest represents the best solution over the iterations within a
similar particle. Meanwhile the Gbest is the best solution among
all the particles. In the original PSO, the Pbest and Gbest are sim-
ply determined based on the fitness of solution. However, in the
multi-objective with Pareto-based approach, we cannot determine
the Pbest and Gbest using the fitness value. Therefore,
we calculate the Crowding Distance to decide the Pbest and

Gbest. The detail of Crowding Distance procedure is adopted
from Deb (2002).

For Pbest, the Crowding Distance is calculated among the
solution within a local particle from different iterations (CDp).
Meanwhile to determine Gbest, the Crowing Distance is measured
among the non-dominated solutions (CDND). The higher
Crowding Distance solution is preferable since it will lead to
explore the solution in the less crowded region.

Update position and velocity

In PSO, the particle reproduction process is performed using two
formulas:

Vt+1
i = c1V

t
i + c2(Pbestti − Xt

i ) + c3(Gbestt − Xt
i ) (8)

Xt+1
i = Xt

i + Vt+1
i (9)

Equation (8), calculate the velocity for (t + 1)th iteration. This for-
mula takes into account the current velocity and distance between

Fig. 2. Flowchart of MODPSO algorithm.

Fig. 3. Example of decoding procedure.

Table 1. Level of tuneable input setting

Level n OS TV FR

1 15 0.6 8 0.2

2 20 0.5 6 0.3

3 40 0.4 4 0.4

4 60 0.3 3 0.6

5 80 0.2 2 0.8
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Pbest and Gbest with the current position, Xi
t. Meanwhile, Eq. (9)

updates the position for (t + 1)th iteration, Xi
t+1. For the discrete rep-

resentation, the following procedures are applied (Rameshkumar
et al., 2005).

Subtraction operator (position–position): (X1−X2).
If the jth element of X1, x1,j = x2,j then v1,j = 0, else v1,j = x1,j
Multiplication operator (coefficient × velocity): (V2 = c.V1).
If r and<c, v2 = v1, else, v2 = 0
c∊[0,1]
Addition operator (velocity + velocity): (V =V1 + V2)
The jth element of V can be derived as follows:

vj =
v1, j if v1, j = 0, v2, j = 0

v1, j if v1, j = 0, v2, j = 0, r , cp
v2, j otherwise

⎧⎨
⎩ , (10)

r is a random number between 0 and 1, while cp∊[0, 1].
Addition operator (position + velocity): (X1

t +V1).
If the jth element of V1, v1,j = 0 then x1,j

t+1 = x1,j
t , else x1,j

t+1 = v1,j

Experiment design

In the previous work, a tuneable test problem generator to provide
sufficient test problem for integrated ASP and ALB has been
developed (Ab Rashid et al., 2012). The results indicate that the
ASP and ALB problem difficulties can be increased using a larger
number of tasks (n), lower Order Strength (OS), lower Time
Variability Ratio (TV), and higher Frequency Ratio (FR). For
the testing of integrated mixed-model ASP and ALB, we proceed
as follows:

(1) The tuneable test problem generator creates a precedence
graph that is assumed as the joint model.

(2) The original tuneable test problem generator creates one
assembly data set that corresponds to the precedence graph.
This is modified, such that three sets of assembly data, repre-
senting different product models, are generated instead.

For the purpose of this experiment, every input variable is
divided into five levels from low to high difficulty values as
shown in Table 1. Then a reference variable setting (datum) is
selected as a baseline, while the rest of the problem variable set-
tings are generated by changing only one variable value at a
time. In total, there are 17 test problems (including the reference
setting) generated from one reference variable setting. In order to
confirm algorithm performance, three different reference variable
settings will be used (Levels 1, 3, and 5). Therefore, the complete
number of test problem in this experiment is 51 problems as
shown in Table 2. The bolded problem settings (Problems 1, 18,
and 35) represent the reference variable settings for Levels 1, 3,
and 5, respectively. The detail of the test problem is accessible
at the following link: (https://drive.google.com/file/d/
0B1FocUClXEMUSmFNdDN2ZFV4QTA/view?usp=sharing).

