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Maymin proved that for binary systems, the path-cut lower bound is sharper than
the minimax lower bound for highly reliable components, which was originally
conjectured by Barlow and Proschan+ In this note, an example is constructed to
illustrate that this, in general, is not the case for multistate systems+ However, an
affirmative result is obtained under mild conditions we imposed+ Examples are
given to illustrate the applications of our results+

1. INTRODUCTION

First, we introduce some basic notations for binary coherent systems+ A binary co-
herent system composed ofn components is denoted by~C,f!,whereC5 $1, + + + , n%
designates thencomponents andf : $0,1%n ° $0,1% denotes the nondecreasing struc-
ture function of the system+ Assume that the system contains relevant components
only; that is, for eachi [ C, there exists a vector~{i ,x! such thatf~1i ,x! 5 1 2
f~0i ,x! 5 1, where~{i ,x! 5 ~x1, + + + , xi21,{i , xi11, + + + , xn!+ The reliability of thei th
component is denoted bypi 5 Pr$Xi 5 1% ~i 5 1, + + + , n!+ Assume that then compo-
nents are independent+ The reliability function of the system is denoted byh~p! 5
Pr$f~X!51%,wherep5 ~ p1, + + + , pn! andX 5 ~X1, + + + ,Xn!+Denote byP1, + + + ,Pp and
K1, + + + ,Kc the p minimal path sets and thec minimal cut sets, respectively, of the
system+ It is known that~see@1,5# !

h~p! $ max$lpc~p!, lmm~p!%, (1)
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where thepath-cut lower bound lpc~p! 5 ) j51
c 3i[Kj

pi , the minimax lower bound
lmm~p! 5 max1#r#p )i[Pr

pi , and3i[A pi [12 )i[A~12 pi ! ~see@1# for unspecified
notations!+

It is quite easy to see that iff is in series, then lpc~p! 5 lmm~p! 5 )1#i#n pi ;
and if f is parallel, then lpc~p! $ lmm~p! for all p [ @0,1# n+ Barlow and Proschan
@1, p+ 38# conjectured that, for general binary systems, if the components are all
highly reliable, then the path-cut lower bound provides the better lower bound for
h~p!+ In formulation,

)
j51

c

3
i[Kj

pi $ max
1#r#p

)
i[Pr

pi asp1, + + + , pn r 1+ (2)

The correctness of this conjecture has been confirmed by Maymin@7# +
We now need to introduce some notations for multistate systems+ Let f :

Sn ° Sdenote the nondecreasing structure function of a multistate system, where
S5 $0,1, + + + ,M % represents theM 1 1 distinct levels of performance of the sys-
tem and itsn independent components, varying from perfect functioning~M ! to
total failure~0!+ We call a vectorx a critical cut vectorof f for level k ~k . 0! if
f~x! , k andf~y! $ k for all y . x; and we call a vectorz acritical path vectorof
f for levelk if f~z! $ k andf~y! , k for all y , z, wherey . x means yi $ xi for
eachi and strict inequality holds for somei + Denote byLk ~Uk! the set of all critical
cut ~critical path! vectors off for level k+ If x [ Lk, let

Lk~x! 5 $~i, xi !6xi , M %,

and if z [ Uk, let

Uk~z! 5 $~i, zi !6zi . 0%+

The setLk~x! ~Uk~z!! is called a critical cut~path! set off for levelk+The reliabilities
of the i th component is denoted by a vectorpi 5 ~ pi,0, + + + , pi,M21!, wherepi,s 5
Pr$Xi 5 s% for s 5 0, + + + ,M 2 1 andpi,M 5 1 2 pi,0 2 {{{ 2 pi,M21+ The reliabil-
ity vector of then components is denoted byp [ ~p1, + + + ,pn!+ In the case that level
k . 0 meets our minimum requirement for system performance, we are primarily
concerned with the reliability functionhk~p! 5 Pr$f~X! $ k%+ It is quite clear that

hk~p! 5 PrHø
z[Uk

X $ zJ 5 PrHù
x[Lk

X Ü xJ , (3)

wherex Ü y means thatxi . yi for at least onei +
The following result concerning reliability lower bounds forhk~p! extends Eq+ ~1!

from binary systems to multistate systems~see@3, Lemma 3+1# !:

hk~p! $ max$lpc
k ~p!, lmm

k ~p!%, k 5 1, + + + ,M, (4)

486 F. C. Meng

https://doi.org/10.1017/S0269964802164060 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964802164060


where themultistate path-cut lower bound

lpc
k ~p! 5 )

x[Lk

3
~i, xi ![Lk~x!

