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A Generalization of a Theorem of Swan
with Applications to Iwasawa Theory

Andreas Nickel

Abstract. Let p be a prime and let G be a ûnite group. By a celebrated theorem of Swan, two ûnitely
generated projective Zp[G]-modules P and P′ are isomorphic if and only ifQp ⊗Zp P andQp ⊗Zp P′

are isomorphic as Qp[G]-modules. We prove an Iwasawa-theoretic analogue of this result and apply
this to the Iwasawa theory of local and global ûelds. We thereby determine the structure of natural
Iwasawa modules up to (pseudo-)isomorphism.

1 Introduction

Let p be a prime and let G be a proûnite group. We denote the complete group algebra
of G over Zp by Λ(G). In classical Iwasawa theory one studies modules over Λ(Γ)
with Γ ≃ Zp up to pseudo-isomorphism. Jannsen [6] proposed amethod for studying
Λ(G)-modules up to isomorphism that in fact works for more general G.

In equivariant Iwasawa theory one is o�en concerned with the case where G is
a one-dimensional p-adic Lie group. hen G can be written as a semi-direct product
H⋊Γ with a ûnite normal subgroupH and Γ ≃ Zp . Jannsen’s theoryworks particularly
nicely if G = H × Γ is a direct product and p does not divide the cardinality of H (see
[8, Chapter XI, §2 and §3]).
As a concrete example, let L/K be a ûnite Galois extension of p-adic ûelds with

Galois group H, where a p-adic ûeld will always mean a ûnite extension ofQp in this
article. Let L∞ be the cyclotomic Zp-extension of L. We denote the n-th layer of
the Zp-extension L∞/L by Ln as usual. Assume that p does not divide ∣H∣, so that
G ∶= Gal(L∞/K) decomposes into a direct product H × Γ with Γ ≃ Zp . Let us denote
the group of principal units in a local ûeld F by U 1(F) and consider the inverse limit

U 1(L∞) ∶= lim
←Ð
n

U 1(Ln),

where the transition maps are given by the norm maps. Moreover, we let XL∞ be
the Galois group over L∞ of the maximal abelian pro-p-extension of L∞. hen both
U 1(L∞) and XL∞ are ûnitely generated Λ(G)-modules. If L contains a primitive
p-th root of unity, then by [8, heorems 11.2.3 and 11.2.4] there are (non-canonical)
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isomorphisms of Λ(G)-modules

(1.1) XL∞ ≃ U 1(L∞) ≃ Zp(1) ⊕ Λ(G)[K∶Qp] ,

and without the Zp(1)-term otherwise. Similar statements in fact hold for more arbi-
traryZp-extensions of L. However, this does not remain true if G contains an element
of order p (this follows from the results recalled in Section 4.1 and in particular from
sequence (4.1), sinceZp then has inûnite projective dimension as a Λ(G)-module). In
this case, the structure of these Λ(G)-modules has not yet been determined, although
this is a very natural and important question of Iwasawa theory.

Now letH be arbitrary, but assume for simplicity in this introduction thatG = H×Γ
is a direct product. Recall that a homomorphism of ûnitely generated Λ(Γ)-modules
is a pseudo-isomorphism if and only if for every height one prime ideal p of Λ(Γ) it
becomes an isomorphism a�er localization at p. We will show that (1.1) remains true
a�er localization at such a prime ideal p. his is of independent interest, but we point
out that our motivation originates from the equivariant Iwasawa main conjecture for
local ûelds formulated by the author [9]. he inverse limit of the principal units along
the unramiûedZp-tower naturally appears as a cohomology group of a certain perfect
complex of Λ(G)-modules that plays a key role in the formulation of this conjecture.
It was shown [9, Corollary 6.7] that it suõces to prove the conjecture a�er localization
at the height one prime ideal (p). For this reason we are interested in the Λ(p)(G)-
module structure of the localization of U 1(L∞) at (p), where, for any height one
prime ideal p, we denote the localization of Λ(G) at p by Λp(G).

Our method is not restricted to the local case. We also consider ûnite Galois
extensions L/K of number ûelds and the cyclotomic Zp-extension L∞ of L. hen
G ∶= Gal(L∞/K) is again a one-dimensional p-adic Lie group. Let S be a ûnite set
of places of K containing all the archimedean places and all places that ramify in
L∞/K. We then determine the Λp(G)-module structure of the inverse limit of the
(p-completion of the) S-units, localized at p. We also consider the natural Iwasawa
module XS , the Galois group over L∞ of the maximal abelian pro-p-extension un-
ramiûed outside S.

Our method has two main ingredients: the homotopy theory of Iwasawa modules
developed by Jannsen [6] and, as a new ingredient, an Iwasawa-theoretic analogue
of a theorem of Swan [12]. he latter states that, for a ûnite group G, two projective
Zp[G]-modules P and P′ are isomorphic if and only if Qp ⊗Zp P and Qp ⊗Zp P′ are
isomorphic as Qp[G]-modules. Accordingly, we prove that two ûnitely generated
projective Λp(G)-modules are isomorphic if and only if this is true a�er base change
to Q(G), the total ring of fractions of Λ(G), and thus also of Λp(G). his then allows
us to compute the projective summands of our Iwasawa modules.

If G = H × Γ is a direct product, then our result is an easy consequence of Swan’s
original theorem. his is because Λ(G) then is obtained from the group ring Zp[H]
by extension of scalars. However, the case of a semi-direct product is much harder,
and in fact our result cannot be directly deduced from Swan’s theorem or even from
a more general result due to Hattori [5] (see Remark 2.13 for details).

Onemethod of proving Swan’s theorem is via the Cartan–Brauer triangle, since the
Cartanmap is injective in this case by a theorem of Brauer. his method can be found
in [3, §21], and we largely follow this approach. In fact, we construct a Cartan–Brauer
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square in a rather abstract situation and show that the injectivity of the Cartan map
always implies a result in the style of Swan’s theorem. he case of localized Iwasawa
algebras is then implied by a theorem of Ardakov andWadsley [2] on the Cartan map
of crossed product algebras. As a by-product we deduce the surjectivity of certain
connecting homomorphisms that appear in relative K-theory of Iwasawa algebras.

his article is organized as follows. In Section 2 we ûrst construct the Cartan–
Brauer square, a generalization of the Cartan–Brauer triangle in the case of group
rings. We then propose an abstract version of Swan’s theorem (Corollary 2.7).
Viewing the localized Iwasawa algebras as crossed products allows us to deduce our
Iwasawa-theoretic analogue of Swan’s theorem from the aforementioned result of
Ardakov andWadsley (see Corollary 2.12). In Section 3 we review the homotopy the-
ory of Iwasawa modules and prove several auxiliary results for later use. In Section 4
we study the Iwasawa theory of local ûelds. In particular, our analogue of Swan’s the-
orem allows us to show that (1.1) remains true for arbitrary one-dimensional p-adic
Lie extensions of K a�er localization at an arbitrary height one prime ideal. Finally,
we consider cyclotomic Zp-extensions of number ûelds in Section 5, where we prove
analogues of [8,heorem 11.3.11] for arbitrary one-dimensional p-adic Lie extensions
containing the cyclotomic Zp-extension.