In general, the integrated ASP and ALB for a single model
employed three types of algorithms; Evolutionary algorithms
(including the hybridized version), ACO, and Discrete PSO algo-
rithms. This work therefore will compare the MODPSO with the
following algorithms for optimization purpose:

(i) Multi-objective GA (MOGA): This algorithm is one of the
most frequently used algorithms to optimize the

independent ASP and ALB problem, according to the survey
(Rashid et al., 2011).

(ii) ACO: The ACO algorithm has been implemented for a
single-model integrated ASP and ALB optimization (Yang
et al., 2013; Lu and Yang, 2016).

(iii) Hybrid GA (HGA): The HGA that is proposed by Chen
et al. is the most cited published work on integrated ASP
and ALB optimization for a single model (Chen et al.,
2002). This algorithm combined the heuristic approach in
line with balancing GA. The output solution from the heur-
istic approaches will be inserted into the initial population
for GA.

(iv) Elitist Non-Dominated Sorting GA (NSGA-II): NSGA-II was
introduced by Deb (2002). This algorithm is selected because
of its popularity in solving multi-objective optimization.

(v) Multi-objective Particle Swarm Optimization (MOPSO): The
MOPSO algorithm introduced to extend the PSO application
for multi-objective optimization (Coello Coello and Lechuga,
2002).

(vi) Discrete Particle Swarm Optimization (DPSO): DPSO pres-
ents the discrete updating procedure to update the position
and velocity (Rameshkumar et al., 2005). The discrete repre-
sentation is suitable to be used for ASP and ALB problem.

In addition to this experiment, another set of computational
experiment was conducted to identify the best coefficient values
for MODPSO. There are three coefficients that influence the
MODPSO performance: inertia weight (c1), cognitive coefficient
(c2), and social coefficient (c3). In MODPSO, c1 coefficient influ-
ences the particle velocity, while c2 and c3 influence the exploring
and exploiting of the search space, respectively. The limit for these
coefficients is suggested as follows: c1 [0, 1], c2 and c3 [0, 3]. In this
study, a Taguchi approach with L9 orthogonal array is used. The
three levels of coefficient values are as follows:

c1 = {0.2, 0.5, 0.8}, c2 = {0.5, 1.5, 2.5}, and c3 = {0.5, 1.5, 2.5}

In this experiment, 15 test problems from Table 2 are selected,
which consist of five problems in each reference setting. The
selected problems are problems 1–5, 18–22, and 35–39.

In this work, the population or swarm size is set at 20 with 500
iterations. For each problem, 30 runs with different random seeds
are performed and the output from each run is collected and fil-
tered to find the non-dominated solution set.

Performance indicators

To evaluate the performance of each algorithm when dealing with
different complexity problems, the following performance indica-
tors adopted from Deb (2002) and Yoosefelahi et al. (2012) are
used.

(i) Number of non-dominated solution in Pareto optimal, ῆ:
Shows the number of non-dominated solutions generated
by each algorithm in the Pareto solution set. The higher ῆ
indicates better algorithm performance.

(ii) Error Ratio, ER: ER counts the number of solutions which
are not members of the Pareto optimal set, divided by the
number of solutions generated by the algorithm. Smaller
ER indicates better algorithm performance.
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Table 2. Experimental design for mixed-model ASP and ALB

Test problem variable for reference setting at level 1 Test problem variable for reference setting at level 3 Test problem variable for reference setting at level 5

