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Abstract
Principledmethods for analyzingmissing values, basedchiefly onmultiple imputation, havebecome increas-

ingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common.

We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple

Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known

as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to

reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating

missing values as an additional portion of corrupted data and drawing imputations from a model trained

to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as

well as real social science data, together with an applied example involving a large-scale electoral survey,

illustrate MIDAS’s accuracy and efficiency across a range of settings. We provide open-source software for

implementing MIDAS.

Keywords: missing data, multiple imputation, imputation methods, machine learning

1 Introduction

Across a variety of disciplines, the analysis of data with missing values has recently been char-

acterized by two trends that have yet to be reconciled. First, to avoid the problems caused by

popular ad-hoc methods such as listwise deletion (discarding rows of the dataset that contain

any missing values), analysts are increasingly turning to principled techniques for imputing, or

filling in,missing values recommendedby the statistics community. Themostwidely usedof these

techniques,multiple imputation (MI), involves replacing eachmissing elementwith several values

that preserve relationships within the observed data while representing uncertainty about the

correct value. In the words of a prominent scholar of missing-data analysis, “[MI] is now accepted

as the best general method to deal with incomplete data in many fields” (van Buuren, 2012, 25).

Second, advances in computational power, efficiency, and storage capacity have enabled the

compilation and analysis of unprecedentedly large and complex datasets, ushering in an era of

so-called “Big Data.” While massively increasing the amount of information available for analysis,

however, this development has not eliminated the problem of missing data. That is, bigger data

have not necessarily translated into more complete data.
The growing scale and complexity of data present a computational challenge for existing MI

algorithms, which were generally designed for small or medium-sized applications with relatively

simple (mostly linear) structures. While workingwell inmany settings, these algorithms can suffer

fromperformanceproblemswhenapplied to largerdatasetswith features suchashighdimension-

ality, severenonlinearities, andunconventional functional forms. Convergence failures and slow—

sometimes prohibitive—runtimes become increasingly common with imputations more likely to

takeonextremeandunusual values. Analysts can thus face anunappealing choice: limit the size or

complexity of thedatapassed into theMI algorithm, riskingbias and reducing statistical efficiency;

or employ an ad-hoc method that can be applied to the original data, such as listwise deletion
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or mean imputation (replacing missing data with observed column averages), creating an even

greater risk of bias and guaranteeing inefficiency (Little and Rubin, 1987, Ch. 3-4).1

This article proposes an accurate, fast, and scalable approach to MI, which we call MIDAS

(Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neu-

ral networks known as denoising autoencoders (DAs), which were recently developed to optimize

the taskofdimensionality reduction.DAscorrupta subsetof inputdatavia the injectionof stochas-

tic noise and attempt to reconstruct it through a series of nested nonlinear transformations. The

key innovation in MIDAS is to treat missing values as an additional portion of corrupted data and

thus draw imputations fromamodel trained tominimize the reconstruction error on the originally

observed portion. To reduce the risk of overfitting, we train this imputation-repurposed DA with

the technique of dropout, which extends the corruption process deeper into the neural network

architecture. With the combination of denoising and dropout, MIDAS employs an effectively

nonparametric imputationmodel that places constraints not on the joint distributionof thedata—

the standard approach to MI—but only on the distribution of possible functions that characterize
the data. Functional flexibility enables the model to capture simple as well as highly complex

relationships between variables, providing the basis for performance gains across diverse data

types and structures. This flexibility, we believe, makes MIDAS a useful complement to existing MI

strategies in awide rangeof fieldswhere large and complexdata arebecoming common, including

political science, economics, public health, computer science, and other parts of the social and

natural sciences.

To implement MIDAS, we develop an efficient algorithm that expands the range and quantity

of data that can be analyzed with MI. This procedure leverages the powerful and flexible com-

putational architecture of the TensorFlow programming platform, allowing awide variety of data

types and supportinghighdegreesof parallelizationon supported systems. As a companion to this

article, wemake the algorithm available in an easy-to-use Python class (MIDASpy) and R package
(rMIDAS)—the first full-featured, open-source software for performing MI with neural network

technology.2

We illustrate MIDAS’s accuracy and scalability through a series of systematic tests involving

real as well as simulated data.3 We first conduct two Monte Carlo simulation experiments that

assess MIDAS’s accuracy under the statistical conditions assumed by the dominant approach

to MI, namely, joint multivariate normality. The first experiment establishes that MIDAS yields

accurate estimated posterior densities and confidence intervals for linear regression coefficients,

while the second shows that the accuracy of MIDAS’s imputed values and parameter estimates

compares favorably with that of leading existing MI algorithms. We then move to a more realistic

setting, introducing varying levels and patterns of missingness into a widely used census dataset.

We find that MIDAS yields more accurate imputed values than other MI algorithms across most

missingness conditions, even performingwell under patternswhereMI cannot avoid somedegree

of bias.

We test MIDAS’s scalability by sampling increasing numbers of rows and columns from a popu-

lar electoral survey that typifies the kind of large and complex data analyzed by political scientists.

MIDAS produces completed datasets in consistently less time than existingMI algorithms,with the

gap increasing linearly with the number of rows and exponentially with the number of columns.

Even with modestly-sized datasets, MIDAS’s efficiency translates into substantial time savings

for analysts. For datasets approaching the dimensions of modern Big Data, where existing MI

1 For instance, using the popular Amelia package in R (Honaker et al., 2011) to reanalyze the results of a large number
of political science articles, Lall (2016) has to restrict the size of imputation model and reduce variance in the data to
consistently avoid convergence problems. We provide further illustrations of this dilemma below.