Notation and Conventions

All rings are assumed to have an identity element and all modules are assumed to
be le� modules unless otherwise stated. If K is a ûeld, we denote its absolute Galois
group by GK . If R is a ring and M is an R-module, we let pdR(M) be the projective
dimension of M over R.

2 A Generalization of Swan’s Theorem

2.1 Grothendieck Groups

For further details and background on Grothendieck groups and algebraic K-theory
used in this section, we refer the reader to [4, 13]. Let Λ be a noetherian ring and
let Mod(Λ) be the category of all Λ-modules. We denote the full subcategories of
all ûnitely generated and ûnitely-generated projective Λ-modules by Mod f g(Λ) and
PMod(Λ), respectively. We let G0(Λ) and K0(Λ) be the Grothendieck groups of
Mod f g(Λ) and PMod(Λ), respectively [4, §38]. he natural inclusion functor
PMod(Λ) →Mod f g(Λ) induces a homomorphism c∶K0(Λ) → G0(Λ) that is called
the Cartan map or the Cartan homomorphism. We recall the following result [4,
Proposition 38.22].

Lemma 2.1 Let P, P′ ∈ PMod(Λ). hen we have [P] = [P′] in K0(Λ) if and only if
P ⊕ Q ≃ P′ ⊕ Q for some Q ∈ PMod(Λ).

We write K1(Λ) for the Whitehead group of Λ, which is the abelianized inûnite
general linear group [4, §40]. We denote the relative algebraic K-group correspond-
ing to a ring homomorphism Λ → Λ′ by K0(Λ, Λ′). We recall that K0(Λ, Λ′) is an
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abelian group with generators [X , g ,Y], where X and Y are ûnitely generated projec-
tive Λ-modules and g ∶ Λ′ ⊗Λ X → Λ′ ⊗Λ Y is an isomorphism of Λ′-modules; for a
full description in terms of generators and relations, we refer the reader to [13, p. 215].
Furthermore, there is a long exact sequence of relative K-theory, [13, Chapter 15]

(2.1) K1(Λ) Ð→ K1(Λ′)
∂Λ,Λ′
ÐÐ→ K0(Λ, Λ′) Ð→ K0(Λ) Ð→ K0(Λ′).

2.2 The Decomposition Map

Let R be a discrete valuation ring withmaximal idealm and uniformizer π. We denote
the ûeld of fractions of R by K and let k ∶= R/m be the residue ûeld. Let A be a ûnite
dimensional K-algebra and let Λ be an R-order in A. We put Ω ∶= k ⊗R Λ, which is
a ûnite-dimensional k-algebra. Note that A and Ω are artinian (and thus noetherian)
rings so that every ûnitely generatedmodule has a composition series and satisûes the
Jordan–Hölder theorem [3, heorem 3.11].

We also observe that every ûnitely generated A-moduleV contains a full Λ-lattice.
Indeed, if v1 , . . . , vm is a K-basis of V , then M ∶= ∑

m
i=1 Λv i is a Λ-submodule of V

such that K ⊗R M = V . As R is a discrete valuation ring, every ûnitely generated
torsionfree R-module is, in fact, free, and so M is a full Λ-lattice in V . We put M ∶=
M/mM = k ⊗R M, which is a ûnitely generated Ω-module.

Proposition 2.2 here is a unique homomorphism of abelian groups

d ∶ G0(A) → G0(Ω)

such that for each ûnitely generated A-module V one has d([V]) = [M], where M is
any full Λ-lattice in V.

Deûnition 2.3 he homomorphism d ∶ G0(A) → G0(Ω) in Proposition 2.2 is
called the decomposition map.

Proof of Proposition 2.2 heproof is similar to that of [3, Proposition 16.17], where
the case of group rings is considered. We repeat the argument for the convenience of
the reader.

Let V be a ûnitely generated A-module and choose a full Λ-lattice M in V . We
ûrst show that the class [M] in G0(Ω) does not depend on the choice ofM. For this,
let N be a second full Λ-lattice in V . By [3, Proposition 16.6] we have [M] = [N]

in G0(Ω) if and only if M and N have the same composition factors. As M + N is
also a full lattice in V , we can assume that N is properly contained in M. Since M
is noetherian, in addition we can assume that N is a maximal Λ-submodule of M.
We claim that πM ⊆ N . Otherwise, the chain of inclusions N ⊊ N + πM ⊆ M gives
N +πM = M bymaximality of N . henNakayama’s Lemma implies N = M, contrary
to our assumption. Now consider the chain of inclusions πN ⊆ πM ⊆ N ⊆ M.
We see that M and N share the composition factors of N/πM. hus it suõces to
show that M/N and πM/πN have the same composition factors; but this is clear as
multiplication by π induces an isomorphism M/N ≃ πM/πN .
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Now deûne d by d([V]) = [M]. We must show that d is additive on short exact
sequences. Given a short exact sequence of ûnitely generated A-modules

0Ð→ V1 Ð→ V2
ϕ
Ð→ V3 Ð→ 0,

choose a full Λ-lattice M2 in V2 and deûne M3 ∶= ϕ(M2) and M1 ∶= M2 ∩ V1. hen
we have a short exact sequence of Λ-modules

(2.2) 0Ð→ M1 Ð→ M2
ϕ
Ð→ M3 Ð→ 0,

and it is not hard to see that M1 and M3 are full Λ-lattices in V1 and V3, respectively.
As M3 is a free R-module, tensoring sequence (2.2) with k preserves exactness so that
we obtain a short exact sequence of Ω-modules

0Ð→ M1 Ð→ M2 Ð→ M3 Ð→ 0.

hus we get d([V2]) = [M2] = [M1] + [M3] = d([V1]) + d([V3]) as desired. ∎

2.3 The Cartan–Brauer Square

We denote the radical of a ring S by rad(S). We put Λ̃ ∶= Λ/ rad(Λ) = Ω/ rad(Ω).
hen Λ̃ is a semisimple artinian ring, and Λ is semiperfect if and only if every idem-
potent in Λ̃ is the image of an idempotent in Λ. Note that Ω is always semiperfect by
[3, Propositions 6.5, 6.7].

Remark 2.4 he ring Λ is semiperfect whenever R is complete [3, Propositions 6.5,
6.7] or A is a split semisimple K-algebra [3, Exercise 16].

Let us consider the following commutative square

(2.3) K0(Λ)
b //

e
��

K0(Ω)

c
��

G0(A)
d // G0(Ω),

where for P ∈ PMod(Λ) we have b([P]) = [P] and e([P]) = [K ⊗R P]. We call (2.3)
the Cartan–Brauer square.

Proposition 2.5 he homomorphism b ∶ K0(Λ) → K0(Ω) is injective. If Λ is semi-
perfect, then b is an isomorphism.

Proof Let P, P′ ∈ PMod(Λ) and assume that [P] = [P′] in K0(Ω). By Lemma
2.1 there exists an S ∈ PMod(Ω) such that P ⊕ S ≃ P′ ⊕ S. We can assume that S
is free and thus, in particular, that S ≃ Q for some Q ∈ PMod(Λ). We claim that
P ⊕ Q ≃ P′ ⊕ Q. hen clearly [P] = [P′] in K0(Λ) and thus b is injective. For
the claim we can assume that R is complete by [3, Proposition 30.17] in which case it
follows from [3, Proposition 6.17 (iv)].

