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We examine the stability of a suspension of swimming bacteria in a Newtonian
medium. The bacteria execute a run-and-tumble motion, runs being periods when a
bacterium on average swims in a given direction; runs are interrupted by tumbles,
leading to an abrupt, albeit correlated, change in the swimming direction. An
instability is predicted to occur in a suspension of ‘pushers’ (e.g. E. Coli, Bacillus
subtilis, etc.), and owes its origin to the intrinsic force dipoles of such bacteria. Unlike
the dipole induced in an inextensible fibre subject to an axial straining flow, the forces
constituting the dipole of a pusher are directed outward along its axis. As a result,
the anisotropy in the orientation distribution of bacteria due to an imposed velocity
perturbation drives a disturbance velocity field that acts to reinforce the perturbation.
For long wavelengths, the resulting destabilizing bacterial stress is Newtonian but
with a negative viscosity. The suspension becomes unstable when the total viscosity
becomes negative. In the dilute limit (nL3 � 1), a linear stability analysis gives
the threshold concentration for instability as (nL3)crit = ((30/CF(r))(DrL/U )(1 +
1/(6τDr )))/(1−(15G(r)/CF(r))(DrL/U )(1+1/(6τDr ))) for perfectly random tumbles;
here, L and U are the length and swimming velocity of a bacterium, n is the
bacterial number density, Dr characterizes the rotary diffusion during a run and τ−1

is the average tumbling frequency. The function F(r) characterizes the rotation of
a bacterium of aspect ratio r in an imposed linear flow; F(r) = (r2 − 1)/(r2 + 1)
for a spheroid, and F(r) ≈ 1 for a slender bacterium (r � 1). The function G(r)
characterizes the stabilizing viscous response arising from the resistance of a
bacterium to a deforming ambient flow; G(r) = 5π/6 for a rigid spherical bacterium,
and G(r) ≈ π/45(ln r) for a slender bacterium. Finally, the constant C denotes the
dimensionless strength of the bacterial force dipole in units of μUL2; for E.
Coli, C ≈ 0.57. The threshold concentration diverges in the limit ((15G(r)/CF(r))
(DrL/U )(1 + 1/(6τDr ))) → 1. This limit defines a critical swimming speed,
Ucrit = (DrL)(15G(r)/CF(r))(1+1/(6τDr )). For speeds smaller than this critical value,
the destabilizing bacterial stress remains subdominant and a dilute suspension of these
swimmers therefore responds to long-wavelength perturbations in a manner similar
to a suspension of passive rigid particles, that is, with a net enhancement in viscosity
proportional to the bacterial concentration.

On the other hand, the stability analysis predicts that the above threshold
concentration reduces to zero in the limit Dr → 0, τ → ∞, and a suspension of
non-interacting straight swimmers is therefore always unstable. It is then argued
that the dominant effect of hydrodynamic interactions in a dilute suspension of
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such swimmers is via an interaction-driven orientation decorrelation mechanism. The
latter arises from uncorrelated pair interactions in the limit nL3 � 1, and for slender
bacteria in particular, it takes the form of a hydrodynamic rotary diffusivity (Dh

r ); for
E. Coli, we find Dh

r = 9.4 × 10−5(nUL2). From the above expression for the threshold
concentration, it may be shown that even a weakly interacting suspension of slender
smooth-swimming bacteria (r � 1, F(r) ≈ 1, τ → ∞) will be stable provided Dh

r >

(C/30)(nUL2) in the limit nL3 � 1. The hydrodynamic rotary diffusivity of E. Coli
is, however, too small to stabilize a dilute suspension of these swimmers, and a weakly
interacting suspension of E. Coli remains unstable.

1. Introduction
Recent experiments (Wu et al. 2006) and simulations (Hernandez-Ortiz, Stolz &

Graham 2005; Saintillan & Shelley 2007) have revealed the presence of increased
velocity fluctuations in suspensions of swimming micro-organisms. Coherent vortical
patterns have been observed on length scales exceeding the size of a single micro-
organism (Wu & Libchaber 2000), implying that a suspension of bacteria swimming
in an otherwise quiescent fluid may be an inherently unstable state at high
concentrations. The above observations, in fact, point to the existence of collective
swimming modes with long-ranged spatiotemporal correlations. In this paper, we
show that a suspension of neutrally buoyant swimming bacteria (pushers) is indeed
linearly unstable above a critical concentration.

A swimming bacterium, having the same density as the suspending fluid medium,
does not exert a net force on the fluid, as must be the case from first principles; the
head and tail of the bacterium therefore exert forces of equal magnitude in opposite
directions, as it swims (see figure 1) (Berg 1983). Figure 2 illustrates the underlying
physical mechanism of the instability. A passive particle such as a fibre tends to
align along the extensional axis in an extensional flow; in this aligned state, the
fibre, on account of its inextensibility, induces a disturbance velocity field that acts
to retard the imposed flow. On the other hand, an active particle such as a slender
E. Coli does align along the local extensional axis; but, for a weak imposed flow,
for instance, a small amplitude velocity perturbation considered in the context of a
linear stability analysis, the dominant effect in the aligned state is that of the velocity
disturbance field arising from the intrinsic force dipole of the bacterium. Clearly,
this disturbance flow field acts to reinforce the imposed extensional flow. One may
therefore conceive of a situation where an imposed velocity perturbation alters the
orientation distribution in a bacterial suspension such that the disturbance velocity
field resulting from the anisotropy of the orientation distribution acts, on average, to
reinforce the imposed disturbance. Thus, there is a mechanism for a positive feedback
between orientation and velocity fluctuations, and an instability. Herein, we determine
the critical concentration for the onset of this instability as a function of parameters
that characterize the swimming motion of a single bacterium.

Earlier investigations on the occurrence of hydrodynamic instabilities in suspensions
of micro-organisms have focused on gyrotactic micro-organisms, the algal species
C. nivalis being an example. A suspension of such microscopic swimmers contained
between horizontal boundaries becomes unstable owing to one of the two mechanisms.
The first mechanism comes into play for relatively small separations between the
boundaries. The gyrotactic torque causes the bottom-heavy algae to swim upward
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FT
 = –F FH = F

U

Figure 1. The figure shows an E. Coli (a ‘pusher’) together with the forces that it exerts on the
fluid as it swims. The head exerts a force in the direction of swimming, dragging fluid along
with it, while the tail rotates like a corkscrew to propel the head forward, in turn, pushing
fluid behind; the symbols FH and FT , respectively, denote the forces exerted on the fluid by
the head and tail of the swimming bacterium.

Figure 2. The figure shows the differing responses of a passive fibre and an active bacterium
(a ‘pusher’) to an imposed extensional flow; the solid lines denote the imposed extensional
flow, and the dashed lines the disturbance velocity field. The reinforcement in the case of the
bacterium leads to an instability.

against gravity, rapidly leading to an unstable density stratification in the vertical
direction since the algae are denser than water. The unstably stratified suspension is
susceptible to the classical Rayleigh–Taylor overturning instability (see Chandrasekhar
1961; Childress, Levandowsky & Spiegel 1975). The stratification develops on a time
scale of O(H/U ), where H is the separation between the boundaries, and U is a
typical algal swimming speed. With increasing system size, however, the suspension
is destabilized due to a second mechanism operating on a time scale shorter than
O(H/U ). This mechanism operates in a homogeneous suspension, and involves a
coupling of density and velocity perturbations. An imposed density perturbation
causes alternating regions of upflow and downflow, and the resulting balance between
the shear-induced and gyrotactic torques causes the algae to swim preferentially
towards the denser regions. This reinforces the original density perturbation, and
thereby results in an instability (see Pedley, Hill & Kessler 1988). In both the above
instances, the origin of the instability is the density difference between the organism
and the suspending medium. Heavy organisms with an asymmetric mass distribution
swim in a preferred direction even in the absence of an imposed flow, and this
directional swimming in a gravitational field leads to an instability.

On the other hand, bacteria such as E. Coli are much smaller in size, and have
nearly the same density as water. One therefore expects any gravity-driven instability
to be subdominant on length scales characterizing micro-fluidic experiments. Recent
experimentalists with E. Coli have, however, observed the presence of increased
fluctuations, and spatiotemporally coherent motions on scales larger than a single
organism both in two-dimensional suspensions confined to a soap film (Wu &
Libchaber 2000), and in three-dimensional suspensions (Soni et al. 2003; Wu et al.
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2006). Experiments with concentrated suspensions of other bacteria such as Bacillus
subtilis also report observations of coherent motions including high-speed jets and
vortical patterns (see Mendelson et al. 1999; Dombrowski et al. 2004). In particular,
Wu et al. (2006) have measured the translational diffusivities of E. Coli cells in
a bacterial suspension, using a novel three-dimensional-defocused particle tracking
method, as a means of characterizing the amplitude of velocity fluctuations in these
systems. Trajectories analysed included those of the wild type E. Coli strain that
exhibit a run-and-tumble behaviour, and mutants that do not tumble – the so-
called smooth swimmers. In both instances, the measured translational diffusivities
increased with increasing cell concentration; the diffusivities increased more rapidly
in suspensions of smooth swimmers. This is in contrast to the expected trend in
a stable system, wherein the first effects of interactions would serve to accelerate
the orientation-decorrelation process in a swimming micro-organism; the resulting
decrease in the correlation time would lead to a corresponding reduction in the
translational diffusivity with increasing concentration. Recent simulations have also
reported regimes of anomalous diffusion and coherent vortical structures in large
populations of interacting swimmers (see Hernandez-Ortiz et al. 2005; Saintillan &
Shelley 2007). It is worth noting that simulations thus far differ from experiments
in having only modelled the dynamics of ‘straight swimmers’ wherein there are no
intrinsic mechanisms for orientation decorrelation, and the orientation of a given
swimmer changes only due to hydrodynamic interactions. In this paper, we suggest
that the observed increased velocity fluctuations in both experiments and simulations
of bacterial suspensions may be due to the onset of a hydrodynamic instability
beyond a critical concentration. The analysis in the following sections determines this
critical concentration. The critical concentration is, in fact, found to be lower for
a suspension of smooth swimmers, implying that a suspension of such mutants is
more easily destabilized, and tends to zero in the limit of straight swimmers. This is
consistent with the findings of the above experiments and simulations.

The paper is organized as follows. The averaged equations governing the motion
of the bacterial suspension are formulated in the next section, together with the
underlying assumptions. The calculation of the threshold bacterial concentration
from the linearized equations for the disturbance amplitudes is carried out in § 3
for a dilute bacterial suspension, where we also explain the underlying physical
mechanism driving the instability. A threshold concentration arises because there exist
orientation decorrelation mechanisms, for instance, rotary diffusion and tumbling, that
limit the accumulation of the destabilizing bacterial stress driving the instability. The
threshold concentration is thus determined as a function of a rotary diffusivity and a
characteristic tumbling time. In the absence of hydrodynamic interactions, the rotary
diffusion process models the orientation fluctuations resulting from imperfections
in the propulsion mechanism; for instance, in E. Coli, a rotary diffusivity may be
attributed to the fluctuations of the propelling flagellar bundle. In § 4, we argue
that the dominant effect of hydrodynamic interactions in the dilute limit enters as
an additional mechanism for orientation decorrelation. While for a bacterium of
an arbitrary shape, a description of such a decorrelation mechanism will entail a
non-local advection–diffusion equation in orientation space, for slender bacteria, the
decorrelation process resulting from relatively weak pair interactions is shown to be a
local diffusive one. The resulting hydrodynamic rotary diffusivity in this limit is then
calculated from the dynamics of uncorrelated pair interactions. Interpreting the rotary
diffusivity introduced in § 3 as being one solely due to hydrodynamic pair interactions,
it is then shown that a suspension of weakly interacting smooth-swimming slender
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bacteria remains unstable. Finally, in § 5, after summarizing the main results of the
theoretical analysis in earlier sections, we discuss these predictions in the context of
earlier theoretical efforts, recent experiments and simulations.

2. Governing equations
The averaged equations governing the motion of the bacterial suspension are

∇ · 〈u〉 = 0, (2.1)

− ∇〈p〉 + μ∇2〈u〉 + ∇·〈σB〉 = 0, (2.2)

where 〈u〉(x, t) and 〈p〉(x, t) are the ensemble-averaged velocity and pressure fields, the
angular brackets denoting the ensemble average, and the average is over all possible
configurations of the bacterial suspension; a given configuration is specified by the
instantaneous positions and orientations of all swimming bacteria in the suspension.
In (2.2), μ is the viscosity of the suspending fluid medium, and 〈σB〉(x, t) is an
ensemble-averaged bacterial stress tensor. In writing down (2.1) and (2.2), we have
assumed incompressibility and neglected inertial forces. The latter are of negligible
importance on the length and time scales of interest. As a result, a quasi-steady
approximation for the averaged equations is sufficient and memory effects associated
with unsteady inertia are unimportant (in presence of unsteady inertial effects, a
complete specification of an ensemble would, in principle, require the specification
of all possible time trajectories leading up to the current configuration). Indeed,
considering a typical example, that of a swimming E. Coli, one finds that the Reynolds
number based on its swimming speed is O(10−4). The details of the derivation of the
above averaged equations are given in appendix A. The bacteria here are assumed
to be neutrally buoyant, and their effect in the averaged equations appears therefore
not as a net force, but rather as a stress field. The averaged bacterial stress 〈σB〉(x, t)
arises, in part, from the intrinsic force dipole associated with the swimming bacteria,
and it is this intrinsic contribution that is responsible for the instability analysed in
this paper. 〈σB〉(x, t) equals the averaged density of force dipoles, and one finds (see
appendix A)

〈σB〉(x, t) = −n

∫
d p Ω(x, p, t)

∫ L/2

−L/2

ds
1

2
(〈 f (s, t; x, p)〉1r + r〈 f (s, t; x, p)〉1), (2.3)

where Ω(x, p, t) is the (normalized) probability density function for the spatial
location (x) and orientation ( p) of a single swimming bacterium, and n is the bacterial
number density; thus, for N bacteria swimming within a volume V , n= N/V , and∫

(nΩ) dxd p =N . Further, 〈 f (s, t; x, p)〉1 is the conditionally averaged linear force
density exerted on the fluid by a swimming bacterium of length L and configuration
[x, p]; the symbol 〈.〉1 denotes a conditional ensemble average with the position
and orientation of one bacterium specified. Here, s is an arclength coordinate with
s = ± L/2 denoting the ends of the bacterium, and r = sp in (2.3) is the axial position
relative to the geometric centre (x) of the bacterium. The need for a conditional
average arises because the force density on a given bacterium is a function of the
local ambient flow, and the latter is determined, in part, by the disturbance velocity
fields generated by neighbouring swimming bacteria. This situation is, of course,
similar to a suspension of hydrodynamically interacting passive particles (see Kim &
Karrila 1991). Thus, the average in 〈 f (s, t; x, p)〉1 is over all possible configurations
of the remaining (N − 1) bacteria in the suspension. It is shown in appendix A that
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〈 f (s, t; x, p)〉1 is given by the following expression:

〈 f (s, t; x, p)〉1= f b(s; x, p)+
1

(N −1)!

∫
ΩN−1|1(CN−1, t |[x, p]) f ′(s; x, p ; CN−1) dCN−1,

(2.4)

where we have used the abbreviated notation, CN−1 ≡ [xα, pα]N−1
α = 1, for the bacterial

configurations. In (2.4), f b(s; x, p) = f i(s; p) + f e(s; x, p) is the linear force density
exerted by an isolated bacterium with orientation p in the absence of interactions.
Here, f i(s; p) is the force density associated with the intrinsic force dipole, and is
therefore a function of the particular species of bacterium, while f e(s; x, p) is the
force density induced by an imposed flow on account of the inextensibility of the bac-
terium (it is reasonable to regard a swimming bacterium as being inextensible in
relatively weak flows); this latter contribution is one that exists even for passive
particles on account of their rigidity, and gives rise to the familiar enhancement in
viscosity of a dilute suspension of such particles. On the other hand, f ′(s; x, p ; CN−1)
is the modification in this force density due to interactions with (N − 1) other
bacteria in the volume V ; the dependence of f ′ on the configuration of the
bacterium of interest ([x, p]), and the configurations of the remaining bacteria in the
suspension (CN−1) have been indicated separately. The statistics of the configurations
are governed by suitably normalized probability density functions in phase (position–
orientation) space. In (2.4), ΩN−1|1(CN−1, t |[x, p]) is the conditional probability density
governing the configurations of (N − 1) other bacteria given the configuration of a
single bacterium [x, p], while Ω(x, p, t) is, as before (see (2.3)), the singlet probability
density. With the neglect of inertia, both f b and f ′ are completely determined by
the instantaneous configurations and velocities of the swimming bacteria, and the
time dependence in the averaged force density arises solely from the time dependence
of the probability density functions. The latter satisfy suitable kinetic equations; the
equation governing the evolution of Ω(x, p, t) appears below. Finally, we observe
that the swimming bacteria are torque free, and accordingly, 〈σB〉 given by (2.3) and
(2.4) is symmetric.