2 MIDASpy can be installed from PyPI, rMIDAS from CRAN. For further information, see https://github.com/MIDASverse.
3 Data and code for replicating the results of these tests are provided in Lall and Robinson (2020).
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algorithms can be impractically slow, it maymake the difference between employing a principled

and valid approach to analyzing missing data and resorting to an ad-hoc method that results in

biased and inefficient inferences.

Finally, we provide an applied illustration of MIDAS’s capacity to handle datasets that pose

computational problems for existing MI algorithms—that is, to give us access to new substantive

knowledge—that involves estimating the latent ideology of participants in the electoral survey

used in the scalability test. We show that substituting MIDAS for listwise deletion, which enables

us to recover estimates for more than 10,000 additional respondents, materially alters our under-

standing of the distribution of latent ideology in the sample and of the relationship between this

variable and presidential job approval.

2 MIDAS: Theory and Implementation

2.1 Multiple Imputation
The first building block of MIDAS, MI, consists of three steps: (1) replacing eachmissing element in

the dataset withM independently drawn imputed values that preserve relationships expressed by
observed elements; (2) analyzing theM completed datasets separately and estimating parameters
of interest; and (3) combining theM separate parameter estimates using a simple set of rules that
leverages variation across these datasets to reflect our uncertainty about the correct imputation

model.4

The dominant approach to MI assumes that the complete data follow a multivariate normal

distribution, which implies that each variable is continuous and a linear function of all others

(e.g., King et al., 2001; Honaker and King, 2010). An alternative approach models each variable’s

distribution conditionally on all others in an iterative fashion, typically using a generalized lin-

ear estimator, which allows for a wider class of variable types and distributions (e.g., Kropko

et al., 2014). Imputed values, however, need not be drawn from a posterior density. A notable

nonparametric approach is predictive mean matching, which involves replacing missing val-

ues with observed ones from similar rows (according to a chosen metric) (e.g., Cranmer and

Gill, 2013).

All approaches to MI share three attractive features. First, they yield unbiased estimates of

parameters in the subsequent analytical model (e.g., regression coefficients) under a fairly wide

range of statistical conditions: data are either missing completely at random (MCAR), that is, the

pattern of missingness is independent of observed andmissing data, ormissing at random (MAR),

that is, this pattern depends on observed data. They cannot avoid bias when data are missing
not at random (MNAR), that is, missingness depends on missing data, although can still perform

well if the observed data include strong predictors of missingness (Lall, 2016).5 Second, they

tend to result in more efficient estimators than methods that do not utilize all observed values

(such as listwise deletion). Third, from a practical perspective, they are simple to implement

because they do not require directly modeling the missingness mechanism and, due to the

separation between imputation and analysis, can be combined with standard complete-data

methods.

Although useful in many settings, existing approaches to MI also have a common limitation:

they canperformpoorlywith thekindsof largeandcomplexdata that arebecoming common. This

is in part because extreme departures from their assumptions occurmore frequently in these data

and inpart due toproblemsof computational implementation.Most approachesare implemented

with a variant of either the imputation-posterior algorithm, which draws missing values from

the appropriate posterior distribution using Markov chain Monte Carlo (MCMC) methods, or the

4 These rules, which are described in Rubin (1987), involve averaging theM parameter estimates and computing variance as
a weighted sum of the estimated variance within and between theM datasets.

5 For formal definitions of these missingness mechanisms, see Little and Rubin (1987).
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expectation-maximization algorithm, a similar procedure that substitutes maximum likelihood

estimates for posterior draws. For a variety of reasons—including their serial nature, sweep of the

entire dataset at each iteration, and simultaneous updating of all parameters—both algorithms

“have well-known problems with large data sets . . .creating unacceptably long run-times or

software crashes” (Honaker and King, 2010, 564). Even when they do converge, they can fail to

accurately approximate posteriors due to local maxima or major divergence from the assumed

joint distribution. Some approaches seek to overcome these problems by combining one of the

abovealgorithmswithbootstrapping. As eachbootstrappedsample is the samesizeas theoriginal

dataset, however, these routines can also slow down sharply or fail to converge when applied to

large datasets. We later provide evidence of these scalability issues.

2.2 Denoising Autoencoder Neural Networks
MIDAS implementsMIwith the aid of artificial neural networks, a concept inspired by the structure

of the human brain that has been used to enhance the accuracy and efficiency of a wide array of

computational tasks. A neural network consists of a series of nested nonlinear functions usually

depicted as interconnected nodes organized in layers. Input data are fed into the network through

an input layer, processed by nodes in one or more hidden layers, and returned via nodes in an
output layer. To more precisely describe these models, we adopt the linear algebraic notation
typically used in the machine learning literature, which allows for concise expression of deeply

nested functions: italicized upper-case symbols denote random vectors (e.g., X); bold lower-case
symbols (x) denote ordinary column vectors, that is, realizations of random vectors; bold upper-

case symbols denotematrices, withD = {Dobs ,Dmi s } denoting a dataset in whichDobs is observed

and Dmi s is missing; and superscripts in parentheses index hidden layers of a network.

The model for a “forward pass”—or computation of output values given input data—through

layer h of a neural network is:

y(h) = σ(W(h)y(h−1)+b(h)), (1)

where y(h) is a vector of outputs from layer h (y(0) = x is the input), W(h) is a matrix of weights

connecting the nodes in layer h − 1 with the nodes in layer h, b is a vector of biases for layer h,
and σ is a nonlinear activation function. The introduction of nonlinearity into the model enables

neural networks to efficiently learn complex functional forms with few hidden layers. This model

can be generalized to an arbitrary number of hidden layers H:

y = Φ(W(H ) [· · · [σ(W(2) [σ(W(1)x+b(1))] +b(2))] · · · ] +b(H )), (2)

where x is a vector of inputs andΦ is a final-layer activation function that returns outputs with the

appropriate distribution.

