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Robust Simulations

Ryan Muldoon†‡

As scientists begin to study increasingly complex questions, many have turned to
computer simulation to assist in their inquiry. This methodology has been challenged
by both analytic modelers and experimentalists. A primary objection of analytic mod-
elers is that simulations are simply too complicated to perform model verification.
From the experimentalist perspective it is that there is no means to demonstrate the
reality of simulation. The aim of this paper is to consider objections from both of
these perspectives, and to argue that a proper understanding and application of ro-
bustness analysis is able to resolve them.

1. Introduction. Analytic models, by which I mean systems of differential
or difference equations that serve as representations, are useful precisely
because they are simple. Studying them enhances our understanding of
the more complicated phenomena they are designed to represent. But as
the phenomena scientists study increase in complexity, analytic models
may prove to be too simple for some investigations. It is in these situations
that computer simulations are being deployed. Simulations are also be-
ginning to be deployed in what has traditionally been experimental work.
Besides being utilized to investigate that for which we have no ability to
perform experiments, simulations can evaluate the design of possible ex-
periments, assuring that potentially expensive projects will test what they
are designed to test. Simulations have a role in bridging the growing divide
between our experimental practice and our interest in deriving simple
models to aid our understanding.

The increased use of computer simulation in the sciences has raised a
number of methodological questions which stem from its differences from
analytic modeling and experimentation, respectively. Analytic modeling
and experimentation both have well established standards of rigor, and
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there is justifiable concern that simulation does not meet either’s stan-
dards. To see why this is the case, let us first consider specific worries
from the perspective of analytic modelers and then from the perspective
of experimentalists.

Analytic modelers may worry that there is not the same kind of trans-
parency in simulation as there is in analytic modeling, and this manifests
itself in numerous ways. Unlike analytic models, simulation work does
not generally result in a formal proof of some phenomena, but when it
does, the proofs can be of a kind that cannot be processed by a person
unaided by a computer. Even more importantly, the implementation de-
tails of a particular simulation instance can create new kinds of errors,
such as boundary condition bias, that are not present in abstract analysis.
The simulation environment itself is a potential source of errors, none of
which are in the simulator’s control. Though there are other specific con-
cerns that analytic modelers could raise, I consider the objections relating
to a lack of direct inspection—an inability to check each step of the
simulation—to be the most damaging claims against the use of computer
simulations.

Experimentalists may worry that computer simulation is not grounded
in real physical processes. Because of this lack of grounding, any given
simulation is very likely not describing the real world. Simulations are
being employed to predict future phenomena, such as changes in global
climate, but if they are not accurately representing the world—if their
results are not in some sense real—then it is not clear that they should
have a role in the scientific enterprise. For simulations to find a place in
scientific inquiry, there needs to be a mechanism by which we can come
to establish the realism of their results. I consider this to be a primary
experimentalist objection.

These objections are powerful, but not impossible to overcome. To
respond to the objections from analytic modelers, I argue that there are
alternatives to direct inspection available that can place simulations on
equally solid footing as analytic models. By examining the potential
sources of simulation errors from the lowest levels of hardware failure up
to the level of software implementation details, we can see how to insulate
simulations from unknown errors. The experimentalist’s objection is con-
siderable, and here I rely on robustness analysis as a theoretical framework
for a notion of independent verification of simulation results. Robustness
analysis here refers to the practice of examining a diverse set of models
of the same phenomenon, and in the cases where we find invariance across
models, attributing it to a core causal feature of the models, if one exists
(Weisberg 2006, 25). I conclude that, ultimately, the objections from both
the analytic modeling perspective and the experimentalist perspective can
be accounted for with robust simulation strategies.

https://doi.org/10.1086/525629 Published online by Cambridge University Press

https://doi.org/10.1086/525629


ROBUST SIMULATIONS 875

2. The Analytic Modeler’s Direct Inspection Critique. Analytic models
have several properties that computer simulations lack. Most obviously,
analytic models tend to be simple and permit some mathematical manip-
ulation. A suitably well trained human can manipulate analytic models
and can prove things about them. Hidden in this statement is the crux
of the difference between analytic models and simulations: analytic models
are designed to be understood by people, whereas simulations are designed
to be understood by computers. Where an analytic model is a series of
several equations, a simulation is frequently a system of dozens, hundreds,
or thousands of equations. This increase in complexity raises a number
of concerns regarding how much we can trust simulation results.

