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The velocity fields of a turbulent wake behind a flat plate obtained from the direct
numerical simulations of Moser et al. (1998) are used to study the structure of the
flow in the intermittent zone where there are, alternately, regions of fully turbulent
flow and non-turbulent velocity fluctuations on either side of a thin randomly moving
interface. Comparisons are made with a wake that is ‘forced’ by amplifying initial
velocity fluctuations. A temperature field T , with constant values of 1.0 and 0 above
and below the wake, is transported across the wake as a passive scalar. The value of
the Reynolds number based on the centreplane mean velocity defect and half-width
b of the wake is Re ≈ 2000.

The thickness of the continuous interface is about 0.07b, whereas the amplitude of
fluctuations of the instantaneous interface displacement yI (t) is an order of magnitude
larger, being about 0.5b. This explains why the mean statistics of vorticity in the
intermittent zone can be calculated in terms of the probability distribution of yI
and the instantaneous discontinuity in vorticity across the interface. When plotted as
functions of y − yI , the conditional mean velocity 〈U〉 and temperature 〈T 〉 profiles
show sharp jumps at the interface adjacent to a thick zone where 〈U〉 and 〈T 〉 vary
much more slowly.

Statistics for the conditional vorticity and velocity variances, available in such detail
only from DNS data, show how streamwise and spanwise components of vorticity are
generated by vortex stretching in the bulges of the interface. While mean Reynolds
stresses (in the fixed reference frame) decrease gradually in the intermittent zone,
conditional stresses are roughly constant and then decrease sharply towards zero
at the interface. Flow fields around the interface, analysed in terms of the local
streamline pattern, confirm and explain previous results that the advancement of the
vortical interface into the irrotational flow is driven by large-scale eddy motion.

Terms used in one-point turbulence models are evaluated both conventionally and
conditionally in the interface region, and the current practice in statistical models of
approximating entrainment by a diffusion process is assessed.

† Present address: SMME, University of Surrey, Guildford GU2 7XH, UK.
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Figure 1. The intermittent zone. LI , `I , yI and Lx are sketched roughly to scale. Vertical lines on
the left typify data selected for y-direction conditional averaging relative to detection points ( e) on
the vorticity surface; data at a particular displacement y− yI from the surface, e.g. ×, are averaged
to form one point in the conditional average of any quantity, e.g. 〈U〉(y − yI ).

1. Introduction
Both naturally and artificially occurring types of turbulence tend to be generated

locally wherever the flow is most unstable, and are therefore quite inhomogeneous
and intermittent in general, as for example in wakes, boundary layers and thermal
convection. In the first two of these types of flow there are intermittent zones between
the regions of turbulent motion and the adjacent regions where no turbulence is
being generated and where its amplitude is negligible. Similar intermittent regions are
found within fully developed turbulent flows, as in the third example, because there
are local regions of high-intensity turbulence next to those of much lower intensity
(e.g. Monin & Yaglom 1971; Townsend 1976). Most of these intermittent zones have
similar characteristic features.

First, the intermittent zone (figure 1) is intersected by a thin, generally continuous,
randomly moving interface whose displacements LI are of the order of the integral
scale Lx of the turbulent region velocity fluctuations. The surface of the interface is
in general ‘fractal’ (Sreenivasan & Meneveau 1986) with a range of approximately
independent scales, whose width depends on the value of the Reynolds number. Most
of the interface surface is continuous because any lumps that break away are soon
reabsorbed (e.g. Hussain & Clark 1981). On the turbulent side of the interface the
vorticity ω is non-zero, whereas on the other, non-turbulent, side it is negligible. The
interface tends to be a strong vortex sheet for a wake, but may not be for some other
flows (Townsend 1976). Where there are mean scalar gradients (e.g. temperature)
across the zone, there tends to be a sharp jump in the scalar across the interface (e.g.
Alexopolous & Keffer 1971).

Secondly, as a result of both the vorticity on the turbulent side and the irregular
shape of the interface, random irrotational velocity fluctuations are induced on the
non-turbulent side (Phillips 1955) over a distance of order Lx; thirdly, the absence
of vortical fluctuations on the non-turbulent side affects velocity fluctuations on the
turbulent side of the interface, typically over a distance of order Lx (Carruthers &
Hunt 1986).

Fourthly, as a result of the inhomogeneous distribution of vorticity, the average
displacement of the interface moves towards the non-turbulent region at average
entrainment speeds Ẽb, relative to the local mean velocity field, and Eb, in fixed
coordinates (e.g. Turner 1986). If, in the turbulent region, the mean velocity parallel
to the interface significantly differs from that in the non-turbulent region as in a
planar mixing layer, the thickness of the turbulent region increases so that there has
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Turbulent/non-turbulent interface 385

to be a net entrainment velocity EV normal to the interface. Then the net boundary
entrainment velocity in fixed coordinates is Eb = (Ẽb − EV ).

In many laboratory experiments a velocity probe has been placed at the edge of
a turbulent flow, where its output switches back and forth abruptly between a fully
turbulent signal and one that is essentially non-turbulent. As described by Corrsin &
Kistler (1955), this observation was first understood in terms of a sharp convoluted
boundary by Corrsin (1943). Townsend (1948, 1949) quantified this behaviour in
terms of an intermittency factor γ, defined as the proportion of time for which the
velocity signal is turbulent. As noted above, irrotational velocity fluctuations are
usually found in the non-turbulent flow outside the boundary, and the boundary
marks not an absence of velocity fluctuations but a change in the character of the
fluctuations from vortical to irrotational. Since vorticity is transmitted to fluid only
through the action of molecular viscosity, there must exist, in conjunction with any
boundary region of local velocity gradient, a shear layer that is essentially viscous or
laminar in nature, though it may be extremely thin. This layer was termed the ‘laminar
superlayer’ by Corrsin & Kistler (1955), and it is important to distinguish between
the superlayer and the turbulent/non-turbulent interface studied in the present paper.
The latter, though still very thin, is a layer of turbulent fluid, and all major changes
between the irrotational outer fluid and the relatively uniform, fully turbulent interior
fluid occur across this layer. Conceptually the laminar superlayer forms the outer
boundary of the turbulent/non-turbulent interface.

Some fundamental questions about these interfaces and free shear intermittent
zones (only partly addressed by this paper) may be summarized as follows.

(a) What is the relation between the local mechanism of turbulence production on
the scale of the thin interface, and the larger-scale enfolding motions at the scale Lx?
Is the former less significant than the latter so that the value of Eb is determined less
by ‘nibbling’ than by ‘engulfing’ as is generally believed (e.g. Ferre et al. 1990)?