Problem n OS TV FR Problem n OS TV FR Problem n OS TV FR

1 15 0.6 8 0.2 18 40 0.4 4 0.4 35 80 0.2 2 0.8

2 20 0.6 8 0.2 19 15 0.4 4 0.4 36 15 0.2 2 0.8

3 40 0.6 8 0.2 20 20 0.4 4 0.4 37 20 0.2 2 0.8

4 60 0.6 8 0.2 21 60 0.4 4 0.4 38 40 0.2 2 0.8

5 80 0.6 8 0.2 22 80 0.4 4 0.4 39 60 0.2 2 0.8

6 15 0.5 8 0.2 23 40 0.6 4 0.4 40 80 0.6 2 0.8

7 15 0.4 8 0.2 24 40 0.5 4 0.4 41 80 0.5 2 0.8

8 15 0.3 8 0.2 25 40 0.3 4 0.4 42 80 0.4 2 0.8

9 15 0.2 8 0.2 26 40 0.2 4 0.4 43 80 0.3 2 0.8

10 15 0.6 6 0.2 27 40 0.4 8 0.4 44 80 0.2 8 0.8

11 15 0.6 4 0.2 28 40 0.4 6 0.4 45 80 0.2 6 0.8

12 15 0.6 3 0.2 29 40 0.4 3 0.4 46 80 0.2 4 0.8

13 15 0.6 2 0.2 30 40 0.4 2 0.4 47 80 0.2 3 0.8

14 15 0.6 8 0.3 31 40 0.4 4 0.2 48 80 0.2 2 0.2

15 15 0.6 8 0.4 32 40 0.4 4 0.3 49 80 0.2 2 0.3

16 15 0.6 8 0.6 33 40 0.4 4 0.6 50 80 0.2 2 0.4

17 15 0.6 8 0.8 34 40 0.4 4 0.8 51 80 0.2 2 0.6
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(iii) Generational Distance, GD: GD calculation yields an average
distance of solution with the nearest Pareto optimal solution.
Smaller GD value indicates better algorithm performance.

(iv) Spacing: This indicator measures the relative distances
between each solution. Smaller Spacing index indicates a bet-
ter solution set, having better spacing between each solution.

(v) Maximum Spread, Spreadmax: Measures the spread of solu-
tions found by each algorithm. Larger maximum spread is
the better.

Results of computational experiment

Due to the large size data from the optimization, the results sim-
plified the data by using a standard competition rank approach.
The best algorithm for a particular indicator and test problem
was assigned rank 1 while the worst was assigned as rank
7. When the algorithm performance is a tie, an equal rank will
be assigned and the next rank will be left empty. Table 3 presents
the frequency of the rank obtained by each algorithm for different
indicators and test problems. For the non-dominated solution in

Table 3. Frequency of the rank obtained by each algorithm

Indicator Rank MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

ῆ 1 0 0 0 5 0 0 47

2 0 1 8 37 1 0 4

3 11 2 22 5 12 8 0

4 15 10 8 3 18 11 0

5 12 5 8 1 11 14 0

6 8 8 4 0 6 18 0

7 5 25 1 0 3 0 0

ER 1 0 0 0 31 0 0 23

2 0 0 5 17 1 0 26

3 10 6 20 3 4 5 2

4 19 8 11 0 18 7 0

5 8 5 11 0 13 16 0

6 10 9 4 0 11 19 0

7 4 23 0 0 4 4 0

GD 1 0 0 0 30 0 0 24

2 2 0 6 17 1 0 22

3 17 3 23 2 2 1 3

4 20 6 10 1 7 6 1

5 8 7 8 0 17 10 1

6 3 5 3 1 19 21 0

7 1 30 1 0 5 13 0

Spacing 1 7 8 7 8 13 5 3

2 10 2 4 10 10 6 9

3 11 7 6 7 13 5 2

4 1 3 4 5 4 14 20

5 10 13 10 6 7 3 2

6 9 11 13 10 2 4 2

7 3 8 6 5 3 13 13

Spreadmax 1 2 1 1 0 10 4 33

2 3 1 8 2 16 15 7

3 5 2 14 4 11 12 2

4 7 3 12 7 8 12 2

5 13 6 11 6 5 5 5

6 13 15 3 16 1 2 1

7 8 23 2 16 0 1 1
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Pareto optimal (ῆ) indicator, the MODPSO comes out with better
solution sets in 96% of test problems, while the remaining 4%
belong to NSGA-II. The Error Ratio (ER) indicator also shows
that the leading algorithms are MODPSO and NSGA-II. The
MODPSO and NSGA-II show better performance with 41.5%
and 58.5%, respectively. Both algorithms also dominate the best
performance for Generational Distance (GD) indicator with
43% of the better performance for MODPSO and 53% for
NSGA-II. Meanwhile, the Spacing indicator shows different pat-
terns, where the largest percentages of better performance are
MOPSO (22%), followed by HGA (20%), ACO (19%), DPSO
(17%), MOGA (14%), MODPSO (6%), and NSGA-II (2%). On
the other hand, the Spreadmax indicator that measures the extent
of solution distribution presents that the MODPSO algorithm
produces a better solution in 70% of the problem. The MOPSO
performs better with 18%, while the remaining balances are
shared among DPSO (6%), MOGA (4%), and HGA (2%).