Spi, xi
, (5)

themultistate minimax lower bound

lmm
k ~p! 5 max

z[Uk
)

~i, zi ![Uk~z!

Spi, zi21, (6)

and Spi,s [ Pr$Xi . s% for s5 0, + + + ,M 2 1+
A multistate system belongs to the Barlow–Wu class@2# if and only if its struc-

ture functionf can be represented as

f~x! 5 max
1#r#p

min
i[Pr

xi 5 min
1#j#c

max
i[Kj

xi for all x [ Sn, (7)

whereP1, + + + ,Pp andK1, + + + ,Kc represent thep minimal path sets and thec minimal
cut sets, respectively, of a binary coherent system+ Natvig @8# introduced a class of
multistate systems which is closely related to the Barlow–Wu class, namely the N2
class+ A multistate system belongs to the N2 class if and only if there exist binary
coherent structuresfk ~k 5 1, + + + ,M ! such that its structure functionf satisfies

f~x! $ k m fk~I k~x!! 5 1, (8)

whereI k~x! [ ~Ik~x1!, + + + , Ik~xn!! andIk~xi ! 51 ~0! if and only if xi $ k ~, k!+ The
N2 class reduces to the Barlow–Wu class whenf1 5 {{{ 5 fM +

Equation~2! for binary systems can be easily extended to the Barlow–Wu and
the N2 classes of multistate systems as follows+

Theorem 1.1: Letf be a multistate structure which belongs to the N2 class. Then,
for each level k. 0,

)
x[Lk

3
~i, xi ![Lk~x!

Spi, xi
$ max

z[Uk
)

~i, zi ![Uk~z!

Spi, zi21 as Sp1, k21, + + + , Spn, k21 r 1+ (9)

Proof: Let x be a critical cut vector off for levelk+ Then, from the result of Borges
and Rodrigues@4# , x must be of the form~~k2 1!C ',M !, whereC ' , C and~sC ', t!
means thatxi 5s~t ! for i [ C ' ~i Ó C '!+Consider the corresponding binary structure
fk, defined in Eq+ ~8!, with minimal cut setsK1, + + + ,Kc+ Its component reliabilities
arepi 5 Pr$Ik~Xi ! 51% 5 Spi, k21 ~i 51, + + + , n!+ From the relationship betweenf and
fk defined in Eq+ ~8!, it is easy to see thatC ' must be a minimal cut set forfk+ Thus,

)
x[Lk

3
~i, xi ![Lk~x!

Spi, xi
5 )

x[Lk

3
~i, xi ![Lk~x!

Spi, k21 5 )
j51

c

3
i[Kj

pi +
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Applying a similar argument on the critical path vectors, we obtain that

max
z[Uk

)
~i, zi ![Uk~z!

Spi, zi21 5 max
z[Uk

)
~i, zi ![Uk~z!

Spi, k21 5 max
1#r#p

)
i[Pr

pi ,

whereP1, + + + ,Pp are thepminimal path sets forfk+The conclusion then follows from
Eq+ ~2!+ n

The main question we study in this note is that for more general classes of
multistate systems, whether the path-cut lower boundlpc

k ~p! provides a better lower
bound than the minimax lower boundlmm

k ~p! when the components are allhighly
reliable+We consider in this note a multistate componenti as highly reliable if either
Pr$Xi 5 M % r 1 or Pr$Xi 5 0% r 0, the former one implies, but is not implied by,
the latter one+ In Section 2, we give an example to illustrate that the boundlpc

k ~p! is
not always better in general, even when the components are all highly reliable+
However, under mild conditions imposed,we obtain a main result of this note which
states that the boundslpc

k ~p! is indeed sharper thanlmm
k ~p! when Pr$Xi 5 M % r 1

~i 5 1, + + + , n!+ Section 3 gives some examples to illustrate our results+

2. RESULTS

A well-known and important property for binary coherent systems states that each
minimal path set has a nonempty intersection with each minimal cut set~see@1# !+
This property is generalized for multistate systems in Lemma 2+1, which will be
used repeatedly later in this note to derive further results+

Lemma 2.1: For eachx [ Lk and eachz [ Uk, there exists a j[ $1, + + + , n% such that
zj . xj (hence, zj . 0 and xj , M).

