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Optimal statistical operators for 3-dimensional rotational data:
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SUMMARY
Rotational data in the form of measured three-dimensional
rotations or orientations arise naturally in many fields of
science, including biomechanics, orthopaedics and robotics.
The cyclic topology of rotation spaces calls for special care
and considerations when performing statistical analysis of
rotational data. Relevant theory has been developed during
the last three decades, and has become a standard tool in some
areas. In relation to the study of human kinematics and
motion however, these concepts have hardly been put to use.
This paper gives an introduction to the intricacies of three-
dimensional rotations, and provides a thorough geometric
interpretation of several approaches to averaging rotational
data. A set of novel, simple operators is presented. Simula-
tions and a prosthetics-related real-world example involving
wrist kinematics illuminate important aspects of the results.
Finally generalizations and related subjects for further re-
search are suggested.

KEYWORDS: Orientation statistics; Rotational data;
Rotation matrix; Quaternion; Euler parameter; Euler angle;
Orientation vector; Attitude vector; Kinematics; Ortho-
paedics; Prosthetics; Biomechanics.

I. INTRODUCTION
The overall function of human joints is of a mainly
rotational nature. Consequently, the study of rotational
movement is essential to the study of human motion and
relevant to the design of prosthetic devices, planning of
orthopaedic surgical procedures, ergonomics, sport science
and biomechanics in general, as well as to technical fields
like robotics and vessel control. The inherent cyclicity of
rotations differs substantially from the properties of linear
translations. Therefore many statistical methods cannot be
translated into the rotational domain in a straightforward
manner.

One objective of this paper is to briefly review the
theoretical basis for conducting unbiased statistical analysis
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on general three-dimensional rotational data. Much of the
relevant literature is very theoretical and abstract. A second
purpose of this work is therefore to derive and analyse
optimal operators related to orientational average and
variance by using geometric considerations, in an attempt
to give the reader a concrete understanding of the operators’
practical significance, applications and implications. The
resulting operators, which we refer to collectively as the
Cosine Statistics, operate on data in rotation matrix form,
and are closely related to theoretical results previously
derived by others. The performance of the Cosine Statistics
is compared to that of more naive approaches by application
to simulated data. In a real-world example we employ the
Cosine Average to estimate the optimal static alignment of
a prosthetic terminal device.

I.1. On representations
The choice of representation for body or joint orientations
and rotations has occupied the biomechanics society for
more than two decades, and several publications have been
dedicated to the subject.1–6 Any rotation in space can be
represented by a single rotation through a suitable angle θ

about a suitable fixed axis represented by a unit 3-vector k.
Similarly, any orientation in space can be obtained, and thus
represented, by such a single rotation from a reference ori-
entation. Each axis/angle pair (k, θ) corresponds to a unique
3 × 3 rotation matrix which can be parameterized in many
ways. One popular “joint coordinate system” representation,
often referred to as the Chao/Grood and Suntay
convention,2,3 in effect resembles an Euler or Cardan angles
convention. This model has been opposed on the basis of
singularities and poor metric properties, the latter which can
cause the individual angles to be much larger than the total
rotation in question.5 Alternatives that have been suggested
to alleviate these problems include the four-parameter
“unit quaternion” (Euler parameter) representation4 q =
[q0, q1, q2, q3]T

�= [cos θ
2 sin θ

2 kT ]T , and the closely related
three-parameter “attitude vector”5 � = [θx, θy, θz]T

�= θk,
θ ∈ [0, π], which we will refer to as the “orientation
vector” to comply with pertinent robotics literature.
Though superior to Euler angles in many respects, both
these representations as well as the full rotation matrix
representation may yield meaningless results if averaged
arithmetically. This calls for a different approach to statistics
that accounts for the special topology of three-dimensional
rotations.
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I.2. Previous research
Most prosthetic devices available exhibit very simple
kinematic structures. A recent study explored compensatory
movements in response to different static wrist alignments
by comparing extremal values of scalar joint angles.7 The
majority of literature relevant to upper-limb prosthesis
kinematics, however, is of a mainly qualitative or non-
statistical nature.