Table 4 presents the mean of performance indicators for all
test problems. Based on the mean values, the best performance
of ῆ indicator is observed in the MODPSO followed by the
NSGA-II algorithms. Meanwhile, the best mean performance
for ER and GD indicators is achieved by NSGA-II, while the
MODPSO in second place. In the meantime, two PSO-based algo-
rithms, MOPSO and DPSO, are leading the mean of Spacing indi-
cator. Furthermore, the PSO-based algorithms also show better
performance compared with other algorithms in Spreadmax

indicator.
Table 5 shows the average CPU time for different problem

sizes. In general, the ACO and MOPSO were among the fastest
algorithm to complete the iteration. Meanwhile, the MODPSO
was roughly in the second last position, in front of NSGA-II in
term of CPU time. For comparison, the MODPSO was just 2–

3% behind the DPSO. In DPSO and MODPSO, a longer time
is taken to conduct discrete updating procedures compared with
regular updating procedures in MOPSO. However, the NSGA-II
required mostly double CPU time compared with MODPSO.
This is because the NSGA-II combined the existing population
and new offspring for the non-dominated sorting procedure.
Therefore, the time taken to complete the iteration was increased
compared with other algorithms.

MODPSO coefficient tuning

Table 6 shows the results of the MODPSO coefficient experiment.
The experimental table was designed using Taguchi L9 orthogonal
array. Based on the general observation, experiment number 4 led
in term of the best solution of cardinality, which was represented
by ῆ and ER. The same experiment also came out with the best
accuracy (i.e. GD indicator).

Meanwhile, Figure 4 presents the main effect plots of c1, c2,
and c3 for different performance indicators. Based on the main
effect plots, medium c1, low c2, and medium c3 coefficients were
preferable as observed in ῆ and ER plots to produce a solution
with good cardinality. Similar coefficients’ levels were also
required to generate accurate solutions as represented by the
GD indicator. On the other hand, the main effect plots by
Spacing and Spreadmax indicated that high c1, medium c2, and
medium c3 coefficients’ respective levels contributed to better
solution distribution.

Discussion of results

In general, the result from the experiment shows that the perfor-
mance of algorithms in optimizing the integrated mixed-model

Table 4. Mean of performance indicators

Indicator

Algorithm

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

ῆa 4.7843 1.9020 8.0588 27.2353 5.2745 3.4902 41.0196

ERb 0.9037 0.9632 0.8592 0.1952 0.9230 0.9444 0.2046

GDb 1.9951 2.4650 2.0017 0.1753 2.3219 2.3682 0.2696

Spacingb 1.0281 1.1410 0.9819 1.2898 0.9479 0.9537 1.2318

Spreadmax
a 15.7278 14.6364 16.5250 14.9729 17.1868 16.8720 18.4656

aLarger the better indicator.
bSmaller the better indicator.

Table 5. Average CPU time for different problem size

Problem size

Average CPU time (s)

MOGA ACO HGA NSGA-II MOPSO DPSO MODPSO

15 42.34 35.86 45.14 93.55 43.97 49.83 51.34

20 76.58 53.87 80.04 165.08 35.61 86.72 88.09

40 376.34 225.76 376.88 753.36 202.48 388.28 401.82

60 1067.18 672.30 1057.98 2230.19 629.33 1077.80 1101.58

80 2295.72 1694.14 2394.84 4902.50 1611.51 2386.95 2419.80
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ASP and ALB appears to be dominated by NSGA-II and the pro-
posed MODPSO algorithms, especially in four performance indi-
cators (i.e. ῆ, ER, GD, and Spreadmax). However, further analyses
are required to quantify the results. Therefore, a statistical test is
conducted to measure the significance of the improvements
achieved by the MODPSO in optimizing the integrated mixed-
model ASP and ALB.