Proof: Suppose this is not true+ Then, zj # xj for all ~ j, xj ! [ Lk~x!+ Hence, z # x,
which implies thatf~z! , k, a contradiction+ n

We call x a cut vectorof f for level k if f~x! , k, and the components
$i 6xi , M % thecut componentsof x+ If there exists anx [ Lk with size6Lk~x!65
6$~i, xi !6xi , M %65 1, we call the vectorx a singleton cut vectorof f for level k,
and the componenti a singleton cut component+ Denote the set of singleton cut
vectors off for level k by AS,

AS 5 $x 6x [ Lk; 6Lk~x!65 1%, (10)

and byAIS the index set of such singleton cut components,

AIS 5 $i 6~xi ,M ! [ AS; xi , M %+ (11)

The following theorem is easily obtained, which states that if the critical cut
vectors are all singleton cut vectors, then the two bounds are identical+
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Theorem 2.2: Suppose that Lk 5 $~xi ,M !6 i [ AIS% (i.e., Lk 5 AS), where AIS , C.
Then, lpc

k ~p! 5 lmm
k ~p! for all p.

Proof: Clearly in this case, lpc
k ~p! 5 )x[Lk

3~i, xi ![Lk~x! Spi, xi
5 )i[AIS

Spi, xi
+ Let z be a

given critical path vector inUk+Applying Lemma 2+1 onz and each~xi ,M !,we have
that zi . xi for eachi [ AIS+ Thus, by the critical property, there exists only one
critical path vectorz andUk~z! 5 $~i, xi 1 1!6 i [ AIS%+ Hence, lmm

k ~p! 5 lpc
k ~p! 5

)i[AIS
Spi, xi
+ n

Example 2.3:Let a multistate structuref : $0,1,2%2 ° $0,1,2% be defined as follows:

f~0,0! 5 0, f~0,1! 5 1, f~0,2! 5 1,

f~1,0! 5 0, f~1,1! 5 1, f~1,2! 5 1,

f~2,0! 5 1, f~2,1! 5 2, f~2,2! 5 2+

Consider levelk5 2+ Then, L25 $~1,2!, ~2,0!% andU25 $~2,1!%+ It is easy to see
that lpc

2 ~p! 5 lmm
2 ~p! 5 p1,2~ p2,1 1 p2,2!+ This fact can be directly deduced from

Theorem 2+2, since6L2~1,2!65 6L2~2,0!65 1+

The following theorem is similarly obtained, and the proof is omitted+

Theorem 2.4: Suppose that Uk 5 $~zi ,0!6 i [ C '%, where C' , C. Then, lpc
k ~p! $

lmm
k ~p! for all p.

Example 2.5:Let a multistate structuref : $0,1,2%2 ° $0,1,2% be defined as follows:

f~0,0! 5 0, f~0,1! 5 0, f~0,2! 5 1,

f~1,0! 5 1, f~1,1! 5 1, f~1,2! 5 2,

f~2,0! 5 1, f~2,1! 5 1, f~2,2! 5 2+

Consider levelk51+ Then, U1 5 $~0,2!, ~1,0!% andL1 5 $~0,1!%+ It is easy to see
that lpc

1 ~p! 5 1 2 ~1 2 p2,2!~1 2 p1,1 2 p1,2!, and lmm
1 ~p! 5 max$ p2,2, p1,1 1 p1,2% +

Hence, lpc
1 ~p! $ lmm

1 ~p! for all p+

Remark 1:A multistate structure that satisfies the condition stated in Theorem 2+2
~2+4! has been called, by Langseth and Lindqvist@6#, ageneralized series~ parallel!
system+ In Theorem 2+2 ~2+4!, ~i! if AIS 5 C ~C '5 C!, then the system is a multistate
series~parallel! system@i+e+, f~x! 5 min1#i#n xi ~max1#i#n xi !# and~ii ! if compo-
nenti Ó AIS ~C'!, then this component is irrelevant to the system for levelk, but may
be relevant for some other levels+

We now give an example to illustrate that for a general multistate system with
highly reliable components~ pi,M r 1 or pi,0 r 1!, without further assumption,
neither one of the boundslpc

k ~p! andlmm
k ~p! dominates the other one+
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Example 2.6:Let f : $0,1,2%2 ° $0,1,2% be defined as follows:

f~0,0! 5 0, f~0,1! 5 0, f~0,2! 5 1,

f~1,0! 5 0, f~1,1! 5 1, f~1,2! 5 2,

f~2,0! 5 1, f~2,1! 5 2, f~2,2! 5 2+

Consider levelk 5 2+ Then, U2 5 $~1,2!, ~2,1!% andL2 5 $~2,0!, ~0,2!, ~1,1!% +
Assume that the two components have equal reliabilities: Let pi, k 5 ak for k5 0,1,2
andi 5 1,2+ The path-cut and minimax lower bounds forh2~p! are

lpc
2 ~p! 5 3

~i, xi ![L2~2,0!

Spi, xi 3
~i, xi ![L2~0,2!

Spi, xi 3
~i, xi ![L2~1,1!

Spi, xi

5 ~a1 1 a2!~a1 1 a2!~a2 1 a2 2 a2
2!

5 a2~a1 1 a2!2~2 2 a2!; (12)

lmm
2 ~p! 5 max$ Sp1,0 Sp2,1, Sp1,1 Sp2,0%

5 a2~a1 1 a2!+ (13)

lmm
2 ~p! 2 lpc

2 ~p! 5 a2~a1 1 a2!@12 ~12 a0!~2 2 a2!# + (14)

Hence,

lmm
2 ~p! $ lpc

2 ~p! m 1 $ ~12 a0!~2 2 a2!

m a0 $
12 a2

2 2 a2

+ (15)

Clearly, 1 . a2 1 ~1 2 a2!~2 2 a2!21 holds for alla2 , 1+ Thus, for anya2 r 1,
~i! lmm

2 ~p! . lpc
2 ~p! if ~12 a2!~2 2 a2!21 , a0 , 12 a2 and~ii ! lmm

2 ~p! , lpc
2 ~p! if

a0 , ~12 a2!~2 2 a2!21+ Similarly, we obtain that, for anya0 r 0, lmm
2 ~p! . ~,!

lpc
2 ~p! if a2 . ~,! ~12 2a0!~12 a0!21+

In the following, without loss of generality and for convenience, we letpi,M 5
1 2 di ~0 , di , 1! andpi,s 5 di bi,s for s 5 0,1, + + + ,M 2 1, wherebi,0 1 {{{ 1
bi,M21 5 1 ~i 5 1, + + + , n!+ Furthermore,

qi, s [ 12 Spi,s [ 1 2 Pr$Xi . s%, s5 0, + + + ,M 2 1+

We now present a main result of this note, which states that for a general multistate
system, if either ~i! the system contains nosingleton cut vectoror ~ii ! there exists at
least one critical cut vectorx [ Lk\AS ~6Lk~x!6$ 2! andx contains no singleton cut
component as its cut component, then the path-cut lower boundlpc

k ~p! is better than
the minimax lower boundlmm

k ~p! as Pr$Xi 5 M % r 1 for i 5 1, + + + , n+
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Remark 2:Assumptions~i! and~ii ! can be roughly interpreted as: If the structure
contains some singleton cut components~i+e+, any one of these components can
cause system failure!, then the othernonsingleton cut componentsmust be relevant
to the system in the sense that they can cause system failure even all the singleton cut
components attain their maximum performance levels+

Remark 3:Assumption~ii ! is equivalent to saying that for each critical path vector
z [ Uk, there exists an~i, zi ! [ Uk~z! andi is not a singleton cut component~i Ó
AIS!+ This equivalent condition can be used in checking~ii !+

Theorem 2.7: Suppose that either (i) AS5 $B% or (ii) ASÞ $B% and there exists an
x [ Lk\ AS with xi 5 M for all i [ AIS. Then,

max
z[Uk

)
~i, zi ![Uk~z!

Spi, zi21 # )
x[Lk

3
~ j, xj ![Lk~x!

Spj, xj
asd1, + + + ,dn r 0+

Proof: To prove the theorem, it suffices to show that, in either cases~i! or ~ii !, for
eachz [ Uk,

)
~i, zi ![Uk~z!

Spi, zi21 # )
x[Lk

3
~ j, xj ![Lk~x!

Spj, xj
asd1, + + + ,dn r 0+ (16)

For eachi [ $1, + + + , n% , denote byC~i ! the set of critical cut vectors of which each
one containsi as a cut component; that is,

C~i ! 5 $x 6x [ Lk;xi , M %+ (17)

Consider a givenx [ Lk+ Since, by Lemma 2+1, zi . xi for somei , we see that
x [ C~i ! for some~i, zi ! [ Uk~z!+ Thus,

)
x[Lk

3
~ j, xj ![Lk~x!

Spj, xj
$ )

~i, zi ![Uk~z!
)

x[C~i !
3

~ j, xj ![Lk~x!

Spj, xj
+ (18)

To prove Eq+ ~16!, it thus suffices to show that

)
~i, zi ![Uk~z!

Spi, zi21 # )
~i, zi ![Uk~z!

)
x[C~i !

3
~ j, xj ![Lk~x!

Spj, xj
+ (19)

Case (i): Suppose thatAS5 $B% + Let a vectorx [ Lk be given+ By assumption, the
cardinality6Lk~x!6$ 2+ Hence,

3
~ j, xj ![Lk~x!

Spj, xj
5 12 )

~ j, xj ![Lk~x!

qj, xj

$ 12 qi, xi
qj, xj
, ∀~~i, xi !, ~ j, xj !! , Lk~x!+ (20)

RELIABILITY LOWER BOUNDS 491

https://doi.org/10.1017/S0269964802164060 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964802164060


Applying Lemma 2+1 tozandx,we have thatzw . xw for some~w, zw! [ Uk~z! ~and,
hence, qw, zw21 $ qw, xw

!+ Furthermore, letq* be the maximum of suchqw, xw
’s over all

x [ Lk; that is,

q* 5 max
x[Lk

qw, xw
+

Then, clearly, 12 q* $ 1 2 qw, zw21 for some~w, zw! [ Uk~z! and, hence,

)
~i, zi ![Uk~z!

Spi, zi21 5 )
~i, zi ![Uk~z!

~12 qi, zi21! # 1 2 q*+ (21)

Also, let

d * [ max
1#i#n

di +

Then, qi,s#12Pr$xi 5M % # d * for all i, ands, M+Hence, q*# d *, and following
Eq+ ~20!,

3
~ j, xj ![Lk~x!

Spj, xj
$ 12 qw, xw

d *

$ 12 q*d *, ∀x [ Lk+ (22)

From Eq+ ~21!, to prove relation~19! we show that

12 q* # )
~i, zi ![Uk~z!

)
x[C~i !

3
~ j, xj ![Lk~x!

Spj, xj
asd1, + + + ,dn r 0+ (23)

The right-hand side of relation~23!, from relation~22!, is

)
~i, zi ![Uk~z!

)
x[C~i !

3
~ j, xj ![Lk~x!

Spj, xj
$ )

~i, zi ![Uk~z!

~12 q*d * ! 6C~i !6

5 ~12 q*d * !Q~z!, (24)

whereQ~z! 5 (~i, zi ![Uk~z! 6C~i !6+
We now show that

12 q* # ~12 q*d * !Q~z! asd1, + + + ,dn r 0 (25)

or, equivalently,

q* $ 12 ~12 q*d * !Q~z!

5 Q~z!q*d * 1 g~{! asd1, + + + ,dn r 0, (26)
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where

g~{! 5 ~21!SQ~z!

2 D ~q*d * !2 1 {{{ 1 ~21!Q~z!11q*Q~z!d *Q~z!+

It is thus easy to see that Eq+ ~26! holds asq*r 0 andd * , Q~z!21+ Sinceq* # d *,
we see that Eq+ ~26! holds asd * r 0 ~i+e+, asd1, + + + ,dn r 0!+

Case (ii): Suppose thatAS Þ $B% +Write the index set of the singleton cut compo-
nents asAIS 5 A1 ø A2, where any component inA1 is not a cut component of any
other critical cut vector outsideAS; that is,

A1 5 $i 6 i [ AIS;~i, xi ! Ó Lk~x! ∀x [ Lk\AS%, (27)

A2 5 $i 6 i [ AIS;~i, xi ! [ Lk~x! for somex [ Lk\AS%, (28)

whereA\B denotes setA with elements inB removed+
The right-hand side of Eq+ ~19! can be decomposed as

)
~i, zi ![Uk~z!

)
x[C~i !

3
~ j, xj ![Lk~x!

Spj, xj
5 C1C2C3C4; (29)

C1 5 )
~i, zi ![Uk~z!; iÓAIS

)
x[C~i !

3
~ j, xj ![Lk~x!

Spj, xj
, (30)

C2 5 )
~i, zi ![Uk~z!; i[A1

)
x[C~i !, ~i, xi ![Lk~x!

Spi, xi
, (31)

C3 5 )
~i, zi ![Uk~z!; i[A2

)
x[C~i !ùAS, ~i, xi ![Lk~x!

Spi, xi
, (32)

C4 5 )
~i, zi ![Uk~z!; i[A2

)
x[C~i !\AS

3
~ j, xj ![Lk~x!

Spj, xj
+ (33)

Note that in Eqs+ ~31! and~32!, the cut vectors are all singleton cut vectors, and the
operator3 is removed since the cardinalities6C~i !6, 6C~i ! ù AS6, and6Lk~x!6 all
equal 1+

By assumption, there is anx [ Lk\AS with xi 5 M for all i [ AIS+We denote
this vector by Ix in the sequel+ By Lemma 2+1, we have thatzw . Ixw for at least
one w [ $1, + + + , n%\AIS+ Assume that there ared such components and denote
them byzwt

. Ixwt
, t 5 1, + + + ,d+ Then, qwt , zwt

$ qwt , Ixwt
for each 1# t # d+ Let

q* 5 max
1#t#d

qwt , Ixwt
+
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Then, 12 q* $ Spwt , zwt
for some 1# t # d and, hence,

)
~i, zi ![Uk~z!

Spi, zi21 5 )
t51

d

Spwt , zwt
21 )

~i, zi ![Uk~z!; i[AIS

Spi, zi21 )
~i, zi ![Uk~z!; iÓAISø$øt51

d wt %

Spi, zi21

# )
t51

d

Spwt , zwt
21 )

~i, zi ![Uk~z!; i[AIS

Spi, zi21

# ~12 q* ! )
~i, zi ![Uk~z!; i[A1

Spi, zi21 )
~i, zi ![Uk~z!; i[A2

Spi, zi21+ (34)

From Eqs+ ~29! and~34!, it suffices to show that

~12 q* ! )
~i, zi ![Uk~z!; i[A1

Spi, zi21 )
~i, zi ![Uk~z!; i[A2

Spi, zi21 # C1C2C3C4+ (35)

We shall respectively prove that

)
~i, zi ![Uk~z!; i[A1

Spi, zi21 # C2, (36)

)
~i, zi ![Uk~z!; i[A2

Spi, zi21 # C3, (37)

12 q* # C1C4+ (38)

As stated, for each~i, zi ! [ Uk~z! and i [ A1, the cardinalities6C~i !6 5 1 and
6Lk~x!65 1 for the vectorx [ Lk+ Clearly then, xi , zi and, hence, Spi, zi21 # Spi, xi

+
Equation~36! is thus obtained+ Equation~37! holds by the same reason+

Proving that Eq+ ~38! holds is quite similar to that in proving Case~i!+However,
for completeness, we prove it in detail+ Since6Lk~x!6$ 2 for all x in Eqs+ ~30! and
~33!, it holds that for any~~i, xi !, ~ j, xj !! , Lk~x!,

3
~ j, xj ![Lk~x!

Spj, xj
$ Spi,M213 Spj,M21

$ 12 d *2+ (39)

Thus,

C4 $ )
~i, zi ![Uk~z!; i[A2

)
x[C~i !\AS

~12 d *2!

5 )
~i, zi ![Uk~z!; i[A2

~12 d *2! 6C~i !\AS6 ; (40)
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and since the vectorIx is countedd0 ~d0 $ d! times in Eq+ ~30!,

C1 $ ~12 d *2!d02d )
t51

d

~12 d *qwt , Ixwt
! )

~i, zi ![Uk~z!; iÓAIS

)
x[C~i !\$ Ix%

~12 d *2!

$ ~12 d *2!d02d~12 d *q* !d )
~i, zi ![Uk~z!; iÓAIS

~12 d *2! 6C~i !\$ Ix%6+ (41)

To show Eq+ ~38! holds, it thus suffices to show

~12 d *q* !d~12 d *2!Q~z! $ 12 q* asd1, + + + ,dn r 0, (42)

where

Q~z! 5 d0 2 d 1 (
~i, zi ![Uk~z!; iÓAIS

6C~i !\$ Ix%61 (
~i, zi ![Uk~z!; i[A2

6C~i !\AS6+

Again, we show that

q* $ 12 ~12 d *q* !d~12 d *2!Q~z! asd1, + + + ,dn r 0+ (43)

Proceeding along the same line as that in proving Eq+ ~26!, we obtain thatq* $ 12
~12 d *q*!d holds asd1, + + + ,dn r 0+ Hence, the conclusion+ n

3. ILLUSTRATIVE EXAMPLES

A binary coherent system~except series systems! automatically satisfies conditions
~i! or ~ii ! of Theorem 2+7, since a minimal cut set is not properly contained in any
such set for the binary system+ Hence, Theorem 2+7 represents a more general ver-
sion of Eq+ ~2!, obtained by Maymin@7# for binary systems+ In this section, we give
some examples to further illustrate our results+ First, we show that the N2 class of
multistate systems satisfies either condition~i! or ~ii ! of Theorem 2+7+

Theorem 3.1: Suppose thatf [ N2 class. Then, for each level k. 0, f satisfies
either (i) or (ii) of Theorem 2.7, if the corresponding binary structurefk is not series.

Proof: Suppose thatASÞ $B% + Let AIS 5 $i1, + + + , is% be thes singleton cut compo-
nents off for level k+ Sincefk~I k~x!! is not series, from Eq+ ~8! we see that there
exists a critical cut vectorx [ Lk with size6Lk~x!6$ 2+We then show thatxi 5M for
eachi [ AIS to prove the theorem+ Let C ' , $1, + + + , n% denote the cut components of
x ~i+e+, xi , M if and only if i [ C '!+From the relationship defined in Eq+ ~8! between
f andfk, clearly$i1%, + + + , $is% andC ' are all minimal cut sets for the binary structure
fk+ Hence, i1, + + + , is Ó C ' and, hence, xi1 5 {{{ 5 xis 5 M+ n
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The structure in the following example belongs to a larger than N2 class of
multistate systems, namely the N1 class, also introduced by Natvig@8# +

Example 3.2:Let a structuref : $0,1,2%3 ° $0,1,2% be defined as follows:

f~0,0,0! 5 0, f~0,0,1! 5 0, f~0,0,2! 5 0;

f~0,1,0! 5 0, f~0,1,1! 5 0, f~0,1,2! 5 0;

f~0,2,0! 5 0, f~0,2,1! 5 0, f~0,2,2! 5 0;

f~1,0,0! 5 0, f~1,0,1! 5 0, f~1,0,2! 5 0;

f~1,1,0! 5 0, f~1,1,1! 5 1, f~1,1,2! 5 1;

f~1,2,0! 5 1, f~1,2,1! 5 1, f~1,2,2! 5 2;

f~2,0,0! 5 1, f~2,0,1! 5 1, f~2,0,2! 5 2;

f~2,1,0! 5 1, f~2,1,1! 5 1, f~2,1,2! 5 2;

f~2,2,0! 5 2, f~2,2,1! 5 2, f~2,2,2! 5 2+

It is easy to verify that the structuref [ N1 class~see Natvig@8# for definitions!+
The critical cut and critical path vectors off for level k 5 2 are

L2 5 $~0,2,2!, ~2,1,1!, ~1,1,2!, ~1,2,1!%,

U2 5 $z1,z2,z3% 5 $~2,0,2!, ~2,2,0!, ~1,2,2!%+

The structure meets condition~ii ! of Theorem 2+7, noting thatAS5 $~0,2,2!% and the
vector~2,1,1! satisfies the condition stated in~ii !+Assume that the three components
possess equal reliabilitiespi 5 ~a0,a1,a2! for i 5 1,2,3+

h2~p! 5 (
r51

3

Pr$X $ zr % 2 (
~r, r ' !,$1,2,3%

Pr$X $ zr ∨ zr ' % 1 Pr$X $ z1 ∨ z2 ∨ z3%

5 a2
2~2 1 a1 2 a2!,

where the maximum of two vectorsx ∨ y [ ~x1 ∨ y1, + + + , xn ∨ yn!+
The minimax and path-cut bounds are

lmm
2 ~p! 5 max$a2

2,a2
2, ~a1 1 a2!a2

2% 5 a2
2,

lpc
2 ~p! 5 ~a1 1 a2!~a2 1 a2 2 a2

2!3 5 ~a1 1 a2!a2
3~2 2 a2!3+

Thus,

lpc
2 ~p! $ lmm

2 ~p! if a2~2 2 a2!3 $
1

a1 1 a2

+

Approximately, lpc
2 ~p! $ lmm

2 ~p! whena2~22 a2!3 $ ~a2!21+ The polynomialf ~x! 5
x2~2 2 x!3 2 1 is decreasing~increasing! in x for x . 0+8 ~, 0+8!+ Also, note that
f ~1! 5 0 andf ~0+62! ' 0+01+ It is concluded that the boundslpc

2 ~p! $ lmm
2 ~p! as long

asa2 . 0+62+ Table 1 presents some numerical values of the two lower bounds+
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Example 3.3:Consider the offshore electrical power generation system given in
Natvig, Sørmo, Hølen, and Høgåsen@9# + In the example, the amount of power that
can be supplied to platform 1 is represented by a multistate structure functionf1,
which depends on a control unit and two generators+ The functioning levels of the
system and its three components were represented by the set$0,2,4%, but in the
following, we shall denote it byS5 $0,1,2% for simplicity+ Then, the structure func-
tion f1 : $0,1,2%3 ° $0,1,2% can be represented as

f1~x! 5 I ~x1 . 0! min$x2 1 x3 I ~x1 5 2!, 2%,

wherex1 denotes the control unit, x2 andx3 denote the two generators, andI ~{! is
the indicator function~for a detailed case study about the system, refer to Natvig
et al+ @9# !+

Consider system performance levelk 5 1+ Then,

L1 5 $~2,0,0!, ~1,0,2!, ~0,2,2!%, U1 5 $~1,1,0!, ~2,0,1!%+

It is clear that the structuref1 meets condition~ii ! of Theorem 2+7, noting thatAS5
$~0,2,2!% and the vector~2,0,0! satisfies the condition stated in~ii !+The minimax and
the path-cut lower bounds forh1~p! are

lmm
1 ~p! 5 max$~12 p1,0!~12 p2,0!, p1,2~12 p3,0!%,

lpc
1 ~p! 5 ~12 p2,0 p3,0!@ p1,2 1 ~12 p2,0! 2 p1,2~12 p2,0!# ~12 p1,0!+

If components 2 and 3 possess equal reliabilities, thenlmm
1 ~p! 5 ~12 p1,0!~12 p2,0!,

and, hence, lpc
1 ~p! $ lmm

1 ~p! if p1,2 $ p3,0~12 p2,0!~12 p3,0p2,0!21+ Thus, lpc
1 ~p! $

lmm
1 ~p! as long asp1,2 $ p3,0+

Use the data provided by Natvig et al+ @9#:

p1,2 5 0+246; p1,1 1 p1,2 5 0+818,

pi,2 5 0+054; pi,1 1 pi,2 5 0+862 for i 5 2,3+

Then, lmm
1 ~p! 5 0+705116 andlpc

1 ~p! 5 0+71892+

Table 1. Numerical Values of the Two
Lower Bounds

h2~p! lpc
2 ~p! lmm

2 ~p!

p 5 ~0+05,0+05,0+9! 0+9315 0+9217 0+81
p 5 ~0+15,0+15,0+7! 0+7105 0+6405 0+49
p 5 ~0+3,0+05,0+65! 0+5915 0+4729 0+4225
p 5 ~0+4,0+2,0+4! 0+288 0+12 0+16
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