In order to write down an equation governing the singlet probability density,
Ω(x, p, t), the neutrally buoyant bacteria are assumed to execute a run-and-tumble
motion. During a run, a bacterium swims with speed U , parallel to its orientation p ,
which varies slowly as a result of a weak rotary diffusion. Thus, even in a run, there is
a gradual decorrelation in orientation on a time scale of O(D−1

r ), Dr being the rotary
diffusivity. The need for a rotary diffusivity arises because experimental observations
have shown that the path of a bacterium during a run is not a straight line (see Berg
1983). A rotary diffusion, superimposed on translation along p, is therefore used to
model this deviation from linearity. It is worth noting that, even in the limit of small
concentrations when effects related to hydrodynamic interactions between bacteria
are negligible, the rotary diffusion may not be the result of Brownian motion. For the
case of E. Coli, the rotary Brownian diffusivity calculated using the total length of
the bacterium ( ≈ 10 microns) turns out to be much smaller than that estimated using
typical trajectories obtained from experiments (see Berg 1983). It is therefore likely,
at least for E. Coli, that the observed deviations from a rectilinear trajectory during
a run are not due to thermal forces, but rather due to imperfections in the motion
of the flagella constituting the propelling helical bundle. A further indication of the
importance of Dr comes from the experimental observation of Wu et al. (2006) that
even smooth-swimming bacteria undergo a translational diffusion for long times owing
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to the coupled effects of swimming and rotary diffusion. The translational diffusivity
for such swimmers would be divergent in the dilute limit (negligible interactions) if Dr

were to be identically zero. The translational diffusivity of smooth swimmers was, in
fact, observed to be about 10 times larger than that of bacteria that run and tumble.
The bacterial concentration in these experiments was high enough for the rotary
diffusion to also include a contribution due to hydrodynamic interactions. It is shown
in § 4 that, in a dilute suspension of slender bacteria, the effect of pair-hydrodynamic
interactions on sufficiently long time scales, on the orientation of a single swimming
bacterium, may indeed be accounted for by a hydrodynamic rotary diffusivity.

The gradual changes in orientation due to rotary diffusion during runs are
interspersed with tumbles, short episodes of erratic motion that lead to a sudden,
and a rather large, change in orientation. The tumbling events may be regarded
as instantaneous, as is typically the case for bacteria; for instance, for E. Coli, the
duration of a run (τ ) is anywhere from 1 to 4 s, while the tumble mode persists only
for about 0.1 s. The statistics of the instantaneous tumbles are well approximated
by a Poisson process with frequency τ−1. We also allow for a non-trivial correlation
between the pre-tumble and post-tumble orientations. A perfectly random tumble
would imply a mean orientation change of 90◦; the average change in orientation
for E. Coli is about 68.5◦, indicating a correlation in the forward direction (see Berg
1983). With the above assumptions, Ω(x, p, t) satisfies

∂Ω

∂t
+(Up + u) · ∇xΩ+∇ p · ( ṗ Ω)−Dr∇2

p Ω +
1

τ

(
Ω−
∫
K( p| p′)Ω(x, p′, t) d p′

)
= 0,

(2.5)

where ∇p is the gradient operator over the unit sphere; in spherical polar coordinates,
∇p = 1θ ∂/∂θ + 1φ(1/ sin θ)(∂/∂φ). According to (2.5), for a force-free bacterium that
swims with velocity Up and is, in addition, convected by the fluid velocity field u, Ω

along the resulting trajectory changes due to rotary diffusion, tumbling and a rotation
( ṗ) by the ambient flow field. The ambient flow includes the disturbance velocity
fields due to neighbouring swimming bacteria, and one may therefore split the total
rotation into one by an imposed flow ( ṗ∞) and one due to interactions ( ṗi); thus

ṗ(x, t) = ṗ∞(x, t) + n

∫
ṗi(x|CN−1)ΩN−1|1(CN−1, t |x, p) dCN−1, (2.6)

Further, observe that (2.5) is an evolution equation, and therefore describes a Markov
process. This is because the statistics of the tumbling events have been modelled by
a Poisson process. The probability that a tumble occurs in an infinitesimal interval
of time dt remains the same, being proportional to dt/τ , independent of any earlier
tumbling events. With this assumption, the impulsive effect of tumbling on the
orientation distribution may be regarded as that of a linear collision process. Thus,
in a manner similar to the Boltzmann equation for gases (see Chapman & Cowling
1991), one would have a change in the probability on account of both ‘direct’ and
‘inverse’ events; the former denote a decrease in probability due to a tumble that
causes a bacterium to leave the phase space interval of interest (dx, d p), while
the latter represent the increment in probability due to all tumbling events that
lead to the final orientation of the bacterium lying in the aforementioned interval.
For a Poisson process, the effect of the direct events is simply given by Ω/τ . The
inverse events have been modelled in (2.5) by a transition probability K( p | p′);
K( p | p′) is thus the (conditional) probability density associated with an orientation
jump (tumble) from p′ to p, given that the pre-tumble orientation is p′. Thus, K( p| p′)
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determines the decorrelation accompanying a tumble; conservation of probability
implies

∫
K( p| p′) d p =

∫
K( p| p′) d p′ = 1. We choose K( p| p′) = (β/4π sinhβ) eβ( p· p′), a

simple form consistent with the aforementioned constraints, and where the parameter
β measures the correlation between the pre- and post-tumble orientations; so, for
β → 0, K = 1/4π , corresponding to perfectly random tumbles, while in the limit
β → ∞, each tumble only leads to an infinitesimally small change in orientation.
The value of β for a particular bacterium species may be determined from known
statistical measures characterizing the tumbling events. Again, for the case of E. Coli,
the mean change in orientation accompanying a tumble (〈θ〉) is about 68.5◦ (see Berg
1983). With the above form for K( p| p′), 〈θ〉 = (β/2 sinhβ)

∫ π

0
eβ cos θ (θ sin θ) dθ , and

the required average value is obtained for β ≈ 1. We also observe from (2.5) that the
bacteria are smooth swimmers in the limit τ → ∞ with orientational decorrelation
occurring on account of rotary diffusion, and due to hydrodynamic interactions on
longer time scales (see § 4). Finally, we note that, similar to ṗ, the velocity field u in
(2.5) may include both an imposed flow and the disturbance velocity fields due to
neighbouring bacteria. One may therefore write u in the form

u(x, t) = u∞(x, t) + n

∫
ui(x|CN−1)ΩN−1|1(CN−1, t |x, p) dCN−1, (2.7)

where u∞(x, t) denotes an imposed flow field, and ui(x|CN−1) is the disturbance
velocity field at the location of the given bacterium for a configuration CN−1 of the
(N − 1) other bacteria.

Writing down the governing averaged equations for the motion of a bacterial
suspension, now in their expanded form, one obtains

∇ · 〈u〉 = 0, (2.8)

−∇〈p〉 + μ∇2〈u〉 = n∇·
(∫

d p Ω(x, p, t)

[∫ L/2

−L/2

ds
1

2
( f b(s; x, p)(sp) + (sp) f b(s; x, p))

+

∫ L/2

−L/2

ds
1

2

{(
1

(N −1)!

∫
ΩN−1|1 f ′(s; x, p ; CN−1) dCN−1

)
(sp)

+ (sp)

(
1

(N −1)!

∫
ΩN−1|1 f ′(s; x, p ; CN−1) dCN−1

)}])
, (2.9)

∂Ω

∂t
+(Up + u∞+ n

∫
ui(x|CN−1)ΩN−1|1dCN−1) · ∇xΩ

+∇ p ·
({

ṗ∞(x, t)+n

∫
ṗi(x|CN−1)ΩN−1|1dCN−1

}
Ω

)

− Dr∇2
p Ω+

1

τ

(
Ω−
∫
K( p| p′)Ω(x, p′, t) d p′

)
= 0. (2.10)

The system of equations for 〈u〉, 〈 p〉 and Ω is evidently not a closed one. Both the
equations of motion (via the bacterial force density f ′) and the kinetic equation for the
singlet probability density depend on ΩN−1|1(CN−1, t |x, p), and one therefore needs to
know the statistics of multi-bacterial interactions. It is well-known from the averaged-
equation approach for viscous suspensions (see Hinch 1977) that one may make
analytical progress in the dilute limit by considering the multi-bacterial hydrodynamic
interactions in a sequential manner (pairs, triplets, etc.). This leads to what, in principle,
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is an infinite hierarchy of averaged equations with higher-order conditional averages
appearing at succeeding orders in n. Truncation of the hierarchy at any given order
leads to a statistical description accurate to the corresponding order in n; for instance,
a pair interaction scenario accurate to O(n2) is obtained by neglecting terms involving
probability density functions conditioned on the configurations of two or more
bacteria.

In this section and the next, where we carry out the stability analysis, we shall restrict
ourselves to the lowest order approximation by neglecting any correlations between
the positions and orientations of the different swimming bacteria, an approximation
valid in the dilute limit. This is equivalent to replacing the conditional averages in both
the equations of motion and in the kinetic equation for the singlet probability density
by the corresponding unconditional averages. The resulting simplified equations may
be regarded as a mean-field approximation. In the absence of an imposed flow, a
bacterium now rotates due to the mean velocity gradient produced by the disturbance
velocity fields of other bacteria whose orientations and positions remain unaffected
by the velocity disturbance due to the given bacterium. Such a mean-field treatment
is only possible because the velocity disturbance due to each bacterium is long
ranged decaying only as O(1/x2) with distance x from the bacterium; as a result,
the average velocity field in the vicinity of a given bacterium is dominated by slowly
varying contributions arising from the large number of bacteria in the far field
rather than the small rapidly fluctuating contributions of neighbouring bacteria at
distances of the order of its own size. As already indicated earlier, the effect of these
distant bacteria may be regarded in terms of a stress field, and the mean velocity
field experienced by a given bacterium in the absence of an imposed flow therefore
results from slowly varying long-wavelength anisotropic fluctuations in the effective
stress field associated with a bacterial suspension. In the context of a linear stability
analysis pertaining to the length and time scales characterizing the motion of a single
bacterium, the aforementioned slow fluctuations may then be treated as imposed
perturbations. This equivalence of the unconditional mean fields to ‘imposed’ long-
wavelength perturbations allows one to analyse the intrinsic instability of a bacterial
suspension due to long-ranged hydrodynamic interactions via a traditional stability
analysis involving the response of a quiescent suspension to an imposed perturbation.

The governing equations in the mean-field approximation may now be obtained
from by first splitting the conditional averages in (2.8)–(2.10) into an unconditional
average, the mean-field and a contribution arising from pair-correlations due
to hydrodynamic interactions (see appendix A). The former only allows for the
correlation of a bacterium orientation with its own (absolute) position in the mean
field; this then leads to extended spatial domains with correlated orientations
in the primary mode of instability (see § 3). The latter contribution considers
hydrodynamically induced correlations in the orientations of a pair of bacteria as a
function of their relative position, an effect that is expected to remain small in the
dilute limit. Thus, in the absence of an external flow, the total force density in (2.4)
may be written as

〈 f (s, t; x, p)〉1 = f̂ b(s; x, p)

+
1

(N −1)!

∫
Ω ′

N−1|1(CN−1, t |[x, p]) f ′(s; x, p ; CN−1) dCN−1, (2.11)

where f̂ b = f i(s; p) + f m(s; x, p) with f m(s; x, p) = (1/(N − 1)!)
∫

ΩN−1(CN−1, t)
f ′(s; x, p ; CN−1)dCN−1 being the force density arising from the mean field; the average
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in the second term in (2.11) is now based on Ω ′
N−1|1, the perturbation in the conditional

probability density from its uncorrelated value, and is clearly O(n) for n → 0. In a
similar manner, one may, in the absence of an imposed flow, approximate the velocity
field u =

∫
ui(x|CN−1)ΩN−1|1dCN−1 in (2.10) by a mean-field convection (um) of the

singlet probability density Ω , and
∫

ṗi(x|CN−1)dCN−1 in the same equation by the
rotation of a given bacterium due to the gradient associated with the mean field ( ṗm).
The additional contributions arising from pair-correlations will again be proportional
to Ω ′

N−1|1, and may be neglected. Further, dropping the averaging brackets (now

denoting the unconditional averages) for notational simplicity, system of equations
(2.8)–(2.10) reduces to the following simpler form in the mean-field approximation:

∇ · um = 0, (2.12)

− ∇p+μ∇2um = n∇ ·
(∫

d p Ω(x, p, t)

∫ L/2

−L/2

ds
1

2
( f̂ b(s; x, p)(sp) + (sp) f̂ b(s; x, p))

)
,

(2.13)

∂Ω

∂t
+(Up +um) · ∇xΩ+∇ p · ( ṗm Ω)−Dr∇2

p Ω +
1

τ

(
Ω−
∫

K( p| p′)Ω(x, p′, t) d p′
)

= 0.

(2.14)

We note from comparing the above set of equations with original system (2.8)–
(2.10) that the difference between the velocity field in the equations of continuity
and motion, and that in the kinetic equation (wherein both the translational and
rotational convections must not include the direct effect of the test bacterium),
becomes vanishingly small for large N in the coarse-grained mean-field approximation.

Using f̂ b(s; x, p) = f i(s; p) + f m(s; x, p), we observe that, in the absence of inertia,
the force density associated with the intrinsic dipole, f i(s; p), must be proportional
to μU . Assuming an axial force density, we have f i(s, p) ∝ f i(s/L)(μU p), where
f i(s/L) is a dimensionless scalar function denoting the detailed spatial dependence
of the force density. Further, using this form in the right-hand side of (2.13), the term
representing the bacterial stress tensor σB , in a dilute suspension, may be written as
the sum of active (swimming) and passive contributions, where the former is now in
the form of an orientationally averaged stress (see Simha & Ramaswamy 2002). Thus,

σB = − C(nμUL2)

∫
d p Ω(x, p, t)

(
pp − 1

3
δ

)
d p

− n

∫
d p Ω(x, p, t)

∫ L/2

−L/2

ds
1

2
( f m(s; x, p)(sp) + (sp) f m(s; x, p)). (2.15)

The constant of proportionality C in the first term is determined by f i(s/L); speci-

fically, C =
∫ 1/2

−1/2
ŝf i(ŝ) dŝ with ŝ = s/L. Note that C > 0 for pushers, and C < 0 for

pullers. An expression for the linear force density, and thence, the value of C, for a
slender bacterium like E. Coli has been calculated elsewhere (see Liao et al. 2007);
this will be used later in § 3 when obtaining a quantitative estimate for the threshold
concentration for instability in a suspension of E. Coli. Also note that in (2.15) we
have defined the active component of σB to be traceless without loss of generality,
since an isotropic bacterial stress may be balanced by a modified pressure field
in (2.2).

Using the simplified form for σB from (2.15), the system of averaged equations
governing the motion of a dilute bacterial suspension, now written in index notation,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

70
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200900706X


Critical bacterial concentration for the onset of collective swimming 369

is given by

∂ui

∂xi

= 0, (2.16)

− ∂p

∂xi

+ μ
∂2ui

∂x2
j

− C(nμUL2)
∂

∂xj

∫
d p Ω

(
pipj − 1

3
δij

)

= n
∂

∂xj

∫
d p Ω

∫ L/2

−L/2

s ds
1

2
(f ′

i (s; x, p)pj + pif
′
j (s; x, p)), (2.17)

∂Ω

∂t
+(Upi+ui)

∂Ω

∂xi

+
∂

∂pi

(ṗiΩ)−Dr∇2
p Ω+

1

τ

(
Ω−
∫

K( p| p′)Ω(x, p′) d p′
)

= 0, (2.18)

where we have now dropped the reference to the mean-field approximation via the
superscript ‘m’, the mean-field force density being denoted by f ′.