The parameters of the network (θ) are weights and biases, which are trained to minimize a

loss function L(y, ŷ) that measures the distance between actual and predicted outputs. Training

involves four steps, collectively known as an epoch, which are repeated until some convergence
criterion ismet: (1) performing a forward pass through the network using current θ; (2) calculating

L; (3) using the chain rule to calculate error gradients with respect to weights in each layer, a
technique called backpropagation; and (4) adjusting weights in the direction of the negative

gradient for the next forward pass. Characteristics such as the number of training cycles per

epoch, which are specified by the analyst rather than learned in training, are referred to as

hyperparameters.
One class of neural networks that is naturally suited to the task of imputing missing data

is the DA, an extension of the classical autoencoder—a well-established tool for dimensionality
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reduction in machine learning—proposed by Vincent et al. (2008). Classical autoencoders consist

of two parts. First, an encoder deterministically maps an input vector x to a lower-dimensional
representation y by compressing it through a series of shrinking hidden layers that culminate in a

“bottleneck” layer (indexed by B):

y = fθ(x) = σ(W(B ) [...[σ(W(2) [σ(W(1)x+b(1))] +b(2))] ...] +b(B )) (3)

Second, a decodermaps y back to a reconstructed vector zwith the same probability distribution
anddimensions as xbypassing it through aparallel series of expanding hidden layers culminating

in the output layer:

z = gθ′(y) = Φ(W(H )′ [...[σ(W(B+2)′[σ(W(B+1)′y+b(B+1)′)] +b(B+2)′)] ...] +b(H )′) (4)

To map z as closely as possible to x, weights are adjusted by backpropagation to minimize a loss

function L(x,z). This process yields a latent representation that captures the key axes of variation

in x in a similar manner to principal component analysis.

DAs were developed to prevent autoencoders from learning an identical representation of the

input (the identity function) while enabling them to extract more robust features from the data,

that is, features that generalize better to new samples from the same data-generating process.

Theyachieve thesebenefitsbypartially corrupting inputs through the injectionof stochasticnoise:

x→ x̃ ∼ qD (x|x̃). The corrupted input is then mapped to a hidden representation y = fθ(x̃), from

which a clean or “denoised” version z = gθ′(y) is reconstructed. Unlike before, however, z is now a

deterministic function of x̃ (not x).

The most common corruption process involves setting a random subset of inputs to 0.6 In

attempting to recover these elements, theDAeffectively performsa formof imputation: predicting

corrupted (missing) elements based on relationships among uncorrupted (observed) elements.

That is, missing values can be seen as a special case of corrupted input data. Building on this

insight, recent studies have developed application-specific models for imputing missing values

with DAs, reporting impressive performance (e.g., Beaulieu-Jones and Greene, 2016; Duan et al.,

2014). These studies, however, neither offer a general model of DA-based imputation nor com-

bine DAs with MI, forgoing the latter’s advantages vis-á-vis single imputation in bias reduction,

efficiency, and uncertainty representation.

To our knowledge, the only existing attempt to implement MI using DAs comes from Gondara

and Wang (2018), who propose a model in which data are provisionally completed using mean

or mode imputation before being corrupted and passed into the DA.7 While Gondara and Wang

offer a relatively brief overview of their approach, it appears to suffer from three limitations. First,

its loss functions fail to distinguish between originally observed and originally missing values,

causing reconstruction error to bemeasured against themean/mode imputations,which typically

lead to biased parameter estimates. Second, it injects stochastic noise into inputs once rather

than in each training epoch, increasing the risk of overfitting and reducing model robustness.

Third, instead of sampling from a single trained network, it trains a different network for each

set of imputations, substantially slowing runtime—storing all trained models and imputations

in memory is computationally demanding—without improving performance. In the rest of the

section, we present an alternative approach to MI based on DAs that avoids these issues.

6 The value assigned to corrupted data points is not substantively important; 0 is a popular choice because it is often close
to the “true” value being estimated, minimizing the adjustment to network parameters in training and hence accelerating
model convergence.

7 We developed MIDAS without knowledge of Gondara and Wang’s research.
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2.3 The MIDAS Model
MIDAS modifies the standard DA model in two key ways. First, as part of the initial corruption

process, it forces all missing values—in addition to a random subset of inputs—to 0. The task of

the DA is thus to predict corrupted values that were both originally missing (x̃mis) and originally

observed (x̃obs) usinga loss function that only includes the latter. Second, to further reduce the risk

of overfitting,MIDAS regularizes theDAwith the complementary techniqueof dropout. Introduced

by Hinton et al. (2012), dropout involves randomly removing (or “dropping”) nodes in the hidden

layers of a network during training, typically by multiplying outputs from each of these layers by

a Bernoulli vector v that takes a value of 1 with probability p: ỹ(h) = v(h)y(h),v(h) ∼ Bernoulli(p).
Dropout is thus a generalization of the idea behind DAs, extending stochastic corruption to the

hidden layers and hence enabling the extraction of evenmore robust features.

Dropout training proceeds by sampling an arbitrary number of “thinned” networks, with

a different set of nodes dropped in each iteration. At test time, Hinton et al. propose scaling

the weights of a single unthinned network by the probability that their originating nodes

were retained during training. To produce multiple imputations, MIDAS instead samples M
thinned networks. This procedure has recently received a powerful independent justification

from Gal and Ghahramani (2016), who show through simulation experiments that it results in

more accurate parameter estimation with no additional model complexity or training time.