The Analysis of Variance (ANOVA) test was then carried out
to evaluate any significant improvement between the results
obtained by different algorithms. The “null hypothesis” stated
that there is no significant improvement among the means of
all algorithm results. The alternative hypothesis states that there
is a significant improvement among means in the result of at
least one algorithm. The null hypothesis will be accepted when
the calculated f-value is smaller than the critical f-value ( f*) as
suggested in the f-distribution table (Coolidge, 2000). The result
of the ANOVA test is presented in Table 7.

The result shows that the calculated f-value for all performance
indicators are consistently larger than f* at 0.05 confidence inter-
val. Therefore, the null hypothesis is rejected and the alternative is
accepted for all indicators, which bring the meaning that there are
significant improvements achieved for all indicators in at least one
algorithm. However, the ANOVA test cannot differentiate the
exact improvement of one algorithm in comparison with another
algorithm.

Therefore, a posteriori test known as Tukey’s Honestly
Significant Difference (HSD) is performed. This test is performed
by calculating the absolute mean difference between the results of
one algorithm over another algorithm, which is then compared
with the critical HSD (HSD*) value. The HSD* value for algo-
rithm i is calculated as follows.

HSD
∗
i = q.

							
MSWi

n

√
. (11)

The q value is acquired from Tukey’s table, MSW is the mean
squares within groups from the ANOVA test, and n is the number
of data in each group. When the absolute mean difference is
larger than HSD*, a significant improvement has been identified
in one algorithm over another algorithm. At this point, we are
interested to know the performance of MODPSO over the other

algorithms. Table 8 presents the HSD* and absolute mean differ-
ence between MODPSO and the other algorithms.

In Table 8, the values that are labeled “a” show the MODPSO
has a better mean difference over the comparison algorithm,
while the values labeled “b” mean that the comparison algorithm
has a better mean difference over MODPSO. On the other hand,
the bold values in Table 8 indicate the significant improvements
achieved by MODPSO over other algorithms, since the absolute
mean difference is larger than HSD*. Based on Table 8, the
MODPSO algorithm shows better performance and significant
improvement when compared with the set of algorithms for ῆ
indicator. The MODPSO also show significant improvements
for ER and GD indicators compared with other algorithms,
with the exception of NSGA-II. In both indicators, the
NSGA-II algorithm shows better mean difference compared
with MODPSO; however, the difference is not significant because
the absolute mean difference is smaller than HSD*.

Meanwhile, the Spacing indicator did not show any signifi-
cant improvement of MODPSO, although it has a better mean
difference when compared with NSGA-II. Except for NSGA-II,
all other algorithms show better performance over MODPSO,
where significant improvements are presented by four algo-
rithms (MOGA, HGA, MOPSO, and DPSO). For Spreadmax

indicator, the MODPSO algorithm shows significant improve-
ment compared with other algorithms, except MOPSO. In com-
parison with MOPSO, although no significant improvement is
achieved, the MODPSO algorithm still produces a better
solution.

In this work, the solution quality toward Pareto optimal is
measured using three performance indicators, that is, ῆ, ER,
and GD. The Spacing indicator measures the uniformity of the
found solutions and Spreadmax measures the ability of the algo-
rithm to explore the extreme solutions within the solution
space. The results from the statistical test explain that, the
MODPSO algorithm shows significant improvement in term of
finding a better solution toward Pareto optimal over comparison
algorithms, with the exception of NSGA-II at 0.05 confidence
intervals.