(b) What are the relative sizes of the thin interface `I , its random displacement
LI , and the integral scale of the turbulent region Lx? Why is the interface so thin
and so continuous? Do these scales have some general relationship; for example is `I
related to the Taylor or Kolmogorov microscales, i.e. LxRe

−1/2 or LxRe
−3/4, depending

perhaps on the range of Re of the particular flow?
(c) To what extent does the statistical structure of the velocity fluctuations in the

intermittent zone have a locally determined and therefore universal form, or to what
extent is it determined by the large-scale motion in the turbulent region, for example
the profile of the mean vorticity (e.g. Townsend 1976)?

Experimental measurement of an interface in stably stratified flow by Strang (1997)
showed that velocity fluctuations U(y)−Ū(y) defined with respect to the mean velocity
Ū, and other physical variables, had a much smaller variance if plotted relative to
the ensemble mean velocity at the same distance (y − yI ) from the instantaneous (or
spatially filtered) interface position yI ; that is, for any variable V ,

(V (y)− V̄ (y))2 � 〈(V (y − yI )− 〈V (y − yI )〉)2〉. (1.1)

One asks whether these conditional profiles are similar for most kinds of random
interface. The idealized theory of Phillips (1955) and Carruthers & Hunt (1986) for
the profiles of fluctuations near the interface could be applied relative to either the
mean level yI or some filtered instantaneous surface ỹI , e.g.

V = f((y − ỹI )/LI ). (1.2)

Gartshore, Durbin & Hunt (1983) showed how such models describe the effects on
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the velocity statistics of the fluctuating interface. If there is a scale separation (i.e.
`I � LI ) and if (1.2) is valid, then it follows that the mean profile of a variable V̄
in fixed coordinates can be expressed in terms of its profile relative to the interface,
equation (1.2), and the probability distribution P (ỹI ) of the displacement of the
interface, i.e.

V̄ ≈
∫
〈V (y − ỹI )〉P (ỹI )dỹI . (1.3)

A better understanding of these mechanisms should help to improve approximate
statistical models of turbulence in the intermittent zone. In most models (e.g. eddy
viscosity or Reynolds stress transport) the Reynolds stresses or other properties such
as eddy viscosity νt or dissipation rate ε decrease gradually to zero (over a scale Lx)
in this zone and do not allow for the large-scale dynamical role and ‘intermittency’
(Townsend 1976) of the interface. In some such models (depending on how νt(y)→ 0)
the turbulent region cannot spread into the non-turbulent region. Nevertheless, when
the model equations are solved by finite difference methods, it is found that even if
V → 0 as y/Lx →∞, Eb is non-zero. This is why, as some authors state quite openly,
the value of Eb depends on the numerical methods used, e.g. Large, McWilliams &
Doney (1994); see also Hunt et al. (2001). Other modelling approaches allow for the
intermittency γ(y), defined as the proportion of time (or distance) that a point lies on
the non-turbulent side of the interface. However, they do not account for the variation
of the turbulence relative to the interface. This suggests that a robust physically based
statistical model for the intermittent zone has not yet been found! Also see Cazalbou,
Spalart & Bradshaw (1994) on this question.

Experimental studies have described many aspects of the intermittent zone, but
certain areas are still lacking, especially the three-dimensional structure of the ran-
domly moving interface and the nearby vorticity. Various detector signals have been
used to separate turbulent and non-turbulent zones for zone-averaging purposes; for
example, Kovasznay, Kibens & Blackwelder (1970) used the level of (∂/∂t) (∂u/∂y),
which responds to fluctuations in spanwise vorticity, to separate vortical and non-
vortical zones in the outer part of a boundary layer. If the turbulent zones are heated,
the interface can be distinguished with an array of cold wires, as was done by Chen
& Blackwelder (1978) in a boundary layer, and by LaRue & Libby (1974), Fabris
(1979), and Antonia et al. (1987a) in a far wake. A few methods based on streamwise
derivatives have been developed, for example (∂2u/∂t2)2 +(∂u/∂t)2 applied to a mixing
layer by Wygnanski & Fiedler (1970). These references are only a small sample, and
there is also an extensive flow visualization literature from which information about
interface shapes can be obtained. However, in none of these experimental techniques
can the interface position and orientation be tracked while all velocity components
are simultaneously measured at high resolution.

Databases from direct numerical simulations (DNS) of turbulent shear flows at
reasonable Reynolds numbers now provide an opportunity to bypass some of the
experimental difficulties. In this paper the outer boundaries of turbulent zones, defined
as the lowest level of vorticity magnitude that can be detected reliably, are delineated
in two three-dimensional fields from DNS of far wakes with and without initial
forcing (amplification) of two-dimensional low-frequency modes. The flow to either
side of the wake is heated to different temperatures so that there is a scalar gradient
across the wake. Properties of the flow (including the scalar) in the vicinity of the
vorticity surface are determined through conditional averages, leading to the definition
of a fairly distinct turbulent interface region. Typical examples of instantaneous flow
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patterns and critical points are displayed, especially to illustrate the entrainment
mechanism. Terms needed for the equations of a Reynolds-averaged Navier–Stokes
(RANS) model of the wake based on the conditional averages are compared to the
same terms based on conventional averages, with possible implications for RANS
modelling of free-shear flows.

2. Procedure
2.1. The data

Two fields of data from direct numerical simulations of temporal wakes (Moser,
Rogers & Ewing 1998) were examined in detail. These simulations, in which the
mean velocity Ū(y, t) does not vary in the flow direction, approximate very closely
the spatially growing far wake behind a thin flat plate with well-developed turbulent
boundary layers, mounted in the plane at y = 0. In order to initialize these incom-
pressible spectral simulations, data sets from two instants in a previous boundary
layer simulation were placed back-to-back (without the walls) at time zero, and then
allowed to develop temporally with streamwise and spanwise periodic boundaries.
After some time the initial sharp cusps in the mean velocity and turbulence profiles
decayed, and the flow then developed in an approximately self-similar manner until
the turbulent region eventually became too large for the computational box in the
spanwise direction. One of the simulations was unforced, while in the other case
weak forcing was applied, where all two-dimensional modes in the same initial state
were magnified at t = 0; see Moser et al. (1998) for details. Figure 2 gives a visual
indication of the differences caused by the forcing.