In the homogeneous base state, an isotropic orientation distribution leads to a
modified pressure field, but no bulk fluid motion. In other words, u(0)(x, t) = 0,

p(0)(x, t) = P0, Ω
(0) = (4π)−1 is an exact solution of (2.16)–(2.18), P0 being an

arbitrary constant. We now assume small perturbations about this base state given
by u = u′(x, t), p = P0 + p′(x, t), and Ω = 1/4π + Ω ′(x, p, t); the corresponding
perturbation in the number density field is given by n

∫
Ω ′(x, p, t) d p. This leads

to the following equations, at linear order, governing the stability of the system to
perturbations in the velocity and orientation fields:

∂u′
i

∂xi

= 0, (2.19)

− ∂p′

∂xi

+ μ
∂2u′

i

∂x2
j

− C(nμUL2)
∂

∂xj

∫
d p Ω ′

(
pipj − 1

3
δij

)

=
n

4π

∂

∂xj

∫
d p
∫ L/2

−L/2

s ds
1

2
(f ′

i pj + pif
′
j ), (2.20)

∂Ω ′

∂t
+ Upi

∂Ω ′

∂xi

− Dr∇2
p Ω ′ +

1

τ

(
Ω ′ −

∫
K( p| p′)Ω ′(x, p′, t) d p′

)
= − 1

4π

∂ṗi

∂pi

. (2.21)

We note that the convection of the weak orientation anisotropy, Ω ′, by the
perturbation flow field u′ has been neglected to linear order. For the same reason,
the orientation distribution is assumed to be isotropic when evaluating the passive
component of the bacterial stress, since the force density f ′, unlike the intrinsic force
dipole, arises on account of the imposed velocity perturbation; thus, the anisotropy
in orientation probability due to the imposed flow only generates a smaller correction
at a quadratic order in this case. The stability analysis in the next section is based
on (2.19)–(2.21), and is first carried out for a dilute suspension of smooth swimmers
(τ → ∞), in which case the physical interpretation and the form of the neutral curve
is the simplest; the analysis for the general case follows thereafter.

In § 3, we argue that a bacterial suspension is most susceptible to long-wavelength
disturbances, which are therefore the modes relevant in the determination of the
neutral stability curve. Anticipating the dominance of long-wavelength modes, one
may approximate the fluid velocity disturbance on length scales of O(L) by a linear
shearing flow. Assuming the bacterium to rotate as an axisymmetric body of aspect
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ratio r in response to this ambient linear flow, one may write

ṗi = ω′
ijpj + F(r)[e′

ijpj − pi(e
′
jkpjpk)], (2.22)

where ω′
ij = (1/2)(∂u′

i/∂xj −∂u′
j /∂xi) and e′

ij =(1/2)(∂u′
i/∂xj+∂u′

j /∂xi) are the vorticity
and rate of strain tensors associated with the imposed disturbance flow u′, and F(r) is
a dimensionless function of the aspect ratio; for a spheroid F(r) = (r2 −1)/(r2+1) (see
Kim & Karrila 1991) and, in addition, F(r) approaches unity in the limit of a slender
body of an arbitrary cross-section. The second term in brackets in (2.22) acts to
preserve the length (head and tail) of the reorienting bacterium. For E. Coli, the
largest transverse dimension is the diameter of its head which is between 1 and 2
microns, while the combined length of the cell and the flagellar bundle is about 10
microns, leading to an aspect ratio of about 6; thus, F(r) ≈ 1 for E. Coli.

In the limit of long wavelengths, one may also obtain an expression for the force
density, f ′, as a function of the shape of the bacterium, from the known response of
a passive particle of the same shape to an ambient linear flow. For instance, for a
spherical bacterium, the symmetric first moment of the force density is just the stresslet

associated with a rigid spherical particle; thus, 1/4π
∫

d p
∫ L/2

−L/2
s ds (1/2)(f ′

i pj +

pif
′
j ) = −(5π/6) μL3e′

ij with L now being the bacterium diameter (see Kim & Karrila
1991). On the other hand, in the limit of large aspect ratios, the linear force density
is known from slender-body theory and has only an axial component, being given by
f ′

i = −(2πμs/(ln r))pi(e
′
klpkpl) to leading (logarithmic) order in the aspect ratio (see

Batchelor 1970); thus, 1/4π
∫

d p
∫ L/2

−L/2
s ds (1/2)(f ′

i pj + pif
′
j ) = −(πμL3/45(ln r)) e′

ij .

For an arbitrary aspect ratio spheroid, a closed-form expression for the integral of
the linear force density, although cumbersome, may still be obtained (see Kim &
Karrila 1991). In all these cases, we have assumed the bacterium to behave as
a rigid inextensible particle. In general, for an axisymmetric bacterium, one may

still write 1/4π
∫

d p
∫ L/2

−L/2
s ds (1/2)(f ′

i pj + pif
′
j ) = −G(r) μL3e′

ij , where G(r) (> 0) is

a function of the aspect ratio, and may also account for a possible compliance
or slip at the surface of the bacterium. In the absence of the active stress
component, the quantity (1/2) (nL3)G(r) represents the dimensionless enhancement
in the (instantaneous) viscosity of a suspension with an isotropic distribution of
axisymmetric particles of aspect ratio r . It is worth noting that for a suspension
of passive anisotropic particles, an additional contribution to the viscosity arises on
account of Brownian motion; this entropic contribution is again O(nL3) in the dilute
limit, and is due to Brownian torques acting to randomize particle orientations (see
Hinch & Leal 1972). A bacterial suspension, however, is fundamentally different in
that a swimming (neutrally buoyant) bacterium does not exert any net torque on the
fluid. Thus, similar contributions to the suspension viscosity due to the randomizing
influences of tumbling and rotary diffusion must stem from moments of the relevant
force distributions higher than the first. This is likely to make such contributions
numerically small, and we therefore assume the enhancement in viscosity of the
bacterial suspension, in the absence of the active stress component, to be entirely on
account of hydrodynamic forces.

Since the system under consideration is unbounded and quiescent in its base
state, the effect of an arbitrary disturbance may be completely characterized by the
response of the system to three-dimensional Fourier modes. The latter response may
be obtained by Fourier transforming (2.19)–(2.21). Further, using (2.22) in (2.21), the
aforementioned expression for the passive component of the stress induced by the
imposed perturbation, and the Fourier transformed equation of continuity, û′

iki =0,
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one obtains

−4π2k2μ

[
1 +

(nL3)G(r)

2

]
û′

i + 2πiC(nμUL2)kl

∫
d p Ω̂ ′

(
plpj − 1

3
δlj

)
(δij −k̂i k̂j ) = 0,

(2.23)

∂Ω̂ ′

∂t
−(2πiU )(klpl)Ω̂

′ −Dr∇2
p Ω̂ ′

+
1

τ

(
Ω̂ ′−
∫

K( p| p′)Ω̂ ′(k, p′) d p′
)

= −3i

2
F(r)(kiû

′
j )pipj , (2.24)

where k̂ = k/k is the unit vector in Fourier space and (δij − k̂i k̂j ) is a projection
operator that serves to eliminate the pressure from the equations of motion. In (2.23)
and (2.24), û′(k, t) and Ω̂ ′(k, p, t) represent the time-dependent Fourier amplitudes
of perturbations in the velocity and orientation fields, and we have combined the
passive component of the bacterial stress and the stress in the solvent medium into
a combined viscous stress with an effective viscosity of μ[1 + nG(r)/2]; as indicated
above, the increased viscosity reflects the stabilizing nature of the passive stress
component. The Fourier transform itself is defined as ĝ(k) =

∫
e2πik·xg(x) dx.

We note from the forcing function on the right-hand side of (2.24) that the tensor
pipj being symmetric, it is only the symmetric (extensional) part of the velocity
gradient, (kiû

′
j +kj û

′
i), that drives an anisotropy in orientation space. Now, the shearing

flow associated with any Fourier mode may be decomposed locally into an extensional
and a rotational component, and at linear order, one may superpose the separate
effects related to extension and rotation to obtain the net anisotropy in orientation
probability. It is then easily seen that the rotational component of the velocity field
merely acts to rigidly rotate the isotropic base-state orientation distribution, and
it is only the extensional component that generates a peak in orientation along
the extensional axis, and thence, an anisotropy. Further, as is evident from (2.22),
the function F(r) is a measure of the relative roles of extension and vorticity in
determining the angular velocity of a bacterium. The effect of extension is maximum
in the limit of slender bacteria when F(r) ≈ 1, and the bacterium rotates as a fluid
line element; on the other hand, F(r) → 0 in the limit r → 1, so that spherical
bacteria only respond to the ambient vorticity. Since it is the extensional part of
the disturbance flow u′ that leads to an anisotropy in orientation, one expects the
destabilizing effects of the bacterial stress to be the strongest for slender bacteria. The
stability criterion derived in the next section is consistent with this expectation, and
the threshold concentration for instability diverges in the limit of spherical bacteria.

3. Stability analysis: calculation of the neutral curve
3.1. Scaling analysis

As explained in § 1, the instability of a dilute bacterial suspension is driven by the
mutual reinforcement of perturbations in the velocity and orientation fields. Let
us examine the anisotropy in the swimming (active) stress induced by an imposed
disturbance velocity wave of amplitude u′ and wavelength k−1; this anisotropic stress
is represented by the last term on the left-hand side in (2.20), and is O(nμUL2Ω ′).
The scaling estimate may be understood as the product of the density of force
dipoles (nμUL2) times the anisotropy in orientation (Ω ′). The rate of accumulation
of the destabilizing anisotropy is given by the dilatation in orientation space, that
is, ∂Ω ′/∂t ∝ (∇p · ṗ) in (2.21), where the rate of change of orientation due to
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the imposed velocity disturbance ṗ scales with the velocity gradient ku′. Thus, the
total accumulated anisotropy in orientation space (Ω ′) is the product of the rate
of accumulation and an appropriate correlation time, which is a measure of the
duration of this accumulation. We denote the latter as tcorr , so that Ω ′ ∼ O(ku′tcorr ).
The motion of the suspension is driven by the divergence of the resulting anisotropic
swimming stress, and is therefore O(nμUL2k Ω ′). Using the above estimate for Ω ′, the
divergence of the destabilizing swimming stress is O(nμUL2k2u′tcorr ). On the other
hand, the stabilizing factor is the viscous response of the Newtonian suspending fluid;
the divergence of this viscous stress is O(μ[1 + (nL3)G/2]k2u′), and therefore, again
O(k2). Clearly, one expects the destabilizing bacterial stress to become dominant
once tcorr exceeds a wavelength-independent threshold. Equating the scaling estimates
for the swimming and viscous stresses, one obtains that the necessary condition for
instability is tcorr > O{(nUL2)−1[1 + (nL3)G/2]}. This critical correlation time may be
reformulated as a threshold concentration for instability; one obtains

(nL3)crit =(L/Utcorr )

/[
1 − L

Utcorr

G(r)

2

]
.

Now we use the above scaling estimates to analyse the instability for various
cases. To begin with we consider the limit Dr → 0, τ → ∞, when there exists no
intrinsic mechanism by which the orientation of an isolated swimming bacterium
may decorrelate. For this case, the only limiting factor is the wavelength of the
imposed disturbance which is also the distance over which the velocity gradient ku′

remains correlated. For instance, if k > O{nL2/[1 + (nL3)G/2]}, the bacteria swims
into a region where the velocity gradient has a different sign before accumulating
the required orientation anisotropy, and, therefore, the destabilizing swimming stress
remains smaller than the critical threshold value. On the other hand, for sufficiently
long wavelengths (k < O{(nL2)/[1+(nL3)G/2]}), the orientation anisotropy continues
to accumulate until a time of O{(nUL2)−1[1 + (nL3)G/2]} when the destabilizing
swimming stress overcomes the stabilizing effects of fluid viscosity, and the suspension
becomes unstable. This leads us to the conclusion that a suspension of smooth
swimmers (pushers), in the limit Dr → 0, is always unstable to sufficiently long-
wavelength disturbances at any non-zero bacterial concentration. The neutral curve
is trivially given by (nL3)crit = 0 for this limit since tcorr → ∞. Of course, this
trivial estimate results from the neglect of correlations arising from hydrodynamic
interactions. Pairwise interactions lead to a decorrelation in orientation in general,
and as will be seen in § 4; pairwise interactions between slender bacteria in particular
may be modelled by a hydrodynamic rotary diffusivity (Dh

r ), which is, however,
sufficiently small, and a suspension of weakly interacting smooth swimmers remains
unconditionally unstable.

Next we consider smooth swimmers – τ → ∞, Dr finite. The orientation bias in
this case accumulates only for a time of O(D−1

r ), and the resulting anisotropy in the
orientation distribution, again given by the product of the rate of accumulation (ku′)
and the correlation time (D−1

r ), is O(ku′/Dr ). The corresponding swimming stress
is now O{(nμUL2)(ku′/Dr )}. Since, a Newtonian behaviour would lead to the
stress of O(μku′), we note that the response of a suspension of smooth swimmers
to an imposed long-wavelength disturbance is Newtonian, and the swimming
viscosity μs is O(μnUL2/Dr ). Further, on account of the destabilizing nature
of the swimming stress (for pushers; C > 0), the viscosity μs must be negative.
In the limit of rapid rotary diffusion μ[1 + (nL3)G/2] � μs , and stability results.
However, the suspension of smooth swimmers does become unstable when
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2π

k

u′

Figure 3. The physical mechanism of mutual reinforcement of the velocity and orientation
perturbation fields. As the Fourier (velocity)mode grows in amplitude, the orientation
distribution in the vicinity of the nodes of the velocity wave becomes increasingly peaked
along the local extensional axis; this anisotropy in turn reinforces the velocity perturbation.
Note that the local picture as indicated by the dashed circle is identical to the alignment-induced
enhancement shown in figure 2.

μs > γ1μ[1 + (nL3)G/2], where γ1 is a constant, and a function of bacterium shape;
the analysis given below determines the value of γ1 for a bacterium of aspect ratio
r . One expects the neutral stability curve for a suspension of smooth swimmers
to be of the form μs/μ = nUL2/Dr = γ1[1 + (nL3)G/2]; in other words, the critical
concentration ((nL3)crit ) for instability in a suspension of smooth swimmers must
be of the form γ1(DrL/U )/[1 − (γ1G/2)(DrL/U )]. Thus, there exists a critical value
of the rotary diffusivity (Dcrit

r = (2/(γ1G))(U/L) at which the threshold concentration
diverges. For Dr larger than this critical value, the destabilizing swimming stress
associated with the intrinsic force dipole remains subdominant, and the response
of the bacterial suspension is similar to that of a suspension of passive particles.
This transition in behaviour is discussed in more detail later when we analyse the
general scenario involving decorrelation on account of both rotary diffusion and
tumbling. The above condition may also be interpreted as defining the minimum
speed of a smooth swimmer Ucrit = (DrL)(γ1G/2) required for instability in a bacterial
suspension.

We note that in either of the aforementioned cases, the bacterium needs to swim
a distance of O{(nL2)−1[1 + (nL3)G/2]} in a time of O{(nUL2)−1[1 + (nL3)G/2]}
before it accumulates a destabilizing swimming stress of the required magnitude. In
the limit k → 0, this distance becomes negligibly small compared to the disturbance
wavelength, and one may therefore neglect the translation of the bacterium in (2.24)
in the limit of long-wavelength disturbances. The dominant unstable modes thus arise
due to the anisotropic stress created by an essentially stationary bacterium orienting
in response to an imposed velocity perturbation. The rheological response of the
bacterial suspension that results from this anisotropy is, on the scale of O(k−1), both
local and linear, and thence Newtonian, as indicated by the above scaling arguments.
The coupling between the destabilizing velocity and orientation perturbation fields is
illustrated in figure 3 from which it should also be evident that the long-wavelength
instability will be stationary rather than oscillatory in character. Thus, the principle
of exchange of stabilities holds for this case (Chandrasekhar 1961).