Notably, they also prove that dropout training is mathematically equivalent to a Bayesian

variational approximation of a Gaussian process (GP), a commonly used probability distribution

over functions. The implication is that MIDAS posits not a joint distribution of the data but a

distribution over possible functions that describe the data. Since GP models can estimate any

continuous function arbitrarily well—they are usually considered nonparametric because they

have a potentially infinite number of parameters—MIDAS can thus capture a wider class of

joint distributions than existing approaches to MI without making any additional parametric

assumptions.

The encoder of an imputation-generatingDA trainedwithdropout—aMIDASnetwork—can thus

be described as:

ỹ = fθ(x̃) = σ(W(B )v(B ) [...[σ(W(2)v(2) [σ(W(1)x̃+b(1))] +b(2))] ...] +b(B )). (5)

The decoder, in turn, becomes:

z = gθ′(ỹ) = Φ(W(H )′[...[σ(W(B+2)′[σ(W(B+1)′ỹ+b(B+1)′)] +b(B+2)′)] ...] +b(H )′), (6)

where g ∼ GP and z represents a fully observed vector containing predictions of x̃obs and x̃mis. To

produce a completed dataset, predictions of x̃mis are substituted for xmis inD. The full architecture

of a MIDAS network is illustrated in Figure 1.8

The default activation function in MIDAS is exponential linear unit (ELU), which is known to

facilitate efficient training in deep neural networks. The final-layer activation function is chosen

according to the distribution of the input data x, with identity, logistic, and softmax functions

assigned to continuous, binary, and categorical variables, respectively. Loss functions take the

same form as in a regular DA, measuring the distance between x and z: L(x,z). As we are only

interested in the reconstruction error for predictions of originally observed corrupted values

(x̃obs), however, these functions aremultiplied by amissingness indicator vector r. MIDAS employs

root mean squared error (RMSE) and cross-entropy loss functions for continuous and categorical

8 Amore detailed description of the MIDASmodel’s objective function is provided in Online Appendix 2A.
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Figure 1.MIDAS neural network architecture. x is a vector of inputs, qD (x|x̃) is the corruption process, and z
is the “denoised” version of x̃.

variables, respectively:

L(x,z, r) =
⎧⎪⎨
⎪⎩
[ 1J

∑J
j=1 rj (xj − zj )

2]
1
2 if x is continuous

− 1
J

∑J
j=1 rj [xj logzj + (1−xj ) log(1− zj )] if x is categorical.

(7)

In sum,unlikemost existingapproaches toMI,MIDASdoesnot assumea joint distributionof the

data and use an iterative method to draw imputed values from the posterior of this distribution.

Rather, it uses a neural network to “learn” the form of the data by fitting a series of nonlinear

functions—in effect, a nonparametric model that only constrains the range of functions that are

consistent with the data—which enables it to capture both simple and highly complex patterns.

This is implemented by introducing additionalmissingness into the data during training,minimiz-

ing the reconstruction error for predictions of these corrupted values, and drawing imputations

from the trained network.

2.4 Algorithm
The algorithmwe have developed to implement MIDAS takes an incomplete datasetD as its input

and returns M completed datasets. The algorithm proceeds in three stages, each comprising a

number of smaller steps. In the first stage, the input data D are prepared for training. Categorical

variables are “one-hot” encoded (i.e., converted into separate dummy variables for each unique

class) and continuous variables are rescaled between0 and 1 to improve convergence. In addition,

amissingness indicatormatrixR is constructed forD, allowing us to later distinguish betweenDmis
andDobs, and all elements ofDmis are set to 0. A DA is then initialized according to the dimensions

of D; the default architecture is a three-layer network with 256 nodes per layer.

In the training stage, the following five steps are repeated (see Figure 2 for a visual schematic

and Online Appendix 2B for a more formal description): (1) D and R are shuffled and sliced row-

wise into paired mini-batches (B1,B2, ...,Bn ) to accelerate convergence; (2) mini-batch inputs

are partially corrupted through multiplication by a Bernoulli vector v (default p = 0.8); (3) in

line with standard implementations of dropout, outputs from half of the nodes in hidden layers

are corrupted using the same procedure; (4) a forward pass through the DA is conducted and
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Incomplete
input dataset

Shuffle and
divide into

mini-batches

Introduce
additional

missingness
Loss

(originally
observed

values only)

Forward pass

Backpropagation

M completed
datasets

Figure 2. Schematic of MIDAS training steps. Shaded blocks represent data points (shades denote different
variables); crosses indicate missing values.

the reconstruction error on predictions of x̃obs is calculated using the loss functions defined in

Equation (7); and (5) loss values are aggregated into a single term and backpropagated through

the DA, with the resulting error gradients used to adjust weights for the next epoch.

Finally, once training is complete, the whole of D is passed into the DA, which attempts to

reconstruct all (i.e., originally observed and originally missing) corrupted values. A completed
dataset is then constructedby replacingDmis with predictions of the originallymissing values from

the network’s output. This stage is repeatedM times.

3 Accuracy Tests

HowdoesMIDASperform inpractice?Thenext two sectionspresent tests of themethod’s accuracy

and scalability involving both simulated and real data. We begin with two tough simulation tests

that gauge MIDAS’s accuracy under themultivariate normal conditions assumed by the dominant

approach to MI (without building a linearity constraint into the MIDAS model). The first is the

“MAR-1” experiment first conducted byKing et al. (2001), which assesseswhetherMIDAS generates

correct estimates of linear regression parameters; the second is the continuous component of a

more general test conducted by Kropko et al. (2014), which also assesses the accuracy of MIDAS’s

imputed values. The third part of the section tests MIDAS’s performance on similar metrics in

a more realistic context by simulating a variety of missingness conditions in a popular census

dataset.