In the more general field of biomechanics, statistics has
been applied to rotational data for example in conjunction
with movement estimation from noisy marker position
data.8,9 The reported results apply to differential (i.e. small)
rotations, justifying certain simplifications which were
actively exploited by the respective investigators. Several
studies related to the human wrist have focused on joint
range of motion in the well-known “clinical angles” flexion/
extension, adduction/abduction and internal/external rota-
tion. The reported results include averaged extreme values
for the clinical angles across a test population;10–12 average
arcs of motion for each clinical angle;13 and the “centroid”
of motion in terms of the average flexion/extension angle
and adduction/abduction angle.14 Such practice is acceptable
when the clinical angles are viewed separately as such.
However, pairs or triplets of average angles do not give a rep-
resentative value for the joint’s overall average orientation;
clinical angles resemble the Chao/Grood and Suntay con-
vention,2,3 and thus suffer the metric defects previously
mentioned. Use of Euler parameters has been suggested
for interpolating orientation data in animation applications.15

Rotation statistics has been applied for the analysis of vari-
ations of static postures,16 but most of the specific methods
used rely on the assumption of closely spaced data. However,
there seems to have been little or no tradition in the study
of human kinematics and motion, including orthopaedics, to
consider the statistics of arbitrary sets of three-dimensional
orientations.

The theoretical literature relevant to orientation statistics
has been concisely reviewed by Krieger Lassen, Juul Jensen
and Conradsen.17 Important results are related to the
Bingham and the matrix Fisher probability distributions,
which are equivalent but related to quaternion vectors
and rotation matrices, respectively. This theory has been
applied for estimating average crystal orientation from data
obtained in an electron microscope.17 Others who reported
the same application calculated the average orientation as
the normalized vectorial sum of individual quaternions.18,19

This latter approach is computationally trivial; however, in
some situations it may lead to absurdities which makes the
approach less suitable for general application.

II. MATHEMATICAL PRELIMINARIES
The set of all three-dimensional rotation matrices i.e. all
orthogonal 3 × 3 matrices R with det R = 1, is referred to
as the special orthogonal group of order 3 and is denoted
SO(3). Inversion and transposition are equivalent operations
on SO(3):

R−1 = RT ⇔ RT R = RRT = I (1)

The orientation of a coordinate frame S1 relative to a frame
S2 can be represented by a rotation matrix R1

2. Let p1 be a
coordinate vector decomposed in frame S1, and let p2 be the
same vector decomposed in frame S2 with the same origin
as S1. The transformation between p1 and p2 is then given
by:

p2 = R1
2p1 ⇔ p1 = R1

2
T

p2
�= R2

1p2 (2)

Let the basis vectors of the two frames be the orthonormal
unit vector triples (x1, y1, z1) and (x2, y2, z2), respectively.
Then R1

2 can be written:

R1
2 =




x2 · x1 x2 · y1 x2 · z1

y2 · x1 y2 · y1 y2 · z1

z2 · x1 z2 · y1 z2 · z1


 (3)

Thus, the elements of R1
2 are the direction cosines of the basis

vectors of S2 with respect to those of S1.
As already stated, any rotation can be defined by an angle θ

and a unit vector k. The matrix representing this rotation will
be denoted Rk,θ , which is equivalent to R−k,−θ and which is
cyclic (mod 2π) with respect to θ . The formula for Rk,θ is
given in many kinematics textbooks.20

II.1. Metric on SO(3): angular distance
Let S1 and S2 denote two coordinate frames whose orien-
tations are given by the rotation matrices R1 and R2, respecti-
vely. The geodesic angular distance between R1 and R2 then
is defined to be the minimum angle β by which any of the
two frames must be rotated, about a suitable fixed axis, in
order to make the two frames’ axes parallel. The relationship
between the two matrices can be expressed as R1 = Rk,βR2

so that Rk,β =R1R
T
2 . The geodesic distance between R1 and

R2 is given by the formula

� (R1, R2) = β = arccos

(
tr
(
R1R

T
2

) − 1

2

)
(4)

where tr is the trace operator, i.e. the sum of the
argument’s diagonal elements. This metric, or distance
measure, is the core of many optimization problems related
to rotations, including some of those discussed in this
paper.