Now suppose that Λ is semiperfect and let Q ∈ PMod(Ω). In order to show
that b is surjective, it suõces to ûnd P ∈ PMod(Λ) such that P ≃ Q. Let us put
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Q̃ ∶= Q/ rad(Ω)Q ∈ PMod(Λ̃). hen there is a P ∈ PMod(Λ) such that P/ rad(Λ)P ≃

Q̃ by [3, heorem 6.23]. hen both P and Q are ûnitely generated projective Ω-
modules and projective covers of Q̃ by [3, Corollary 6.22]. his implies P ≃ Q as
projective covers are unique up to isomorphism [3, Proposition 6.20]. ∎

Remark 2.6 If G is a ûnite group such that the group ring R[G] is semiperfect,
diagram (2.3) specializes to the Cartan–Brauer triangle (see [3, §18A])

K0(k[G])

eb−1

xx

c

&&
G0(K[G])

d // G0(k[G]).

he following result might be seen as an abstract version of Swan’s theorem [12, §6]
(see also [3, heorem 32.1]).

Corollary 2.7 Let P, P′ ∈ PMod(Λ) and suppose that the Cartan map c is injective.
hen P ≃ P′ as Λ-modules if and only if K ⊗R P ≃ K ⊗R P′ as A-modules.

Proof As the map b is injective by Proposition 2.5 and the Cartan map c is injective
by assumption, also the map e in diagram (2.3) has to be injective. Now assume that
K ⊗R P ≃ K ⊗R P′ as A-modules. hen we have, in particular, that e([P]) = e([P′])
in G0(A) and thus [P] = [P′] in K0(Λ). By Lemma 2.1 there is a ûnitely generated
projective Λ-module Q such that P ⊕ Q ≃ P′ ⊕ Q. In order to deduce P ≃ P′, we
can assume that R is complete by [3, Proposition 30.17]. Now the result follows from
[3, Corollary 6.15]. ∎

Corollary 2.8 (Swan) Let G be a ûnite group and let P, P′ ∈ PMod(R[G]). hen
P ≃ P′ as R[G]-modules if and only if K ⊗R P ≃ K ⊗R P′ as K[G]-modules.

Proof It suõces to show that the Cartanmap is injective. If k has positive character-
istic, this follows from a theorem of Brauer (see [3, heorem 21.22], [11, Corollary 1 of
heorem 35]). If k has characteristic zero (or if the characteristic is positive and does
not divide the cardinality ofG), then k[G] is a semisimple ring byMaschke’s theorem
[3, heorem 3.14]. hus every ûnitely generated k[G]-module is indeed projective
and the Cartan map becomes the identity morphism. ∎

In view of Corollary 2.7, it is an interesting question to study in which cases the
Cartan map is injective. For this the following observation will be very useful.

Lemma 2.9 Let s be the number of non-isomorphic simple (le�) Ω-modules of an
arbitrary (le�) artinian ring Ω. hen the abelian groups K0(Ω) and G0(Ω) are free
Z-modules of rank s.

Proof Let s′ be the number of non-isomorphic indecomposable le� ideals in Ω. As
Ω is an artinian ring, the groups G0(Ω) and K0(Ω) are free Z-modules of rank s
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and s′ by [3, Propositions 16.6, 16.7], respectively. However, if I is an indecompos-
able le� ideal in Ω, then Ĩ ∶= I/ rad(Ω)I is a simple le� module by [3, Corollary
6.9], and I is the projective cover of Ĩ by [3, Corollary 6.22]. his induces a one-
to-one correspondence between the indecomposable le� ideals and the simple le�
modules (see [3, §6B] and in particular [3, Proposition 6.17]). hus we have s = s′

as desired. ∎

2.4 Crossed Products

Let G be a ûnite group and let R be a ring. Recall from [7, 1.5.8] that a crossed product
of R by G is an associative ring R ∗ G that contains R as a subring and a set of units
UG = {ug ∣ g ∈ G} of cardinality ∣G∣ such that
(i) R ∗G is a free R-module with basis UG ;
(ii) for all g , h ∈ G, one has ugR = Rug and ug ⋅ uhR = ughR.

We need the following result that immediately follows from Lemma 2.9 and a the-
orem of Ardakov and Wadsley [2, §1.1] (where Brauer’s theorem again appears as a
key step in the proof).

heorem 2.10 Let G be a ûnite group and let k be a ûeld. hen for every crossed
product of k by G, the Cartan map c ∶ K0(k ∗ G) → G0(k ∗ G) is injective with ûnite
cokernel.

2.5 Iwasawa Algebras

Let p be a prime and G be a proûnite group. he complete group algebra of G over Zp
is

Λ(G) ∶= ZpJGK = lim
←Ð

Zp[G/N],

where the inverse limit is taken over all open normal subgroups N of G. hen Λ(G)
is a compact Zp-algebra and we denote the kernel of the natural augmentation map
Λ(G) ↠ Zp by ∆(G). If M is a (le�) Λ(G)-module, we let MG ∶= M/∆(G)M be
the module of coinvariants of M. his is the maximal quotient module of M with
trivial G-action. Similarly, we denote the maximal submodule of M upon which G

acts trivially by MG.
Now suppose that G contains a ûnite normal subgroup H such that G/H ≃ Zp .

hen G can be written as a semi-direct product G = H ⋊ Γ, where Γ ≃ Zp . In other
words, G is a one-dimensional p-adic Lie group.

If F is a ûnite ûeld extension ofQp with ring of integers O = OF , we put ΛO(G) ∶=
O⊗Zp Λ(G) = OJGK. We ûx a topological generator γ of Γ. Since any homomorphism
Γ → Aut(H) must have an open kernel, we can choose a natural number n such that
γpn

is central in G; we ûx such an n. As Γ0 ∶= Γpn
≃ Zp , there is a ring isomorphism

ΛO(Γ0) ≃ OJTK induced by γpn
↦ 1 + T , where OJTK denotes the power series ring

in one variable over O. If we view ΛO(G) as a ΛO(Γ0)-module (or indeed as a le�
ΛO(Γ0)[H]-module), there is a decomposition

(2.4) ΛO(G) =
pn
−1

⊕
i=0

ΛO(Γ0)[H]γ i .
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Hence ΛO(G) is ûnitely generated as a ΛO(Γ0)-module and is a ΛO(Γ0)-order in
the separable QF(Γ0) ∶= Quot(ΛO(Γ0))-algebra QF(G), the total ring of fractions of
ΛO(G), obtained from ΛO(G) by adjoining inverses of all central regular elements.
It follows from (2.4) that ΛO(G) is a crossed product of ΛO(Γ0) by G/Γ0 (see also
[1, §2.3]): ΛO(G) ≃ ΛO(Γ0) ∗ (G/Γ0).

he commutative ring ΛO(Γ0) is a regular local ring of dimension 2. If p is a prime
ideal in ΛO(Γ0) of height one, we denote the localization of ΛO(Γ0) at p by ΛO

p (Γ0).
his is a discrete valuation ring and we denote its residue ûeld by ΩO

p (Γ0). We also
put

ΛO
p (G) ∶= ΛO

p (Γ0) ⊗ΛO(Γ0) ΛO(G) ≃ ΛO
p (Γ0) ∗ (G/Γ0),

ΩO
p (G) ∶= ΩO

p (Γ0) ⊗ΛO(Γ0) ΛO(G) ≃ ΩO
p (Γ0) ∗ (G/Γ0).