3.1 MAR-1 Experiment
The MAR-1 experiment involves simulating 100 datasets containing 500 rows and five (moderately

correlated) standardized variablesY ,X1, ...,X4 from a multivariate normal distribution. A mixed

pattern of missingness is introduced, leaving an average of 72% of rows in each sample fully

observed: Y and X4 are MCAR, while X1 and X2 are MAR as a function of X3. We estimate the

linearmodelY = β0 +β1X1 +β2X2 using four strategies: (1) MIDAS, whichwe implement using our

Python class MIDASpy; (2) multivariate normal MI, implemented with the Amelia package in R
(Honaker et al., 2011), which employs an expectation-maximizationwith bootstrapping algorithm;

(3) listwise deletion; and (4) analysis of the complete dataset.9

9 In all tests conducted in this and the next section,M = 10 for all MI algorithms.

Ranjit Lall and Thomas Robinson � Political Analysis 186

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.49


β0 β1 β2

−0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2 −0.2 −0.1 0.0 0.1 0.2

0

3

6

9

D
e
n
s
it
y

MIDAS Amelia LWD Complete Data

Figure 3. Estimated posterior densities in MAR-1 simulation experiment. Coefficient estimates from a linear
regression based on Monte Carlo-simulated data with 500 rows, 72% of which are fully observed, and five
standardized variables drawn from amultivariate normal distribution.

Figure 3 plots the posterior densities of the estimated coefficients on β0, β1, and β2 for each

strategy. For all three parameters, MIDAS yields very similar results to Amelia. Both sets of

estimates are close to the true density, though in the case of β1 have smaller peaks and larger

variances (due to their lower information content). Listwise deletion estimates, by contrast, are

severely biased away the true density of every parameter, mostly possessing the incorrect sign as

well as a higher variance than the other densities. In Online Appendix 3, we further demonstrate

that MIDAS and Amelia produce accurate estimated 95% confidence intervals, with listwise dele-

tion again performing substantially worse.

3.2 Simulation Test of Imputation and Linear Model Quality
The continuous portion of Kropko et al.’s (2014) simulation-based accuracy test involves generat-

ing 1,000multivariate normal datasetswith 1,000 rows and8 standardized variables, and inducing

MAR missingness in 5 of the latter (with proportions of 0.1, 0.1, 0.1, 0.1, and 0.25). To assess how

the strength of relationships between variables affects MIDAS’s performance, we generate two

versions of the simulated datasets: one inwhich correlations between variables aremoderate and

another in which they are strong.10

In addition to MIDAS, five missing-data strategies are applied to the incomplete datasets:

(1) conditional MI, implemented with the mi package in R (Su et al., 2011); multivariate normal
MI, implemented with (2) Amelia and (3) the norm package in R (which employs a traditional
expectation-maximization algorithm) (Schafer and Olsen, 1998); (4) listwise deletion; and (5)

replacing missing values with draws from each variable’s marginal distribution. The six strategies

are assessed on two metrics: (1) RMSE relative to true values (averaging imputed values) and (2)

the accuracy of coefficient estimates from a regression of one variable on the remaining seven,

measuredas (i) theMahalanobis distancebetweenmodel estimates andcomplete-data estimates,

(ii) the RMSE of model fitted values relative to complete-data fitted values, and (iii) the previous

metric excluding incomplete rows.

The results are displayed in Figure 4. In themoderate-correlation scenario, MIDAS outperforms

the other four MI strategies on all fourmetrics. Whenwe strengthen correlations, this gap remains

essentially the same in terms of imputation accuracy but becomes even larger in terms of coeffi-

cient and fitted-value accuracy (except with respect to marginal draws). Even without a linearity

constraint, therefore, MIDAS can produce accurate imputations and parameter estimates under

multivariate normality, with its absolute and relative performance improving with the strength of

relationships between variables.

10 As Kropko et al. use the random data function rdata.frame in R to simulate the datasets, we model moderate and strong
intercorrelations by setting the eta argument of this function to 300 and to 1,000, respectively.
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Figure 4. Inverse imputation and linear model accuracy in Kropko et al.’s simulation test. The results are
based on Monte Carlo simulated data with 1,000 rows and 8 standardized variables, 5 of which contain MAR
missingness, drawn fromamultivariatenormal distribution. LowerRMSE indicates greater imputation/fitted-
value accuracy; lower Mahalanobis distances indicate greater coefficient accuracy.

3.3 Applied Test with Adult Dataset
Real data, of course, are rarely multivariate normal. We thus supplement the previous simulation

exercises with an applied accuracy test based on the Adult dataset, an extract from the 1994

United States Census that measures 15 characteristics of 48,842 individuals (a mixture of con-

tinuous and categorical variables).11 We select this dataset for two reasons. First, in addition to

being frequently used by social scientists, it is a standard benchmarking dataset for machine

learning tasks. Second, it is one of the few real social science datasets we were able to find that

is almost entirely complete—just 0.009% of values are missing—which gives us near-complete

discretion to manipulate missingness in the test (while mitigating possible concerns about the

exclusion of originally missing values). Summary statistics for the dataset are provided in Online

Appendix 3.