Furthermore, the Spreadmax result means that the MODPSO
algorithm is significantly able to explore better extreme solutions
when compared with MOGA, ACO, HGA, DPSO, and NSGA-II.
Meanwhile, in term of uniformity of solution spread, the
MODPSO algorithm did not perform significantly better than

Table 6. MODPSO coefficient experiment results

Experiment number

Coefficients Mean of performance indicators

c1 c2 c3 ῆ ER GD Spacing Spreadmax

1 0.2 0.5 0.5 34.1264 0.2178 0.3102 1.4178 18.2750

2 0.2 1.5 1.5 38.7028 0.1786 0.2156 1.3328 17.2138

3 0.2 2.5 2.5 39.9842 0.1755 0.1881 1.3925 16.0811

4 0.5 0.5 1.5 45.8421 0.1141 0.1070 1.5397 18.4845

5 0.5 1.5 2.5 41.8148 0.1712 0.2046 1.3979 17.9512

6 0.5 2.5 0.5 35.5908 0.1991 0.2662 1.5330 16.5959

7 0.8 0.5 2.5 40.3503 0.1763 0.1784 1.2381 16.6047

8 0.8 1.5 0.5 35.7739 0.2115 0.2770 1.4051 18.4490

9 0.8 2.5 1.5 37.0553 0.1961 0.2683 1.2402 18.2447
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other algorithms. The Spacing indicator considers all non-
dominated solutions that were found by a particular algorithm,
regardless of Pareto or non-Pareto optimal solutions. In general,
for similar search space, the algorithm that generated more non-
dominated solutions has greater chances to produce better
Spacing. From the experiment, the mean number of non-
dominated solutions generated by the algorithms (regardless of
Pareto or non-Pareto optimal), in ascending order, are:

NSGA-II (33.84), ACO (46.9), MODPSO (55.37), MOGA
(56.14), HGA (68.91), DPSO (80.47), and MOPSO (85.02).
These numbers clearly present the algorithms that show signifi-
cant improvement over MODSPO for Spacing indicator are the
algorithms with a larger mean of generated solutions.

The results from the experiments and statistical tests summar-
ize that the MODPSO has shown significant improvement over
the majority of compared algorithms in ῆ, ER, GD, and

Fig. 4. Effect of w, c1, and c2 on performance indicators: (a) ῆ, (b) ER, (c) GD, (d) Spacing, and (e) Spreadmax.
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Spreadmax indicators. In comparison with all other algorithms, the
performance of MODPSO is closely followed by NSGA-II, where
MODPSO only shows significant improvement over NSGA-II in
ῆ and Spreadmax indicators. In order to compare the performance
of NSGA-II, the mean difference between NSGA-II and other
algorithms is calculated and presented in Table 9.

Table 9 indicates that the NSGA-II has a significant improve-
ment for solution quality leading to Pareto optimal compared
with other algorithms except the MODPSO. Besides that, the
NSGA-II did not show any significant improvement for solution
uniformity (Spacing) and extreme solution exploration
(Spreadmax). Based on the significant improvement achieved by
MODPSO (Table 8) and NSGA-II (Table 9) over other algo-
rithms, the MODPSO is found to perform better than
NSGA-II. This is because the MODPSO has shown a significant
improvement over NSGA-II in two of the indicators (i.e. ῆ and
Spreadmax), while there is no significant improvement of

NSGA-II over MODPSO algorithm. Furthermore, for Spreadmax

indicator, the NSGA-II did not show any significant improvement
as MODPSO shows when compared with all other algorithms. In
addition, the NSGA-II required double CPU time to complete the
iteration compared with MODPSO as presented in Table 5. These
facts give more advantages to MODPSO in terms of solution qual-
ity and also algorithm effort.

The result from Tukey’s HSD test for integrated mixed-model
ASP and ALB clearly shows that the MODPSO performed better
than other algorithms for all test problems. Another question that
arises is the problem category that the MODPSO algorithm per-
formed best and worst. Therefore, the Tukey’s HSD test based on
different problem reference setting is conducted. The result of
Tukey’s HSD test for different problem setting is presented in
Table 10. Based on Table 10, the MODPSO shows significant
improvement in ῆ indicator over all algorithms for all reference
setting. For ER indicator, the MODPSO consistently demonstrates

Table 7. Summary of ANOVA test

ῆ ER GD Spacing Spreadmax

f* 3.69 3.69 3.69 3.69 3.69

F 186.081 262.1808 45.8928 12.8327 17.4301

f*: critical f-value; f: calculated f-value.