3.2. Neutral curve for smooth swimmers

Since the long-wavelength disturbances are the most dangerous, these are the modes
relevant to the determination of the neutral curve. We now exploit the above
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simplifications in the limit k → 0 to first determine the neutral curve for a suspension
of smooth swimmers (τ → ∞) before proceeding to the general case of arbitrary
(τDr ). First, taking the limit τ → ∞ in (2.23) and (2.24), one has the following
equations governing the evolution of Fourier modes in a suspension of smooth
swimmers:

−4π2k2μ

[
1 +

(nL3)G(r)

2

]
û′

i + 2πiC(nμUL2)kl

∫
d p Ω̂ ′

×
(

plpj − 1

3
δlj

)
(δij − k̂i k̂j ) = 0, (3.1)

∂Ω̂ ′

∂t
−(2πiU )(klpl)Ω̂

′ −Dr∇2
p Ω̂ ′ =−3i

2
F(r)(kiû

′
j )pipj . (3.2)

On account of the stationary nature of the unstable long-wavelength modes, one may
set ∂Ω̂ ′/∂t = 0. Further, neglecting the effect of translation in (3.2) (this term is O(k)
in the limit k → 0), one obtains the following simplified system of equations on the
neutral stability curve for a suspension of smooth swimmers:

−4π2k2μ

[
1+

(nL3)G(r)

2

]
û′

i +2πiC(nμUL2)kl

∫
d p Ω̂ ′

×
(

plpj − 1

3
δlj

)
(δij − k̂i k̂j ) = 0, (3.3)

− Dr∇2
p Ω̂ ′ =−3i

2
F(r)(kiû

′
j )pipj . (3.4)

It is readily seen that the solution of (3.4) must be of the form Ω̂ ′ = C′kiû
′
jpipj ;

one finds C′ = −(i/4Dr )F(r) on substitution. This anisotropy in the orientation
distribution is the one expected for a balance of shear and rotary Brownian motion
in the limit of weak shear. The perturbation in orientation is thus aligned with the
local extensional axis of the flow in accordance with earlier arguments at the end of
§ 2, and in agreement with the illustration in figure 3. This corresponds, in fact, to a
Newtonian viscous response similar to that of a suspension of Brownian rods, except
with an opposite sign owing to the difference in direction of the bacterium force
dipole; the latter may be seen by substitution into the equations of motion. Indeed,
using Ω̂ ′ = −(i/4Dr )F(r)kiû

′
jpipj in (3.3), one obtains

−4π2k2μ

[
1 +

(nL3)G(r)

2

]
û′

i − 2πiC(nμUL2)kl(δij − k̂i k̂j )

×
[∫

d p plpjpmpn

]
i

4Dr

F(r)kmû′
n = 0. (3.5)

Further, on using the standard result for the integration of a unit normal polyad over
the surface of a unit sphere (see Bird, Armstrong & Hassager 1987)∫

plpjpmpn d p =
4π

15
(δlj δmn + δlmδjn + δlnδjm),

and the incompressibility of the fluid velocity field (3.5) simplifies to[
−4π2

[
1 +

(nL3)G(r)

2

]
μ +

2π2C

15

(
nμUL2

Dr

)
F(r)

]
k2û′

i = 0. (3.6)
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Assuming C > 0, as is the case for a pusher, the equation for the neutral stability
curve is given by

(
nUL2

Dr

)
=

30

CF(r)

[
1 +

(nL3)G(r)

2

]
, ⇒ (nL3)crit =

30

CF(r)

(
DrL

U

)
[
1 − 15G(r)

CF(r)

(
DrL

U

)] (3.7)

for a suspension of smooth swimmers. This is consistent with the general form
anticipated from earlier scaling arguments for smooth swimmers. In particular,
the analysis yields the value of the constant γ1 appearing in this general form;
γ1 = 30/(CF(r)). The critical value of Dr above which the suspension is stable at all
concentrations is

Dcrit
r =

C

F(r)

15G(r)

(
U

L

)
.

From (3.6), it is seen that for rotary diffusivities greater than this critical value, the
effective viscosity of the stable bacterial suspension is given by

μB = μ

[
1 +

(nL3)G(r)

2

(
1 − CF(r)

15G(r)

(
U

LDr

))]
.

The value of C for a given species of bacterium may be readily estimated from the
drag exerted on the fluid by its head when swimming.

Following Liao et al. (2007), we now estimate C for an E. Coli, assuming a constant
force density along both the head and tail of the swimming bacterium. Slender body,
at leading order, does predict a constant force density in translation; thus, the higher
(effective) aspect ratio of the helical tail ensures that the above assumption is more
accurate for the tail than it is for the head. The latter may be approximated by a
spheroid of aspect ratio 2. With the assumption of a constant force density, and the
neglect of any hydrodynamic interaction between the head and tail, one only needs
the total drag FD on the head in order to obtain an estimate for the force density f in
(2.3); the helical tail, of course, exerts an equal and opposite propulsive force. From
the known expression for the Stokes drag on a spheroid of aspect ratio re translating
along its axis (see Happel & Brenner 1973), one may write FD = M−1μULH , LH being
the length of the head. Here, the axial mobility coefficient M is given by

M =
1

8π

[
− 2r2

e(
r2
e − 1

) +

(
2r3

e − re

)
(
r2
e − 1

)3/2
ln

{
re +
(
r2
e − 1

)1/2
re −
(
r2
e − 1

)1/2
}]

. (3.8)

Thus, f (s) = M−1μUp on the head ((1/2−α)L < s < L/2), where α =LH/L ≈ 0.2 for
an E. Coli; further f (s) = −α/(1−α)M−1μU p ≈ − 0.25M−1μUp on the tail (−L/2 <

s < (1/2 − α)L). Using (2.3), one obtains

σB = −n

2

∫
d p Ω(x, p, t)

(
pp− 1

3
δ

)[∫ L/2

(1/2−α)L

M−1μUsds

−
∫ (1/2−α)L

−L/2

α

(1−α)
M−1μUsds

]
, (3.9)

= −α

2
M−1(nμUL2)

∫
d p Ω(x, p, t)

(
pp − 1

3
δ

)
. (3.10)
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On comparison with (2.15), one finds C ≈ (α/2)M−1. Finally, using α = 0.2, and
(3.8) with re = 2, one obtains C ≈ 0.57 for the case of E. Coli. Thus, for the
smooth-swimming mutant strain of E. Coli (for instance, the strain RP9535 used by
Wu et al. 2006), equation (3.7) for the neutral curve corresponds to the following
threshold concentration:

(nL3)E .Coli
crit =

52.6(DrL/U )

[1 − 2.05(DrL/U )]
. (3.11)

for instability; in (3.11), we have used the limiting values of F(r) (≈ 1) and G(r) (≈
2π/(45(ln r))) for a slender bacterium.

3.3. Neutral curve for wild-type tumblers

Moving on to the general case, where the bacteria execute a run-and-tumble
motion (the wild-type E. Coli strain), we note that tumbling provides an additional
mechanism for limiting the orientational bias accumulated by a swimming bacterium.
In the limit of small τ (specifically, τ � D−1

r ), for instance, an imposed velocity
disturbance, even in the limit of long wavelengths, acts to orient a bacterium
only until it tumbles, and the anisotropy in the orientation distribution is now
O(ku′τ ). The equation for the neutral curve in this limit therefore takes the form
nUL2τ = γ2[1 + (nL3)G(r)/2], where γ2 is again a function of the bacterium shape,
and the correlation parameter (β) characterizing the tumbling events. Similar to the
case of rapid rotary diffusion, the anisotropy in the swimming stress, in the limit
of small bacterial number densities or high tumbling frequencies, is not enough to
overcome the stabilizing contributions arising from the solvent viscosity and the
passive stress component. The bacterial suspension is stable for concentrations less
than (L/(Uτ ))γ2/[1−(γ2G/2)(L/(Uτ ))], and when the tumbling time decreases below a
critical value of (γ2G/2)(L/U ), the suspension is unconditionally stable. Interestingly,
there does exist an experimental realization of this rapid tumbling limit. Wu et al.
(2006) measured the translational diffusivity of a mutant strain of E. Coli wherein
mutation led to the rotation of the flagella in the clockwise direction alone, in turn
leading to an incessant tumbling behaviour (for the case of smooth swimmers, the
mutation causes the flagellar bundle to rotate only in the counterclockwise direction).
Although the translational diffusivity was only measured for a single concentration
for these rapid tumblers, the values of the diffusivities at this concentration were
nevertheless much lower than those for smooth swimmers or the wild-type strain.

In the general case when tumbling and rotary diffusion occur on comparable time
scales, one anticipates a neutral curve of the general form nUL2/Dr = γ3f (τDr ; β)[1+
(nL3)G(r)/2], where γ3 is a function of the aspect ratio for a slender bacterium, and
β is the correlation parameter in the transition probability K( p| p′) governing a
tumbling event. Evidently, for τDr → ∞, or equivalently, in the limit of perfectly
correlated tumbles (β → ∞), the general equation for the neutral curve must reduce
to the form (nUL2/Dr ) = (30/CF(r))[1 + (nL3)G(r)/2], found earlier for the case of
smooth swimmers.

We now proceed to determine the form of the neutral curve when τDr ∼ O(1). To
begin with, we note that even in the presence of both tumbling and rotary diffusion, a
bacterium has to swim the same distance of O(nL2)−1[1+(nL3)G(r)/2], asymptotically
small in relation to the wavelength k−1 of the imposed velocity disturbance in the
limit k → 0, in order to accumulate the necessary orientational bias for instability; in
addition, the resulting instability continues to be stationary in character. Therefore,
for purposes of determining the neutral stability curve, one may again neglect both
∂Ω̂ ′/∂t and the translation term in (2.24), leading to the following simplified set of
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equations:

−4π2k2μ

[
1 +

(nL3)G(r)

2

]
û′

i + (2πiC)kl

∫
d p Ω̂ ′

(
plpj − 1

3
δlj

)
(δij − k̂i k̂j ) = 0, (3.12)

∇2
p Ω̂ ′ =

1

(τDr )

(
Ω̂ ′−
∫

K( p| p′)Ω̂ ′(k, p′) d p′
)

+
3i

2

(
nUL2

Dr

)
F(r)(kiû

′
j )pipj . (3.13)

We have used the scales U and nL2 for the velocity field and wavenumber, respectively,
while continuing to use the same symbols for the resulting dimensionless variables in
the interests of notational simplicity. It now becomes convenient to first write down
the formal solution of (3.13) in terms of a modified Green’s function GM ( p| p′) of the
orientation Laplacian as

Ω̂ ′ =
1

(τDr )

∫
GM ( p| p′)

[
Ω̂ ′(k, p′)−

∫
K( p′| p′′)Ω̂ ′(k, p′′)d p′′

]
d p′

+
3i

2

(
nUL2

Dr

)
F(r)kiû

′
j

∫
GM ( p| p′)p′

ip
′
j d p′, (3.14)

where

∇2
p GM ( p| p′) = δ( p − p′) − 1

4π
. (3.15)

The need for a modified Green’s function arises because the orientational Laplacian
has a zero eigenvalue corresponding to a steady isotropic distribution on the unit
sphere, and the usual Green’s function is therefore not well defined. However, in the
present case, conservation of probability in orientation space implies that the forcing
function (terms on the right-hand side) in (3.13) has a net zero contribution when
integrated over the unit sphere. Physically, one only needs the perturbative response
to a redistribution of probability in orientation space rather than to a net addition,
and the use of GM ( p| p′) is therefore appropriate. The modified Green’s function is
given by

GM ( p| p′) = − 1

4π

∞∑
n=1

(2n + 1)

n(n + 1)
Pn( p · p′), (3.16)

where GM ( p| p′) describes the long-time response to a rearrangement of an initially
isotropic distribution of orientational probability into a perfectly aligned one, the
direction of alignment being given by p′. In (3.16), Pn is the Legendre polynomial
of the nth degree, and we note that the summation does not include P0 as discussed
above. In spherical polar coordinates, p · p′ = cos θ1 cos θ2 + sin θ1 sin θ2 cosφ, where
θ1 and θ2 are, respectively, the polar angles of the points p and p′ on the unit sphere,
and φ the azimuthal angle between them. Further, on use of the well-known addition
theorem for Legendre polynomials (for instance, see Gradshteyn & Ryzhik 1965), the
above expression reduces to the familiar form of the fundamental solution of the
orientational Laplacian given in mathematical texts. Rather surprisingly, one does
not need the detailed expression for GM ; indeed, it will be seen that the necessary
information may, in fact, be obtained from the form of the neutral curve for smooth
swimmers (τ → ∞) derived earlier (see (3.7)).
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With GM ( p| p′) known, one may write down the formal solution of (3.14), a
Fredholm integral equation of the second kind, as a Neumann series

Ω̂ ′ =

[
1 +

1

(τDr )
G +

1

(τDr )2
G2 + · · ·

]
3i

2

(
nUL2

Dr

)
F(r)kiû

′
j

∫
GM ( p| p′)p′

ip
′
j d p,

(3.17)

where the convergence of the above formal series will be demonstrated by explicit
summation. In (3.17), the operator G is defined by

G(.) =

∫ [
GM ( p| p′) −

{∫
d p′′GM ( p| p′′)K( p′′| p′)

}]
(.)d p′. (3.18)

In order to evaluate Ω̂ ′, we will need the following two results proved in appendix B:

kiûj

∫
K( p| p′)p′

ip
′
jd p′ =

[
(3 + β2) sinhβ − 3β coshβ

β2 sinhβ

]
(kiû

′
j )pipj , (3.19)

kiûj

∫
GM ( p| p′)p′

ip
′
jd p′ = C(kiû

′
j )pipj , (3.20)

where the constant C would, in principle, be determined using (3.16) for GM ( p| p′).
However, it turns out that C may also be evaluated using neutral curve (3.7) derived
earlier for smooth swimmers. Using (3.19) and (3.20), we have

kiû
′
j G(pipj ) = kiû

′
j

[
Cpipj − (3 + β2) sinhβ − 3β coshβ

β2 sinhβ

×
∫

d p′GM ( p| p′)p′
ip

′
j

]
, (3.21)

= C
[
1 − (3 + β2) sinhβ − 3β coshβ

β2 sinhβ

]
(kiû

′
j )pipj , (3.22)

= 3C (β coshβ − sinhβ)

β2 sinhβ
(kiû

′
j )pipj . (3.23)

Using (3.23) in (3.17), one obtains

Ω̂ ′ =

[
1+

3C
(τDr )

(β coshβ − sinhβ)

β2 sinhβ
+

9C2

(τDr )2
(β coshβ − sinhβ)2

β4 sinh2 β
+ · · ·
]

× 3iC
2

F(r)

(
nUL2

Dr

)
kiû

′
jpipj , (3.24)

=
1[

1 − 3C
(τDr )

(β coshβ − sinhβ)

β2 sinhβ

] 3iC
2

F(r)

(
nUL2

Dr

)
kiû

′
jpipj . (3.25)

Now, using (3.25) for Ω̂ ′ in equations of motion (3.12), one has the following relation
in terms of the Fourier amplitude of the velocity field alone:
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û′
i = −û′

n

⎡
⎢⎢⎣3CC

4πk2
F(r)

klkm(δij − k̂i k̂j )[
1 − 3C

(τDr )

(β coshβ − sinhβ)

β2 sinhβ

] [
1 +

(nL3)G(r)

2

]
⎤
⎥⎥⎦

×
(

nUL2

Dr

)∫
plpjpmpn d p. (3.26)

The above relation is of the general form û′
i = −Tinû

′
n. Since û′

iki = 0, Tin must be

of the general form −δin + qk̂i k̂n, q being an arbitrary constant. However, Tin as
defined by (3.26) is proportional to (δij − k̂i k̂j ), and is therefore orthogonal to k̂i . This
additional orthogonality condition implies q =1, so that⎡

⎢⎢⎣3CC
4πk2

F(r)
klkm(δij − k̂i k̂j )[

1 − 3C
(τDr )

(β coshβ − sinhβ)

β2 sinhβ

] [
1 +

(nL3)G(r)

2

]
⎤
⎥⎥⎦

×
(

nUL2

Dr

)∫
plpjpmpn d p = −δin + k̂i k̂n, (3.27)

Using i = n, and the known result quoted above for the orientational integral, the
equation for the neutral stability curve as a function of (τDr ) and (nUL2/Dr ) finally
takes the form(

nUL2

Dr

)
= − 5

CCF(r)