In contrast to the previous tests, we separately induce varying proportions of MCAR, MAR, and

MNAR missingness in the dataset. For each missingness pattern, we create four versions of the

dataset in which 30%, 50%, 70%, and 90% of columns are randomly selected for corruption. In

the MCAR treatment, half of the values in the selected columns are randomly set to missing. In

theMAR treatment, amissingness indicator L is randomly drawn from the nonselected columns. If

L is continuous, a subset of observations at or below its median value are set to missing in the

selected columns; if L is categorical, half of its categories are randomly sampled and a subset
of corresponding observations in the selected columns are set to missing. The MNAR treatment

is similar to the MAR treatment, with the key difference that L is the selected column itself.
These treatments are described in more detail in Online Appendix 3. Since Amelia’s runtime

11 Kropko et al. (2014) also conduct an applied test involving the AmericanNational Election Studies (ANES) dataset. InOnline
Appendix 4,we incorporateMIDAS into the imputationaccuracy component of this test, again finding that it producesmore
accurate imputed values than other MI algorithms for all variables.
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Figure 5. Results of applied imputation accuracy test. MCAR, MAR, and MNAR missingness are separately
induced in varying proportions of randomly selected columns in the Adult dataset, with up to 50% of values
are set as missing. Lower RMSE and classification error values indicate greater imputation accuracy.

substantially increases when categorical variables havemore than 10 classes (which is prohibited

in its default settings), nat iv e_count r y , occupat i on , and educat i on are excluded from the

corruption process.

We include the same five missing-data strategies as the previous test, comparing their impu-

tation accuracy using similar metrics: the RMSE of imputed versus actual values for continu-

ous variables; and classification error for categorical variables. We refrain from conducting a

model-based accuracy test because, unlike in Kropko et al.’s simulation, we do not know the

true joint distribution of the data. We instantiate MIDAS with two hidden layers of 256 nodes,

an input corruption proportion of 0.75, and 20 training epochs, leaving all other hyperparam-

eters at their default settings. Amelia only converges with a ridge prior of 1% of the number

of rows in the imputation model, a modification that shrinks covariances between variables

and thus introduces some degree of bias (Honaker et al., 2011, 19-20). We swap the earlier ver-

sion of the norm package, which is unable to handle the treated datasets, with an updated

version based on the same algorithmic logic (Novo, 2015). To enable mi to complete the test

in a reasonable time, we modify its settings to complete datasets after either 15 imputation

iterations (default = 30) or the default maximum iteration time of 20 minutes—whichever comes

first.

The results are summarized in Figure 5. Across almost all corruption levels and missingness

patterns,MIDAS’s imputed values aremore accurate than those of other strategies. This advantage

is largest for continuous variables: themeanRMSEofMIDAS imputations is around30% lower than

that of the next best algorithm,mi. The gap in classification accuracy is narrower but still clear in

theMARandMCARscenarios.UnderMNAR,Ameliaandmiare thebest category classifiers, though

MIDAS’s performance is comparable. In short, as we move to a more realistic setting in which

multivariate normality does not hold, MIDAS continues to exhibit strong relative performance on

key metrics of accuracy.
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4 Scalability Tests

To facilitate comparison, the previous tests were conducted on small or medium-sized datasets

that do not pose (major) computational problems for existing MI algorithms. We now relax this

constraint, comparing the algorithms’ efficiency in handling progressively larger datasets. We

conduct separate tests for increasing numbers of columns and rows, though place greater weight

on the former: additional columns are more computationally demanding for MI algorithms than

additional rows because they entail a greater marginal increase in the number and complexity of

relationships within the observed data.12

4.1 Column-Wise Scalability
Rather than scaling up a purely simulated dataset, which is unlikely to capture the complexity and

richness of real data, we conduct both tests using the 2018 Cooperative Congressional Election

Study (CCES), a large-scale electoral survey commonly used by political scientists that encom-

passes a representative sample of 60,000 respondents in the United States. We focus on the

subset of personal profile questions asked to all respondents, in addition to a selection of voting-

and political activity-related questions (details are provided in Online Appendix 5). To generate

a baseline sample for the column-wise test, we remove all columns that are perfectly collinear

or that contain at least 10,000 missing values (which generally indicates structural missingness

associated with survey flow) and all rows with responses of “don’t know.” This leaves a sample

of 30,421 rows and 144 variables. Once categorical variables are one-hot encoded, there are 443

“effective” columns.

To examine the effect of increasing dataset width on imputation speed, we randomly draw

columns without replacement from the baseline sample based on a target number of effective

columns, which we vary from 25 to 400. If, after selecting a given variable, the number of effective

columns is more than 25% higher than the target, this variable is replaced and a new one is

selected. After each dataset has been generated, we induce 50% MCAR missingness in every

column. To ensure that the data do not become too sparse for imputation, we include the fully

observed gender and bi r thy r variables in all samples.

We test the same five MI strategies as before, comparing the time they take to complete 10

datasets. MIDAS is instantiated with three 256-node layers, a dropout rate of 0.75, and 30 training

epochs—aconservative setup, especially for narrowdatasets.Where possible,weparallelize other

MI algorithms using the doparallel and foreach packages in R.
Figure 6 displays the results, including predicted values from a regression of runtime on the

effective number of columns (which includes quadratic terms for Amelia and norm due to the

distribution of their runtimes). Differences in scalability emerge even at the smallest widths, with

themi package and marginal draws recording runtimes several times longer than the remaining

three algorithms for samples with 50 columns.13 The latter routines perform similarly up to this

width, with Amelia slightly faster than norm and MIDAS but (unlike other algorithms) failing to

convergeonseveral occasions.Noteagain thatwedonotadjust theMIDASnetwork’s sizebywidth;

a 3-layer, 256-node network is not necessary for narrow datasets, and a leaner architecture would

result in faster computation.