III. DERIVATION OF THE STATISTICS
Let {Ri}ni=1 be a set of rotation matrices. The aim of this
section is to define an operator which calculates the single
rotation matrix which best represents the whole set, i.e. the
“average rotation” of the set, as well as operators related to
the dispersion of the data about this average. For an average
quantity to be justifiable, it must satisfy certain criteria,
e.g.: for trivial data sets it must yield the expected result;
the average must be independent of the order of the data
elements; and for a given data set it must provide a unique
average value or an explanation of why a unique average
cannot be found.
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Fig. 1. Trajectory of the first two elements of the orientation vector (left) and the Euler parameter vector (right) when the angle of rotation
is gradually changed from 0 to 2π . Rotations performed about the x-axis.

III.1. Shortcomings of vectorial approaches
We will start by showing how two techniques used in
the literature, namely the arithmetic average of orientation
vectors and normalized average of Euler parameter vectors,
respectively, may come short in trivial cases. Without loss of
generality we will assume rotations about the x-axis (i.e. k =
[1, 0, 0]T ), so that the two representations can be represented
completely in the (θx, θy) and the (q0, q1) plane, respectively.
These planes are illustrated in the left and right part of
Figure 1, respectively. As the angle of rotation θ sweeps
through the interval [0, 2π] the orientation vector � goes
through the path defined by the bold arrows labelled 1, 2 and
3, in that order. The dashed arrow 2 represents the sign shift
occurring at θ = π , i.e. the representation singularity of the
orientation vector representation. In contrast, the plain Euler
parameter representation has no intrinsic singularity. When
averaging Euler parameter vectors, however, the double rep-
resentation of this space creates a dilemma: each orientation
can be equivalently represented by two oppositely directed
vectors; which sign should be used for the averaging? A com-
mon convention is to choose the sign so that q0 ≥ 0,21 which
is the case in the right part of Figure 1 where the labelled
arrows correspond to those in the left figure. As indicated by
arrow 2, the sign convention has introduced a representation
singularity very similar to that of the orientation
vector.

We now quickly review a trivial case in which the data set
contains only two elements, corresponding to θ1 = π − δθ

and θ2 = π + δθ , where |δθ |� π and k = [1, 0, 0]T as
before. It is then reasonable to expect the average of
the rotations defined by (k, θ1) and (k, θ2) to be that
corresponding to (k, π), i.e. a rotation through the angle π

about the x-axis. The arithmetic average of the corresponding
orientation vectors, however, is the null vector, which implies
θ = 0, i.e. no rotation at all. Normalizing the average of the
corresponding Euler parameter vectors yields q0 = 1 and
q1 = q2 = q3 = 0, also implying a zero angle of rotation.
Data sets similar to that considered here may appear as

subsets of larger data sets if the data is dispersed and/or
if the reference frame is chosen such that the data appear
with angles of rotation in the vicinity of π . The consequence
is potential bias of the estimated average orientation. This
is a very serious drawback that calls for extreme caution if
applying these techniques.

III.2. A Least squares attempt
A principal solution has been suggested for calculating the
average of a finite group.22 We propose to generalize this
definition to a class of average operators for finite samples
(i.e. discrete subsets) on finite or infinite groups as follows:

Definition 1. Let � = {γi}ni=1 be a finite sample on (i.e. a
discrete subset of) a group G, and let ρ be a metric on
G. Furthermore, let h be a lower bounded scalar function
which is monotonously increasing throughout the range of ρ.
Define

J (s; �) = 1

n

n∑
i=1

h(ρ(s, γi)) (5)

where s ∈ G. The group element η ∈ G is then said to be a
candidate sample average of � if η minimizes J (s; �). The
number J (η; �) is called the ρh–spread of �.

Note that Definition 1 guarantees the existence, but not
the uniqueness, of a minimum of J ; hence the use of the
term candidate sample average. By setting � = {Ri}ni=1,
substituting the angular metric of Equation (4) for ρ and
choose h(·) = (·)2, we get what we may refer to as the Least
Squares Average RLS , defined by

RLS{Ri} �= arg

(
min

R∈SO(3)
JLS(R; {Ri})

)

JLS(R; {Ri}) �= 1

n

n∑
i=1

� (Ri, R)2 (6)
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Fig. 2. Individual and summed squares and cosines, respectively, of � (R(θ ), Ri) for i = 1, 2.

Here, the arg operator yields the argument R corresponding
to the extremum of JLS rather than the extremal value itself.
A major defect of this solution is the likely existence of
local minima of JLS . This is illustrated in Figure 2 for a
random data set with n = 2. Figure 2(a) shows two graphs,
each corresponding to one of the summed elements of (6).
For each graph we have R = 	(θ) = Rk,θR0 with the unit
vector k and the rotation matrix R0 random but fixed, and
with θ ∈ [0, 2π〉 (i.e. R spans a one-dimensional subspace
of SO(3)). Because of the cyclicity of SO(3) each parabola in
the figure will repeat itself once every turn of θ . Figure 2(c),
which shows the sum of the two functions above (i.e. it
essentially shows JLS as R is rotated by an angle of 2π

about k), clearly exhibits two minima, one for each element
of {Ri}. There are a corresponding number of maxima at
which JLS is not differentiable, severely complicating the
process of finding the possibly non-unique global minimum.
Considering that Figure 2 is a one-dimensional section of
a complex, three-dimensional problem, we conclude that a
least squares approach is effectively useless for the present
problem in the form of Equation (6).

III.3. The cosine average
Figure 2(b) and 2(d) show the functions we get by repeating
the process just described after choosing h(·) = 1 − cos(·). In
this case each of the individual functions (upper right pane) as
well as their sum (lower right) constitutes a (generally scaled,
biased and angularly offset) cosine function, guaranteeing a
unique minimum unless the scaling factor happens to be zero.
This gives rise to the following definition:

Definition 2. Given a general sample {Ri}ni=1, Ri ∈ SO(3),
the Cosine Average (CA) of the sample is denoted Rcos and

is defined as

Rcos{Ri} �= arg

(
min

R∈SO(3)
Jcos(R; {Ri})

)

Jcos(R; {Ri}) �= 1

n

n∑
i=1

(1 − cos(� (Ri, R)) (7)

whenever the solution is unique; if not, the CA is said to be
indefinite.

Simplification of Equation (7) by substituting (4) and setting∑n
i=1 Ri = R
 yields

Rcos{Ri} = arg

(
max

R∈SO(3)
Jtr(R; {Ri})

)

Jtr(R; {Ri}) �= tr(R
R
T

) (8)

(Note the change from min in (7) to max in (8)). This is exactly
the maximum likelihood estimate of the mean orientation
of a matrix Fisher probability distribution.23 It is also the
projection, in a least squares sense, of R
 on SO(3) since
if rT

ij and rT
j are the j ’th row of Ri and R, respectively, we

have17,24

n∑
i=1

3∑
j=1

|rij − rj |2 = 6n − 2tr(R
R
T

). (9)

III.4. Existence and uniqueness
The function Jcos in Equation (7) is a continuous function on
a closed, bounded set, and thus it must exhibit at least one
minimum.
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For the uniqueness properties of the CA, the picture is
more complicated. A theoretical treatment of this problem
has been given in several previous publications.23–26 The
following paragraphs are built on these publications, and
contain what to our best knowledge is a novel, thorough
geometric interpretation of their results. For the discussion
to follow we let R
 = ∑n

i=1 Ri = [r
1 r
2 r
3]T and R =
[r1 r2 r3]T . Furthermore we recall that we can always write

R
 = USVT (10)

where (10) is the singular value decomposition of R
 , so
that U and V are orthogonal (but not necessarily rotation)
matrices and S = diag (σ1, σ2, σ3) where σ1 ≥ σ2 ≥ σ3 ≥ 0
are the singular values of R
 . We can then write

tr(R
R
T

) = tr(SR̃T ) (11)

with R̃T = V T R
T
U . The rows and columns of S are ortho-

gonal since S is diagonal, and so are the rows and columns of
R̃ because this matrix is orthogonal. Consequently, without
loss of generality the problem can be discussed in terms of
fitting one orthogonal vector triplet to another. We will do
this in the following by assuming that R
 is diagonal and
fitting the orthogonal matrix R to it rather than explicitly
involving S and R̃ in the analysis. (If det R
 is negative, the
transformation (11) will yield det S > 0 and det R̃ < 0, i.e.
R̃ will no longer be a proper rotation matrix. This can easily
be resolved and does not invalidate the discussion.) (Fig. 3).
We discuss the different uniqueness modes one at a time:

(i) det R
 > 0
R
 resembles a right-handed (though generally not
orthonormal) coordinate frame. In this case the CA is
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Fig. 3. The five non-trivial uniqueness modes of the Cosine Average: geometric interpretations.

uniquely defined; its row vectors are fitted to those of
R
 in the least squares sense (Figure 3(a)).

(ii) rank R
 = 2
The information contained in the sample {Ri} is related
to two coordinate axes only; the information pertaining
to the third axis is cancelled out (Figure 3(b)). In this
case R is uniquely defined by the two nonzero vectors of
R
; the third vector of R is determined by the right-hand
rule.

(iii) rank R
 = 1
In this case only the first vector r1 of R is determined by
the data. The remaining vectors are restricted to forming
an orthonormal right-handed triplet with r1, but their
orientation in the plane normal to r
1 is undetermined
(Figure 3(c)).

(iv) rank R
 = 0
This degenerate case arises if the data are perfectly
homogenously distributed on SO(3) so that all elements
of R
 are equal to zero. In this case the notion of average
is meaningless and is said to not exist.

(v) det R
 < 0
R
 resembles a left-handed (though generally not
orthonormal) coordinate frame. In this case the
uniqueness can be derived from the two smallest singular
values of R
 as follows:
(a) σ2 �= σ3

The vector of R
 corresponding to σ3 is distinctly
shorter than the other two. To obtain what we may
call a right-handed data set, we change the sign of
that shorter vector before calculating the solution.24

Figure 3(d) illustrates the geometry of this case.
Once the sign is changed, the problem becomes
equivalent to that of case (1) above.
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(b) σ2 = σ3

This situation is illustrated by Figure 3(e). The
dominant axis of the data set is associated with the
larger singular value σ1, thus r1 is aligned with it.
The remaining two axes of R
 are of equal length;
however, we will always have r
1

T r1 + r
2
T r2 = 0

so the orientation of the last two vectors of R

in the plane normal to the dominant axis is un-
determined. Consequently there are infinitely many
solutions.

III.5. Calculating the cosine average
From the preceding discussion we can derive a simple
formula for calculating the CA. Since S is diagonal with
nonnegative elements, it is obvious that if det R
 > 0 (and
thus det R̃ > 0) the trace in Equation (11) is maximized when
R̃T = I . This immediately yields R

T

cos = VUT where V and
U are as in (10). If det R
 < 0 and σ2 �= σ3, the afore-
mentioned sign shift must be carried out. It is the third and
smallest diagonal element of S that needs to be changed,
which can be done by setting R
− = USJVT with J =
diag (1, 1, −1) and S, U and V as in (10), and then calculating
the CA from R
− instead of R
 . A general formula which
covers both cases is therefore given by

R
T

cos = VJUT (12)

with J = diag(1, 1, s), where s = sgn(det R
) and sgn is the
signum function.

III.6. Definity
Whenever the CA is not uniquely defined (i.e. it is indefinite),
this is so because the data set exhibits some kind of rotational
symmetry. Obviously the data can be infinitely close to being
rotationally symmetric without actually being so. When
using the CA for analysing e.g. biomechanical data, we need
a measure of how far the CA is from being indefinite in
order to correctly interpret the results. We propose a simple
measure which we will denote the definity and which can be
calculated as

Def {Ri} �=
{

1
2

σ2 + σ3 sgn (det R
 )
σ1

if rank R
 > 0

0 otherwise
(13)

where σi is the i’th singular value of R
 . As can be readily
verified, the definity takes on the value 1 if all elements Ri of
the data set are identical (i.e. the most definite case possible),
and becomes zero if the CA is indefinite; in all intermediate
cases the definity takes on intermediate values.

III.7. Cosine variance and standard deviation
We recall that in basic statistics, the average is chosen such
that the variance, which is defined by means of the former,
is minimized. We propose to define a variance and standard
deviation associated with the CA in a similar way:

Definition 3. Given a sample {Ri}ni=1, Ri ∈ SO(3) with a CA
Rcos{Ri}. The Cosine Variance of the sample is then denoted

Vcos and defined as

Vcos{Ri} �= 1

2n

n∑
i=1

(1 − cos � (Ri, Rcos{Ri}). (14)

Likewise, the Cosine Standard Deviation of the sample is
denoted SDcos and defined as

SDcos{Ri} �= arccos(1 − 2Vcos{Ri}). (15)

Calculation of the concentration matrix for a sample
assumed to be matrix Fisher distributed is known to
be extremely complicated.17 The much simpler Cosine
Variance, however, can be found by simplifying Equation
(14), which yields

Vcos{Ri} = 1

4
(3 − tr(R
R

T
)) (16)

where R
 = 1
n

∑n
i=1 Ri and R = Rcos{Ri}. Note that while

the concentration parameters of a matrix Fisher distribution
carry information about the three-dimensional dispersion of
the data, the Cosine Variance is a scalar quantity and carries
information about angular spread only. Therefore these two
quantities are related but by no means equivalent.

III.8. Further geometrical aspects and their implications
In this section we illuminate the geometric significance of
some of the results more or less explicitly stated by Downs.23

Let R be the CA of a set {Ri}ni=1 of rotation matrices, and
let {�Ri}ni=1 be the set of rotational residuals given by

�Ri = RiR
T

(17)

i.e. the distance (in matrix form) from the average R to
the data element Ri . Furthermore let Si and S be the
coordinate frames which orientations are given by Ri and
R, respectively. It can easily be shown that

n∑
i=1

�Ri =
n∑

i=1

�RT
i (18)

i.e. the sum of the residuals is symmetric. We recall that
�Ri represents the orientation of frame Si with respect to
the average frame S, while �RT

i represents the orientation
of S relative to Si . Equation (18) therefore implies that {Ri}
are spaced around Rcos in a rotationally neutral manner: if
the set {�Ri} has a rotational bias, the set {�RT

i } will have a
rotational bias in the opposite direction, and the sums of the
elements in each of the two sets cannot be equal.

Let Q ∈ SO(3). Then the following linear property holds
for the Cosine Average:

Rcos{QRi} = QRcos{Ri}, (19)

i.e. SO(3) is distributive over the Cosine Average operation.
Premultiplication by a rotation matrix Q implies a change

of coordinate frame, hence the value of the CA is independent

https://doi.org/10.1017/S0263574704001304 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704001304


Optimal operators 289

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

n

∠
 (R

m
ea

n,
 R

ex
p)

 [
de

gr
ee

s]

σ = 25

CosAv
Quat.
Orient.
k–Angle
Euler

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

n

∠
(R

m
ea

n,
 R

ex
p)

 [
de

gr
ee

s]

σ = 60

CosAv
Quat.
Orient.
k–Angle
Euler

Fig. 4. Estimation error for σ = 25◦ (left) and σ = 60◦ (right) and different sample sizes n.

of the reference coordinate frame used during computation.
This is a very important property in fields where the choice
of coordinate frames may vary among investigators and
applications, in that it decouples the choice of frames for
intermediate data processing and eventual reporting.

IV. EXPERIMENTAL SECTION

IV.1. Application to simulated data
In this section we compare the CA with the values obtained by
averaging the parameters of several different representations,
namely Euler parameter (quaternion) vectors, Euler angle
triples and orientation vectors. We also include separate
averaging of angle and axis of rotation, the latter in the form
of unit vectors ki . For the Euler parameters we choose the
sign so that the first element q0 of each vector is positive
or zero. Also, the arithmetic mean of the Euler parameter
vectors and that of the axis of rotation vectors are normalized
to obtain results in the valid ranges.

We somewhat arbitrarily use the Euler angles ψ , θ and
φ, taken about the reference x-, y- and z-axis, resectively.
The angles are calculated such that φ ∈ [−π, π], θ ∈
〈−π/2, π/2〉 and ψ ∈ [−π, π].

We will calculate the average of the set {Ri}ni=1 with

Ri = Rk,αi
R0

�= Rki ,βi
(20)

where the axis of rotation k and the “rotational offset” R0 are
fixed, while α takes on values in the interval [0, 2π〉. This
model spans a one-dimensional subspace of SO(3). We let
αi have a Normal distribution with given fixed expectation µ

and standard deviation σ . Intuitively we then expect that

lim
n→∞ R = Rk,µR0

�= Rkexp,βexp (21)

Several data sets were generated and the average orientation
estimated using the different techniques. The parameter
values chosen were: k = [1, 2, −5]/

√
3, R0 = Rk0,θ0 with

k0 = [1, 1, 1]/
√

3, θ0 = 60◦ and µ = 70◦. The angular

difference between the estimated average orientations and
the expected value Rkexp,βexp , i.e. the estimation error, were
recorded for different values of the standard deviation σ

and different sample sizes n. Figure 4 shows the average
estimation error resulting from 50 different data sets with
σ = 25◦ and σ = 60◦.

To obtain a conservative result with respect to the qualitites
of the CA, the singularity of the Euler angle representation
was resolved by adding or subtracting 360◦ from ψi for
certain values of θ to make ψ(θ) a smooth function. Similar
techniques were applied to the axis/angle and the orientation
vector data prior to averaging.

In the figure legends “CosAv” denotes the Cosine Average,
“Quat” denotes quaternion (Euler parameter) averaging,
“Orient” denotes orientation vector averaging, “k-Angle”
denotes separate axis and angle averaging and “Euler”
denotes Euler angle averaging.

In the present example the CA and the Euler parameter
based estimates were virtually indistinguishable in quality
for σ = 25◦ (less than 1.5% difference), while the CA was
superior when the angular spread of the data was increased
to σ = 60◦ (Figure 4). Of the other estimators, only the
average orientation vector was comparable to the former
two, and only when the spreading of the data was kept low.
Furthermore, the Cosine Average converges towards the ex-
pected value as the data sets become larger, even as the data
spreading is increased; this is not the case for any of the
other estimators tested. The estimates based on average
Euler angles display inferior performance in all scenarios
investigated and is useless for most practical purposes.

IV.2. A real-world case
To illustrate the relevance and applicability of the Cosine
Statistics they were applied to authentic data from an
experiment involving eight right-handed healthy subjects.
Full details about this experiment are given elsewhere;27 here,
only a short description is given. The experiment aimed at
investigating the average orientation of the wrist joint with
respect to the forearm during activities of daily living (ADL).
This quantity is of potential relevance to prosthetics, as it can
be said to indicate the functionally optimal alignment of an
anthropomorphic terminal device.
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Fig. 5. Forearm and hand instrumented for tracking of wrist orientation; coordinate frame definitions.

IV.2.1. Experimental set-up. A custom-made plaster of
Paris gauntlet was firmly applied to the left hand and a
socket made of the same material was applied to the left
proximal forearm of each subject, and the four fingers
were taped together to form a single unit. The purpose of
these structures was to restrict the forearm, wrist and hand
movements to those obtainable with a typical prosthetic
terminal device. A MotionStar∗ electromagnetic motion
capture system was employed to record the orientation of
each socket during the performance of 15 predefined ADL.
Figure 5 depicts an instrumented limb in the standard posture
used to calibrate the sensors’ orientation with respect to
relevant body segments.

Four body-fixed coordinate frames were defined as
indicated in the figure: a proximal frame Su fixed to the
ulna, and three hand-fixed frames Sh, Sh′ and Sw, the latter
which was parallel to the Su frame when the limb was in the
reference posture. A global laboratory-fixed frame S0 served
as a reference for both sensors. Each sensor’s orientation was
sampled at 20 Hz during fifteen predefined activities of daily
living (ADL). Each activity was performed twice, each run
of 20s duration. Subsequently, the data were transformed to
yield one of the hand fixed frames’ orientation with respect
to Su.

The average wrist orientation was estimated by using
the CA operator, by averaging individual Euler angles, by
averaging orientation vectors and finally by means of the
normalized average Euler parameter vector. The calculations
were carried out twice, first by letting Sh represent the
hand orientation and then by choosing Sh′ as the hand-fixed
frame, to investigate the respective techniques’ robustness
with respect to this kind of choices. The average orientations
calculated were all changed into rotation matrix form and
transformed to express the orientation of the Sw frame with
respect to Su, a representation where all the clinical angles
are zero when the overall angle of rotation is zero (i.e. in the
calibration posture of Figure 5).

∗ Ascension Technology Corporation, Burlington, VT, USA.

Table I. Average orientation estimates: Deviation from the CA and
implied clinical angles. All quantities in ◦.

Deviation Ulnar
from CA Pronation Extension deviation

Cosine Average – 3.3 7.3 4.9
Euler Parameters 0.3/159 3.1/165 7.2/17.6 4.9/17.6
Orient. vectors 2.1/172 1.3/176 7.4/5.0 4.2/6.1
Euler Angles 104/147 −24.5/132 −23.9/−27 −88.6/64

IV.2.2. Results. Table I displays two sets of data separated
by slash symbols: quantities based on choosing Sh as the
hand-fixed frame to the left, those obtained when choosing
Sh′ as the hand-fixed frame to the right of the separators.

The leftmost column of Table I shows the angular deviation
of the other average estimates from that obtained with the
CA. The results based on Sh as the hand-fixed frame are
in general agreement with the simulation results in that
the Euler parameter and orientation vector based estimates
only deviates moderately from the CA while the Euler
angle based quantities show little agreement with the others.
The orientation of Sh′ with respect to Su was deliberately
chosen such that their geodesic distance approximately
equals π in the neutral posture of Figure 5 so that the
Euler parameter vector representation of the data set exhibits
the aforementioned sign shifts. The results clearly illustrate
the serious consequences of this singularity; the estimated
average orientation in this case deviates from the CA by as
much as 159◦. The corresponding pronation angle is 165◦,
which is in fact outside the range of a healthy wrist. The
non-physical nature of this result is further illustrated by
Figure 6, where the left figure depicts the average orientation
given by the CA and the right pane shows the wrist posture
corresponding to the Euler parameter-based estimate. The
former configuration deviates from the calibration posture
by a net angle of 9.2◦ only. As implied by Equation (19),
the CA yielded exactly the same result before and after the
change of the hand-fixed frame.
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Fig. 6. Estimated average wrist orientation during ADL. Left: Cosine Average. Right: Estimate based on Euler parameters and hand
orientation represented by Sh′ . The line labelled Zu represents the humeroulnar joint’s axis of rotation.

V. GENERALIZATIONS AND FUTURE
RESEARCH ISSUES
We would like to briefly mention an interesting generalization
of the Cosine Average operator, namely time-domain filtering
of rotational data. A slight generalization of Equation (8)
yields

Yk = arg

(
max

Y∈SO(3)
tr(U
YT )

)

U
 =
n∑

i=0

aiUk−i (22)

where a0, a2, . . . , an ∈ R are a set of constant coefficients.
This construction implements an n’th order Finite Impulse
Response (FIR) filter on SO(3). Generalization to an Infinite
Impulse Response (IIR) filter is straightforward. We propose
to employ this kind of filter e.g. in conjunction with
interpolation or decimation of data sequences in rotation
matrix form to avoid the complications associated with
nonlinearities, double representations and singularities of
other parametrizations.

The detailed properties of such filters remains to in-
vestigate, however, and constitutes a possible subject for
future research. Possible further generalizations include what
might be denoted rotationally non-symmetric filters, i.e. by
substituting a set of 3 × 3 matrices for the filter parameters.

VI. CONCLUSIONS
This paper has pointed out the existence of an optimal average
operator, referred to here as the Cosine Average, for three-
dimensional rotational data. The operator is robust with
respect to the dispersion of the data set and is completely
insensitive to the choice of reference coordinate frame,
making it ideal for biomechanics-related kinematic analysis

where the appropriate choice of reference frame is often
dictated by the application or by clinical tradition. It has
clear geometric interpretations, yields a unique result except
in degenerate data sets, and can be readily calculated using
standard computer software tools. The definity statistic offers
a measure of the degree of rotational symmetry in the data
set, which is closely related to the degree of uniqueness of
the Cosine Average. The associated Cosine Variance yields
a simple measure of the degree of dispersion in the data.

Our prosthesis-related example illustrates the use of
rotational statistics in a biomechanics and orthopaedics
context, while also demonstrating the severe limitations of
simpler approaches to orientation statistics.

We believe that rotation statistics represents a potential
which is largely unexploited for the study of human
kinematics and motion in general. The Cosine Statistics
provide a simple toolbox that allows for explicit empirical
analysis of complex rotational biomechanical data without
any a priori assumptions with respect to the data set.
Possible applications include optimization of kinematics of
orthopaedic devices like orthoses and exoskeletal prostheses
as well as prosthetic joint implants.
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