Table 8. Summary of Tukey’s HSD test for MODPSO algorithm

Absolute mean difference between MODPSO and comparison algorithm

Indicator (HSD*) ῆ (4.5902) ER (0.0906) GD (0.6131) Spacing (0.1621) Spreadmax (1.3337)

Comparison algorithm

MOGA 36.2353a 0.6991a 1.72551 0.2037b 2.7379a

ACO 39.1176a 0.7586a 2.19541 0.0908b 3.8292a

HGA 32.9608a 0.6547a 1.73211 0.2499b 1.9406a

NSGA-II 13.7843a 0.0094b 0.0944b 0.0580a 3.4928

MOPSO 35.7451a 0.7184a 2.0523a 0.2839b 1.2789a

DPSO 37.5294a 0.7399a 2.0985a 0.2781b 1.5936a

aBetter absolute mean difference for MODPSO.
bBetter absolute mean difference for comparison algorithm.

Table 9. Summary of Tukey’s HSD test for NSGA-II

Absolute mean difference between NSGA-II and comparison algorithm

Indicator (HSD*) ῆ (4.5902) ER (0.0906) GD (0.6131) Spacing (0.1621) Spreadmax (1.3337)

Comparison algorithm

MOGA 22.4510a 0.7085a 1.8199a 0.2618b 0.7549b

ACO 25.3333a 0.7680a 2.2897a 0.1489b 0.3365a

HGA 19.1765a 0.6640a 1.8264a 0.3079b 1.5522b

MOPSO 21.9608a 0.7278a 2.1466a 0.3419b 2.2139b

DPSO 23.7451a 0.7492a 2.1929a 0.3361b 1.8991b

MODPSO 13.7843b 0.0094a 0.0944a 0.0580b 3.4928b

aBetter absolute mean difference for NSGA-II.
bBetter absolute mean difference for comparison algorithm.
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significant improvement over other algorithms except NSGA-II.
Meanwhile for GD indicator in low-level reference setting
(Level 1), significant improvements for MODPSO are only
found over ACO, MOPSO, and DPSO algorithms. However,
when the reference setting is changed to medium (Level 3) and
high (Level 5) levels, significant improvements are also observed
in comparison with MOGA and NSGA-II.

On the other hand, the MODPSO consistently did not show
any significant improvement over any algorithm for Spacing indi-
cator. For Spreadmax indicator, the proposed algorithm also did
not show significant improvements in the low-level reference set-
ting. However, when the reference setting is moved to a medium
level, the MODPSO shows significant improvement over MOGA,
ACO, and NSGA-II. Finally, in the problem with high-level refer-
ence setting, significant improvements are achieved by MODPSO
over all other algorithms. From this result, the best performance
of MODPSO is found in the problem with high reference setting.
Meanwhile, the weakest performance is in the problem with low-
level reference setting, even though the overall performance in this
problem category is still better than other algorithms.

The superior performance of MODPSO in optimising inte-
grated mixed-model ASP and ALB arises because this algorithm
was specifically developed for discrete multi-objective optimisa-
tion problem. This algorithm uses a similar procedure for

Initialization, Evaluation, and Selection strategies as in
NSGA-II. The NSGA-II is another algorithm that specifically
developed for multi-objective optimization problems that also
performed well in this application. However, it does not have a
fine tuning feature. The fine tuning feature means the ability of
an algorithm to make small adjustments to the solution in
order to achieve the best or a desired performance. This is an
important feature for ASP and ALB, where small changes may
lead to sudden improvement in results.

The discrete updating procedure in MODPSO is designed to
enable fine tuning toward the end of iterations. According to dis-
crete updating procedure [Subtraction operator (Xi – Xj)] in section
“Update position and velocity”, zero velocity is given when a sim-
ilar element in Xi and Xj is found (this is the case when all particles
move toward the best solution at the end of iterations). When the
majority of velocity elements are zero, only small changes occur in
assembly sequence as presented by Addition operator (Xi +Vi) in
section “Update Position and velocity”. This feature allows fine
tuning of the assembly sequences in MODPSO.