As the number of columns increases, MIDAS’s efficiency emerges clearly. MIDAS becomes faster

than norm at a width of around 75 columns and Amelia just before 125 columns. By 200 columns,

MIDAS is three timesquicker thanAmeliaandalmost30 timesquicker thannorm. At themaximum

number of columns in the test, 400,MIDAS is 12 times faster thanAmelia. Extrapolating from these

results, Amelia would take more than 6,000 hours to produce 10 completed versions of the full

12 Given the computational demands of these tests, we conducted them on an Amazon Web Services Linux m5.xlarge EC2
Instance virtual server (16 GB RAM, 4 vCPUs) running Ubuntu 18.04.

13 We therefore drop these two strategies for higher numbers of columns.
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Figure6.Results of column-wise scalability test. The y-axismeasures the time taken toproduce 10 completed
versions of a CCES sample with 50% MCAR missingness; the x-axis measures the number of columns in the
sample after categorical variables have been one-hot encoded. Dashed lines show predicted values from a
regression of y on x (including quadratic terms for Amelia and norm).

CCES, approximately 100 times longer than MIDAS. As indicated by the slope of the regression

lines, MIDAS’s efficiency advantage increases exponentially with the effective number of columns:

the relationship between computation time and data width is linear for MIDAS but quadratic for

Amelia and the other algorithms. This constitutes amajor advantage in the Big Data era, in which

datasets can contain thousands or even tens of thousands of variables.

4.2 Row-Wise Scalability
We test row-wise scalability by extracting a similar baseline sample from the CCES. To ensure a

comparable overall runtime to the column-wise test, we focus on personal profile variables that

are continuous, binary, or nominal and have fewer than seven levels. In total, the sample contains

22 variables and 34,441 complete rows. We vary sample length by bootstrapping rows to create

datasets with between 5,000 and 500,000 rows. We then induce MCAR missingness in 30% of

values in each column. As in the column-wise test, we exclude bi r thy r and gender from the

missingness treatment to prevent excessive sparsity. As the baseline sample is smaller and less

complex than before, we shrink theMIDAS network to two layers of 256 nodes and set the number

of training epochs as 20.

The results are plotted in Figure 7. Across all sample lengths, MIDAS is the most efficient

strategy. Fordatasetswith 500,000 rows,MIDAS’s average runtime is three timesquicker than than

that of norm, the third fastest algorithm, and 25%quicker than that of Amelia, the second fastest,

with these gaps increasing in proportion to length. Unlike in the column-wise test, therefore,

computation time scales linearly with the number of rows for MIDAS as well as norm and Amelia,

a finding consistent with the less intensive computational demands created by additional rows.

As before,mi andmarginal draws record the longest runtimes, producing the completed datasets

in an average of 115 and 9.2 minutes, respectively, at the smallest number of rows (5,000).14

14 We again exclude these two strategies for longer samples.
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Figure 7. Results of row-wise scalability test. The y-axis measures the time taken to produce 10 completed
versions of a CCES sample with 30% MCAR missingness; the x-axis measures the number of rows in the
sample. Dashed lines show regression-based predicted values for each strategy.

Note thatwhile theperformancegapbetweenMIDASandAmelia is smaller in this test, thereare

caveats to the latter’s results. Amelia did not converge with any dataset without the inclusion of a

bias-inducing ridge prior in the imputationmodel (of 0.005 times the number of rows),most likely

due to high correlations among some variables. Even with this modification, it failed to converge

in 16 of the 60 iterations of the simulation.

5 Applied Illustration: Estimating Ideology from CCES Data

In this section, we provide a brief illustration of MIDAS’s capacity to handle real missing-data

situations whose scale presents difficulties for existing MI algorithms. We continue to focus on

the CCES, whose large number of columns—a feature shared with other electoral surveys—

can prevent the usage of such algorithms. Specifically, we use MIDAS to shed new light on the

distribution of political ideology among respondents, a topic of substantive interest to scholars of

electoral politics in the United States and elsewhere.

Respondents to the CCES are asked to report their ideological position on a seven-point scale

ranging from 1 for “Very Liberal” to 7 for “Very Conservative.” Self-reported ideology, however, is

known to be a noisy proxy for underlying beliefs (for instance, due to social desirability biases

and variation in ideological positions across policy dimensions). A variety of approaches have

beenproposed tocapture respondents’ latent ideology,mostofwhich involveestimating ideology

using responses to policy-related questions. In the 2018 CCES, individuals are asked their opinion

on a series of policy proposals in areas such as the budget, healthcare, and environmental

protection. These items have a higher rate of nonresponse than the CCES in general, with an

average of 14%of respondents failing to provide an answer. Does thismissingness affect estimates

of latent ideology?

Building on recent work by Ramseyer and Rasmussen (2016), we regress respondent i’s
self-reported ideology on responses to 19 policy questions in the CCES (see Online Appendix
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Figure 8. Regression-based estimates of CCES respondents’ latent ideology.

6A for the list):

Self-Reported Ideologyi = α +
19∑
j=1

βj ×Policyi ,j +εi , (8)

where j denotes a given policy question. The fitted values from Equation (8) represent estimates

of latent ideology. We compare such estimates under two missing-data strategies: (1) listwise

deletion (following Ramseyer and Rasmussen) and (2) MIDAS, which we implement using a rich

battery of 163 demographic and socioeconomic variables—an imputation model too large to be

computedby any existingMI algorithm—anda2-layer, 256-nodenetwork trained for 200 epochs.15

MIDAS allows us to produce estimates for more than 10,000 more respondents, almost one-fifth

of the full CCES.

Figure 8 plots the densities of the two sets of latent ideology estimates. The two distributions

have similar variances but divergent peaks; the null hypothesis that they are drawn from the

same distribution can be rejected under a Kolmogorov–Smirnov test. The distribution of listwise

deletion estimates is skewed toward the left (liberal) side of the ideology scale—the modal

estimate is 2—though also contains smaller peaks in the center and on the right (conservative)

side. The MIDAS estimates, in contrast, follow a more normal shape, peaking at 4. In the absence

of MI, therefore, there is a danger that analysts could overestimate the proportion of strong liberal

and strong conservative respondents.

This finding also has implications for our understanding of the relationship between ideology

and other variables of substantive interest in the CCES, such as respondents’ assessment of

President Donald Trump’s performance in office. Table 1 shows the results of regressing responses

to the CCES presidential job approval question, which range from 1 for “strongly approve” to 4 for

“strongly disapprove,” on (1) self-reported ideology and (2) the MIDAS-based regression estimates

of latent ideology.16 In bothmodels, the estimated coefficient on the ideologymeasure is negative

15 Some existing MI algorithms, such as Amelia, can accommodate subsets of the MIDAS imputation model. These subsets,
however, tend to exclude strong predictors ofmissingness in the policy items. Consequently, as shown in Online Appendix
6B, the resulting latent ideology estimates are substantially closer to those produced by listwise deletion.

16 We remove “not sure” responses from the job approval variable for the self-reported model. These values are imputed in
the MIDASmodel.
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Table 1. Regression of presidential job approval on different measures of ideology.

Measure of ideology β Std. error Adj. R2 N

Self-reported −0.475 0.002 0.506 48713

Regression-based
(MIDAS)

−0.697 0.002 0.616 60000

and statistically significant, indicating that respondents classified as more liberal express lower

average levels of presidential job approval. The MIDAS-based measure, however, is a far better

predictor of job approval than the self-reported alternative, possessing a coefficient almost 50%

larger (with an identical standard error) and accounting for 20%moremodel-adjusted variance in

the outcome.

6 Potential Limitations

While MIDAS’s flexibility render it suitable for a wide range of missing-data problems, there are

nevertheless circumstances in which it may perform suboptimally. First, MIDAS cannot, of course,

avoid bias when the usual assumptions of MI are violated: data areMNAR, the posited distribution

of the data is a poor approximation to reality, or the imputation model is misspecified in some

other way. However, as noted earlier—and demonstrated in the applied accuracy test—MIDAS can

still perform relatively well under MNAR when there are strong predictors of missingness in the

imputation model.

Second, like other approaches to MI, MIDAS is not guaranteed to perform well with certain

unconventional data structures, such as nonexchangable data, multilevel data, and spatially

lagged data. In general, however, we have found MIDAS to be surprisingly effective at learning

observed-data relationships within these structures (without including any special features in

the imputation model). Online Appendix 7 provides an illustration of this capacity in the context

of time-series cross-sectional data—perhaps the most common form of nonexchangable data in

social science research—adapting an exercise conducted byHonaker andKing (2010) to showhow

MIDAS can impute smooth nonlinear time trends in economic variables. This illustration, which

involves another dataset too large to be processed by existing MI algorithms, highlights how the

flexibility of neural networks can sometimesmitigate the need formanual feature transformation.

Finally, MIDAS inherits the general risks associated with neural network-based methods.

These include misspecification of hyperparameters, which can result in bias; overfitting—

despite MIDAS’s heavy inbuilt regularization—the likelihood of which increases with the size,

dimensionality, and sparsity of the dataset; and poor performance on very small datasets. Such

risks can be compounded by the “black box” nature of neural networks, which makes it difficult

for analysts to conduct parameter and posterior checks to identify problems. Our software for

implementing MIDAS offers two diagnostic tools to help analysts conduct such checks (see

Online Appendix 1 for details): (1) the technique of “overimputation” (Honaker et al., 2011, 27-

29), which involves sequentially removing observed values and checking the accuracy of their

imputations and (2) the use of a variational autoencoder component to generate an alternative

set of imputations based onmore stringent assumptions about the distribution of the latent input

space. We acknowledge, however, that these tools do not guarantee detection of all problems.

7 Concluding Remarks

As the scale and complexity of real-world data continue to grow, it is increasingly important that

analysts have access to accurate, fast, and scalable methods for analyzing missing values. The

approach to MI we have developed in this article, MIDAS, seeks to deliver these advantages by

drawing on recent theoretical and computational advances in deep learning. A battery of tests

Ranjit Lall and Thomas Robinson � Political Analysis 194

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

an
.2

02
0.

49
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/pan.2020.49


involving real and simulated data suggest that MIDAS can provide gains in accuracy over existing

approaches toMI (as well as listwise deletion) even in small- andmedium-sized applications, with

larger improvementswhendatapossessmore complex features. Relative to leadingMI algorithms,

it can offer improvements in efficiency when datasets contain as few as 200 columns (with the

gap increasing exponentially beyond this width) and 5,000 rows (with the gap increasing linearly

beyond this length).

To be sure, MIDAS is not a panacea for missing-data problems in the emerging era of Big Data.

As discussed earlier, despite its flexibility, the approach is not guaranteed to perform well with

every type of data and may be not be straightforward to optimize for particular applications.

Nevertheless, we believe that it constitutes a helpful addition to the methodological toolkit of

analysts and nicely complements the strengths of existing approaches toMI. Indeed, it is precisely

the kinds of applications with which these approaches can struggle where MIDAS comes into its

own.
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