[
1 − 3C

(τDr )

(β coshβ − sinhβ)

β2 sinhβ

][
1 +

(nL3)G(r)

2

]
. (3.28)

The constant C may now be determined by comparing (3.28) with its appropriate
limiting form (3.7) for τ → ∞; this gives C = −1/6, and thus, the neutral stability
curve for the general case is(

nUL2

Dr

)
=

30

CF(r)

[
1 +

1

2(τDr )

(β coshβ − sinhβ)

β2 sinhβ

] [
1 +

(nL3)G(r)

2

]
. (3.29)

As before, criterion (3.29) is more conveniently formulated in terms of a critical
non-dimensional bacterial concentration. To this end, (3.29) may be rewritten as

(nL3)crit =

30

CF(r)

(
DrL

U

)[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]
{
1 − 15G(r)

CF(r)

(
DrL

U

)[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]} . (3.30)

As was the case for smooth swimmers, the critical concentration given by (3.30)
diverges when the orientation decorrelation becomes sufficiently rapid. This divergence
occurs when

15G(r)

CF(r)

(
DrL

U

)[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]
→ 1,

where the factor,

15G(r)

CF(r)

(
DrL

U

)[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]
,
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is a measure of the rate of decorrelation in the presence of both diffusion and
tumbling. This is easily seen by noting that two decorrelation processes (rotary
diffusion and tumbling) occur in parallel and the overall correlation time may then
be obtained from a parallel combination of the individual correlation times now
regarded as resistances. The overall rate of decorrelation is given by the reciprocal of
this correlation time. In light of this, the aforementioned criterion for the divergence of
the critical concentration is more conveniently expressed in the terms of a threshold
for the correlation time viz t̄corr → 1, where t̄corr , the correlation time in units of
(G(r)/2CF(r))(L/U ), is given by 1/t̄corr = 1/t̄diff +1/t̄tumble, with t̄diff =(C/30)D−1

r and
t̄tumble = (β coshβ − sinhβ)τ/(15β2 sinhβ) (see (3.11) and (3.31)). The reason for the
choice of scale for t̄corr may be traced to the scaling arguments presented at the
beginning of this section, where we noted that the destabilizing orientation stress
needs to accumulate over a time of O{(nUL2)−1[1 + (nL3)G(r)/2]} for instability to
occur; thus, the minimum correlation time required for instability is O(LG(r)/2U )
in the limit nL3 → ∞, which is therefore a natural scale for t̄corr . The additional
factor 1/(CF(r)) accounts for the effects of the dimensionless dipole strength C and
the bacterium aspect ratio. Clearly, when t̄corr < 1, the orientation decorrelation on
account of rotary diffusion and tumbling occurs in a time shorter than the minimum
time scale needed for instability. Therefore, the bacterial suspension, in response to an
imposed long-wavelength perturbation, behaves in a manner similar to a suspension
of passive particles with an effective viscosity given by

μeff = μ

⎡
⎢⎢⎣1 +

(nL3)G(r)

2

⎛
⎜⎜⎝1 −

CF(r)

15G(r)

(
U

DrL

)
[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]
⎞
⎟⎟⎠
⎤
⎥⎥⎦ .

As noted earlier in the context of smooth swimmers, the divergence of the threshold
concentration may also be interpreted in terms of a critical swimming speed for
instability in a suspension of wild-type tumblers. Thus, below a swimming speed of

Ucrit = (DrL)
15G(r)

CF(r)

[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]
,

the magnitude of the intrinsic force dipole and the resulting swimming stress remain
smaller than the stabilizing viscous stress for all concentrations.

In the limit Dr → 0 with τ fixed, the expression for the threshold concentration
takes the form

lim
Dr →0

(nL3)crit =

15

CF(r)

(
L

Uτ

)
(β coshβ − sinhβ)

β2 sinhβ

1 − 15G(r)

2CF(r)

(
L

Uτ

)
(β coshβ − sinhβ)

β2 sinhβ

, (3.31)

again consistent with that anticipated above in the limit of small τ , viz nUL2τ = γ2[1+
nL3G(r)/2] with

γ2 =
15

CF(r)

(
L

Uτ

)
(β coshβ − sinhβ)

β2 sinhβ
.
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Further, for uncorrelated tumbling, one obtains

lim
Dr →0,β→0

(nL3)crit =

5

CF(r)

(
L

Uτ

)

1 − 5G(r)

2CF(r)

(
L

Uτ

) , (3.32)

where we have used that limβ→0(β coshβ − sinhβ)/(β2 sinhβ) = 1/3. With β ≈ 1, as is
the case for E. Coli, this function of β is about 0.31. Thus, a moderate bias towards
tumbles of less than 90◦ changes the correlation function only by about 6 %, and at
least for E. Coli, one expects the random-tumble approximation to yield an accurate
estimate for the threshold concentration. Thus, letting β → 0 in (3.30), one obtains

(nL3)crit =

30

CF(r)

(
DrL

U

)[
1 +

1

6τDr

]
{

1 − 15G(r)

CF(r)

(
DrL

U

)[
1 +

1

6τDr

]} , (3.33)

for the threshold concentration in the limit of perfectly random tumbles. Finally,
we note that the critical concentration given by (3.30) approaches zero in the limit
Dr → 0, τ → ∞ (or alternatively, Dr → 0 with τDr fixed), implying that a suspension
of ‘straight swimmers’ is always unstable.

It needs to be emphasized that the instability analysed here pertains to fluctuations
in the orientation and velocity fields. Rather remarkably, it is seen from (3.25) that
the perturbation in the number density field, given by n

∫
Ω̂ ′d p, is identically zero at

the linear order of approximation. Thus, at least for the dominant unstable modes,
the concentration field in the unstable bacterial suspension still remains spatially
homogeneous. This latter fact remains true even outside the long-wavelength limit,
and is merely a consequence of incompressibility and fore-aft symmetry ( p ↔ − p).
With these constraints, there exists no scalar combination of u and k that would lead
to a non-trivial amplitude for the number density wave, and an initial condition that
respects the p ↔ − p symmetry cannot therefore lead to an inhomogeneous number
density field. This may also be seen from the governing equation for Ω; an integration
of (2.5) over orientation space yields

∂

∂t
(n
∫

Ω d p) + u · ∇x

(
n
∫

Ω d p
)

+ ∇x ·
(∫

Up Ω d p
)

= 0. (3.34)

The last term in (3.34) vanishes when Ω( p) = Ω(− p), and in this case, the number
density perturbation evolves only on account of convection by an incompressible
fluid velocity field. Clearly, an initially homogeneous number density field will then
continue to remain homogeneous. Physically, for every bacterium that swims into a
given region, acting to enhance the local number density, there corresponds another
bacterium with an exactly opposing orientation, exerting the same destabilizing
influence on the velocity and orientation fields, but acting instead to reduce the
number density in the same region by swimming out of it. This physical argument
evidently does not rely on the perturbations being infinitesimally small. It therefore
appears that even in presence of interactions, and in the nonlinear regime, the
fundamental difference between the nature of the number density fluctuations and
the velocity and orientation field fluctuations, arising at the linear approximation, may
persist, for instance, as a difference in the relevant correlation times. The generation
of number density fluctuations requires a breaking of the p ↔ − p symmetry and

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

70
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200900706X


382 G. Subramanian and D. L. Koch

dynamics (not considered here) that would amplify the resulting asymmetry. Such
an amplification naturally arises on account of directed swimming in polar active
nematics (Simha & Ramaswamy 2002), but could also arise from fluctuations due to
a discrete number of bacteria as is the case in simulations (Saintillan & Shelley 2007).

4. Effect of hydrodynamic interactions on the stability of a dilute
bacterial suspension

Herein, we focus on the effects of correlations induced by hydrodynamic interactions
in a dilute suspension of otherwise straight swimmers. Experiments with bacterial
suspensions are not easy, since, amongst other difficulties, the bacterial swimming
characteristics remain sensitive to the method of culturing, nutrient concentration,
etc. , making reproducibility and comparison with theoretical predictions difficult.
Simulations of active swimmers therefore offer a valuable tool to gain insight into the
dynamics of this complex system. All simulation efforts thus far have been restricted
to the case of straight swimmers (Dr = 0, τ → ∞), wherein the collective dynamics
is entirely driven by hydrodynamic interactions (for instance, see Hernandez-Ortiz
et al. 2005; Saintillan & Shelley 2007). From the point of view of the stability analysis
detailed in the previous section, there exists no intrinsic decorrelation mechanism
in these simulations, and the orientation of a swimmer decorrelates only due to
interactions. With this in mind, we now examine a dilute bacterial suspension in the
limit τ → ∞, and for the case where a rotary diffusion arises from pair-hydrodynamic
interactions rather than any imperfections inherent in the swimming mechanism; in
order to emphasize the hydrodynamic origin of the orientation decorrelation process,
we will denote the resulting hydrodynamic rotary diffusivity by Dh

r in the analysis that
follows. The objective then is to derive an expression for Dh

r , and thereby, predict the
threshold concentration for instability in a suspension of weakly interacting smooth
swimmers.

Since there exists no mechanism for a decorrelation in the orientation of an isolated
swimmer, (2.5) for the conservation of probability takes the simple form

∂Ω

∂t
+ (U p + u) · ∇xΩ + ∇ p · ( ṗ Ω) = 0, (4.1)

the probability merely being convected along a phase-space trajectory; as in (2.6),
the convection terms in physical and orientation space include both a mean-field
contribution and one due to correlations. A non-interacting suspension of such
swimmers has already been shown to be unstable at any non-zero concentration. Here
by ‘non-interacting’, we mean the absence of any correlation between the positions
or orientations of different bacteria; the ambient flow in the stability analysis is the
mean-field driven by such uncorrelated orientation fluctuations of bacteria in the far
field. The inclusion of correlations induced by hydrodynamic interactions will have
several consequences. On account of pair-correlations, there will be a change in the
swimming speed and a modification of the induced force density on a bacterium;
the latter leads to a change in the magnitude of the destabilizing bacterial stress.
There will also be hydrodynamically induced fluctuations in the centre-of-mass and
orientation of a bacterium. Thus, ṗ in (4.1) must now include both a contribution
due to the mean field, and one arising from the disturbance velocity field of a
neighbouring bacterium, and the convection of probability (u · ∇xΩ) must likewise
account for the effect of the disturbance velocity fields due to neighbouring bacteria.
We now argue that, in the dilute limit, the most important effect amongst all of
the above is that of the orientation fluctuations. To begin with, observe that (4.1)
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describes the (deterministic) evolution of probability on time scales of O(L/U ). On
the other hand, the random nature of the hydrodynamic interactions for times much
greater than O(L/U ) implies that the evolution equation on these time scales must
contain terms representative of the appropriate stochastic decorrelation processes in
position and orientation. The long-time evolution in physical space must evidently
be diffusive; the orientation fluctuations and the resulting decorrelation in swimming
motion, together with fluctuations in the centre-of-mass position, will give rise to
a translational diffusivity. In the dilute limit, the frequency of pair interactions is
O(nUL2), and the onset of a diffusive motion therefore occurs for times much greater
than O(nUL2)−1. As already argued in § 3, the translation of a swimming bacterium,
and the resulting convection of probability, becomes irrelevant in the limit of long-
wavelength perturbations. The diffusive motion for times longer than O(nUL2)−1, and
the resulting sampling of the inhomogeneous strain field associated with an imposed
velocity perturbation, is even more inefficient in the limit k → 0. A more accurate
estimate may be obtained from the relevant Péclet number, defined as Pet =U/(kDt ).
Since the dominant contribution to translational diffusion arises from orientation
fluctuations in the limit nL3 � 1, and since a representative time scale for orientation
decorrelation (tr ) is tr ∼ O(nUL2)−1, being related to the frequency of pair interactions,
the translational diffusivity is given by Dt ∼ U 2tr ∼ O(U/nL2) (for a rotary diffusion
process, Dt = U 2/6Dr ; Brenner & Edwards 1993). Thus, Pet ∼ nL2/k, and Pet � 1
for k � O(nL2). Therefore, the term corresponding to translational diffusion in the
equation for Ω(x, p, t) may be neglected in the limit of long wavelengths. Further,
unlike the rotary diffusivity, the modifications in the induced force density, swimming
speed, etc., in the limit nL3 � 1, are O(nL3) smaller than their respective values in the
absence of interactions. Thus, the most important effect of hydrodynamic interactions
is the decorrelation due to the induced orientation fluctuations.

It will be seen later (see (4.2)) that the decorrelation in orientation of an otherwise
straight swimmer occurs primarily on account of hydrodynamic interactions with
neighbouring bacteria at a distance of the order of its own size. The resulting
angular displacements are large in general, and a model for the related decorrelation
process will involve non-local transport functions (see Shaqfeh & Koch 1988); this
is, of course, similar to the decorrelation in orientation due to tumbling seen earlier
in § 3, or the decorrelation in velocity due to collisions in hard-sphere gases (see
Chapman & Cowling 1991). On the other hand, for sufficiently slender bacteria (r � 1),
the disturbance velocity field driving the orientation fluctuations is weak. Now, for
a smooth distribution of forces on a slender body, the velocity disturbance is only
O(ln r)−1 on length scales of O(L). This is, however, not the case for E. Coli, our main
object of interest from the point of view of experimental verification, since the head of
an E. Coli is close to being a spheroid with an aspect ratio of 2; in fact, the strength
of the force dipole for an E. Coli was estimated in § 3 using this approximation for
the shape of the head. Thus, the smallness of the velocity disturbance on length
scales of O(L) in this case is because the force dipole exerted by a swimming E. Coli
consists of the drag exerted by the small head (with length LH ≈ 0.2L), and an
equal and opposite propulsive force exerted along the much longer tail. Owing to
its length, the force per unit length on the tail is smaller by a factor of O(LH/L),
while the velocity disturbance generated by the blunt head decays on a length scale
of O(LH ) rather than L, and is again only O(LH/L) on length scales of O(L).
Since pair interactions that contribute dominantly to angular displacements occur at
separations of O(L), the angular displacement accompanying each pair interaction is
again O(LH/L) and therefore small. The orientation fluctuations then evolve via a
local diffusive process characterized by a hydrodynamic rotary diffusivity (Dh

r ). It is
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worth noting that the slender rods simulated by Saintillan & Shelly (2007) swim due to
an actuating shear stress localized near the head (a puller) or tail (a pusher). The latter
is similar to an E. Coli, and the orientation distribution in a stable suspension of such
rods is again expected to evolve via a rotary diffusion process in the limit nL3 � 1;
the analysis below remains applicable to this system. On the other hand, the active
swimmers in simulations of Hernandez et al. (2005) are modelled as point-force
dipoles, and the resulting strongly singular velocity field will lead to qualitatively
different interactions; in particular, the orientation dynamics in this case is likely to
be dominated by the large changes in orientation accompanying the close approach
of two or more swimmers.

The (nominal) scale for Dh
r may be obtained by noting that the rate of rotation

due to the disturbance velocity field is O(U/L), and that the characteristic time of
interaction is O(L/U ). Dh

r is then given by the product of the mean squared angular
displacement with the frequency of interactions; Dh

r ∼ O(nUL2). Note that in the
above scalings we have used only the nominal scale U/L for the velocity gradient,
not accounting for the additional factor of (LH/L) that would make this gradient,
and the resulting angular displacements, small. For now, this smallness is implicit.
The numerical pre-factor obtained later in a manner similar to § 3, that is, from
an estimate for the drag on the head, will automatically account for the additional
factor of O(LH/L), and thence, the smallness of the resulting rotary diffusivity. The
above scale for the rotary diffusivity, together with the expression for the threshold
concentration derived in the earlier section for rotary diffusing bacteria, now makes
evident the non-trivial effect of pair-hydrodynamic interactions in the dilute limit.
With nL3 � 1, expression (3.7) for the threshold concentration for a suspension of
smooth slender-bodied swimmers with Dr = Dh

r reduces to nUL2/Dh
r =30/C. Using

Dh
r = kr (nUL2), the constant kr being determined from the analysis that follows,

we note that stability results if kr > C/30. As already seen, C ≈ 0.57 for E. Coli,
and (C/30) is rather a small number. There is thus a realistic possibility of even
weak pair interactions stabilizing a suspension of slender bacteria in the dilute
limit. Using the above scale for Dh

r , it is also seen that the ratio of the terms
representing translational (Dt∇2

xΩ) and rotary (Dh
r ∇2

pΩ) diffusion is O(k/nL2), and
as argued above, translational diffusion may therefore be neglected in the limit
k � nL2.

We now proceed to calculate the hydrodynamic rotary diffusivity for slender bacteria
arising from pair interactions. To do this, we must derive the required evolution
equation containing the rotary diffusive term. We first write down (4.1), neglecting
terms corresponding to convection in physical space and the translational diffusion
contribution, as

∂Ω

∂t
+ ∇ p ·

({
ṗm(x, t) + n

∫
ṗi(x|C2)Ω

′
1|1(C2, t |x, p)dC2

}
Ω

)
= 0. (4.2)

Here, we have explicitly separated the contributions due to the mean field and
correlated pair interactions, as in (2.11), and C2 denotes the configuration [x1, p1]
of a second bacterium. The contribution to the bacterium rotation by the long-
wavelength perturbations characterizing the mean-field remains correlated for times
and lengths much longer than the contribution due to local pair-hydrodynamic
interactions, and will therefore retain its (convective) form even for times much longer
than O(nUL2)−1 when the interaction-contribution assumes a diffusive form. We
also note that the integral representing the interaction contribution involves the
product of a rotation ( ṗi) due to a disturbance velocity field, and a perturbation
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pair-probability (Ω ′
1|1), and therefore has its largest contributions at separations of

O(L), decaying rapidly thereafter. Since (4.2) requires knowledge of the perturbation
to the conditional probability, Ω ′

1|1(C2, t |x, p), we first write down the conservation

equation for the pair-probability, Ω2(x, x1, p, p1, t) = Ω1|1(C2, t |x, p)Ω( p, t),
neglecting smaller, O(nL3), corrections due to three-body interactions

∂Ω2

∂t
+ U p · ∇xΩ2 + U p1 · ∇x1

Ω2 + ∇ p · ( ṗ Ω2) + ∇ p1
· ( ṗ1Ω2)=0. (4.3)

For a slender bacterium, both the convection of probability, and the rotation of
a bacterium by the disturbance velocity field are O(LH/L) smaller, and at leading
order, the pair-probability is just convected along the quiescent swimming trajectories.
Thus, Ω2 = Ω( p, t)Ω( p1, t) at leading order. We now expand the pair-probability as

Ω2 = Ω( p, t)Ω( p1, t) + Ω
(1)
2 + · · · , where Ω

(1)
2 = Ω ′

1|1(C2, t |x, p)Ω( p, t). Anticipating

Ω
(1)
2 to be O(LH/L) smaller, and further, noting that Ω2 is only a function of the

relative position r = x − x1, we find the following set of equations to O(LH/L):

∂Ω

∂t
+∇ p · ( ṗm Ω)+n∇ p ·

(∫
ṗi(r, p |0, p1)Ω

(1)
2 (r, p, p1) dC2

)
=0, (4.4)

U ( p− p1) · ∇rΩ
(1)
2 =−

[
Ω( p1, t)∇ p · [ ṗi(r, p|0, p1) Ω( p, t)]

+Ω( p, t)∇ p1
·
[

ṗi
1(−r, p1|0, p)Ω( p1, t)

]]
. (4.5)

In the above, we have implicitly assumed the pair-correlations contained in Ω2 to
evolve on a time scale much shorter than that characterizing the evolution of Ω itself,
and thus, for times greater than O(L/U ), and of interest here, the time derivative in
(4.5) may be neglected, with the consequence that the time dependence in Ω2 always
enters in an implicit manner via the singlet probability density (see Shaqfeh & Koch
1988). For the same reason, we have not considered a coupling in (4.3) of the slowly
evolving perturbation with the relatively rapid pair interactions. Solving (4.5), one
obtains

Ω
(1)
2 =−

∫ rU

−∞

dr ′
U

U | p − p1| [Ω( p1, t)∇ p · [ ṗi(r ′, p|0, p1) Ω( p, t)]

+ Ω( p, t)∇ p1
· [ ṗ1(−r ′, p1|0, p)Ω( p1, t)]], (4.6)

where rU is a coordinate along the direction of relative translation; that is, rU = r · Û
with Û = ( p − p1)/| p − p1|. Using (4.6) in (4.4), and noting that there can be no
rotational drift on account of symmetry (which will otherwise lead to an anisotropic
orientation distribution even in the absence of an imposed flow), one finally obtains
the following equation for Ω( p, t):

∂Ω

∂t
+∇ p · ( ṗmΩ) − n ∇ p · Dh

r · ∇ p Ω = 0, (4.7)

where the (tensorial) hydrodynamic rotary diffusivity is given by the expression

Dh
r = n

∫
dC2 Ω( p1, t)

∫ rU

−∞

dr ′
U

U | p − p1| ṗi(r ′, p |0, p1) ṗi(r, p |0, p1). (4.8)

We note that the integral over C2 involves both a spatial (r) and an orientational in-
tegral ( p1). Choosing coordinates as (r⊥, rU )≡ [r · (I−ÛÛ), rU ] for the spatial integral,
a simple integration by parts with respect to rU (see Shaqfeh & Koch 1988) leads to
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the following alternate symmetric and intuitive form:

Dh
r =

nUL2

2

∫
d p1Ω( p1, t)

∫
dr⊥

| p − p1|

∫ ∞

−∞
dr ′

U ṗi(r ′, p |0, p1)

∫ ∞

−∞
dr ′′

U ṗi(r ′′, p |0, p1),

(4.9)
where the integral over r⊥ is one over the plane perpendicular to U , and we have now
used the scales L and U for lengths and velocities, respectively; we will continue to use
dimensionless variables in the analysis that follows. One may now identify, in (4.9),
each of the inner integrals over rU as the net angular displacement accompanying
a single (weak) pair interaction. It is convenient to evaluate the above expression
in transform space. Following the same convention for the transform as in § 3, one
obtains using the convolution theorem

Dh
r =

nUL2

2

∫
d p1Ω( p1, t)

∫
dξ

1

| p − p1|
ˆ̇pi(kU = 0, ξ ) ˆ̇pi(kU = 0, −ξ ), (4.10)

where kU = k · Û , and ξ = k · (I − ÛÛ) is the reciprocal vector in the plane transverse
to Û . The Fourier transform of the rotational velocity required in (4.10), ˆ̇p(k), may
now be determined by regarding the slender bacterium as a line distribution of forces.
Note that this differs from our earlier treatment in § 3 where we approximated the
rotation of a bacterium due to an imposed flow by that corresponding to a local
linear flow owing to the separation of length scales between the bacterium size and
the wavelength characterizing the mean-field fluctuations. This is not the case here,
since as pointed out earlier, the dominant contribution to the rotary diffusivity occurs
when the pair of bacteria is separated by O(L), and the disturbance velocity field due
to each bacterium (that causes the rotation) may not be approximated by a linear
flow on this length scale. Therefore, we use the expression for the rotation of a
slender body in an arbitrary imposed flow (for instance, see Rahnama et al. 1993).
The imposed flow in our case is the disturbance velocity field of the second bacterium
with orientation p1 located at −r; the rotation of the given bacterium at the origin
is given by

ṗi(r, p |0, p1) =
3

2

∫ 1/2

−1/2

s ds(I − pp) · u′(r + sp |0, p1), (4.11)

where u′(r + sp|0, p1) is the disturbance velocity field due to the second bacterium
evaluated along the axis of the given bacterium. In transformed variables, one obtains

ˆ̇p(k) =
3i

4
(I − pp) · û(k; p1)j1(πk · p), (4.12)

where j1(z) = sin z/z2 − cos z/z is the spherical Bessel function of the first kind (see
Abramowitz & Stegun 1970). The expression for the Fourier transformed velocity
disturbance may be obtained from an axial force distribution of a form used earlier
for E. Coli in § 3. Thus, in dimensionless terms, f (s) = M−1 p for 1/2 − α < s < 1/2
and f (s) = −(α/(1 − α))M−1 p for −1/2 < s < 1/2 − α, where α = 0.2 and the axial
mobility coefficient M being given by (3.8); one obtains

û(k; p1) = M
p1 · (I − k̂k̂)

(2πk)2
U(πk · p1), (4.13)

where the function U(z) depends on the details of the bacterium force distribution.
For the dependence assumed above, one finds

U(z) =
i

2z

[
α

(1 − α)
eiz + e−iz − 1

(1 − α)
e−z(1−2α)

]
. (4.14)
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The hydrodynamic rotary diffusivity tensor Dh
r must be of the form Dh

r (I − pp) since
rotation of a swimmer about its axis of symmetry does not lead to a change in
orientation. The scalar hydrodynamic rotary diffusivity Dh

r , that now replaces Dr in
(2.5), for instance, is then given by Dh

r = 1
2
(I: Dh

r ). Thus,

Dh
r =

nUL2

4

∫
d p1Ω( p1, t)

∫
dξ

1

| p − p1|
ˆ̇pi(kU = 0, ξ ) · ˆ̇pi(kU = 0, −ξ ). (4.15)

Using (4.12) in (4.15), one obtains

Dh
r =

9nUL2

64

∫
d p1Ω( p1, t)

∫
dξ

1

| p − p1| [j1(πξ · p)]2

× û(kU =0, ξ ; p1) · (I − pp) · û(kU =0, −ξ ; p1). (4.16)

Choosing a coordinate system in the plane perpendicular to Û spanned by the unit
vectors e1 = p∧ p1/| p∧ p1| and e2 = (I−ÛÛ) · p1/|(I−ÛÛ) · p1|, we have ξ = ξ1e1+ξ2e2;
Further, using p · p1 = cos θp , one obtains

Dh
r = (nUL2)

9M−2

1024π4

∫
d p1

Ω( p1, t)√
2(1 − cos θp)

∫
dξ1dξ2

1

ξ 4
[j1(πξ2p2)]

2U(πξ2p2)

× U(−πξ2p2)[ p1 · (I − ξ̂ ξ̂ ) · (I − pp) · (I − ξ̂ ξ̂ )· p1], (4.17)

where ξ 2 = ξ 2
1 + ξ 2

2 and p2 = (1/2)
√

(1 + cos θp). Again, exploiting the rapidity of pair
interactions relative to the time scale of evolution of any imposed long-wavelength
perturbation, one may assume an isotropic distribution for the orientation of the
interacting second bacterium; that is Ω( p1) = 1/4π. Evaluating the orientation integral
in a spherical coordinate system with the polar axis along p, further simplification
gives

Dh
r = (nUL2)

9M−2

2048π4

∫ π

0

dθp

sin θp√
2(1 − cos θp)

∫
dξ1dξ2

1

ξ 4
[j1(πξ2p2)]

2|U(πξ2p2)|2

×
[
sin2 θp + (2 cos θp − 1)

(ξ2p2)
2

ξ 2
− (ξ2p2)

4

ξ 4

]
, (4.18)

with

|U(πξ2p2)|2 =
1

(1 − α)2(2πξ2p2)2
[(cos(πξ2p2) − cos[(1 − 2α)πξ2p2])

2

+ ((1 − 2α) sin(πξ2p2) − sin[(1 − 2α)πξ2p2])
2]. (4.19)

With α = 0.2, the integrals over ξ1 and ξ2 may be evaluated to obtain, after some
algebra,

Dh
r = 3 × 10−5M−2(nUL2)

∫ 1

−1

dx
(1 + x)

23/2(1 − x)1/2

×
[
(1 − x2)

4
+

3(2x − 1)(1 + x)

32
− 5(1 + x)2

128

]
, (4.20)

where x = cos θp . Finally, calculating the above one-dimensional integrals, we have
Dr ≈ kr (nUL2) with kr = 2.9 × 10−6M−2. This value of kr remains much too small
when compared to C/30 for E. Coli; for instance, C ≈ 0.57, M−1 ≈ 5.7 (see (3.8)), and
one obtains C − /30 ≈ 1.9 × 10−2, and kr ≈ 9.4 × 10−5. Thus, the rate of orientation
decorrelation on account of relatively weak pairwise interactions is not large enough
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to stabilize a dilute suspension of E. Coli. Owing to the smallness of kr , this is
very likely the case for any slender-bodied swimmer, and a weakly interacting
suspension of slender-bodied swimmers is therefore expected to be unstable at any
finite concentration. We do note, however, that the time scale characterizing the rate of
accumulation of destabilizing stress starts to increase rapidly as the bacterium aspect
ratio approaches unity since the effect of the ambient extension on the orientation of
the bacterium becomes vanishingly small. On the other hand, the rate of orientation
decorrelation must increase since the disturbance velocity fields are stronger for
bacteria of a moderate aspect ratio, and the corresponding angular displacement,
on account of hydrodynamic interactions, is larger. Therefore, it does appear as if a
suspension of active particles, in the absence of any intrinsic orientation decorrelation
mechanisms (as has been the case in simulations of active particles thus far), must,
for a certain critical aspect ratio greater than unity, become stable to infinitesimal
perturbations with vanishingly small wavenumbers. Such a suspension must then
either be unconditionally stable or exhibit a finite wavelength cutoff for unstable
perturbations.

5. Discussion
The analysis in the earlier sections has led to a host of expressions for the threshold

concentration ((nL3)crit ) in various limits of specific decorrelation mechanisms being
dominant. It is therefore worthwhile providing a summary of the main results before
putting our analysis into perspective in light of earlier theoretical efforts. We begin
with the simplest case: a suspension of non-interacting ‘straight swimmers’ is always
unstable owing to the absence of any orientation decorrelation mechanism. Thus,
for this case (nL3)crit = 0. Next, with only rotary diffusion leading to orientation
decorrelation, we find the following expression for the threshold concentration in a
suspension of smooth swimmers:

(nL3)crit =

30

CF(r)

(
DrL

U

)
(
1 − 15G(r)

CF(r)

(
DrL
U

)) . (5.1)

With random tumbling acting to decorrelate orientations instead, we obtain

(nL3)crit =

5

CF(r)

(
L

Uτ

)
(

1 − 5G(r)

2CF(r)

(
L

Uτ

)) . (5.2)

With both rotary diffusion and random tumbling included, one finds:

(nL3)crit =

30

CF(r)

(
DrL

U

)[
1 +

1

6τDr

]
{

1 − 15G(r)

CF(r)

(
DrL

U

)[
1 +

1

6τDr

]} . (5.3)

This is the result quoted in the abstract, and it remains a very good approximation
even in cases where the tumbles are not perfectly random as is the case with E. Coli.
Finally, for the most general case of rotary diffusion and correlated tumbling, the
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correlation parameter β being as defined in § 2, one finds

(nL3)crit =

30

CF(r)

(
DrL

U

)[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]
{
1 − 15G(r)

CF(r)

(
DrL

U

)[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]} . (5.4)

In each of the above cases, the threshold concentration diverges when the denominator
vanishes. This condition then serves as a threshold for the rapidity of the relevant
decorrelation mechanism(s). For faster rates of decorrelation, the bacterial suspension
behaves in a manner similar to a suspension of passive particles. In the general case,
the effective viscosity in this stable regime is given by

μeff = μ

⎡
⎢⎢⎣1 +

(nL3)G(r)

2

⎛
⎜⎜⎝1 −

CF(r)

15G(r)

(
U

DrL

)
[
1 +

1

2τDr

(β coshβ − sinhβ)

β2 sinhβ

]
⎞
⎟⎟⎠
⎤
⎥⎥⎦ . (5.5)

The functions F(r) and G(r) appearing in the above expressions depend on the
shape of the bacterium. For a spheroid of aspect ratio r , F(r) = (r2 − 1)/(r2 + 1);
the corresponding expression for G(r), although more cumbersome, is available
from standard sources (see Kim & Karrila 1991). The constant C denotes the non-
dimensional strength of the bacterial force dipole, and is thus determined by the
detailed spatial dependence of the force density exerted by a swimming bacterium.
For the case of E. Coli, the aspect ratio being large, we obtain more specific predictions
below by using F(r) ≈ 1, G(r) ≈ π/45(ln r); the specific value of C (= 0.57) in this case
was estimated in § 3 (see the text between (3.10) and (3.11)).

As discussed in § 1, ample evidence for the existence of a hydrodynamic instability
in suspensions of swimming bacteria has emerged in the form of experimental
observations of jets and vortical patterns (Mendelson et al. 1999; Dombrowski et al.
2004), enhanced diffusion of bacteria (Wu et al. 2006), colloidal beads (Wu &
Libchaber 2000) and chemical tracers (Kim & Breuer 2004) and fluctuations in the
force exerted on a bead held in an optical trap (Soni et al. 2003) within a bacterial
suspension. The theory developed here suggests that convective motions should arise
in bacterial suspensions above a critical concentration (nL3)crit that depends on the
length L, swimming speed U , tumbling frequency τ−1, rotary diffusivity Dr and the
force dipole CμUL2, of a single swimming bacterium. The stability analysis predicts
correlated orientation fluctuations on lengths scales much longer than the size of a
single bacterium; the resulting anisotropic active stress drives fluid motion on the
same scale, in turn implying increased velocity fluctuations in such a system. The
fluid motion is expected to eventually grow to an amplitude where the convection of
the orientation field fluctuations by the fluid motion (not included in the linearized
analysis) would become comparable to that by the quiescent swimming speed, leading
to correlated swimming over long length scales.

Returning to the case of an E. Coli, we note that the bacterium has a total
length of about 10 μm, and an average duration between tumbles of about a second.
Swimming speeds ranging from 10 to 30 μms−1 have been reported (Berg 2000; Wu
et al. 2006). Berg (1983) estimated Dr = 0.062 s−1 by observing the curvature of
a trajectory of wild-type E. Coli during a run. Wu et al. (2006) measured the
translational diffusivity of smooth-swimming mutants, obtaining Dt = 460 μm2 s−1

and U =11 μms−1 for a dilute suspension (n= 107 cells (ml)−1). Again using the
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well-known relation Dt = U 2/(6Dr ) (see Brenner & Edwards 1993), for the long-
time translational diffusivity, one finds Dr =0.042 s−1. The above estimate C ≈ 0.57,
for the dimensionless dipole strength for E. Coli was based on the drag on its head.
However, experimental observations of the velocity correlation between neighbouring
cells indicate a functional dependence on inter-particle separation that is in agreement
with theory, but a magnitude that is about six times larger than a theoretical prediction
based on the aforementioned drag estimate (see Liao et al. 2007). It is thus possible
that C is larger than the above estimate by a factor of around 6. The above parameter
values yield critical values of nL3 in the range 0.7–3.5 for smooth swimmers and 4–
16 for tumbling bacteria if one uses the theoretical estimate C = 0.57. The critical
nL3 would, however, be reduced to 0.1–0.5 for smooth swimmers, and 0.6–2 for
tumbling bacteria if C was to be increased by a factor of 6 in view of the larger
than expected velocity correlation of neighbouring bacteria. Wu et al. (2006) reported
translational diffusivities of both wild-type and smooth-swimming E. Coli at nL3 ≈ 0.2
that were significantly greater than those observed in dilute suspensions suggesting
the possibility that the threshold concentration may be as small or smaller than the
estimate based on an enhanced force dipole (C = 3.4). The observed increase in the
diffusivity of the smooth-swimming bacteria was larger than that for bacteria that
tumble as might be expected on the basis of the earlier onset of instability predicted
for smooth-swimming bacteria. It must nevertheless be mentioned that some of the
above estimates for the hydrodynamic volume fraction (nL3) are quite large, and one
may question the applicability of a dilute analysis in this regime. We address this
issue below when comparing our analysis with recent theoretical efforts.

Amongst the difficulties in achieving a more quantitative comparison of our
predictions with experiments that have been performed to date are: (i) The bacterial
concentration is often not known with precision and is varied in coarse increments;
(ii) The swimming speed may vary depending on the bacterial strain and the procedure
used to culture the bacteria; and (iii) The strength of the force dipole (as, for instance,
indicated by the fluid velocity disturbance produced by a single cell) has not been
measured experimentally. Previous experimental studies have focused primarily on
characterizing the collective motion of bacteria when it occurs. The present study
may encourage experimental investigators to determine when collective motion does
and does not occur and seek a better understanding as to why it occurs. Numerical
simulations that include bacterial tumbling and rotary diffusion would play a valuable
role in bridging the gap between stability analysis and experiments.

We now put our analysis in perspective by looking at some recent simulations
and theoretical efforts exploring the hydrodynamics of active particle suspensions.
The stability of such suspensions was first analysed by Simha & Ramaswamy (2002)
based on a mean-field description that included an expression for the stress exerted by
the swimming particles acting as force dipoles. They considered an initially ordered
system (an ‘active nematic’), and proceeded to show that such nematic order is always
susceptible to long-wavelength fluctuations, leading to eventual orientational disorder.
Although a nematic phase is expected to arise only at much higher concentrations
than those relevant to the analysis in this paper, the equations governing stability in
the authors’ mean-field description remain essentially the same, and the mechanism
of instability thus remains the same as the one described in this paper. Indeed, it
is easily seen from figure 3 that even an initially aligned suspension of swimmers,
when subjected to a velocity perturbation in the form of a Fourier mode, will cause a
reorientation of the intrinsic force dipoles that reinforces the original perturbation. In
fact, the reinforcement is greatest when the swimmers are already aligned along the
local extensional axis of the velocity wave, a situation that occurs for velocity waves
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making an angle of 45◦ with the direction of initial alignment; this was the most
unstable configuration found by the authors. Simha and Ramaswamy considered both
polar and apolar suspensions of aligned swimmers. The absence of fore-aft symmetry
in the former case leads to a net drift velocity even in the homogeneous base state.
For the same reason, imposed velocity perturbations lead to both orientation and
number density fluctuations, and the number density fluctuations were found to be
anomalously large with 〈(δN)2〉/N ∝ N2/3. In the context of the bacterial suspension
examined here, the distinction between the polar and apolar cases is related to the
symmetry of the base-state orientation distribution rather than the symmetry of an
individual swimmer. Thus, an apolar bacterial suspension corresponds to an initial
orientation distribution that is an even function of p. As seen from the analysis in
earlier sections, such a suspension does not admit number density fluctuations in
the linear approximation. An example of a polar bacterial suspension occurs in the
presence of a chemoattractant, where the direction of the chemoattractant gradient
breaks the p ↔ − p symmetry.

Saintillan & Shelley (2007) carried out numerical simulations of self-locomoting
slender rods over a range of nL3, where the rods were modelled as line distributions of
forces, and hydrodynamic interactions between rods were treated using slender-body
theory. The rods did not tumble, and the observed rotary diffusion was the result of
multi-body hydrodynamic interactions. The simulations confirmed the prediction by
Simha and Ramaswamy of a long-wavelength instability for an active nematic. The
authors also obtained information concerning pair-correlations as a function of nL3,
and in particular, found a local nematic ordering to persist at shorter length scales on
account of hydrodynamic interactions, even while there are unstable fluctuations in
orientation on larger length scales. Further, Saintillan & Shelley (2007) plot the rotary
diffusivity as a function of nL3, and find a linear growth at small nL3. As already
seen in § 4, and also noted by the said authors, this linear increase appears consistent
with the dominance of pair interactions, leading to a Dr of O(nUL2). There is a
corresponding regime in their plot for the translational diffusivity, exhibiting an inverse
scaling with nL3 (Dt ∼ O(U/nL2) (see § 4), again apparent characteristic of a dilute
limit dominated by pair interactions. Both diffusion coefficients have a hydrodynamic
origin, since the simulations did not incorporate any non-hydrodynamic decorrelation
mechanisms. In fact, Dr continues to increase linearly, and Dt vary inversely, with
nL3 up to an nL3 ≈ 10. From figure 5 of their paper, we find that Dr ≈ 0.01 nUL2,
while for E. Coli, the analysis in § 4 gives Dr ≈ 9.4 × 10−5nUL2, a much smaller value.
It must be noted that Saintillan & Shelley (2007) do not give the distribution of
their actuating force; neither do they mention the aspect ratio of the swimming rods.
Regardless, one expects the magnitude of the force dipole (C) in units of μUL2 to
be O(1) for any reasonable force distribution. Thus, the discrepancy between the
magnitudes of the two estimates suggests that the large rotary diffusivities extracted
from the simulations may be a measure of the amplitude and length scales of the
unstable velocity fluctuations rather than a manifestation of pair interactions in the
dilute limit.

Recent simulations of active suspensions have also considered spherical swimmers;
for instance, Ishikawa, Locsei & Pedley (2008) and Mehandia and Nott (2008) perform
Stokesian dynamics simulations for spherical bacteria. As noted in § 2, the function
F(r) → 0 in the limit of spherical particles since a sphere only responds to the vorticity
in the ambient flow, and the resulting orientation distribution is therefore isotropic
even in the presence of a shearing flow. This difference in orientation behaviour has
a direct implication for the stability of a suspension of such swimmers. It is readily
seen from the above expressions for (nL3)crit that the threshold concentration in each

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

70
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200900706X


392 G. Subramanian and D. L. Koch

case diverges for spherical particles. Thus, it appears that correlated motion observed
in the above simulations may have a different physical origin. The dynamics in these
simulations is, in fact, quite sensitive to the nature of the near-field interactions.
Mehandia & Nott (2008) find lubrication interactions to play a crucial role in
the formation of clusters. Amongst other findings, the velocity distribution of the
swimmers is Gaussian with full hydrodynamic interactions, while inclusion of far-
field interactions alone leads to a sharply peaked distribution at the swimming speed.
Further, even at the lowest concentrations, the authors find clusters consisting of
swimmers in close proximity, again highlighting the role of lubrication interactions.
Finally, in contrast to the findings of Wu et al. (2006), the translational diffusivity
is found to decrease with increasing concentration. The sensitivity to the nature of
near-field hydrodynamics may also play a role in the simulations of Ishikawa et al.
(2008). The authors rely on a spherical ‘squirmer’ with a specified surface velocity
distribution as a model for a swimming bacterium. Many of their results, including
the peculiar nature of pair interactions (see Ishikawa, Simmonds & Pedley 2006)
appear to be driven by the choice of surface velocity distribution. The dilatational
nature of the surface velocity implies a strong radial inflow in the vicinity of a given
squirmer, and thereby provides a natural clustering mechanism. The squirmer model
is probably a reasonable representation for a ciliated organism such as Opalina, but
by no means universal. One may, in fact, question the choice of the surface velocity
boundary condition chosen by Ishikawa et al. (2006) even in the context of a ciliated
organism. For these organisms, the cilia normally beat in a single direction, and one
would therefore expect the (tangential) surface velocity to be single signed. However,
the simplest approximation for such a velocity generates a potential flow without a
force dipole, and Ishikawa et al. (2006) therefore included an additional contribution
that does generate a force dipole but additionally leads to a reversal in direction of
the surface velocity at a critical angle. Thus, it appears as if the correlated motion
and clustering dynamics in suspensions of spherical swimmers may be largely driven
by the nature of near-field interactions, and are at best specific to certain classes of
swimmers. On the other hand, the instability investigated here is only related to the
more universal nature of the long-ranged hydrodynamic interactions, and is therefore
expected to be relevant to a wide class of micro-organisms.

The most relevant theoretical effort is that of Saintillan & Shelley (2008) who in
addition to generalizing the analysis of Simha & Ramaswamy (2002) for an aligned
suspension of active rods, also examined the stability of an initially isotropically
oriented suspension of such swimmers. The governing equations, and the resulting
stability characteristics of long-wavelength perturbations, are essentially the same
as that for the suspension of straight swimmers examined here. In fact, even their
eigenspectrum is identical to the results of our finite wavelength analysis (again, for
straight swimmers) to be presented in a forthcoming publication (Subramanian &
Koch in press). There is, however, little discussion of the underlying physics in this
paper, the origin of the instability being merely attributed to active shear stresses. The
physical explanation for the instability mechanism in such a suspension of straight
swimmers has since been clarified by Underhill, Hernandez Ortiz & Graham (2008),
who note, as we did in § 1, that the instability essentially arises due to the opposing
nature of the induced and intrinsic force dipoles for a pusher. More importantly,
the absence of any orientation decorrelation mechanisms in the above analyses
implies that the suspension of self-propelled rods is always unstable. The inclusion
of both a rotary diffusivity and correlated tumbling in our analysis not only makes
it a more accurate model for suspensions of real bacteria, but more importantly,
demonstrates the existence of a threshold concentration for the onset of an instability.
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The detailed physical arguments presented here help clarify the physical origin of
the instability. Saintillan & Shelley (2008) do include a translational diffusivity in
their stability analysis; however, this term is of O(k2) in the limit k → 0, and thence
asymptotically small compared to the O(k) convection of probability by the swimming
velocity. The latter was already shown to be unimportant in the determination of
the neutral curve, and therefore, translational diffusion will not lead to a threshold
concentration. In any event, the allowance for a centre-of-mass diffusion in the
absence of a rotary diffusivity is inconsistent, since the natural coupling that arises
between orientation fluctuations and the resulting decorrelation in swimming motion
is absent. By including a stress contribution that reflects the resistance of a bacterium
to the deforming action of an ambient flow, we have also shown the transition in
behaviour of a dilute bacterial suspension to the familiar well-analysed case of a
suspension of passive particles. Finally, we have also highlighted the non-trivial effect
of pair-hydrodynamic interactions in a suspension of self-propelled particles when
intrinsic decorrelation mechanisms such as tumbling are absent. It is possible for a
suspension of such swimmers to be stabilized by an interaction-driven orientation
decorrelation, although we find that the actual rate of decorrelation is too small in
the limit of slender rods. This is confirmed by the simulation results of Saintillan
& Shelley (2007) who always find a suspension of interacting swimming rods to be
unstable in the range of concentrations investigated.

We finally turn to the important point of determining the range of validity
of the present stability analysis, and the resulting prediction for the threshold
concentration. Recalling the scaling arguments discussed at the beginning of § 3
in terms of a generic correlation time tcorr , we observe that instability occurs
when tcorr = (1/nUL2)[1 + nL3G(r)/2], in turn implying a threshold concentration
for instability given by

(nL3)crit =

L

Utcorr[
1 − L

Utcorr

G(r)

2

] .
Evidently, the present analysis and the underlying assumption of diluteness become
rigorously valid in the limit Utcorr/L � 1, when nL3 ∼ O(L/Utcorr ) � 1. This is
certainly the case in simulations of dilute suspensions of active swimmers wherein
the orientation decorrelation occurs only due to occasional pair-hydrodynamic
interactions; the relevant time scale for decorrelation is O(nUL2)−1, this being the
frequency of uncorrelated pair interactions, and (Utcorr/L) is therefore asymptotically
large. Indeed, it was shown in § 4 that such a suspension of weakly interacting
swimming rods is unstable at any non-zero concentration however small. For a
suspension of real bacteria such as E. Coli the earlier numerical estimates certainly
suggest that (nL3)crit , particularly for the case of wild-type tumblers, might be O(1),
thereby bringing into question the applicability of a dilute theory to experiments.
However, two well-known instances of passive-particle suspension behaviour suggest
otherwise. The first is a suspension of passive Brownian fibres in which case it
is known that the rotary diffusivity of a Brownian fibre starts to decrease steeply
only beyond an nL3 of about 30 due to the confining-tube effect characteristic of
a semi-dilute regime (Dr ∝ (nL3)−2 for larger nL3; see Larson 1988); although, in
principle, the dilute regime with a constant Dr (equal to the Stokes–Einstein value
for an isolated fibre) must prevail for only nL3 < 1. The second instance is the case
of non-Brownian fibre suspensions; in a series of articles (see Mackaplow, Shaqfeh
& Schiek 1994; Mackaplow & Shaqfeh 1996, 1988), Mackaplow and Shaqfeh have
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examined the transport of heat and mass, rheology and the mean sedimentation
speed in these systems. Their results indicate that the dilute theory continues to give a
reasonable estimate for nL3 ∼ O(1). For instance, the plot for the normalized thermal
conductivity in Mackaplow et al. (1994) shows only a 10 % deviation from its value at
infinite dilution for nL3 ≈ 5. At the same value of nL3, the mean sedimentation speed
for an isotropic orientation distribution calculated by Mackaplow & Shaqfeh (1998)
shows a modest reduction of about 20 %. The results of Mackaplow & Shaqfeh (1996)
again show that the normalized stress in suspensions of both aligned and isotropically
oriented non-Brownian fibres exhibits a modest deviation of about 20 % from the
dilute estimate up to an nL3 ≈ 10. Clearly, there is no fundamental difference in the
nature of hydrodynamic interactions in a suspension of active or passive slender
rods. For the case of ‘pushers’, however, the existence of an instability in the dilute
limit obscures the dynamics of interactions, as is evident from the simulations of
Saintillan & Shelley (2007). On the other hand, it is likely that in a suspension of
‘pullers’ interactions come into play in the same qualitative manner as they do in a
Brownian fibre suspension. Thus, one would expect Dr to increase linearly with nL3

for small nL3, while at higher nL3 this increase may be offset due to the competing
effects of (screened) hydrodynamic interactions driving orientation fluctuations and a
tube-confinement effect. More importantly, one again expects the dynamics to differ
qualitatively from a dilute scenario only beyond an nL3 significantly larger than unity.
Based on the above discussion, we therefore expect the stability analysis carried out
in this paper to remain quantitatively accurate, and therefore relevant to suspensions
of slender bacteria with nL3 ∼ O(1).

In the dilute regime, there are O(nL3) contributions arising from pair interactions
including a variation in the induced force–density, a change in the mean swimming
speed, etc. The aforementioned simulations of Saintillan and Shelley have examined
some of these effects, but they are beyond the scope of the present analysis. Herein,
we have focused solely on the effects of pair interactions that remain significant even
in the limit nL3 � 1. The dominant effect was found to be an interaction-induced
decorrelation in orientation affecting the dynamics of long-wavelength perturbations.
It was shown in § 4 that this decorrelation in orientation is a diffusive process for
slender bacteria; the resulting hydrodynamic rotary diffusivity was found to be too
small to alter the stability characteristics of long-wavelength perturbations. In light of
the above discussion on the transport characteristics of passive particle suspensions
and their relation to the corresponding dilute estimates, however, we note that the
other effects related to pair-correlations are likely to be small for nL3 ∼ O(1). The
pair-distribution function characterizing correlations in position and orientation in a
suspension of slender bacteria, and the resulting implications, at higher nL3, for the
stability analysis carried out here will be reported in a future publication.

Appendix A: Derivation of the averaged equations for a bacterial suspension
The derivation of the averaged equations ((2.1) and (2.2)) for a suspension of

neutrally buoyant bacteria is given herein. A derivation in the same spirit, but not
explicitly accounting for hydrodynamic interactions, has been given by Simha &
Ramaswamy (2002). We first write down the equations governing the motion of the
Newtonian suspending fluid for a given configuration of the N swimming bacteria. If
[xα, pα]Nα=1 be the positions and orientations of the N bacteria, then, in the absence
of inertial effects, the velocity (u) and pressure fields ( p) in the suspending fluid satisfy
the quasi-steady Stokes equations, and the fluid motion is completely determined

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

70
6X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200900706X


Critical bacterial concentration for the onset of collective swimming 395

by the instantaneous motion of the swimming bacteria. For convenience, we restrict
ourselves to the case of slender bacteria which may be treated as line distributions
of forces. With this approximation, the no-slip boundary conditions on the bacterial
surfaces may be directly incorporated as forcing terms in the Stokes equations. Thus,
one obtains

μ∇2u − ∇p +

N∑
α=1

∫ L/2

−L/2

f α(s, [xα, pα]; [xβ, pβ]Nβ=1(β �=α))δ(x−xα −spα) ds = 0. (A 1)

We have assumed all bacteria to have the same length L, and in the interests of
notational simplicity, used s to denote the arclength coordinate along all N bacteria.
f α(s, [xα, pα]; [xβ, pβ]Nβ=1(β �=α)) is the linear force density exerted by the αth bacteria
located at xα with orientation pα . Aside from the obvious dependence on [xα, pα],
the force density, on account of hydrodynamic interactions, also depends on the
configurations of all other swimming bacteria. For f α , this dependence is explicitly
indicated by the factor [xβ, pβ]β=1N (β �=α). Since even an isolated bacterium swimming

in an unbounded quiescent fluid exerts a force density f b(s, pα), it is convenient to first
separate this part of the force density from the part ( f ′) that arises solely on account
of hydrodynamic interactions with neighbours; an example of the latter would be the
force dipole (stresslet) induced in a given bacterium by the disturbance velocity field
generated by its neighbours. Equation (A 1) may therefore be rewritten as

μ∇2u −∇p +

N∑
α=1

∫ L/2

−L/2

[ f b(s; xα, pα)+ f ′α(s; [xα, pα];

× [xβ, pβ]Nβ=1(β �=α))]δ(x−xα−spα) ds = 0, (A 2)

where the additional position dependence in f b may arise on account of an imposed
flow. Since our aim is to extract a continuum description of the system in terms
of averaged fields, the implicit assumption is one of looking at length scales that
are much larger than the typical size of a microstructural unit – in this case the
size of a bacterium. Keeping this in mind, one may (formally) expand the delta
functions in (A 2) about the geometric centre of each bacterium (xα). Thus, using

δ(x−xα−spα) = δ(x−xα)−spα · ∇δ(x−xα)+ s2

2
pα pα :∇∇δ(x−xα)+· · · , (A 2) takes the form

μ∇2u − ∇p +

N∑
α=1

∫ L/2

−L/2

[ f b(s; xα, pα)+ f ′α(s; [xα, pα]; [xβ, pβ]Nβ=1(β �=α))]ds δ(x−xα)

−
N∑

α=1

∫ L/2

−L/2

pαs[ f b(s; xα, pα)+ f ′α(s; [xα, pα]; [xβ, pβ]Nβ=1(β �=α))]ds · ∇δ(x−xα)

+
1

2

N∑
α=1

∫ L/2

−L/2

pαpαs2[ f b(s; xα, pα)+ f ′α(s; [xα, pα];

× [xβ, pβ]Nβ=1(β �=α))]ds :∇∇δ(x−xα) + · · · = 0. (A 3)

We note that ∇ ∼ O(k), so successive terms in the series on the right-hand side are
smaller by O(kL), where k−1 ( � L) is the length scale on which the averaged fields
in the continuum description are expected to vary (see below); for instance, in the
context of a stability analysis, k−1 may be regarded as the wavelength of an imposed
velocity disturbance. Retaining the first two terms on the right-hand side, with the
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second representing the first moment of the bacterial force density, one obtains

μ∇2u − ∇p +

N∑
α=1

∫ L/2

−L/2

[ f b(s; xα, pα)+ f ′α(s; [xα, pα];

× [xβ, pβ]Nβ=1(β �=α))]ds δ(x−xα) − ∇·
[

N∑
α=1

∫ L/2

−L/2

pαs[ f b(s; xα, pα)+ f ′α(s; [xα, pα];

× [xβ, pβ]Nβ=1(β �=α))]ds δ(x−xα)

]
= 0. (A 4)

Since the bacteria are force free, the first term on the right-hand side, involving an
integral of the force density on each bacterium, is identically zero. Further, each
bacterium being torque free, the antisymmetric first moment of the force density is
also zero. Note that the bacteria are not merely force free and torque free on average;
these conditions hold for each and every configuration. One then obtains, in their
final form, the equations governing the motion of the suspending fluid for a given
bacterial configuration

μ∇2u − ∇p − ∇ ·
[ N∑

α=1

∫ L/2

−L/2

[(spα) f b(s; xα, pα)+ f b(s; xα, pα)(spα)]ds δ(x−xα)

+

N∑
α=1

∫ L/2

−L/2

[
(spα) f ′α(s; [xα, pα]; [xβ, pβ

]N
β=1(β �=α)

)

+ f ′α(s; xα, pα; [xβ, pβ]Nβ=1(β �=α)

)
(spα)

]
ds δ(x−xα)

]
= 0. (A 5)

We now define the averaging operation as 〈.〉 =(1/N!)
∫

ΩN (CN, t)dCN , where
ΩN (CN, t) is the N-bacteria probability density function in phase space at time t ,
and we have used the abbreviated notation CN ≡ [xα, pα]Nα=1 for the configuration of
N bacteria; this evidently implies the normalization

∫
ΩNdCN =N!. Averaging (A 5),

and noting that the ensemble average commutes with the spatial derivatives, one then
obtains

μ∇2〈u〉 − ∇〈p〉 − n∇ ·
[

N∑
α=1

∫ L/2

−L/2

∫
d pαΩ(x, pα, t)[(spα) f b(s, pα)+ f b(s, pα)(spα)]ds

]

×
(

1

N!

∫
ΩN−1|1(CN−1, t |[x, pα])dCN−1

)
− n∇ ·

{
N∑

α=1

∫ L/2

−L/2

∫
d pαΩ(x, pα, t) [(spα)

×
(

1

N!

∫
ΩN−1|1(CN−1, t |[x, pα])f ′α(s; x, pα; CN−1) dCN−1

)

+

(
1

N!

∫
ΩN−1|1(CN−1, t |[x, pα])f ′α(s; x, pα; CN−1) dCN−1

)
(spα)

]
ds

}
= 0, (A 6)

where we have used the relation ΩN (CN, t) = nΩ(xα, pα, t)ΩN−1|1(CN−1, t |[xα, pα]),
ΩN−1|1 being the probability density function conditioned on one bacterium having a
specified configuration. Using the normalization for the conditional probability density
viz
∫
ΩN−1|1dCN−1 = (N −1)!, and assuming that the bacteria are homogeneously

distributed over an infinitesimal continuum volume element, one observes that the
terms in the summations over α in (A 6) do not depend on the particular bacteria
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whose configuration is specified. Equation (A 6) then takes the form

μ∇2〈u〉 − ∇〈p〉 − n∇ ·
[∫ L/2

−L/2

∫
d p Ω(x, p, t)[(sp) f b(s, p)+ f b(s, p)(sp)]ds

]

− n∇·
{∫ L/2

−L/2

∫
d p Ω(x, p, t)

[
(sp)

(
1

(N −1)!

∫
ΩN−1|1(CN−1, t |

× [x, p])f ′(s; x, p ; CN−1) dCN−1

)
+

(
1

(N −1)!

∫
ΩN−1|1(CN−1, t |[x, p])

× f ′(s; x, p ; CN−1) dCN−1

)
(sp)

]
ds

}
= 0. (A 7)

Defining the conditional average as 〈.〉1 = (1/(N − 1)!)
∫

Ω ′
N−1|1(CN−1, t |[x, p]) dCN−1,

(A 7) may be written in a more compact form as

μ∇2〈u〉 − ∇〈p〉 − n∇ ·
[∫

d p Ω(x, p)

∫ L/2

−L/2

[(sp)〈 f (s, t; x, p)〉1

+ 〈 f (s, t; x, p)〉1(sp)]ds

]
= 0, (A 8)

where

〈 f (s, t; x, p)〉1 = f b(s, p)+
1

(N −1)!

∫
ΩN−1|1(CN−1, t |[x, p])f ′(s; x, p ; CN−1) dCN−1.

(A 9)

The last term in (A 8) may evidently be written as the divergence of an averaged stress
tensor, ∇·〈σB〉(x, t), with the stress tensor being dependent on the microstructure in
the following manner:

〈σB〉(x, t) =

∫
d p Ω(x, p, t)

∫ L/2

−L/2

[(sp)〈 f (s, t; x, p)〉1+ 〈 f (s, t; x, p)〉1(sp)] ds. (A 10)

Note that although the equations here have been derived for slender bacteria, the
final equations and the expression for the averaged stress tensor are, in fact, valid for
a particle of an arbitrary aspect ratio. Thus, the only assumption made in deriving
the continuum description defined by (A 8) and (A 9) is an appropriate separation of
the microstructural (L) and macroscopic length scales (k−1). The entire microstructural
information, including hydrodynamically induced correlations in the positions and
orientations of different bacteria is contained in the probability density functions
that appear in the definition of the stress tensor. Each of these probability density
functions satisfies an appropriate kinetic equation; the equation for Ω(x, p, t), in
particular, appears in the text (see § 2).

Finally, with reference to the mean-field approximation used in § 2, we note that it
is more convenient to divide the conditional probability density in (A 9) into a part
that does not depend on the configuration of the given bacterium (ΩN−1(CN−1, t)),
and a residual part (Ω ′

N−1|1(CN−1, t |x, p)) that reflects the correlations between the

positions and orientations of the given bacterium and the bacteria surrounding it.
The former may now be used to define an unconditional average that enters the
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mean-field representation. In particular, using this decomposition in (A 9), one may
write

〈 f (s, t; x, p)〉1 = f̂ b(s, x, p)+
1

(N −1)!

∫
Ω ′

N−1|1(CN−1, t |[x, p])f ′(s; x, p ; CN−1) dCN−1,

(A 11)

where f̂ b = f b+(1/(N −1)!)
∫

f ′ΩN−1(CN−1, t) dCN−1 now includes contributions from
both an externally imposed flow and the mean field. One may define similar averages
for the velocity field and velocity gradient induced by other bacteria, and these
enter the governing equation (2.5) for Ω(x, p) via terms representing the mean-field
convection of probability in position–orientation space.

Appendix B: Evaluation of integrals involving K( p| p′) and GM ( p| p′) over the
unit sphere

Herein, we prove that

(kiûj )

∫
K( p| p′)p′

ip
′
jd p′ =

[
(3 + β2) sinhβ − 3β coshβ

β2 sinhβ

]
(kiûj )pipj . (B 1)

Using the Maclaurin expansion for the exponential kernel viz K( p| p′) = β/(4π
sinhβ)eβ( p · p′) =β/(4π sinh β)

∑∞
m=0

βm

m!
( p · p′)m, one has

(kiûj )

∫
K( p| p′)p′

ip
′
jd p′ = (kiûj )

β

(4π sinhβ)

∞∑
m=0

β2m

(2m)!
{pi1pi2 . . . pi2m

}

×
∫

p′
ip

′
j {p′

i1
p′

i2
· · · p′

i2m
} d p′, (B 2)

since the terms involving orientation polyads of odd orders vanish, the integral over
the unit sphere being identically zero in these cases. For the even-ordered polyads in
(B 2), one has the following identity:∫

pi1pi2 · · · pi2m
dp = 0

4π

1·3 · · · (2m + 1)
Σ{i}δi1i2δi3i4 · · · δi2m−1i2m

, (B 3)

where the summation is over all distinct permutations of the m identity tensors (see
Bird et al. 1987). Thus, an integral over the unit sphere of an orientational polyad
of order 2l would involve (2l)!/(2l · l!) such permutations. Using (B 3) in (B 2), one
obtains

(kiûj )

∫
K( p| p′)p′

ip
′
jdp′ = (kiûj )

β

(4π sinh β)

×
∞∑

m=0

β2m

(2m)!
{pi1pi2 · · · pi2m

} 4π

1·3 · · · (2m + 3)

∑
{i}

δij δi1i2δi3i4 · · · δi2m−1i2m
, (B 4)

where the inner summation now involves (2m + 2)!/2m+1(m + 1)! terms. Owing to
incompressibility (û · k = 0), only those terms in (B 4) that do not contract the indices
i and j are non-zero. Since there are (2m)!/2mm! terms that involve a contraction of
i and j , we have
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(kiûj )

∫
K( p| p′)p′

ip
′
jd p′ =

β

4π sinhβ

∞∑
m=0

β2m

(2m)!

[
(2m + 2)!

2m+1(m + 1)!
− (2m)!

2mm!

]

× 4π

1·3 · · · (2m + 3)
(kiûj )pipj , (B 5)

=
β2

2 sinhβ

[ ∞∑
m=0

β2m+1

(2m + 3)(2m + 1)!
−

∞∑
m=0

β2m+1

(2m + 5)(2m + 1)!

]
(kiûj )pipj . (B 6)

It may easily be shown that

∞∑
m=0

β2m+1

(2m + 3)(2m + 1)!
=

(β coshβ − sinhβ)

β2
, (B 7)

∞∑
m=0

β2m+1

(2m + 5)(2m + 1)!
=

(β3 + 6β) cosh β − (3 + β2) sinhβ

β4
. (B 8)

Using the above series identities, (B 6) with some manipulation reduces to the right-
hand side of (B 1).

The modified Green’s function GM ( p| p′), like K( p| p′) is again a function of ( p · p′),
and an exactly analogous argument gives relation (3.20).
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