Conclusions

This paper formulates and studies the optimization of integrated
mixed-model ASP and ALB problem using MODPSO. A set of

Table 10. Summary of Tukey’s HSD test for MODPSO by reference setting level

Reference setting Algorithm

Absolute mean difference between MODPSO and algorithm

ῆ ER GD Spacing Spreadmax

Level 1 HSD* 9.3491 0.1684 0.9264 0.3109 2.3693

MOGA 32.3529a 0.5009a 0.7618a 0.0116b 0.8080a

ACO 37.8235a 0.6412a 1.2778a 0.1152a 2.1079a

HGA 25.8824a 0.4142a 0.6812a 0.0322b 0.8376a

NSGA 20.8235a 0.0966a 0.0903a 0.1924a 2.2812a

MOPSO 31.9412a 0.5373a 0.9917a 0.0924b 0.1576b

DPSO 35.7059a 0.5927a 1.1062a 0.0839b 0.0122a

Level 3 HSD* 7.2889 0.1436 0.8001 0.2325 1.9374

MOGA 40.5882a 0.7850a 2.0228a 0.2749b 2.7749a

ACO 43.2941a 0.8292a 2.5720a 0.2616b 3.7624a

HGA 38.8824a 0.7747a 2.0196a 0.3462b 1.5431a

NSGA 13.0588a 0.0448b 0.2236b 0.0036a 3.3176a

MOPSO 40.0000a 0.7975a 2.3401a 0.3913b 0.8924a

DPSO 41.7059a 0.8142a 2.3461a 0.3576b 1.2606a

Level 5 HSD* 5.4125 0.1002 0.9376 0.2957 2.6973

MOGA 35.7647a 0.8115a 2.3920a 0.3247b 4.6306a

ACO 36.2353a 0.8054a 2.7364a 0.1261b 5.6173a

HGA 34.1176a 0.7751a 2.4955a 0.3712b 3.4412a

NSGA 7.4706a 0.0799b 0.1497b 0.0219b 4.8795a

MOPSO 35.2941a 0.8204a 2.8249a 0.3679b 3.1018a

DPSO 35.1765a 0.8127a 2.8433a 0.3927b 3.5081a

aBetter absolute mean difference for MODPSO.
bBetter absolute mean difference for comparison algorithm.
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test problems with different range of difficulties has been used to
test the performance of MODPSO in optimizing the integrated
mixed-model ASP and ALB. In addition, MODPSO coefficient
tuning has been conducted to identify the best settings for
optimization.

The experimental results indicate that, in general, the
MODPSO algorithms performed better than other comparison
algorithms. The statistical test concluded that the MODPSO has
shown a significant improvement in converging to Pareto optimal
solution and exploring the extreme solutions in search space. The
statistical test also concluded that the MODPSO performed best
in the problem with the high level of difficulty. Meanwhile the
weakest performance is in the problem at low difficulty level,
although it still performed better than comparison algorithms.
The MODPSO coefficient tuning suggested that the optimum
performance for solution cardinality and accuracy was achieved
when the inertia weight and social coefficient were at the medium
level, while cognitive coefficient was at the low level.

The work in this paper has initiated the study on integrated
mixed-model ASP and ALB optimization. At the same time, it
also indicates that the MODPSO algorithm is able to optimize
this problem better than comparison algorithms. One of the
MODPSO’s downside is incapability of generating uniformly
spaced solutions as presented by Spacing indicator. In the future,
an effort to improve the algorithm performance, especially in
solution uniformity, is proposed to improve the overall solution
quality. The first suggestion to improve the solution uniformity
is to consider the historical data in the crowding distance. This
will make the unselected solutions, because of mating pool capac-
ity, to be taken into account when calculating the crowding dis-
tance. Besides that, the solution quality also could be improved
by including the extreme solutions as a part of MODPSO updat-
ing procedure. It will influence the MODPSO convergence direc-
tion toward the extreme solution, besides the Gbest. Therefore,
the search direction becomes more diverse.
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