The first data field examined here is taken from the unforced case at a time
t within the final stages of self-similar development. The non-dimensional time
τ = tU2

d/ṁ = 91.5, where Ud is the initial centreplane velocity deficit and ṁ is the
integrated mass flux deficit divided by density and spanwise (z) length. The second
field comes from the weakly forced simulation at τ = 90.3, well within the self-similar
region for that case. Moser et al. (1998) show that growth rates and turbulence levels
for the two cases are just below (unforced) and just above (forced) typical ranges
found in far-wake experiments that do not involve explicit forcing. In both cases
the Reynolds number Reṁ = ṁ/ν is 2000, which is high enough for sustained fully
turbulent flow. Results are normalized by U0, the centreplane mean velocity deficit,
and b, the half-mean-velocity width across both sides of the wake; the Reynolds
number U0b/ν is approximately 2000 also. The stored spectral data were projected
onto uniform physical grids of 387× 400× 97 (unforced) or 387× 500× 97 (forced)
points for further processing, giving the physical grid data about the same resolution
as the spectral. In all figures the free-stream flow is zero on average, and therefore
the velocity deficit flow is right-to-left, i.e. negative. The equivalent flow in a wind
tunnel would include a large free-stream velocity from left to right, which is therefore
the downstream direction.

A passive scalar quantity T with a Schmidt or Prandtl number of 0.7 was included
with the simulated flow. Its values were 1.0 in the upper free stream and 0 in the
lower, creating a scalar gradient across the entire flow, and it was initialized to a
smooth profile across the turbulent region (T = f(y) only). Thus, initially, there
was only an approximate correspondence between non-vortical fluid and free-stream
values of the scalar, but it became closer over time because of mixing within the
wake and entrainment of the surrounding fluid. The fact that the two free-stream
values are different is very useful for determining the origin (above or below the wake
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Figure 2. Contours of vorticity modulus ω in (x, y)- and (z, y)-planes at the levels used for
detection of vorticity surfaces. (a) Unforced wake, ω = 0.7U0/b; (b) weakly forced wake,
ω = 1.2U0/b.

centreplane) of any enclosed or re-entrant region of non-vortical fluid found near the
centreplane. In laboratory experiments, passive scalars such as temperature are used
as markers of vortical fluid; an investigation of the use of scalar levels for detection
of the interface is reported by Bisset et al. (1998).

2.2. Detection of the turbulent/non-turbulent interface

In a fully turbulent flow such as the present, all vortical fluid is expected to be

turbulent, and therefore ω =
√
ω2
x + ω2

y + ω2
z (the magnitude of the vorticity vector)

can be used for detecting the boundaries of turbulent regions. As with all level-based
methods, it is important to set the detection threshold appropriately. In laboratory ex-
periments, the inevitable combination of some free-stream turbulence and instrument
noise means that measured vorticity is often non-zero in the non-turbulent regions.
Where a DNS is computed with a spectral method, background numerical noise has
similar consequences, since noise in wavenumber space is equivalent to noise across
the entire physical space. Therefore, if the spatial gradient in ω is low at the edges
of turbulent fluid, genuine vorticity cannot be distinguished from noise. Raising the
detection level would not be the solution; not only would large external areas of
vortical fluid be omitted by the detection process, but also the areas of relatively low
ω within the vortical fluid would be incorrectly detected as irrotational. On the other
hand, it is much easier to detect vortical regions if spatial gradients in ω are quite
steep, because a detection level slightly above the background noise can be used, and
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the detected interface positions will be almost independent of small increases in that
level. Fortunately, the dynamics of vortical interfaces (described later) cause the latter
situation to be prevalent, as determined both by plotting contours and by forming
conditional averages from different detection levels.

Contours of ω were plotted in several (x, y)- and (z, y)-planes, and it was found
that the contour ω = 0.7U0/b best delineated vortical regions in the unforced wake.
Contours below this level spread out into the free stream in a disorganized fashion;
contours above this level tend to fall at very similar positions along the wake edge
but also outline many small low-ω regions throughout the wake interior. Examples
of contours at this level in (x, y)- and (z, y)-planes are shown in figure 2. Peak ω
levels are of order 100 times higher, and the centreplane mean is ten times higher.
After inspection of many such contours, Cω = 0.7U0/b was chosen as the detection
threshold level in the unforced wake. The same detection level in calculation units
was used for the forced wake, although its normalized level (Cω = 1.2U0/b) is greater
(see figure 2 for contours at this level). In this case too much numerical noise in
the free stream was detected at the lower normalized level. Note that the normalized
centreplane mean vorticity is also greater for the forced case (e.g. figure 5).

The indicated surface marks the approximate outer boundary of the turbulent/non-
turbulent interface, but there is no obvious level of ω that would define an inner
boundary of the interface, and in fact it may be impossible to define an interface
thickness except in a conditionally averaged sense. However, the main point to be
made here is that the detected vorticity surface is distinct from the turbulent/non-
turbulent interface, a layer of non-zero thickness.

The vorticity surface is quite convoluted and sometimes re-entrant, especially in the
forced case (figure 2). The direction in which the surface faces varies continuously.
In a few places there appear to be patches of vortical fluid that are completely
isolated, although they are actually two-dimensional cuts through three-dimensional
protrusions that are attached to the main body out of the planes shown in the figure.

Conditional averaging through the interface requires not only detections of loca-
tions of the interface but also knowledge of the direction in which it is facing at each
detected position, because conditional averages would be smeared out very quickly
away from the detection point if the averaging path made a random angle to the
interface. The simplest procedure is to average along a line normal to the interface,
and to assume that this line is given by the normal to the detected vorticity surface.
Therefore the results presented here are based only on detections of the position and
orientation of the outer surface of the interface, which gives a reasonably accurate
estimate of the interface position as long as it is not too thick. There are then (at least)
two options for the averaging procedure itself: either to average along a different di-
rection (relative to the fixed coordinate frame) for each instance by three-dimensional
interpolation, or to collect the detections into groups according to the direction of the
normal and average along a fixed direction for each group. Given that the properties
of the interface might vary systematically with direction (parallel or normal to the
mean shear direction, for example), the latter option was chosen, with the added
benefit that it simplifies interpolation.

In order to achieve high resolution of any rapid changes through the interface,
detection points are defined at the exact locations where ω reaches the detection
threshold Cω , assuming linear variation of ω between gridpoints. For example, the
jth point of N detection points to be used for conditioning in the x-direction is
at (xj, yj , zj), where yj and zj are exact multiples of grid spacings ∆y and ∆z, but
xj = nj∆x + (δx)j (with nj an integer and 0 6 (δx)j < ∆x). Then the conditional
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average 〈q〉(x− xj) of any quantity q is defined as

〈q〉(x− xj) =
1

N

N∑
j=1

q(xj + m∆x, yj , zj) (2.1)

where m takes on a suitable range of negative and positive integer values (in other
words (x − xj), the displacement relative to the interface, is only defined in practice
for discrete values (x−xj) = m∆x). Linear interpolation based on (δx)j is used to find
q between gridpoints. Analogous definitions are used for conditioning in the y- and
z-directions, and (y − yj) = m∆y is equivalent to the continuous coordinate (y − yI ).
The equivalent of conventional time averaging, i.e. averages over all points at specified
values of |y|, is denoted by an overbar. Another form of averaging, often applied to
experimental measurements of intermittently turbulent regions but not used in this
paper, is zone averaging (at specified |y| values, averaging all those data points that
fall within turbulent zones). Conditional averages of fluctuations are defined relative
to the conditional mean values, e.g. the variance 〈u2〉 = 〈(U − 〈U〉)2〉, except that
in certain cases a comparison is made with the conditionally averaged fluctuation
relative to the conventional mean, e.g. 〈u2〉 = 〈(U− Ū)2〉 – such cases are pointed out
where they occur.

2.3. Selection of interface groups

There is no reason to assume that properties should be similar everywhere on the
interface. Therefore a number of interface detection criteria were applied along with
the basic vorticity threshold in order to select interface subsets that are similar in
given ways. To begin with, the direction in which the vorticity surface is facing
was considered. Surfaces roughly normal to the x (streamwise), y (transverse) or z
(spanwise) axes were selected, and conditional averages were derived by sampling
along lines parallel to the respective axes. In general, data from both sides of the
wake were combined, with sign reversal where appropriate, into a single ensemble, but
surfaces normal to x were only selected if facing downstream. For selection purposes,
the surface angle at any point was determined as follows. For detections of surfaces
required to be facing in (say) the y-direction, i.e. making an angle of 90◦ to the y-axis,
the adjacent ω-level detection points in the ±x-direction were obtained and joined
by a line; the process was then repeated for adjacent detections in the ±z-direction.
Both lines were required to make an angle of at least 65◦ to the y-direction in order
for the detection to be accepted. An equivalent description is to say that both the
streamwise and spanwise angular errors of the accepted surfaces are within ±25◦.
When finding detection points for averaging along the x- (or z-) directions, not only
was the surface angle criterion applied, but a detection was accepted only if ω was
below the threshold Cω for an x distance (or z distance) of at least 0.1b and then
above it for at least the same distance, which avoided detections of numerical noise
while allowing for up to sixteen or so detections along a given line.

Additional detection criteria were used for conditional averages in the y-direction,
to investigate (i) the effects of distance of the interface from the centreplane, and
(ii) areas where the interface is re-entrant, i.e. places where a line in the y-direction
passes through more than one distinct vortical zone. In the latter case detections were
accepted only if the successive vortical and non-vortical zones along the detection line
had lengths of at least 0.07b, again trying to avoid small patches of noise. Finally,
interfaces leaning upstream by 15◦ to 45◦, and then interfaces leaning downstream by
the same range of angles, were studied through y-direction conditional averages (the
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Figure 3. Effect of detection threshold Cω on 〈ω〉, unforced wake. Values of Cωb/U0 were 0.7, 7.0
and 12.3 at the detection points, indicated by ‘@ ’.

angular error spanwise still being limited to ±25◦). Interface groups mentioned in this
paragraph are sketched in figure 13, although the relationship between the interfaces
in the figure is derived later.

3. Results
3.1. Surface detection level

Vorticity magnitude 〈ω〉 conditionally averaged in the y-direction for three values
of the threshold Cω (and surface normal angular errors 6 25◦) is shown in figure 3
(unforced wake). When Cωb/U0 = 0.7 (the value chosen for our analysis), the pro-
portion of surface area included from each side of the wake, when projected onto the
centreplane, is about 26% relative to the centreplane area. In all cases 〈ω〉 is almost
constant at the same value in the middle part of the wake, and there is a very sharp
gradient down through the detection level. There is no restriction on the steepness of
this gradient made by the detection process – it only has to be negative. The gradient
becomes even steeper with increasing Cω , but, as figure 3 shows, detection points then
start to concentrate on locally intense patches of vorticity, reducing the proportion
of data accepted and producing sharp peaks in 〈ω〉. More significantly, excessive
amounts of vortical fluid leak into the irrotational region when Cω is large. At lower
levels of Cω than shown, numerical noise is detected too often, and irrotational fluid
is included with the vortical region.

3.2. Statistics of vorticity surface height

As noted above, the vorticity surface is not identical to the turbulent/non-turbulent
interface – it is only the outer boundary of the interface – but statistics of surface
height above the wake centreplane are a good indicator of interface positions. The
surface angle criterion is not used here, so coverage of the projected area is 100%
in both the forced and unforced wakes. Re-entrant regions are included, counting
both the downcrossing and second upcrossing of the ω threshold, and simultaneous
intrusions of irrotational fluid from both sides of the wake are allowed for. Since
irrotational fluid can cross the wake centreplane (especially in the forced wake), the
value of the scalar in re-entrant regions is checked to determine which side of the
wake the fluid came from.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

67
59

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006759


392 D. K. Bisset, J. C. R. Hunt and M. M. Rogers

2

1

0

–1 0 1

(a)

P
(h

)

h (=yI /b)
0 1 2 3 4 5

x/b, z/b

(b)
1.0

0.5

0

–0.5

–1.0

R
hh

(x
),

 R
hh

(z
)

Figure 4. Statistics of vorticity surface heights in the unforced (———) and forced (— · —)
wakes. (a) Probability density functions; (b) streamwise (plain) and spanwise (marked with circles)
autocorrelations.

Figure 4(a) shows probability density functions of vorticity surface heights h = yI/b
for unforced and forced cases. The mean height for the unforced (forced) case is 0.79
(0.68), the standard deviation 0.21 (0.33), skewness 0.03 (−0.12), and flatness factor
3.28 (2.78). Thus to a first approximation h is a normal random variable, where the
main effect of forcing, as could be expected from figure 2, is to spread out the range
of heights towards the centreplane and sometimes across it. It is not clear whether
the small dip in the P (h) curves is repeatable or only related to the particular starting
field for these simulations. Re-entrant zones on one side of the wake (either upper or
lower) occurred over 7% (16%) of the centreplane area, and occurred on both sides
simultaneously for 0.1% (2%) of centreplane area, for the unforced (forced) case.

Autocorrelation coefficients Rhh(x) and Rhh(z) for the two cases are presented in
figure 4(b); here the inner detections in re-entrant regions are omitted. The usual
practice for correlations is followed in regard to treatment of the mean, i.e. the
mean height is subtracted, so the resulting autocorrelation curves emphasize the
length scales of the variations in surface height that produce the p.d.f. curves in
figure 4(a). Note that because of the periodic boundary conditions the ranges of
correlation displacements can only extend over half the lengths and spans of the
actual realizations in figure 2. The dominant streamwise scale for height fluctuations
in the unforced wake is about 3.4b, which is determined from the peak in the
correlation curve shown in figure 4(b). This value agrees very well with the scale of
organized motion outside a far wake implied by figure 4 of Antonia, Shah & Browne
(1987b), bearing in mind their definition of length scale L = b/2. That figure also
shows that the dominant scale is considerably larger outside the wake than within
the turbulent zones, which appears to be the case here too. For the present results
in figure 4(b), the spanwise scale of interface height in the unforced case and the
streamwise scale in the forced case have become too large to be determined within
the available correlation distance. In the forced wake, however, the spanwise scale
has become so large, as a result of the two-dimensional forcing, that the scale of local
height fluctuations (about 1.1b) shows up quite clearly.

It can be inferred from figure 3 that the average level of ω is constant throughout
turbulent zones of the wake, and equal to the centreplane mean value of vorticity mag-
nitude ω0. Therefore the Eulerian distribution of ω̄, with its long tails, is determined
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Figure 5. Cumulative probability of interface height (– –) compared to mean vorticity magnitude
(———) in the forced (upper curves) and unforced (lower curves) wakes. The two PCUM axes are
scaled so that the respective curves match at the centreplane.

solely by the wake’s convoluted bounding surface. Following equation (1.3),

ω̄(y/b) = ω0

∫ ∞
y/b

p(h)dh. (3.1)

The validity of this assumption can be checked by comparing ω̄ with the intermittency
distribution (rescaled by a suitable constant), as shown in figure 5. In this figure the
p.d.f. curves of figure 4(a) have been integrated from h = y/b to h = h(max) to derive
the ‘intermittency factor’, i.e. the cumulative probability PCUM that h is greater than
y/b, and rescaled to match ω̄ at the centreplane. The curves agree quite well for
both forced and unforced cases, the discrepancies being less than `I (≈ 0.07b), the
thickness of the interface determined in § 3.4. Similar agreement can be expected for
other properties that scale with vorticity, such as dissipation rate. This result supports
the concept of turbulence in the intermittent zone being determined by two features
(Townsend 1976): (a) fully turbulent fluid whose vorticity is well mixed within the
turbulent zone, and (b) a convoluted envelope created by large-scale eddy motion.
However, it should be recalled that vorticity, as a function of velocity derivatives, is
dominated by smaller scales; other turbulence properties (e.g. velocity fluctuations)
that include contributions from large-scale motion may be distributed less uniformly
within the turbulent zones.

3.3. Effect of surface orientation

As mentioned above, about 26% of centreplane area is below areas of the vorticity
surface that are facing nearly vertically for the unforced wake (about 21% for the
forced wake). This means that substantial areas face in other directions, and therefore
it is important to know whether surface orientation has any significant effects on
interface properties. Distributions of 〈ω〉 for both wakes are shown in figure 6(a) for
surfaces facing in the three principal directions. (The vertically facing interfaces are
tilted about 3◦ upstream on average, and streamwise- and spanwise-facing interfaces
average a few degrees above horizontal.) Normalized by U0/b, a measure of vorticity
from the mean shear, 〈ω〉 has steeper gradients and reaches higher levels in the forced
wake. Differences caused by orientation are much smaller, especially when comparing
vertically and spanwise-facing surfaces (the gradient for downstream-facing surfaces
is a little weaker in both wakes). The gradual rise in 〈ω〉 to the right of the detection
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Figure 6. Effect of surface orientation on conditional averages of (a) vorticity magnitude and
(b) passive scalar in the forced (with circles) and unforced (plain) wakes. Orientation: · · · · · ·,
downstream; ———, vertically; — · —, spanwise.

point for spanwise- and downstream-facing surfaces is the result of intermittency:
lines parallel to the centreplane may intersect many different vortical and non-vortical
regions, sometimes quite closely spaced. The decline in 〈ω〉 to the left of the detection
point (after the initial steep rise) has the same cause. Forcing seems to have some
effect on the distribution of 〈ω〉 for downstream-facing surfaces, reducing (relatively)
the level just inside the surface. The common characteristic of all six curves is a sharp,
almost linear rise of 〈ω〉 for 0.06b inside the vorticity surface, followed by a nearly
constant-〈ω〉 region from about −0.08b inwards.

Corresponding distributions of temperature 〈T 〉 (a passive scalar) are shown in
figure 6(b). The sharp gradient in 〈ω〉 at the interface and the constant value in
the fully turbulent regime are consistent with generation of vorticity at the interface.
But the jump in 〈T 〉, ∆〈T 〉, the bulk movement of the interface at a speed Eb, and
the absence of any local generation/destruction of temperature (heat), require that
there is an eddy flux of heat towards the interface Fθ〈t〉 equal to Eb∆〈T 〉. Since
Fθ〈t〉 ∝ −∂〈T 〉/∂y, this flux implies that there is a finite gradient of 〈T 〉 on the
turbulent side of the interface, as is observed.

Levels of 〈T 〉 for the inner regions are much lower for the forced wake, and
consequently the gradients up to the surface are steeper. The strengthened large-scale
organized motion rapidly transports fluid from one side of the wake to the other
(recall that boundary conditions for T are 1.0 and 0 above and below the wake), and
promotes mixing in the interior. This effect is consistent with the fourfold increase in
transverse velocity variance reported by Moser et al. (1998). It is not as easy to explain
the effect of forcing on the streamwise- and spanwise-facing curves just outside the
detection point, where 〈T 〉 almost reaches 1.0 in the unforced case but peaks around
0.98 with forcing. When T -contours are superimposed on ω-contours such as those
in figure 2, one can see that T occasionally has non-free-stream values while ω drops
below Cω , but such events are larger and occur more frequently in the forced wake.
The cause may be related to the imperfect initial matching of T to the vortical fluid,
as mentioned earlier.

Concluding this section, it should be noted that the vorticity surface is moving
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continuously, so that any differences at a particular point caused by surface orientation
will in general be diminished by changes in orientation with time.

3.4. Defining the turbulent/non-turbulent interface

Figure 6 shows that the modulus of vorticity and the mean gradient of temperature
are approximately constant in the wake interior (also see figure 3), which means
that small-scale turbulence and the eddy diffusivity are fairly uniform across the
wake up to the interface. It also shows that the vortical fluid in the wake interior
is separated from irrotational fluid in all principal directions by a layer of constant
average thickness with strong gradients in vorticity and passive scalar. Across this
layer, which differentiates the turbulent and the non-turbulent flow regions, there
is a transition from free-stream irrotational fluid to well-mixed vortical fluid, and
therefore the turbulent/non-turbulent interface may be defined as this layer. For the
present flows, the thickness of the interface (so defined as the region of rapid change)
is about 0.06b to 0.08b, which is several times smaller than the standard deviation
of the height of its convolutions (§ 3.2). The interface thickness is comparable to the
Taylor microscale λ, but it is an order of magnitude larger than the Kolmogorov
microscale. Whether the interface thickness scales with either of these quantities
cannot be established until DNS data are available at considerably higher Reynolds
numbers. In some of the following figures the position of the interface is indicated by
vertical lines using the largest estimate (0.08b) of its thickness.

3.5. Some statistical properties of the interface

While figure 6 shows the change in the modulus of vorticity through the interface, it
is necessary to consider how velocity gradients and the different components of 〈ω〉
are distributed in order to understand the interface dynamics. This also differentiates
between the small-scale dynamics which dominate the vorticity components and the
large-scale dynamics which influence the conditional velocity components. Conditional
magnitudes 〈|ωx|〉, 〈|ωy|〉 and 〈|ωz|〉 are presented for vertically and spanwise-facing
interfaces (unforced wake) in figure 7, along with any non-zero gradients of conditional
velocity components such as ∂〈U〉/∂y. Magnitudes are more relevant than signed
vorticity components because many of the small-scale quantities may have either sign
instantaneously, and therefore average to zero. Note that the mean spanwise vorticity
is included in 〈|ωz|〉.

The dominant component in vertically facing interfaces (figure 7a) is spanwise
vorticity 〈|ωz|〉, and the weakest, being normal to the detected surface, is 〈|ωy|〉.
Within the interface itself, especially towards its outer surface, ∂〈U〉/∂y is nearly
as large as 〈|ωz|〉, showing that the variation of velocity at the largest scale is a
major contributor to vorticity within the interface. In the main body of the wake,
〈|ωz|〉 is much greater than the mean shear. Note that the small-scale turbulence is
approximately isotropic, since the magnitudes of all vorticity components become
similar. The distribution of 〈U〉 from which ∂〈U〉/∂y was calculated is shown in
figure 8.

The general picture is similar for spanwise-facing surfaces (figure 7b), but here 〈|ωz|〉
is the normal component and therefore weakest. Transverse vorticity 〈|ωy|〉 is strongest,
and there is a substantial large-scale contribution ∂〈U〉/∂z. Streamwise vorticity
〈|ωx|〉 is also strong, with a modest large-scale contribution ∂〈V 〉/∂z. For streamwise-
facing surfaces (not shown) the strongest component is 〈|ωz|〉, and ∂〈V 〉/∂x makes a
moderate contribution. Forcing the wake has no major effect on the overall pattern
of vorticity distribution, though relative magnitudes vary a little (results not shown).
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Figure 7. Vorticity components and significant velocity gradients for interfaces facing (a) vertically,
and (b) spanwise, in the unforced wake. All curves are normalized by U0/b, and velocity gradients
are indicated with symbols. −−−−, 〈ω〉; · · · · · ·, 〈|ωx|〉 and −∂〈V 〉/∂z; — · —, 〈|ωy |〉 and ∂〈U〉/∂z;
———, 〈|ωz |〉 and ∂〈U〉/∂y. Thin vertical lines show interface position.
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Figure 8. Conditional velocity variances relative to conditional means for vertically facing interfaces:
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conventional (bold dashed) mean streamwise velocity, and conditional streamwise variance relative
to the conventional mean (−−−−). Vertical lines show interface position. The abscissa for Ū/U0 is

y/b− h̄.

The unconditional and conditional mean velocity profiles Ū(y) and 〈U〉(y − yI )
are shown in figure 8, along with variances of velocity fluctuations, 〈u2〉, 〈v2〉 and
〈w2〉, for vertically facing interfaces in the unforced wake. The approximate interface
position is indicated by a pair of parallel lines, and Ū is plotted against y/b − h̄ to
allow direct comparison with 〈U〉(y − yI ). Fluctuations are defined here relative to
the conditional means, e.g. u = U−〈U〉, and for comparison the profile of streamwise
fluctuations relative to the conventional mean, i.e. 〈(U−Ū(y))2〉, is also shown. Unlike
Ū which varies smoothly near the edge of the wake, 〈U〉 increases rapidly through
the interface until it levels out quite sharply at its free stream value. The effect of
this difference between Ū and 〈U〉 can clearly be seen in the two streamwise velocity
variance curves: 〈(U − Ū(y))2〉 increases towards the outer surface, and large values
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continue for a distance outside the interface. In other words, Ū is not a good estimate
of U at the outer edge of the interface. These high levels of (U − Ū(y))2 make

a significant contribution to the conventional (unconditioned) values of u2 towards
the outer edge of the wake. They are produced by large-scale effects on velocity,
i.e. the convolutions of the interface, not by fluctuations associated with small- or
medium-scale turbulence.

Spanwise velocity W is also parallel to vertically facing interfaces, but the con-
ventional mean and conditional average are both zero, so there are no systematic
large-scale effects. Consequently, values of 〈w2〉 decrease quite quickly through the
interface, and there is virtually no difference when W̄ is subtracted instead of 〈W 〉.
Mean transverse velocity V̄ is essentially zero, and 〈V 〉 (not shown) is quite small
when all vertically facing interfaces are included as in this figure (subsets are presented
later), so 〈v2〉 is also little affected by the choice of mean to subtract.

Variances well outside the interface are still non-zero because of irrotational fluctu-
ations induced by large-scale turbulent motions. Antonia et al. (1987b), for example,
detected large structures inside a far wake at y = 0.45b and found (by conditional
averaging) a strong correspondence with irrotational fluctuations outside the wake.
Variances inside the wake continue to increase for some distance past the inner
edge of the interface (unlike 〈ω〉), which is probably because larger-scale turbulence
structures, which contribute strongly to velocity variances but not much to ω, cannot
be centred close to the surface. Because this flow has mean shear, the streamwise
variance is greater than the spanwise at all distances above and below the interface,
even when the conditional mean is subtracted from fluctuations – otherwise these two
variances would be identical.

It is interesting to compare these results with the idealized theory of Carruthers &
Hunt (1986) for the transition zone between homogeneous isotropic turbulence and
irrotational fluctuations. They assumed that there is a thin vortical interface which
is essentially level, and that there is no mean velocity jump across the interface (i.e.
∆〈U〉 = 0) and no mean shear. They showed that the velocity fluctuations are affected
by the interface over a distance of order Lx on the turbulent side (predicting that 〈v2〉
decreases while 〈u2〉 and 〈w2〉 increase), while the vorticity varies over the thickness
of the interface, which is much less than Lx. Outside the interface 〈v2〉 decreases
more slowly, as (y − yI ) increases, than 〈u2〉 and 〈w2〉 (as Phillips 1955 also found).
The latter is supported here by the conditional statistics, and also by the results of
Antonia et al. (1987b) for a cylinder wake. If the theoretically predicted profiles are
displaced randomly according to the probability distribution p(h) of the interface, as
in Gartshore et al. (1983), then u2, v2 and w2 can be computed; the maximum u2 falls
near y = 0.7b.

Figure 9 shows 〈U〉 and 〈V 〉 for spanwise-facing interfaces (over a smaller range
of distances because intermittency becomes important for averaging parallel to the
centreplane). As for the previous case (figure 8), there is a rapid rise in 〈U〉 through
the interface, which occurs in spite of the lack of mean shear in this direction (Ū(z)
is constant). However, 〈V 〉 is also significant in the present case, not only for its
contribution ∂〈V 〉/∂z to vorticity within the interface, but also for its negative values
at the outer surface and beyond, which indicate that free-stream fluid moves down
past the detected surface towards the wake centre. These spanwise-facing interfaces
are mainly found on the sides of turbulent protrusions welling up into the free
stream, and fluid within the protrusions carries the velocity defect outwards from the
centreplane; hence the contrast in 〈U〉 across the interface.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

67
59

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112001006759


398 D. K. Bisset, J. C. R. Hunt and M. M. Rogers

–0.2

–0.3

–0.2 0 0.4
(z –zI)/b

-U
./

U
0,

 -
V

./
U

0

–0.1

0

0.1

0.2–0.4

Figure 9. Conditional velocities for spanwise-facing interfaces, unforced.
———, 〈U〉; −−−−, 〈V 〉. Vertical lines show interface position.
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Figure 10. Conditional velocity variances for vertically facing interfaces, forced (with circles) and
unforced. ———, 〈v2〉; — · —, 〈w2〉.

The main effect of forcing the wake is to amplify the fluctuations and therefore
the contortions of the interface (figure 2). For vertically facing interfaces, figure 10
displays 〈v2〉 and 〈w2〉 with and without forcing, and it can be seen that the increases
differ substantially for different components. For 〈w2〉 the increase is rather less than
a factor of two, and even smaller for the irrotational fluctuations above the interface,
but 〈v2〉 is quadrupled everywhere. The effect on 〈u2〉 (not shown) is proportionally
only a little greater than that on 〈w2〉. These changes are consistent with the effects of
forcing on conventional variances found by Moser et al. (1998). Because the forcing
is primarily two-dimensional, there is a comparatively small effect, not shown here,
on the spanwise 〈V 〉 distribution conditioned on spanwise-facing interfaces (figure 9),
in contrast to the large increase in 〈v2〉.

3.6. Effects of interface height and slope

From figure 6 it appears that similarities between interfaces with different orientations
are more noteworthy than differences, but orientation is only one of the criteria
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Figure 11. Effect of separating interfaces into three groups by height above centreplane, forced
wake: ———, outer group; — · —, inner group. (a) Conditional vorticity and scalar. (b) Conditional
velocities 〈U〉 (plain) and 〈V 〉 (with symbols). Vertical lines show interface position.

that might affect interface properties. Distance from the wake centreplane could be
significant because, for example, the engulfment process is by definition impossible at
the outermost edges of the wake, and must occur closer to the centreplane. Interface
slope could be important because surfaces leaning upstream (facing partly towards
the oncoming free stream) are in different surroundings from those facing partly
downstream. These two aspects were examined in the following manner. Results are
presented only for the forced wake; the same effects were found (but not as strongly)
in the unforced wake.

The set of detections of vertically facing interfaces (as used above) was split into
three groups of roughly equal size according to distance from the wake centreplane
(h-value). The cutoff values for h were 0.72 and 0.92 (0.62 and 0.93) for the unforced
(forced) wake, which may be loosely compared to the p.d.f.s of figure 4(a) bearing
in mind that all surfaces are included in the p.d.f.s irrespective of angle. Some
results for the inner and outer groups are shown in figure 11. Clearly there is no
significant difference in 〈ω〉 resulting from the split (figure 11a). Magnitudes of the
three components of vorticity (not shown) are also virtually unaffected. The slope of
the curve for 〈T 〉(y − yI ) is required to be steeper somewhere along its range when
the interface is much closer to the centreplane, but the profiles show the same jump
∆〈T 〉 for both cases and a significant region of constant gradient (different for the
two cases) in the body of the wake. Velocity variances (not shown) are only mildly
affected by the inner/outer split.

Conditional velocities, however, are affected quite substantially by interface height.
Distributions of 〈U〉 and 〈V 〉 for inner and outer groups in the forced wake are
presented in figure 11(b); the effects in the unforced wake are identical in nature but
only half the magnitude. Fluid surrounding the outer group, i.e. the extended bulges
of the interface, is moving rapidly outwards: 〈V 〉 reaches almost 0.3U0 just inside
the interface. Irrotational fluid is forced to accelerate to 0.15U0 above the mean free
stream as it flows around the protrusions (figure 11b), and all fluid within the interface
thickness is moving faster than average in the streamwise direction. Just the opposite
occurs when the interface is close to the centreplane: irrotational fluid is rushing
inwards from the free stream at a speed 0.18U0, but it has a horizontal speed of
about −0.23U0 relative to the free stream. All of these accelerations and decelerations
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Figure 12. Conditional velocities 〈U〉 (plain) and 〈V 〉 (with symbols) for upstream-leaning
(−−−−) and downstream-leaning (− · ·−) surfaces. Interface position is shown by vertical lines.

are primarily irrotational, not vortical, and they are all effects of large-scale structural
interactions with the free stream.

When interface angle is the selection criterion instead of height, the effect on 〈U〉
and 〈V 〉 is interestingly different. The selected upstream-leaning group contains all
surface detection points for which the normal makes an angular error 6 25◦ from
vertical spanwise but is tilted upstream in the range 15◦ to 45◦. The downstream-
leaning group uses the same range of tilting downstream. Average angles of tilt within
both groups were found to be 28◦–30◦ in the relevant direction (both forced and
unforced wakes). However, the total projected area covered by the upstream-leaning
surfaces is 50% (forced) or 100% (unforced) larger than the downstream-leaning
area. Results for the forced wake are shown in figure 12; results are similar, but
less contrasted, for the unforced case. Only velocities are shown since 〈T 〉 was little
affected and 〈ω〉 was unchanged for these groups. The upstream-leaning group has
a fairly strong outwards 〈V 〉, but unlike the outer group (figure 11b) its associated
〈U〉 is well below the free-stream value both within and above the interface. In other
words, slow-moving vortical fluid is moving outwards here and has not yet been
accelerated by interaction with the free-stream fluid. Conversely, the fluid around the
downstream-leaning interfaces is moving inwards, as for the previous inner group in
figure 11(b), but at this point its streamwise velocity is above average instead of much
below it.

As with the inner and outer groups, the effects of surface angle are related mainly
to large-scale motion. All four types of interface and their associated velocities could
be related as shown in figure 13, where they form a general pattern of large-scale
rotating regions. They repeat continuously, with variations of spacing, strength and
scale, along both sides of the wake. Notice also that there is a tendency for irrotational
fluid to force its way underneath the protrusions of vortical fluid, forming zones where
the vorticity surface is re-entrant. This aspect is examined next.

3.7. Re-entrant zones

In most places any vertical line passing right through the wake intersects the vorticity
surface twice only, but there are places (especially in the forced wake) where a line
passes through more than one distinct vortical zone, intersecting the surface four or
even six times (see § 3.2 for statistics). Conceivably a patch of irrotational fluid could
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Figure 13. Notional arrangement of detected surfaces. Arrows show corresponding typical inter-
face velocities (〈U〉, 〈V 〉) relative to free stream. 1, upstream-leaning; 2, outer group; 3, down-
stream-leaning; 4, inner group. A re-entrant zone is also indicated (5).

be entirely trapped within the wake, but usually the multiple intersections occur within
a re-entrant zone as sketched in figure 13 and readily identified in figure 2. Detection
of such zones is straightforward (§ 2.3), and results in sets of three detection positions:
the top of the vortical protrusion, the downwards-facing surface where the interface
separates protrusion from irrotational intrusion, and the bottom of the intrusion.
Conditional averaging is complicated by the variable heights between detections (the
protrusions and intrusions have variable thicknesses) that could cause smearing, and
therefore conditional averages were calculated separately for the top, middle and
bottom detections. Because of the small total area of interfaces in re-entrant zones,
no surface angle criteria were used, which means that the surface normal is often
angled well away from the averaging direction (vertical).

Composite conditional averages 〈ω〉 and 〈V 〉 for re-entrant zones are presented in
figure 14. The ‘@’ indicates detection points on the 〈ω〉 curves (figure 14a, unforced
wake), showing how the curves (including 〈V 〉) from the top and bottom detections
have been offset by +0.2b and −0.12b respectively. These offsets were selected for
best visual alignment of the curves where they overlap; the offsets were slightly
smaller (+0.16b and −0.1b) in the forced wake. The 〈ω〉 level in the protrusion itself
((y − yI )/b ≈ 0.1) is still remarkably strong, given that in some cases the line of
conditional averaging is only glancing the tip of the vortical protrusion. Gradients of
〈ω〉 through all three interfaces are nearly as steep as in other cases shown already.
Results for 〈ω〉 with forcing (not shown) are qualitatively the same.

Curves for 〈V 〉, both forced and unforced cases, are given in figure 14(b). The
inwards velocity is very strong for the intruding irrotational fluid, as might be
expected, and forcing doubles the speed of intrusion. The streamwise velocity 〈U〉
(not shown) for all fluid is well below the free-stream value. The most interesting
aspect, however, is the great width of the negative-〈V 〉 region in figure 14(b): it shows
that all of the vortical fluid in the protrusion and the bottom interface is also moving
rapidly inwards along with the irrotational fluid. Clearly the re-entrant zone is the
result of motion on a larger scale than that of the intrusion itself.

What seems to be happening is that when the rotational structure depicted in
figure 13 is strong enough and acting for long enough, its inrush on the downstream
side pushes irrotational fluid deep inside the body of the wake, stretching out the
surrounding interface and carrying along the associated vortical fluid. In general a
corresponding strong surge outwards occurs at the upstream side of the rotational
structure, bulging and stretching the interface in that area too. Strong gradients within
the re-entrant interface are maintained at least in part by the parallel stretching of
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Figure 14. Conditional results for re-entrant zones. Surfaces: −−−−, outermost; ———, down-
wards-facing; − ·−, innermost. (a) 〈ω〉, unforced wake. Detection points indicated by ‘@’. (b) Cor-
responding distributions of 〈V 〉, unforced (upper curves) and forced (lower curves).

the interface, given the absence of mean shear effects in this region. The re-entrant
interface nearly always ends in a sharp cusp, the inevitable consequence of local
entrainment (i.e. interface advancement into the irrotational fluid normal to its own
surface). Some aspects of interface stretching and renewal, and entrainment, are
considered in the next two subsections.

3.8. Interface dynamics and the boundary entrainment rate

Results so far have shown that local properties of the interface, at least in a condi-
tionally averaged sense, do not vary greatly for different orientations and positions
of the interface. Also it is clear that the interface maintains its properties over time,
while entraining fluid into the growing wake (the wake is self-similar with a constant
growth rate – see Moser et al. 1998 for details). Therefore there must be some persis-
tent mechanisms that maintain the interface in spite of diffusion and internal mixing
processes that would tend to dilute its internal gradients and reduce its surface area.
By inspection of individual instants of interfaces in the flow, aspects of interface
structure can be investigated using the methods of critical point analysis.

Sectional streamlines in flows around interface regions are shown in figure 15 for
part of an (x, y)-plane in the forced wake and a (z, y)-plane in the unforced wake.
These particular realizations were chosen for their relative clarity, but they are not
exceptional. Sectional streamlines are lines that are everywhere parallel to velocity
vectors projected onto the given plane – see the review by Perry & Chong (1987).
Normally the plane of visualization is itself moving at a reference velocity typical of
the fluid, so that streamlines will emphasize local flow structure. The present reference
velocities have been chosen so that a velocity zero (critical point) coincides with the
ω-surface in a certain area. In fact the exact position of the zero is a free choice,
but the resulting pattern of streamlines around the critical point is fully determined
by the flow. The number of saddle and nodal points in a plane must be equal, given
certain conditions on the edge of the plane (Hunt et al. 1978).

In figure 15(a), (x, y)-plane, a critical point of particular interest is the saddle point
(stagnation point) S where fast-moving irrotational fluid descends to meet an upflow
of vortical fluid. Other critical points (right at the edges of the figure) are nodal foci
F within the turbulent fluid upstream and downstream from the saddle, forming a
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Figure 15. Sectional streamlines relative to vorticity surfaces (heavy dashed lines). (a) Part of an
(x, y)-plane, forced wake. (b) Part of a (z, y)-plane, unforced wake.

pattern well known from far-wake instantaneous (e.g. Bisset, Antonia & Browne 1990)
and conditionally averaged (e.g. Steiner & Perry 1987; Antonia et al. 1987a; Bisset
et al. 1990) velocity fields. In the present DNS, however, the ω-surface is resolved
too (the heavy dashed line). