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Maymin proved that for binary systenthe path-cut lower bound is sharper than
the minimax lower bound for highly reliable componentshich was originally
conjectured by Barlow and Proschdn this note an example is constructed to
illustrate that thisin generalis not the case for multistate systerftowever an
affirmative result is obtained under mild conditions we impodedamples are
given to illustrate the applications of our results

1. INTRODUCTION

First we introduce some basic notations for binary coherent sysiinisary co-
herent system composedro€omponents is denoted B§, ¢), whereC={1,...,n}
designates thecomponents and : {0,1}"— {0,1} denotes the nondecreasing struc-
ture function of the systerAssume that the system contains relevant components
only; that is for eachi € C, there exists a vectdr;,x) such thatp(1;,x) =1 —
¢(0;,x) =1, where(+;,X) = (X1,..., Xi_1,"i,» Xi+1,-- -5 Xn). The reliability of theith
component is denoted kyy = Pr{X; = 1} (i =1,...,n). Assume that th@ compo-
nents are independerithe reliability function of the system is denoted bfp) =
Pr{¢(X) =1}, wherep = (py,..., pn) @andX = (Xy,..., X,). Denote byP;, ..., B, and
Ky,...,K: the p minimal path sets and theminimal cut setsrespectivelyof the
system It is known that(se€e[1,5])

h(p) = max{lpc(p), lmm(P)}, 1)
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where thepath-cut lower bound,lL(p) = HleﬂieKJ p;, the minimax lower bound
lmm(P) = Max—,=p [licp, i, andllica pi=1—1Ilica(1—p;) (se€ 1] for unspecified
notations.

It is quite easy to see thatd is in seriesthenl,.(p) = lym(p) = <= Bi;
and if ¢ is paralle] thenl,.(p) = |nm(p) for all p € [0,1]". Barlow and Proschan
[1, p. 38] conjectured thatfor general binary system# the components are all
highly reliable then the path-cut lower bound provides the better lower bound for
h(p). In formulation

IT1'II p= max [ p aspy,...,pn— L (2)
j=1 ieK,

1=r=p iep,

The correctness of this conjecture has been confirmed by Malyfhin

We now need to introduce some notations for multistate systéeise :
S" — Sdenote the nondecreasing structure function of a multistate systeerne
S=1{0,1,...,M} represents th#! + 1 distinct levels of performance of the sys-
tem and itsn independent componentgarying from perfect functioningM) to
total failure (0). We call a vectoix a critical cut vectorof ¢ for levelk (k > 0) if
¢(x) < kande(y) = kfor all y > x; and we call a vectar acritical path vectorof
¢ for levelkif ¢(z) = kandp(y) < kfor ally < z, wherey > x means y= x; for
eachi and strict inequality holds for sonmieDenote by, (U,) the set of all critical
cut (critical path vectors of¢ for level k. If x € Ly, let

L(x) = {(i, %) |x; < M},
and ifz € Uy, let
Uk(2) =1{(i,z)|z > 0}.

The set(x) (U(2)) is called a critical cufpath set of¢ for levelk. The reliabilities
of theith component is denoted by a vectmr= (pi.o,..., Pi.m-1), Wherep, s =
Pr{X; =s} fors=0,....M —1andp,y =1 —pio — :-* — Pi.m—1- The reliabil-
ity vector of then components is denoted py= (p4,...,pn). In the case that level
k > 0 meets our minimum requirement for system performaneeare primarily
concerned with the reliability functioh.(p) = Pr{¢(X) = k}. It is quite clear that

he(p) = Pr{ Ux= z} = Pr{ N X« x}, (3)

zEUy XELy
wherex £ y means thax; > vy, for at least oné.

The following result concerning reliability lower bounds fg(p) extends Eq(1)
from binary systems to multistate systefsse[3, Lemma 31]):

he(p) = max{lge(p), Inm(P)}, kK=1,...,M, (4)
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where themultistate path-cut lower bound

@ =11 I P (5)

xELy (i, X)) ELK(X)

the multistate minimax lower bound

lhm(p) =max  [I P, (6)

2€U (i, z)EUL(2)

andp; s=Pr{X; > s} fors=0,...,M — L.
A multistate system belongs to the Barlow—Wu clg&lsf and only if its struc-
ture functiong can be represented as

¢(X) = max minx; = min maxx; forallx € S", (7

1=r=p i€eR 1=j=c i€K;

whereP,..., P, andKy,..., K. represent the minimal path sets and treminimal

cut setsrespectivelyof a binary coherent systerNatvig[8] introduced a class of
multistate systems which is closely related to the Barlow—Wu cltessely the N2
class A multistate system belongs to the N2 class if and only if there exist binary
coherent structureg, (k= 1,..., M) such that its structure functiah satisfies

d(X) = ke d(l(x) =1, (8)
wherel (X) = (I (X1),..., lk(X,)) andl(x;) = 1 (0) if and only if x; = k (< k). The
N2 class reduces to the Barlow—Wu class wkigr= --- = ¢y.

Equation(2) for binary systems can be easily extended to the Barlow—Wu and
the N2 classes of multistate systems as follows

THEOREM 1.1: Let¢ be a multistate structure which belongs to the N2 class. Then,
for each level k> 0,

I1 I px=max I B2 aSPrwci--sPok1— 1L 9
xELyc (i, % )EL(x) 2€U (i, )€U (@)
Proor: Letx be a critical cut vector ap for levelk. Then from the result of Borges
and Rodrigue$4], x must be of the forni(k — 1)¢’,M), whereC’ C C and(s®t)
meansthat; =s(t) fori € C' (i € C’). Consider the corresponding binary structure
b\, defined in Eq (8), with minimal cut set¥,,..., K.. Its component reliabilities
arep; = Pr{l(X;) =1} = p; k-1 (i = 1,...,n). From the relationship betweehand
¢ defined in Eq(8), itis easy to see th&l’ must be a minimal cut set f@f,. Thus

C

I1 I px=1I I pwa=1II1 p.

XELy (i, %)ELK(X) XELy (i, %) ELK(X) j=1 €K
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Applying a similar argument on the critical path vectos® obtain that

max [I pi,-i=max ] pea= max [] p,

2€U (i, z)EUL(2) 2€Uk (i, z)EU,(2) 1=r=p jep,

wherePy, ..., B, are thep minimal path sets fog,. The conclusion then follows from
Eg. (2). [ |

The main question we study in this note is that for more general classes of
multistate systemsvhether the path-cut lower bouifi(p) provides a better lower
bound than the minimax lower bout.,(p) when the components are &iighly
reliable. We consider in this note a multistate comporiead highly reliable if either
Pr{X; = M} — 1 or P{X; = 0} — 0, the former one impliesbut is not implied by
the latter oneln Section 2we give an example to illustrate that the boufidp) is
not always better in generadven when the components are all highly reliable
Howeverunder mild conditions imposede obtain a main result of this note which
states that the bound.(p) is indeed sharper thdf,,(p) when PX; = M} — 1
(i=1,...,n). Section 3 gives some examples to illustrate our results

2. RESULTS

A well-known and important property for binary coherent systems states that each
minimal path set has a nonempty intersection with each minimal cussef1]).

This property is generalized for multistate systems in Lemmiaghich will be

used repeatedly later in this note to derive further results

LemmMma 2.1: Foreachx € L and eactz € U,, there exists aE {1,...,n} such that
z; > x; (hence, z> 0 and x < M).

Proor: Suppose this is not tru&hen z; = x; for all (j, x;) € L¢(x). Hencez = x,
which implies thai)(z) < k, a contradiction u

We call x a cut vectorof ¢ for level k if ¢(x) < k, and the components
{i|x; < M} the cut componentsf x. If there exists ax € L, with size|L.(x)| =
[{(i, x;)| % < M}| =1, we call the vectox a singleton cut vectoof ¢ for levelk,
and the componerita singleton cut componenbenote the set of singleton cut
vectors of¢ for level k by Ag,

As = {X|x € Li;|Li(X)| = 1}, (10)
and byAs the index set of such singleton cut compongents
Ais ={i|(x;,M) € Ag; x; < M}. (11)

The following theorem is easily obtainedhich states that if the critical cut
vectors are all singleton cut vectotken the two bounds are identical
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THEOREM 2.2: Suppose that L= {(x;,M)|i € A} (i.e., Ly = Ag), where As C C.
Then, k.(p) = 1&n(p) for all p.

Proor: Clearly in this casd s.(p) = er, Ui x)eLun Pix =1licas Pix- Letzbe a
given critical path vector itJy. Applying Lemma 21 onz and eaclix;, M), we have
thatz > x; for eachi € As. Thus by the critical propertythere exists only one
critical path vectorz andUy(z) = {(i,x; + 1)|i € As}. Hence I5m(p) = li(p) =
HiEAls pi,xi . u

Example 2.3:Let a multistate structuré : {0,1,2}?+— {0,1,2} be defined as follows

$(0,00=0, #01)=1 ¢02=1
$(1,0)=0, (1) =1 ¢(12=1
$(2,0 =1 ¢$(1D=2 ¢22=2

Consider levek = 2. Then L, ={(1,2),(2,0)} andU, = {(2,1)}. It is easy to see
thatlZ.(p) = 1Z2m(p) = pr2(P21 + P22). This fact can be directly deduced from
Theorem 22, since|L,(1,2)| = |L»(2,0)| = 1.

The following theorem is similarly obtainednd the proof is omitted

THEOREM 2.4: Suppose that J= {(z,0)|i € C'}, where C C C. Then, f.(p) =
IXm(p) for all p.

Example 2.5:Let a multistate structurg : {0,1,2}?+— {0,1,2} be defined as follows

#(0,00 =0, #(01)=0, #02=1
#(L0) =1 ¢(1LD)=1 ¢(12=2
$(20 =1 ¢21=1 ¢22=2

Consider levek = 1. Then U; ={(0,2),(1,0)} andL, = {(0,1)}. Itis easy to see

thatl3(p) =1 — (1 — p2,2)(1 — Pr1 — Pr2), andlpm(p) = max{p2, Pr1 + P2}
Hence I 5(p) = lnm(p) for all p.

Remark 1: A multistate structure that satisfies the condition stated in Theor&m 2
(2.4) has been calledby Langseth and Lindqvi$6], ageneralized seriegarallel)
systemln Theorem 22 (2.4), (i) if Aig= C (C' = C), then the system is a multistate
series(paralle) system[i.e., ¢(x) = mMin;—j=,X; (Max=i=nX;)] and(ii) if compo-
nenti & A5 (C'), then this component is irrelevant to the system for lé&ybut may

be relevant for some other levels

We now give an example to illustrate that for a general multistate system with
highly reliable componentg p, y — 1 or p,o — 1), without further assumptign
neither one of the boundgc(p) andlX.(p) dominates the other one
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Example 2.6:Let ¢:{0,1,2}2 — {0,1,2} be defined as follows
$(0,00=0, ¢(0,1)=0, ¢(0,2)=1,
$(10) =0, #(L,) =1 ¢(1,2) =2,
$(2,00=1 ¢21)=2 ¢(22=2

Consider levek = 2. Then U, = {(1,2),(2,1)} andL, = {(2,0),(0,2),(1,1)}.
Assume that the two components have equal reliabilitiesp; , = a, fork=0,1,2
andi = 1,2. The path-cut and minimax lower bounds foi(p) are

pi,x H pi,x H pi,xI

clP) (.X)EL2.0)  (.x)EL02) (.%)EL,LD)
= (ay +ay)(a; + a,)(a, + a, — a3)
= a,(a; + a,)%(2 — a,); (12)
| 5m(P) = max{ PoPa,1, P11 P20}
= ay(a; + ay). (13)
IFm(P) = 15:(p) = az(a; + a;)[1— (1 - a)(2 — a&,)]. (14)
Hence
lEm(P) = 15(p) & 1= (1-a0)(2 - ay)
1-a,
2—a,

S ap= (15)

Clearly 1> a, + (1 — a,)(2 — a,)~* holds for alla, < 1. Thus for anya, — 1,
() 12m(p) > 15(p) if (1—az)(2—ax) " < ap < 1—azand(ii) I5m(p) <12(p) if
ap < (1—ay)(2 — ay)~L. Similarly, we obtain thatfor anyag — 0, 12,(p) > (<)
12(p) if @ > (<) (1— 2a0)(1—ap) ™™

In the following, without loss of generality and for convenienee letp; y =
1-6(0<§ <1 andps=dbsfors=01,...,M — 1 whereb o+ --- +
bim-1=1(i =1,...,n). Furthermore

g.s=1-ps=1-Pr{X >s}, s=0,....M—1

We now present a main result of this noiéich states that for a general multistate
systemif either (i) the system contains reingleton cut vectoor (ii) there exists at
least one critical cut vector € L \As (| Lx(X)| = 2) andx contains no singleton cut
component as its cut compongttiten the path-cut lower bourif(p) is better than
the minimax lower bountf(p) as P{X; =M} = 1fori=1,...,n.
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Remark 2: Assumptiongi) and(ii) can be roughly interpreted :a$ the structure
contains some singleton cut componef(its., any one of these components can
cause system failuyethen the othenonsingleton cut componentuist be relevant

tothe systemin the sense that they can cause system failure even all the singleton cut
components attain their maximum performance levels

Remark 3: Assumption(ii) is equivalent to saying that for each critical path vector
z € Uy, there exists affi, z;) € U,(z) andi is not a singleton cut compone(t&
Ajs). This equivalent condition can be used in checkiing

THEOREM 2.7: Suppose that either (i) &= {J} or (ii) As # {J} and there exists an
X € L\Aswith x, = M foralli € As. Then,

max [l p,-i=1I 11 Pj.x, asdy,...,8,— 0.
2€Uk (i,z)EUy(2) XELy (] X)EL(X)

Proor: To prove the theorenit suffices to show thain either case§) or (ii), for
eachz € U,,

| I b asé,....5,—0 (16)

(i,z)EU(2) XELy (j,%)ELK(X)

For each € {1,...,n}, denote byC(i) the set of critical cut vectors of which each
one contains as a cut componenthat is

C(i) ={xX|x ELgx <ML 17)

Consider a giverx € L,. Since by Lemma 21, z; > x; for somei, we see that
x € C(i) for some(i, z;) € Uy (2). Thus

H H pj,xj = H H H pj,xj . (18)

XELy (j, X)EL(X) (i,7)EU(2) xEC() (], X)ELK(X)

To prove Eq(16), it thus suffices to show that

[T pa.= 1 I1 I By, x - (19)

(i, z)EU(2) (i,z))EU(z2) xEC(i) (j,xj)ELk(x)

Case (i): Suppose thahs = {J}. Let a vectoix € L be given By assumptionthe
cardinality|L.(x)| = 2. Hence

I Px =1- I1 0, x

(J, ) EL(X) (J, %) ELk(x)

=10 x0x, O00,%),(],%)) C LX) (20)
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Applying Lemma 21 toz andx, we have that,, > x,, for some(w, z,,) € U(z) (and
henceq,, ., 1=0qy,x,)- Furthermorgletq* be the maximum of suay,, ,'s over all
X € Ly; thatis

q* = maxay, .-
x€L, VW

Thenclearly 1-qg*=1-q,,,, . for some(w, z,) € U(z) and hence

[I pra= Il A-q,0=1-0" 21)
(i, ) EU(2) (i, z)€Uy(2)
Also, let
8" = max3é;.
1=i=n

Then g s=1-Pr{x,=M}=6*foralli,ands< M. Henceq* = §*, and following
Eq. (20),

pj,xj =1- qw,xw6*

(j,Xj)ELk(X)

=1-q*8% OXE L, (22)

From Eq (21), to prove relatior(19) we show that

ima= 1 I I py ashiens o0 @)

(i,z)EU(2) XxEC(i) (], %)ELK(X)

The right-hand side of relatiof23), from relation(22), is

I py= I a-gsye

(i,2))EUy(2) XxEC() (], %)ELK(X) (i,z)EUK(2)
= (1—-g"8")°%, (24)
whereQ(z) = X, z)cu. | C(i)].
We now show that
1-g*=(1-q*6*)°%? aséy,...,6,—>0 (25)
or, equivalently
qg-=1-(1- q*é*)Q(Z)
= Q(2q*8* +9g(-) asdy,...,8,—0, (26)
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where

g(-) = (=1 <Q;Z)> (q*8%)2 + - + (—1)Q@+1q*Q@5+Q(2)

It is thus easy to see that E@6) holds asy* — 0 andé™* < Q(z)~*. Sinceq* = 6%,
we see that Eq26) holds as5* — 0 (i.e,, asdy,...,5, — 0).

Case (ii): Suppose thabs # {J}. Write the index set of the singleton cut compo-
nents a\s = A; U A,, where any component iy, is not a cut component of any
other critical cut vector outsid&g; that is

A ={ili € As;(i, %) € Li(x) Ox € L\As}, (27)

A, ={i]i € As;(i, %) € L(x) for somex € L \Ag}, (28)

whereA\B denotes seA with elements irB removed
The right-hand side of E419) can be decomposed as

Bi,x = C1CGCeC,; (29)

(i,z)€U(2) x€C(i) (], %)ELL(x)

Cl = H H H pj, X (30)

(i, z)€EU(2);1€AIs XEC(I) (], %)ELK(X)

C, = H H P, ) (31)

(i,z))EU(2);ieA; xEC(i), (i, X )ELK(X)

C3 = H H pi,xp (32)

(i, z))EU(2);i€A, xEC(I)NAg, (i, X )ELK(X)

C,= H H H B, . (33)

(i, z)EU(2);i€A,; XEC(IMAg (], X)ELK(X)

Note that in Eqs(31) and(32), the cut vectors are all singleton cut vectasd the
operatorll is removed since the cardinalitie€(i)|, |C(i) N Ag|, and|L,(x)| all
equal 1

By assumptionthere is arx € L, \Ag with x; = M for all i € A;s. We denote
this vector byx in the sequelBy Lemma 21, we have that, > X,, for at least
onew € {1,...,n\As. Assume that there ard such components and denote
them byz, > X,,t=1,...,d. Then Ow,, 2, = Ohw,, %, for each 1=t = d. Let

* = max .
q 1=t=d qW" Hwg
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Thenl-qg* = Puw, 2, for some 1=t = d and hence

d
I1 Pi,z-1= t:l_[1 Pwi, 2,1 I1 Piz-1

(i,z)EU(2)

d
= ti]i[lpwpzw‘fl H pi,ZI*l

(i,z)EU(2);i€AS

= (1_q*) H pi,zifl H

(i, z )€U (2);1€A (i, z ) €EU(2);1€A,

From Eqs (29) and(34), it suffices to show that

(1-q7) I1 Bi, 21 I1 Pi,z-1= Ci1C,C3C,.

(i,z)EU(2);i€A, (i,z))EU(2);i€EA,

We shall respectively prove that

Biz-1=Cy,

(i,z)EU(2);i€AL

I1 Piz-1=Cs,

i,z )€EU(2);i€A,

1_ q>< = CJ_C4.

(i,z)EU(2);iEAg (i, z ) EU(2);i €A sUTUL s w }

pi,z,—l

(34)

(39)

(36)

(37)

(38)

As stated for each(i,z) € U(z) andi € A,, the cardinalitie§C(i)| = 1 and
|L(x)| = 1 for the vectox € L,. Clearly thenx; < z and hencep; ,_, = P x.

Equation(36) is thus obtainedEquation(37) holds by the same reason

Proving that Eq(38) holds is quite similar to that in proving Cag& However
for completenessve prove it in detail Since|L(x)| = 2 for all x in Eqgs (30) and

(33), it holds that for any((i, x;), (j, X)) C Li(X),

I Bi,x = Pov1 I Pims

(1, %) ELK(x)
=1-6"2

Thus

C,= 11 II @a-6%2

(i,z)EU(2);i€A, xEC(IiN\Ag

— H (1_ 6*2)\C(i)\AS\;

(i,z))EU(2);i€A,
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and since the vectcotis countedd, (dy = d) times in Eq (30),

d
Ci=(1- 8% [[A-8Gx) Il 1 -89
t=1

(i, ) EUy(2); i€A|s xEC(i )X}

= (1_ S*Z)dofd(l_ 8*q-k)d H (1_ 3*2)|C(i)\{)~(”. (41)

(i,z)EU(2); 1A
To show Eq(38) holds it thus suffices to show
(1-6*9")91—6"2)®@ =1—-qg* asédy,...,6,— 0, (42)

where

Q@) =dy—d+ > [CNKH + > |C(I\Ag].

(i, z)eU(2sigAs (h2)EU(D: 1A,
Again, we show that
g =1-(1-6°q")°(1— 82)°@ ass,...,6,— 0. (43)

Proceeding along the same line as that in proving(E6), we obtain thag* =1 —
(1-6*g*)9 holds asdy, ..., 8, — 0. Hence the conclusion |

3. ILLUSTRATIVE EXAMPLES

Abinary coherent systeffexcept series systepsutomatically satisfies conditions
(i) or (ii) of Theorem 27, since a minimal cut set is not properly contained in any
such set for the binary systefdence Theorem 27 represents a more general ver-
sion of Eq (2), obtained by Maymin7] for binary systemsn this sectionwe give
some examples to further illustrate our resufisst, we show that the N2 class of
multistate systems satisfies either condit{oror (ii) of Theorem 2Z7.

THEOREM 3.1: Suppose thap € N2 class. Then, for each levebk 0, ¢ satisfies
either (i) or (i) of Theorem 2.7, if the corresponding binary structifgs not series.

ProoF: Suppose thals # {J}. Let Ag = {iy,...,is} be thessingleton cut compo-
nents of¢ for level k. Sinceg, (I (X)) is not seriesfrom Eq (8) we see that there
exists a critical cut vector € L, with size|L(x)| = 2. We then show that, = M for
eachi € Asto prove the theorentetC’' C {1,..., n} denote the cut components of
x(i.e, x; <Mifand onlyifi € C’). From the relationship defined in E@®) between

¢ anddgy, clearly{i,},...,{is} andC’ are all minimal cut sets for the binary structure
¢i. Henceiy,...,is € C’ and hencex, = --- =x_= M. u
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The structure in the following example belongs to a larger than N2 class of
multistate systemsiamely the N1 classlso introduced by Natvifg].

Example 3.2:Let a structurep : {0,1,2}3 — {0,1,2} be defined as follows
#(0,0,0) =0, ¢(0,0,1)=0, ¢(0,0,2)=0;
$(0,1,0) =0, ¢(0,1,1) =0, ¢(0,1,2)=0;
$(0,2,00 =0, ¢(0,2,1) =0, ¢(0,2,2) =0;
$(1,0,00=0, #(1,0,1)=0, ¢(1,0,2)=0;
$(L1L0)=0, ¢(111)=1 ¢(112=1
$(1,2,00 =1 ¢(121) =1 ¢(122)=2
$(2,000 =1, ¢(2,01) =1 ¢(202) =2
$(2,,00 =1, #2211 =1 ¢2,12)=2
$(2,2,00 =2, ¢$(2,21)=2, $(2,2,2)=2
It is easy to verify that the structutk € N1 class(see Natvid 8] for definitions.
The critical cut and critical path vectors ¢ffor levelk = 2 are
L2 = {(0, 2’ 2)7 (Za 1’ l)a (17 1’ 2)7 (1? 2a 1)}7
U2 = {Zl’ 227 23} = {(2707 2)7 (27 2’0)’ (17 2’ 2)}'
The structure meets conditidin) of Theorem 27, noting thatAs = {(0,2,2)} and the

vector(2,1,1) satisfies the condition stated in). Assume that the three components
possess equal reliabilitigs = (ag, a1, a,) fori =1,2,3.

3
hy(p) = D PriX=z}l—- > Pr{iX=z 0z} +Pr{X=2z, 02,0z}
r=1

(r,r")c{1,2,3}

=a3(2+a; — ayp),

where the maximum of two vectorsy = (x; Oyq,..., X, Oy,).
The minimax and path-cut bounds are

IZ2m(p) = max{aj, a3, (a; + a,)a3} = a3,
15:(p) = (a, + ay)(ay + @, — a3)% = (a; + ay)a3(2 — a,)°.

Thus

|§c(p) = 15m(p) ifay(2—a,)°= ata,
Approximately|2.(p) = 12,(p) whena,(2 — a,)® = (a,)*. The polynomiaf (x) =
x2(2 — x)® — 1 is decreasingincreasing in x for x > 0.8 (< 0.8). Also, note that
f(1) = 0 andf (0.62) ~ 0.01 It is concluded that the boundi&(p) = 15.(p) as long
asa, > 0.62 Table 1 presents some numerical values of the two lower bounds
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TABLE 1. Numerical Values of the Two
Lower Bounds

h,(p) 1%(p) 12m(p)

p = (0.05,0.05,0.9) 0.9315 09217 081
p = (0.15,0.15,0.7) 0.7105 06405 049
p = (0.3,0.05,0.65) 0.5915 04729 04225
p = (0.4,0.2,0.4) 0.288 Q12 016

Example 3.3:Consider the offshore electrical power generation system given in
Natvig, Sgrmg Hglen and Hggasef0]. In the examplethe amount of power that
can be supplied to platform 1 is represented by a multistate structure furgtion
which depends on a control unit and two generatdhe functioning levels of the
system and its three components were represented by tH6,2d, but in the
following, we shall denote it b= {0,1, 2} for simplicity. Then the structure func-
tion ¢,:{0,1,2}3+ {0,1,2} can be represented as

d1(X) = 1 (X, > 0) min{x, + X3l (x; = 2), 2},

wherex; denotes the control unpix, andx; denote the two generatgmndl (-) is
the indicator functior(for a detailed case study about the systeafier to Natvig
etal [9]).

Consider system performance leket 1. Then

L, ={(2,0,0),(1,0,2),(0,2,2)}, U, ={(1,1,0),(2,0,1)}.

Itis clear that the structuré, meets conditiorii) of Theorem 27, noting thatAg =
{(0,2,2)} and the vecto2,0,0) satisfies the condition stated(iin). The minimax and
the path-cut lower bounds fdox (p) are

lnm(P) = max{(1 — PLo) (1= P20), Pr2(1— Pso)ls
I5e(P) = (1= P20oP30) [ Prz + (1= P2o) = Pr2(l— P2o)] (1= Pro)-

If components 2 and 3 possess equal reliabilitiesnl 1,,(p) = (1 — py,0) (1 — P2.0),
and hencelj(p) = Iqm(p) if PL2= P3o(l— P2o)(1l— P3.0P20) % Thus loe(p) =

lmm(p) as long ay > = pso.
Use the data provided by Natvig et E9]:

p.>=0.246 p;;+ p.,=0818
pio = 0054 p;+p.=0862 fori=23

Then I5,(p) = 0.705116 and;.(p) = 0.71892
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