We therefore have the following special case of heorem 2.10.

Proposition 2.11 Let p be a prime ideal in ΛO(Γ0) of height one. hen the Cartan
map c ∶ K0(ΩO

p (G)) → G0(ΩO
p (G)) is injective with ûnite cokernel.

he analogue of Swan’s theorem for Iwasawa algebras is now easily established.

Corollary 2.12 Let p be a prime ideal in ΛO(Γ0) of height one and let P, P′ ∈
PMod(ΛO

p (G)). hen P ≃ P′ as ΛO
p (G)-modules if and only if QF(G) ⊗ΛO

p (G)
P ≃

QF(G) ⊗ΛO
p (G)

P′ as QF(G)-modules.

Proof his immediately follows from Corollary 2.7 and Proposition 2.11. ∎

Remark 2.13 If G = H × Γ is a direct product, then Corollary 2.12 is a direct conse-
quence of Swan’s original theorem (Corollary 2.8). We now explain why evenHattori’s
more general approach [5] (see [3, heorem 32.5]) to Swan’s theorem does not imply
Corollary 2.12 if G = H ⋊ Γ is only a semi-direct product.
Assume for simplicity that G is a pro-p-group and that O = Zp . If G = H ⋊ Γ is

not a direct product, then any choice of Γ0 will be a proper subgroup of Γ. Let ∆(H)
be the (le�) ideal of Ω(p)(G) generated by the elements h − 1, h ∈ H. hen ∆(H)
is nilpotent and thus contained in the radical r ∶= rad(Ω(p)(G)) by [3, Proposition
5.15]. However, we have that

Ω(p)(G)/∆(H) ≃ Ω(p)(Γ0) ∗ Γ/Γ0 ≃ Ω(p)(Γ)

is an inseparable ûeld extension of Ω(p)(Γ0). Hence r = ∆(H) and Ω(p)(G)/r is not
a separable Ω(p)(Γ0)-algebra, as would be required for Hattori’s theorem.

Corollary 2.14 Let p be a prime ideal in ΛO(Γ0) of height one. hen the connecting
homomorphism

∂ΛO
p (G),QF(G)

∶ K1(Q
F(G)) Ð→ K0(ΛO

p (G),QF(G))

is surjective.

Proof his follows from the long exact sequence (2.1) and Corollary 2.12. ∎
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Corollary 2.15 Let p be a prime ideal in ΛO(Γ0) of height one. hen the connecting
homomorphism

∂ΛO(G),ΛO
p (G)

∶ K1(ΛO
p (G)) Ð→ K0(ΛO(G), ΛO

p (G))

is surjective. Moreover, we have a short exact sequence of abelian groups

0→ K0(ΛO(G), ΛO
p (G)) → K0(ΛO(G),QF(G)) → K0(ΛO

p (G),QF(G)) → 0.

Proof Consider the long exact sequences (2.1) for the three occurring pairs. he
connecting homomorphism

∂ΛO(G),QF(G)
∶ K1(Q

F(G)) Ð→ K0(ΛO(G),QF(G))

is surjective by [14, Corollary 3.8]. he result follows from Corollary 2.14 by an easy
diagram chase. ∎

3 Homotopy Theory

3.1 Homotopy of Modules

We brie�y recall the basic material of homotopy theory of modules. he reader can
also consult Jannsen [6, §1] and [8, Chapter V, §4].

Let Λ be a ring. If a homomorphism f ∶ M → N of Λ-modules factors through a
projective Λ-module, then we say f is homotopic to zero and we write f ∼ 0. Two ho-
momorphisms f , g ∶ M → N are homotopic ( f ∼ g) if f − g is homotopic to zero. We
let Ho(Λ) be the homotopy category of Λ-modules. his category has the same ob-
jects asMod(Λ), but the homomorphismgroups are given byHomΛ(M ,N)/ { f ∼ 0}.
A homomorphism f ∶ M → N of Λ-modules is a homotopy equivalence if it is an iso-
morphism in Ho(Λ). In this case, we say that M and N are homotopy equivalent and
write M ∼ N .
For any (le�) Λ-module M and integer i ≥ 0, we deûne (right) Λ-modules M+ ∶=

HomΛ(M , Λ) and E i(M) ∶= ExtiΛ(M , Λ). In particular, we have M+ = E0(M). We
denote the full subcategory of Ho(Λ)whose objects are ûnitely presented Λ-modules
by Ho f p(Λ). he transpose is a contravariant functor D ∶ Ho f p(Λ) → Ho f p(Λ) that
on objects is given as follows. Let M be a ûnitely presented Λ-module, and choose a
presentation

P1 Ð→ P0 Ð→ M Ð→ 0

by ûnitely generated projective Λ-modules. henDM is deûned by the exact sequence
0 → M+ → P+0 → P+1 → DM → 0. he transpose is a contravariant autoduality of
Ho f p(Λ), i.e., D ○ D ≃ id, by [8, Proposition 5.4.9]. Moreover, for every ûnitely
presented Λ-module M, there is an exact sequence of Λ-modules

(3.1) 0Ð→ E1(DM) Ð→ M
ϕM
Ð→ M++ Ð→ E2(DM) Ð→ 0,

where ϕM is the canonical map of M to its bidual.
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3.2 Homotopy of Iwasawa Modules

LetG be a one-dimensional p-adic Lie group. As in Subsection 2.5 we choose a central
subgroup Γ0 ≃ Zp in G and view Λ(G) as a Λ(Γ0)-order in Q(G). We denote the set
of prime ideals in Λ(Γ0) of height one by P0. We let ♯ ∶ Q(G) → Q(G) be the anti-
involution that maps each group element g ∈ G to its inverse. For every p ∈ P0 we
have p♯ ∶= {x♯ ∣ x ∈ p} ∈ P0 and in particular an equality (Λp(G))♯ = Λp♯(G).

he functors D and E i interchange le� and right Λ-action. If Λ = Λ(G) is the
Iwasawa algebra, then we have a natural equivalence between le� and right modules,
induced by the anti-involution ♯. We then endow DM and E i(M) with this le� mod-
ule structure. Namely, for λ ∈ Λ(G) and x ∈ DM or x ∈ E i(M) we let λ ⋅ x ∶= x ⋅ λ♯.
Similarly, if Λ = Λp(G) for some p ∈ P0, then for every ûnitely presented le� Λp(G)-
module M, the transpose DM and E i(M) are natural le� Λp♯(G)-modules.

he functors D and E i then commute with localization in the sense that for every
prime ideal p of Λ(Γ0) we have DMp = (DM)p♯ and E i(Mp) = E i(M)p♯ ; here and
in the following the notation DMp always means the transpose of Mp and not the
localization of DM at p. In particular, for every ûnitely generated Λ(G)-module M
and every p ∈ P0 we have E2(Mp) = E2(M)p♯ = 0 by [8, Proposition 5.5.3]. In fact,
we have the following result, which will o�en be used without reference.

Lemma 3.1 LetG be a one-dimensional p-adic Lie group and let p ∈ P0. hen E2(M)
vanishes for every ûnitely generated Λp(G)-module M. In particular, there is an exact
sequence

0Ð→ E1(DM) Ð→ M Ð→ M++ Ð→ 0.

Proof heproof of [8, Proposition 5.1.8] shows that ϕM induces an injective pseudo-
isomorphism M/E1(DM) → M++. hen sequence (3.1) implies that E2(DM) is
pseudo-null as a Λp(Γ0)-module and thus vanishes, since Λp(Γ0) is a discrete val-
uation ring. Applying this argument to DM, we obtain E2(M) ≃ E2(DDM) = 0. ∎

Lemma 3.2 Let G be a one-dimensional p-adic Lie group and let Λ be either the
Iwasawa algebra Λ(G) or Λp(G) for some prime ideal p ∈ P0. Let M be a ûnitely
generatedΛ-module such thatM++ has ûnite projective dimension. hen theΛ♯-module
M+ and the Λ-module M++ are indeed projective.

Proof We assume that Λ = Λ(G); the other case can be treated similarly. We put
d ∶= pdΛ(G)

(M++) and choose a projective resolution

0Ð→ Pd Ð→ ⋅ ⋅ ⋅ Ð→ P1 Ð→ P0 Ð→ M++ Ð→ 0.

As M+ and M++ are re�exive and thus free as a Λ(Γ0)-modules by [8, Propositions
5.1.9, 5.4.17], this induces an exact sequence of Λ(G)-modules

0Ð→ M+ Ð→ P+0 Ð→ P+1 Ð→ ⋅ ⋅ ⋅ Ð→ P+d Ð→ 0.

As each P+i , 0 ≤ i ≤ d is a projective Λ(G)♯-module, so is M+. he result follows. ∎

he next result shows that Lemma 3.2 is only interesting in the case Λ = Λ(G) or
Λ = Λ(p)(G).

A Generalization of a heorem of Swan and Iwasawaheory 665

https://doi.org/10.4153/S0008414X18000093 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000093


Lemma 3.3 Let p ∈ P0 be a prime ideal and assume that p /= (p). Let M be a
ûnitely generated Λp(G)-module. hen M is a projective Λp(G)-module if and only if
M is (torsion-)free as a Λp(Γ0)-module. In particular, every re�exive Λp(G)-module is
projective.

Proof We ûrst recall that every torsionfree (and in particular every projective)
Λp(Γ0)-module is, in fact, free, since Λp(Γ0) is a discrete valuation ring. Now sup-
pose that M is a projective Λp(G)-module. As Λp(G) is free as a Λp(Γ0)-module, the
moduleM is a submodule of a free Λp(Γ0)-module and thus free. For the converse we
put G ∶= G/Γ0. hen G is a ûnite group and ∣G∣ is invertible in Λp(Γ0), since p /= (p).
hus HomΛp(Γ0)(M ,N) is a Qp[G]-module for any two Λp(G)-modules M and N .
Since taking G-invariants is an exact functor on Qp[G]-modules, the equality

HomΛp(G)(M ,N) = HomΛp(Γ0)(M ,N)G

implies isomorphisms ExtiΛp(G)
(M ,N) ≃ ExtiΛp(Γ0)(M ,N)G for all i ≥ 0. his gives

the converse implication. ∎

Remark 3.4 Suppose that G ≃ H×Γ and that p does not divide the cardinality ofH.
hen we can take Γ0 = Γ, and Lemma 3.3 remains true for p = (p) and the Iwasawa
algebra Λ(G) by [8, Lemma 5.4.16].

Corollary 3.5 Let p ∈ P0 be a prime ideal and assume that p /= (p). hen every
ûnitely generated Λp(G)-module has projective dimension at most one.

Corollary 3.6 Let p ∈ P0 be a prime ideal and assume that p /= (p). Let M be a
ûnitely generated Λp(G)-module. hen there is an isomorphism

M ≃ E1(DM) ⊕M++ .

Proof his follows from Lemma 3.1 and Lemma 3.3. ∎

Corollary 3.7 For every p ∈ P0, the Λp(G)-module ∆(G)p is free of rank one.

Proof We identify Λ(Γ0)with the power series ringZpJTK as usual. If p /= (T), then
(Zp)p vanishes, so that the exact sequence

0Ð→ ∆(G) Ð→ Λ(G) Ð→ Zp Ð→ 0

induces an isomorphism ∆(G)p ≃ Λp(G). If p = (T) or, more generally, if p /= (p),
then ∆(G)p is a projective Λp(G)-module by Lemma 3.3. hen Corollary 2.12 implies
that it is free of rank one (in fact, an isomorphism Λp(G) ≃ ∆(G)p is explicitly given
by 1↦ (1 − γ)eH + (1 − eH), where eH ∶= ∣H∣−1∑h∈H h). ∎

4 Iwasawa Theory of Local Fields

4.1 Galois Cohomology

If F is a ûeld andM is a topologicalGF-module, wewrite RΓ(F ,M) for the complex of
continuous cochains of GF with coeõcients in M and H i(F ,M) for its cohomology
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in degree i. We likewise write H i(F ,M) for the i-th homology group of GF with
coeõcients in M. If F is an algebraic extension of Qp or Q and M is a discrete or
compact GF-module, then for r ∈ Z we denote the r-th Tate twist of M by M(r). For
an abelian group Awe write Â for its p-completion, that is, Â = lim

←Ðn
A/pnA.

Let L/K be a ûnite Galois extension of p-adic ûelds with Galois group G. Let L∞
be an arbitrary Zp-extension of L with Galois group ΓL and for each n ∈ N let Ln
be its n-th layer. We assume that L∞/K is again a Galois extension with Galois group
G ∶= Gal(L∞/K). We let XL∞ denote theGalois group over L∞ of themaximal abelian
pro-p-extension of L∞. We put

YL∞ ∶= ∆(GK)GL∞
= Zp⊗̂Λ(GL∞)∆(GK)

and observe that pdΛ(G)
(YL∞) ≤ 1 by [8, heorem 7.4.2]. As H1(L∞ ,Zp) canonically

identiûes with XL∞ , taking GL∞-coinvariants of the obvious short exact sequence

0Ð→ ∆(GK) Ð→ Λ(GK) Ð→ Zp Ð→ 0

yields an exact sequence

(4.1) 0Ð→ XL∞ Ð→ YL∞ Ð→ Λ(G) Ð→ Zp Ð→ 0

of Λ(G)-modules (this should be compared to the sequence constructed by Ritter
andWeiss [10, §1]; see also [8, Proposition 5.6.7]). his sequence will be crucial in the
following.

Remark 4.1 hemiddle arrow in (4.1) deûnes a (perfect) complex of Λ(G)-modules

(4.2) ⋅ ⋅ ⋅ Ð→ 0Ð→ YL∞ Ð→ Λ(G) Ð→ 0Ð→ ⋅ ⋅ ⋅ ,

where we place YL∞ in degree one. hen RHom(RΓ(L∞ ,Qp/Zp),Qp/Zp)[−2] and
the complex (4.2) become isomorphic in the derived category of Λ(G)-modules by [9,
Proposition 4.1]. If L∞ is the unramiûedZp-extension of L, then this complex plays a
key role in the equivariant Iwasawa main conjecture for local ûelds as formulated by
the author [9, Conjecture 5.1]. In order to verify this conjecture, one can localize at
the height one prime ideal (p) by [9, Corollary 6.7]. his has motivated our interest
in the Λ(p)(G)-module structure of (XL∞)(p).

For any p-adic ûeld F, we denote the group of principal units in F by U 1(F). We
put

U 1(L∞) ∶= lim
←Ð
n

U 1(Ln)

where the transition maps are given by the norm maps. We note that

lim
←Ð
n

L̂×n ≃ XL∞

by local class ûeld theory. For each n ≥ 0, the valuation map L×n → Z induces an exact
sequence 0 → U 1(Ln) → L̂×n → Zp → 0. Taking inverse limits over all n, induces an
exact sequence of Λ(G)-modules

(4.3) 0Ð→ U 1(L∞) Ð→ XL∞ Ð→ Zp Ð→ 0
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if L∞/L is ramiûed and an isomorphismU 1(L∞) ≃ XL∞ otherwise (see also the proof
of [8, heorem 11.2.4]).

4.2 Local Iwasawa Modules

In this subsection we prove analogues of [8, heorems 11.2.3 and 11.2.4] for arbitrary
one-dimensional p-adic Lie extensions. As in Subsection 2.5 we choose a central sub-
group Γ0 ≃ Zp in G and view Λ(G) as a Λ(Γ0)-order in Q(G).

Lemma 4.2 For every p ∈ P0 the following hold.
(i) We have an isomorphism of Λp(G)-modules (YL∞)p ≃ (XL∞)p ⊕ Λp(G).
(ii) We have pdΛp(G)

((XL∞)p) = pdΛp(G)
((YL∞)p) ≤ 1.

Proof Sequence (4.1) and Corollary 3.7 imply (i). For (ii) we compute

pdΛp(G)
((XL∞)p) = pdΛp(G)

((YL∞)p) ≤ pdΛ(G)
(YL∞) ≤ 1. ∎

We denote the group of p-power roots of unity in L∞ by µp(L∞). If M is a Zp-
module, we let M∨ ∶= HomZp(M ,Qp/Zp) be its Pontryagin dual. IfM is a G-module,
we endow M∨ with the contragredient G-action.

heorem 4.3 Put n ∶= [K ∶ Qp]. hen for every p ∈ P0 the following hold.
(i) If µp(L∞) is ûnite, then we have isomorphisms of Λp(G)-modules

(YL∞)p ≃ Λp(G)
n+1 , (XL∞)p ≃ Λp(G)

n .

(ii) If µp(L∞) is inûnite (and thus L∞/L is the cyclotomicZp-extension), then we have
isomorphisms of Λp(G)-modules

(YL∞)p ≃ (Zp(1))p ⊕ Λp(G)
n+1 , (XL∞)p ≃ (Zp(1))p ⊕ Λp(G)

n .

Proof We ûrst note that it suõces to prove the result for (YL∞)p. As on earlier oc-
casions, we can then use [3, Proposition 30.17 and Corollary 6.15] to deduce the result
for (XL∞)p from Lemma 4.2(i).
As the p-dualizing module of GK naturally identiûes with Qp/Zp(1) by [8, heo-

rem 7.2.4], we have a homotopy equivalence of Λ(G)-modules

(4.4) YL∞ ∼ D(µp(L∞)∨)

by [8, Proposition 5.6.9]. We ûrst assume that µp(L∞) is ûnite. hen (4.4) implies
that (YL∞)p ∼ 0. his means that (YL∞)p is a projective Λp(G)-module. As Q(G) is
semisimple, the Q(G)-module Q(G) ⊗Λ(G) YL∞ is free of rank n + 1 by [8, heorem
7.4.2]. Corollary 2.12 then gives the result.

Now assume that µp(L∞) is inûnite. hen (4.4) gives YL∞ ∼ D(Zp(−1)). As the
functor D induces an autoduality, we have E1(DYL∞) = E1(Zp(−1)) = Zp(1) and
likewise E2(DYL∞) = E2(Zp(−1)) = 0 by [8, Proposition 5.5.3(iv), Corollary 5.5.7].
hus sequence (3.1) specializes to

(4.5) 0Ð→ Zp(1) Ð→ YL∞ Ð→ Y++

L∞ Ð→ 0.
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Since (Zp(1))(p) vanishes, we have pdΛp(G)
((Zp(1))p) ≤ 1 for every p ∈ P0 by

Corollary 3.5. he projective dimension of (YL∞)p is at most one by Lemma 4.2(ii),
and thus (Y++

L∞)p also has ûnite projective dimension. Lemma 3.2 implies that the
Λp(G)-module (Y++

L∞)p is indeed projective. We can now deduce from Corollary
2.12 as above that (Y++

L∞)p is free of rank n + 1. By (4.5) we get an isomorphism
(YL∞)p ≃ (Zp(1))p ⊕ Λp(G)

n+1 as desired. ∎

Corollary 4.4 For every p ∈P0 wehave an isomorphismofΛp(G)-modulesU 1(L∞)p ≃
(XL∞)p. In particular, the following hold.

(i) If µp(L∞) is ûnite, then we have an isomorphism of Λp(G)-modules

U 1(L∞)p ≃ Λp(G)
n .

(ii) If µp(L∞) is inûnite (and thus L∞/L is the cyclotomicZp-extension), then we have
an isomorphism of Λp(G)-modules

U 1(L∞)p ≃ (Zp(1))p ⊕ Λp(G)
n .

Proof If L∞ is the unramiûed Zp-extension, then U 1(L∞) ≃ XL∞ , and the result
immediately follows from heorem 4.3. Now suppose that L∞/L is ramiûed. Let us
put Zp♯ ∶= E1((XL∞)p). hen heorem 4.3 implies that Zp♯ vanishes unless µp(L∞)
is inûnite, where we have an isomorphism of Λp♯(G)-modules Zp♯ ≃ Zp(−1)p♯ . In
both cases we have that

(4.6) HomΛp♯(G)((Zp)p♯ , Zp♯) = 0.

he exact sequence (4.3) localized at p induces a long exact sequence of Λp♯(G)-
modules:

⋅ ⋅ ⋅ Ð→ E1((Zp)p) Ð→ E1((XL∞)p) Ð→ E1(U 1(L∞)p) Ð→ E2((Zp)p) Ð→ ⋅ ⋅ ⋅ .

As we have an isomorphism E1((Zp)p) ≃ (Zp)p♯ , the second arrow is the zero map,
by (4.6). Since E i((Zp)p) vanishes for i /= 1, we obtain an isomorphism of Λp♯(G)-
modules E1(U 1(L∞)p) ≃ E1((XL∞)p) = Zp♯ . In particular, E1(E1(U 1(L∞)p)) ≃
E1(Zp♯) vanishes unless µp(L∞) is inûnite, where we have E1(Zp♯) ≃ Zp(1)p. Now
[8, Proposition 5.5.8] and (3.1) imply that

E1(DU 1(L∞)p) ≃ E1(Zp♯),

which in particular has projective dimension at most one. It follows that U 1(L∞)p
and U 1(L∞)++p have ûnite projective dimension by (4.3), Lemma 4.2, and the exact
sequence

(4.7) 0Ð→ E1(Zp♯) Ð→ U 1(L∞)p Ð→ U 1(L∞)++p Ð→ 0.

hus U 1(L∞)++p is indeed a projective Λp(G)-module by Lemma 3.2. We have

Q(G) ⊗Λ(G) U 1(L∞)++ ≃ Q(G) ⊗Λ(G) U 1(L∞) ≃ Q(G) ⊗Λ(G) XL∞ ≃ Q(G)n

A Generalization of a heorem of Swan and Iwasawaheory 669

https://doi.org/10.4153/S0008414X18000093 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X18000093


by heorem 4.3. It now follows from Corollary 2.12 that U 1(L∞)++p is a free Λp(G)-
module of rank n. Sequence (4.7) splits, giving the claim. ∎

4.3 Iwasawa Theory of ℓ-adic Fields

We brie�y discuss the case where L/K is a ûnite Galois extension of ℓ-adic ûelds with
p /= ℓ. hen L has a unique Zp-extension L∞, namely the unramiûed Zp-extension.
We again deûne G ∶= Gal(L∞/K). For each n ≥ 0, the valuationmap induces an exact
sequence 0 → µp(Ln) → L̂×n → Zp → 0. Taking inverse limits over all n yields an
isomorphism of Λ(G)-modules

lim
←Ð
n

µp(Ln) ≃ lim
←Ð
n

L̂×n =∶ XL∞ .

he following result is therefore clear (see also [8, heorem 11.2.3(ii)]). We let ζp be a
primitive p-th roof of unity.

Lemma 4.5 For ℓ /= p, we have XL∞ ≃ Zp(1) if ζp ∈ L, and XL∞ = 0 otherwise.

5 Iwasawa Theory of Number Fields

5.1 The Relevant Galois Groups

In this section we consider a ûnite Galois extension L/K of number ûelds with Galois
group G. Let p be a prime and let L∞ be the cyclotomic Zp-extension of L with n-th
layer Ln . We will assume throughout that

K is totally imaginary if p = 2.

We put G ∶= Gal(L∞/K), which is a one-dimensional p-adic Lie group. We can write
G ≃ H ⋊ Γ, where H naturally identiûes with a subgroup of G and Γ ≃ Zp . For every
place v of K, we choose a place w∞ of L∞ above v and let Gv be the decomposition
group at w∞. We denote the place of L below w∞ by w and the completion of L at w
by Lw .

We choose a ûnite set S of places of K containing all archimedean places and all
places that ramify in L∞/K. In particular, all p-adic places lie in S. We denote the
ring of integers in L byOL and the ring of S(L)-integers byOL ,S , where S(L) denotes
the set of places of L above those in S.

We let MS be the maximal pro-p-extension of L, which is unramiûed outside S.
We put GS ∶= Gal(MS/K) and HS ∶= Gal(MS/L∞). Since K is totally imaginary
if p = 2, the cohomological p-dimension of GS equals 2 by [8, Proposition 10.11.3]
(note that our deûnition of GS follows [8, p.739], but slightly diòers from the proû-
nite group GS considered in [8, Chapter X, §11]; however, the proof of [6, Lemma 5.3]
shows that both groups have the same cohomological p-dimension). Choose a pre-
sentation Fd ↠ GS ofGS by a free proûnite group Fd of ûnite rank d. hen we obtain
a commutative diagram (compare [8, p. 740])
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1

��

1

��
N

��

N

��
1 // R //

��

Fd //

��

G // 1

1 // HS //

��

GS //

��

G // 1

1 1

with exact rows and columns, where R andN are the kernels of Fd ↠ G and Fd ↠ GS ,
respectively. hen GS acts on N ab(p), the maximal abelian pro-p-quotient of N . he
module N ab

HS
(p) of HS-coinvariants of N ab(p) is a projective Λ(G)-module by [8,

Proposition 5.6.7]. We let r1 and r2 be the number of real and complex places of K,
respectively. We let S′

∞
be the set of real places of K becoming complex in L∞ and

put r′1 ∶= ∣S′
∞
∣. If we choose d greater than or equal to r2 + r′1 + 1, then we have an

isomorphism of Λ(G)-modules

(5.1) N ab
HS

(p) ≃ Λ(G)d−r2−r′1−1 ⊕ ⊕
v∈S′

∞

IndGGv
Zp

by [6,heorem 5.4] (see also [8,heorem 11.3.10(iii)]; the assumption that p does not
divide [L ∶ K] is not needed for this part of the theorem). Here, for a closed subgroup
H of G and a compact Λ(H)-module M, we let

IndGH M ∶= Λ(G)⊗̂Λ(H)M

denote compact induction of M from H to G.

5.2 Global and Semi-local Iwasawa Modules

Let XS ∶= Hab
S be the abelianization of HS . hen XS is a ûnitely generated Λ(G)-

module by [8, Proposition 11.3.1]. We also consider the standard Iwasawamodule Xnr ,
which is theGalois groupover L∞ of themaximal unramiûed abelian pro-p-extension
of L∞, and the quotient XS

cs of Xnr that corresponds to themaximal subextension that
is completely decomposed at all primes above S. For a ûnite place v of K, we deûne

Av ∶= lim
←Ð
n
∏
wn ∣v

L̂×n ,wn
≃ IndGGv

XLw ,∞ ,

Uv ∶= lim
←Ð
n
∏
wn ∣v

Ô×

Ln ,wn
≃

⎧⎪⎪
⎨
⎪⎪⎩

IndGGv
XLw ,∞ if v ∤ p

IndGGv
U 1(Lw ,∞) if v ∣ p.
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Here Lw ,∞ always denotes the cyclotomicZp-extension of Lw . We let S f be the subset
of S comprising all ûnite places in S. We then deûne Λ(G)-modules

AS ∶= ∏
v∈S f

Av , US ∶= ∏
v∈S f

Uv .

Finally, we let

ES ∶= lim
←Ð
n

(O×

Ln ,S ⊗Z Zp), E ∶= lim
←Ð
n

(O×

Ln
⊗Z Zp).

Since the weak Leopoldt conjecture holds for the cyclotomicZp-extension by [8,he-
orem 10.3.25], we obtain from [6, heorem 5.4] the following commutative diagram
of Λ(G)-modules with exact rows (see also [8, heorem 11.3.10(i)]; the assumption
p ∤ [L ∶ K] is irrelevant, since all maps are certainly G-equivariant)

(5.2) 0 // E //� _

��

US //
� _

��

XS // Xnr //

����

0

0 // ES // AS // XS // XS
cs

// 0.

As in the local case, there is an exact sequence of Λ(G)-modules (see [8, Proposi-
tion 5.6.7])

(5.3) 0Ð→ XS Ð→ YS Ð→ ∆(G) Ð→ 0,

where YS ∶= ∆(GS)HS is a ûnitely generated Λ(G)-module of projective dimension at
most one.

5.3 Structure of Global Iwasawa Modules

We now determine the structure of the above Iwasawa modules a�er localization at a
prime ideal p ∈ P0. We begin with the semi-local Iwasawa modules.

Proposition 5.1 Let S f (ζp) be the set of all ûnite places v in S such that ζp ∈ Lw and
put n ∶= [K ∶ Q]. hen, for every p ∈ P0, we have isomorphisms of Λp(G)-modules

(AS)p ≃ (US)p ≃ Λp(G)
n ⊕ ⊕

v∈S f (ζp)

(IndGGv
Zp(1))p .

In particular, we have pdΛp(G)
((AS)p) = pdΛp(G)

((US)p) ≤ 1.

Proof his follows fromheorem4.3, Corollary 4.4, Lemma4.5, and thewell-known
formula [K ∶ Q] = ∑v∣p[Kv ∶ Qp]. ∎

We let D(p)
2 (GS) be the p-dualizing module of GS and put

ZS ∶= (D(p)
2 (GS)

HS )∨ .

Lemma 5.2 For every p ∈ P0 the following hold.
(i) We have an isomorphism of Λp(G)-modules (YS)p ≃ (XS)p ⊕ Λp(G).
(ii) We have pdΛp(G)

((XS)p) = pdΛp(G)
((YS)p) ≤ 1.
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(iii) Wehave a homotopy equivalence (XS)p ∼ (DZS)p and an isomorphismofΛp♯(G)-
modules E1((XS)p) ≃ (ZS)p♯ .

Proof Sequence (5.3) and Corollary 3.7 imply (i). As YS is a Λ(G)-module of pro-
jective dimension at most one, (i) implies (ii). By (i) we have (XS)p ∼ (YS)p and in
particular E1((XS)p) ≃ E1((YS)p). Hence (iii) is a consequence of [8, Proposition
5.6.9]. ∎

We let µL be the Iwasawa µ-invariant of the standard Iwasawa module Xnr . We
recall the following conjecture of Iwasawa.

Conjecture 5.3 (Iwasawa) For every number ûeld L, the µ-invariant µL vanishes.

he following two results are analogues of [8, heorem 11.3.11] for arbitrary one-
dimensional p-adic Lie extensions (containing the cyclotomic Zp-extension).

heorem 5.4 Let p ∈ P0 and assume that µL(ζp) = 0 if p = (p). hen the following
hold.

(i) Wehave an isomorphism ofΛp(G)-modules (XS)p ≃ E1(ZS)p⊕(XS)
++

p ; moreover,
we have (ZS)(p) = 0, so that in particular (XS)(p) ≃ (XS)

++

(p).
(ii) We have isomorphisms of Λp(G)-modules

((XS)p♯)
+ ≃ (XS)

++

p ≃ Λp(G)
r2 ⊕ ⊕

v∈S′
∞

(IndGGv
Z−p)p ,

where Z−p is the Gv-module Zp upon which the generator of Gv ≃ Z/2Z acts by mul-
tiplication by −1.

Proof By Lemma 5.2(iii) we have E1(DXS)p ≃ E1(ZS)p, so that (i) follows from
Corollary 3.6 if p /= (p). We claim that (ZS)(p) vanishes. hen Lemma 3.1 implies (i)
in the case p = (p). We ûrst assume that ζp ∈ L. hen by [6, heorem 5.4 (d)] there is
an exact sequence of Λ(Γ0)-modules

0Ð→ XS
cs(−1) Ð→ ZS Ð→ T Ð→ 0,

where T is ûnitely generated and free as a Zp-module. As µL vanishes by assump-
tion and Xnr surjects onto XS

cs , the latter module is also ûnitely generated over Zp .
Hence the same is true for ZS and so (ZS)(p) = 0 as desired. If ζp is not in L, we
put L′ ∶= L(ζp) and ∆ ∶= Gal(L′/L) ≃ Gal(L′

∞
/L∞). Let Z′S be the Iwasawa module

ZS that corresponds to L′. We have shown that Z′S is a ûnitely generated Zp-module.
However, there is a natural isomorphism (Z′S)∆ ≃ ZS , so that the µ-invariant of ZS
also vanishes. his proves the claim and thus (i). Lemmas 3.2, 3.3, and 5.2(ii) imply
that both ((XS)p♯)

+ and (XS)
++

p are projective Λp(G)-modules. By Corollary 2.12 it
now suõces to compute Q(G) ⊗Λ(G) X++

S . By [8, Proposition 5.6.7] we have

Q(G) ⊗Λ(G) (X++

S ⊕ N ab
HS

(p)) = Q(G) ⊗Λ(G) (XS ⊕ N ab
HS

(p)) ≃ Q(G)d−1 .

Since Q(G) is semisimple, (ii) now follows from (5.1). ∎
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heorem 5.5 Let p ∈ P0 and assume that µL(ζp) = 0 if p = (p). hen the following
hold.
(i) We have pdΛp(G)

(Ep) = pdΛp(G)
((ES)p) ≤ 1.

(ii) If ζp ∈ L, we have isomorphisms of Λp(G)-modules

Ep ≃ (ES)p ≃ Zp(1)p ⊕ Λp(G)
r2+r1−r′1 ⊕ ⊕

v∈S′
∞

(IndGGv
Zp)p .

(iii) If ζp /∈ L, we have isomorphisms of Λp(G)-modules

Ep ≃ (ES)p ≃ Λp(G)
r2+r1−r′1 ⊕ ⊕

v∈S′
∞

(IndGGv
Zp)p .

Proof We ûrst show that the projective dimension of Ep and (ES)p is at most one.
For this, we only need to treat the case p = (p). Otherwise, we apply Corollary 3.5.
As the µ-invariant of Xnr vanishes by assumption, we obtain from diagram (5.2) two
exact sequences of Λ(p)(G)-modules

0Ð→ E(p) Ð→ (US)(p) Ð→ (XS)(p) Ð→ 0,
0Ð→ (ES)(p) Ð→ (AS)(p) Ð→ (XS)(p) Ð→ 0.

Since the projective dimensions of (US)(p), (AS)(p), and (XS)(p) are at most one by
Proposition 5.1 and Lemma 5.2(ii), the same is true for E(p) and (ES)(p).

Now let p ∈ P0 be arbitrary. It follows as in the proof of [8,heorem 11.3.11(ii)] that
E1(D(ES)p) ≃ Zp(1)p if ζp ∈ L and that E1(D(ES)p) vanishes otherwise. In both
cases we have pdΛp(G)

(E1(D(ES)p)) ≤ 1 and thus (ES)
++

p is projective by Lemma
3.2. It follows that (ES)p decomposes into a direct sum (ES)p ≃ E1(D(ES)p) ⊕
(ES)

++

p . he inclusions E1(DEp) ⊆ E1(D(ES)p) ⊆ Ep imply that in fact E1(DEp) =
E1(D(ES)p). It follows as above that the module E++p is projective and that we have
an isomorphism Ep ≃ E1(DEp) ⊕ E++p . In particular, we obtain (i). By Corollary 2.12
it now suõces to compute

Q(G) ⊗Λ(G) E++S = Q(G) ⊗Λ(G) ES = Q(G) ⊗Λ(G) E = Q(G) ⊗Λ(G) E++ .

We deduce from diagram (5.2) and Proposition 5.1 that we have isomorphisms of
Q(G)-modulesQ(G)⊗Λ(G)(ES⊕XS) ≃ Q(G)⊗Λ(G)AS ≃ Q(G)n . AsQ(G) is semisim-
ple, the result follows from heorem 5.4. ∎

Remark 5.6 Let L∞ be an arbitrary Zp-extension of L such that L∞/K is again
a Galois extension. Assuming the validity of the weak Leopoldt conjecture, it seems
likely that one can prove analogues ofheorems 5.4 and 5.5. hemain obstacle occurs
in the case p = (p), because the relevant µ-invariant does not vanish in general.
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