To illustrate the concerns of analytic modelers, let us compare the ac-
tions taken in response to unexpected results from an analytic model and
a simulation. Assuming that the analytic model was correctly designed
to capture the appropriate features of the world and that no crucial feature
of the phenomena under study was left out of the model, the surprising
results would lead one to search for mathematical errors, for which there
are a large number of available referees. In the case of a surprising sim-
ulation result, this relatively straightforward process quickly becomes un-
manageable, because nontrivial simulations are much more complex than
nontrivial analytic models. Simulations can and often do model inter-
actions more complex than what analytic models can easily handle, such
as nonequilibrium behavior, heterogeneous agents, large numbers of
agents, long timescales, and other features.

An example of models that employ such complex interactions are those
employed by the National Weather Service, which incorporate thousands
of data points and variables, and track multiple interacting dynamics. In
the face of unexpected results, attempting to calculate the interactions for
even one round of simulation would be a daunting task. If there were an
error of some kind, it is not obvious where to look for its source. Without
the ability to directly inspect the calculations being performed by the
simulation, an analytic modeler might wonder how a simulator can dif-
ferentiate between a genuinely novel but correct result and an error in
the simulation itself.

Simulations have numerous potential sources of error. At the lowest
level, there is the possibility that computer hardware can malfunction.
Next, even if we assume that the hardware is functioning properly, the
computer simulation’s software environment could be a host to a number
of different errors that affect the simulation’s operation. Finally, even if
the software environment is error-free, there is always the possibility that
the simulator programmed the simulation incorrectly. Analytic models,
on the other hand, only have the possibility of ‘programming error’. An-
alytic modelers can make a mathematical or transcription error, but there
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are no analogues to the other simulation errors. What’s worse, these other
errors appear to be out of the simulator’s control.

We have seen that the analytic modeler has several important concerns,
but they all hang on either the possibility of error, or the more general
problem of model verification. Because computers can perform far more
calculations than people can, we run the risk of having simulation results
that cannot be independently verified by a human. The critique rightly
points out that we should not trust results that we cannot verify. However,
there is a mistake in this line of reasoning: it assumes that the path to
verification is always through direct inspection. While this sounds like a
reasonable proposition, it fails to recognize the alternative methods of
verification that accomplish the same task as direct inspection, but are
more suited to computer simulations. With these methods, we can reduce
the sources of error down to just programmer error, which is equivalent
to the problems analytic modelers face. Just because we want to hold
simulation to the same standard as models does not mean that we must
use the same method of model verification.

Let us start at the lowest level of error, hardware failures, and work
our way up. To give an example of hardware errors, The Pentium “f00f”
bug that affected all Intel Pentium processors up through the Pentium
Pro line would cause the computer to freeze and possibly corrupt data in
any program that called for a certain instruction in the processor. More
serious was an earlier design flaw in Pentium chips, the FDIV bug, which
was an error in the floating point unit of the processor, causing constant,
but small, numerical mistakes in floating point calculations.1 Though the
programmer community noticed these design flaws relatively quickly, and
created software workarounds, these flaws show that the possibility of
CPU error is a distinct concern.

However, CPU errors can be exposed and eliminated through very low
level robustness checking. To do this, we must consider what means we
have to expose the errors. It would be a daunting task to hand check a
processor, or even the design documents for a processor, given the billions
of transistors in modern CPUs. What we can do with relative ease is
compare the output of identical programs on different processor classes.
There are different vendors of computer processors, and many vendors
sell more than one line of processors. It would be increasingly unlikely
that all of them have the same design flaw, especially given that there are
several different basic approaches to processor design. Even given an
extremely unrealistic 50% chance of error, with 8 different processor lines

1. See http://support.intel.com/support/processors/pentium/fdiv/ and http://support
.intel.com/support/processors/pentium/ppiie/ for details on these processor design
flaws.
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the probability of all of them having the same error is well below one
percent. With a more realistic error rate this chance goes quickly towards
zero with fewer processor lines. While it is possible that each processor
could each have different, independent errors that affect computation,
this is a highly unlikely scenario, as it would require every kind of pro-
cessor, which already undergoes a great deal of testing, to have a noticeable
computational disagreement with every other kind of processor. An even
more unlikely possibility would be that all the processors have independent
errors that somehow manifest themselves in the same way.

Given the extent to which these processors are tested and used, if there
were a small drift in numerical calculations, because of the sheer volume
of calculations that take place every day, the drift would be quickly ex-
posed. Almost certainly different kinds of processors would drift in dif-
ferent ways, and one would quickly see divergent results. So, given that
there are far more computers in use than there are of any other nontrivial
scientific tool, and there are a diversity of processors in use, the probability
of an undiscovered error in any given processor line quickly drops toward
zero. Scientists are able to benefit from the fact that computers have
become commodities, not just because it lowers the price of computing,
but more importantly, because it increases their reliability. While any
individual computer may have a hardware malfunction, it becomes van-
ishingly unlikely that a cluster of computers all share the same malfunc-
tion. Because of this, malfunctioning computers are readily identifiable.

The next possible source of error in computer simulations is mistakes—
or even just an implementation detail that the simulator is not aware of—
in the programming language or software library. A common problem of
this kind would be rounding implementation details in integer calcula-
tions. Software could round up, down, or to the nearest integer. Each
rounding method is entirely legitimate, but if the library has a different
assumption than the simulator, this may lead to calculational problems
as rounding errors are compounded. One can also find errors in the library
that affect simulation, particularly if the library is relatively new or is
being used in a nonstandard way. A particularly difficult class of errors
is memory overwriting. These errors usually manifest themselves as seem-
ingly random failures in which data is suddenly corrupted. More worri-
some is the possibility that the corrupt data is not obviously corrupted,
and so the simulation continues to run. Whereas large errors tend to be
fatal to a computer program, and thus relatively easy to identify, contin-
uous sources of small errors are less noticeable and thus pose the greater
challenge.

Just as the diversity of processor vendors and types makes it possible
to detect hardware problems, there are also many programming languages
and software libraries that enable simulators to locate software problems.
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If a simulator is concerned that there are errors in the simulation, a good
way to isolate the possibility of programming language or library error
is to try to replicate the results using a different programming language.
This method is no different from the common experimental practice of
replication in a different laboratory, using equipment that is similar, but
not identical to, the equipment in the original lab. If the phenomenon
can be replicated with multiple programming languages, then there is a
decreasing likelihood that there are errors built into the programming
languages used, assuming that the programming languages were developed
independently.

Finally we arrive at programmer error. This should be reduced auto-
matically if the program is implemented in multiple programming lan-
guage families, but it is certainly still a problem.2 But note that we have
the same options available to simulators that we do to analytic modelers:
we can prove the code’s correctness. Any language is ultimately repre-
sented by a system of recursively enumerable equations, and so is on
equivalent ground to an analytic model. Modern techniques in program-
ming also serve to minimize the errors of programming, by introducing
minimal units of programs that can then be ‘unit tested’ independently
of the rest of the program. This can help ensure that each component of
the program is functioning as specified.

Note that this response to programmer error also helps to address the
final question of verification. Of course, if we look at the output of what
a simulation did at each computational step to verify the result, we would
be quickly overwhelmed by the millions of calculations. But, if we un-
derstand how the result was generated, and can understand something
about the underlying structure of the simulation, then we have all we
need for verification of the simulation.

If we have performed the robustness checks suggested above, we have
a good deal of confirmation that the underlying computing mechanism
is well functioning. We can safely assume that all the calculations, as
specified by the simulator, will be correctly performed. Thus, we have
reduced the simulation to its underlying analytic model, one that leverages
computers instead of human brains for calculation. This methodology
may appear rather burdensome—the programmer must make new pro-
grams for multiple processor lines, in multiple programming languages,
and then prove the correctness of the code. However, the programmer
need only follow this procedure as far as the desired level of confirmation,

2. Different programming language families frequently require different algorithmic
approaches to the same task, as they have different fundamental data structures. Be-
cause of these different approaches that are needed, programming errors should be
independent across implementations.
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which is the same as the extent to which experimenters check their in-
strumentation depends on the confirmation level they are after. Even so,
experimenters have their own worries about simulations. Let us now turn
to their objections.

3. The Experimentalist’s Objection. Experimentalists may contend that
models of any kind are suspicious, insofar as it is questionable that they
actually imitate real-world processes. Simulations, after all, are not col-
lecting data in the actual world. What is to prevent a simulator from
simply making up a set of equations, and then tweaking parameters until
the output matches the existing set of observations? The potential danger
of computer simulations comes precisely from their low cost and their
power. The low cost induces many scientists to choose simulations instead
of the possibly very expensive proposition of experimental work. The
amazing flexibility of programming languages and simulation environ-
ments is such that any data set can be accommodated. Simulations can
lead science astray by providing what looks like evidence for a false theory;
experiments are much less likely to have this effect, precisely because they
are by nature grounded in real physical processes.

Humphreys (2004, 133) points to this worry in the context of epicycles.
Ptolemaic astronomy could account for any set of observations, given the
proper application of epicycles. Programming languages are easier to use,
and equally capable of satisfying any observation. To compound the prob-
lem, frequently simulations are employed to investigate dynamics that are
too long term for us to study with standard empirical methods. How are
we to confirm the realism of the long run predictions of our simulations
when the methods of calibration can make them conform to any existing
data set? This problem was solved for other scientific instruments in a
way that we can apply to our situation.

Galileo had two empirical methods for justifying the use of telescopes:
first, he used telescopes to examine details of ships that were coming in
to port. These details could then be checked with unaided eyes. Similarly,
looking at celestial objects that one could barely make out with unaided
vision, he showed that telescopes were able to provide a much clearer
picture. This was the step that was open to objection, since the detailed
images could have been artifacts of the telescope. However, he had mul-
tiple observers across Europe look at the same parts of the night sky at
the same time, recording what they saw. They all saw the same thing
(Kitcher 2001, 173–174).

Kitcher has labeled this methodology the ‘Galilean Strategy’. It exploits
the fact that the limits of our sensory apparatus are fuzzy, and makes an
inference from ‘success to truth’. This inference supposes that those meth-
ods that are predictively successful are so because of correct ontological
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suppositions. Because of their past successes at the fuzzy boundaries of
empiricism, we can then extend them beyond the boundaries and remain
confident in their future predictions (Kitcher 2001, 176–177). The trouble
with computer simulations appears to be that these options are not avail-
able to them for making any model verification claims. However, there
is a method of verification available to us that is akin to the Galilean
Strategy: robustness analysis.

As we saw in the previous section, a limited notion of robustness anal-
ysis, just relying on independence of errors across diverse computational
platforms, showed us how to reduce skeptical concerns of simulations to
that of models, by means of systematically reducing a simulation’s possible
sources of error. This use of robustness is not sufficient for the task at
hand. One may be able to program a simulation in as many languages
as one might please, but that does not help to ground the simulation, or
its underlying model, to the real world in a meaningful way. However,
there is a stronger notion of robustness that we can leverage, which will
get us most of the way to confirmation: robustness across modalities and
parameter space.

Wimsatt (1981) has argued that an important feature of robustness is
that we no longer treat a single simulation as the appropriate unit of
analysis. Instead, single simulations are treated as parts of a larger whole:
a class of simulations that are systematic variants of each other. Our
proper object of analysis is this class of simulations. To generate this class,
we create multiple models that implement the same basic dynamic by
different modalities and across parameter space. In doing so, we create
independent pathways of investigation, which allows us to isolate any
particular implementation detail by examining its effects on the simula-
tion. In Wimsatt’s words, robustness analysis has “a common theme in
distinguishing the real from the illusory, the reliable from the unreliable
. . . and in general . . . [the] epistemically trustworthy and valuable from
that which is unreliable, ungeneralizable, worthless and fleeting” (128).

To explore how Wimsatt’s insights can be put into practice, consider
a phenomenon that calls for explanation, such as the emergence of co-
operative behavior in a population of individually rational agents. This
has most frequently been modeled with the Prisoner’s Dilemma providing
the rules of interaction. In modeling social situations, one can take a
number of perspectives. An evolutionary model looks at populations as
a whole. Learning models are agent-based—that is, they employ meth-
odological individualism. Within either methodological framework, we
have multiple methods of implementation, and a range of possible pa-
rameters for those implementations. For example, if one were to choose
a learning model, the first choice would be to determine which learning
rule to use. Next is deciding on the parameters of the learning rule, such
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as how much memory to give agents. Each of these points of decision
can generate several different simulation paths. Approaching the problem
of simulation justification from the perspective of many simulations allows
us to remove modeling assumptions systematically, by varying parameters
and modalities. The biases of methodological individualism can in this
way be countered with a population approach, while both capture the
same phenomenon. So, rather than finding the single simulation that uses
the appropriate parameter set to generate the phenomenon, we look for
the class of simulations that generate the phenomenon. One simulation
can be a fluke. A class of simulations that vary by both parameters and
across modalities suggests a robust phenomenon.

Robust phenomena are perhaps less straightforward than they initially
seem. In the case of the emergence of cooperation, even if a wide variety
of simulations all result in a cooperative population, they might still differ
in important respects. For example, the average time it takes for a pop-
ulation to converge will vary across different simulations. Some simula-
tions will converge to cooperation only on average, rather than every time
the simulation is run. So. while a robust phenomenon may vary slightly
in character between simulations, this is like how experimental work is
done: it is rare that experiments are performed perfectly, or that repetition
results in exact replication.3

Chemistry offers a useful illustration. It is exceedingly rare to find that,
for given masses of reactants, the mass of the products is precisely what
theory predicts. Nor is there precise agreement to be found in replication.
In fact, one draws suspicion of faking one’s data if it looks too correct.
Further, changes in experimental setup might prevent replication. The
outcomes of many chemical reactions are sensitive to temperature, for
example. Finding that a reaction is not robust across all temperatures
does not suggest that it is a fluke—instead this informs us of the reaction’s
sensitivity.

Simulators are not limited merely to seeking out invariances: simulators
can see, for example, the temperature ranges under which a given reaction
will occur. Just as interesting is an investigation into what causes these
invariances to fail. After all, scientific inquiry is after not only the reg-
ularities themselves, but also what the difference makers, if any, might
be. Note how this is very similar to how Hacking (1985) confirms the
realism of the images taken from microscopes: we come to understand
the underlying dynamics by representing and studying them under mul-

3. Simulations have a bit of an advantage in replication: even when random numbers
are involved, a pseudorandom number generator with the same initial seed will always
produce the same numbers. If exact replications are needed, using the same seed will
accomplish this.
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tiple modalities in a wide parameter space. Through such an examination,
we can eliminate concerns over artificial constraints or assumptions. While
any individual simulation may be criticized on the basis of assumptions
over particular parameter values, its modality, or other implementation
details, a class of simulations that systematically varies these details is
not. It is in virtue of this that we must consider classes of simulations as
the unit of analysis, rather than individual simulations. If the simulations
produce phenomena that are qualitatively similar in the essential respects,
then what they see is not an artifact of the tool, but rather something in
the world. But just as experiments do not rely on bare observations,
simulations do not have to either.

Simulators can increase a simulation’s confirmation by moving beyond
just an analysis of the simulations by themselves. It is also possible to
introduce an analysis of interventions on these robust simulations. After
a robust dynamic is discovered, the simulator can then try to verify the
realism of the dynamic by checking to see whether interventions on the
phenomenon have robust results. If interventions are not robust across
modalities, then we have reason to question the underlying dynamic, as
it seems like the modalities themselves are playing a role. When the in-
terventions vary in parameter space, we have found useful distinctions
that are testable. In the case of robust interventions, we have a large
degree of confirmation. In the latter two cases, we have uncovered an
operationally definable dynamic that has clear testing implications.

Frequently, these implications can be tested by means of standard em-
pirical methods. It should be noted, however, that simulations themselves
have no way of showing a strong model-world relationship beyond the
techniques already discussed. While robustness across a class of simula-
tions, and an understanding of what happens under intervention, can be
suggestive of what the underlying causal structure of the world might be,
we are unable to go beyond our tools. If these simulations have gone
beyond what our standard tools can show us, then we have confirmed
their results more than what was possible before, and as much as can be
done now. That is the most that one can hope for from any tool.

4. Conclusion and the Limits of Simulation. Like any other scientific tool,
simulations cannot be used in all circumstances with the same levels of
reliability or utility. The most fruitful applications of simulations are those
cases when there is already a set of empirical data that the simulation
can leverage. Simulation by itself, not informed by any empirical data,
is just a more formal version of a priori reasoning. This can be helpful
to clarify ideas and make them more precise, but it is on the same epis-
temological grounding as any rationalist project. As is the case with an-
alytic models, simulations provide a rigorous framework for reasoning,
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but not a crystal ball: they can extend our epistemic reach, but not without
limit. And like any other tool, simulations can be misused, and their
conclusions can be overstated. But if simulators do their work within a
strategy of robustness analysis and active intervention, there is a great
deal that simulation can teach us about the world.
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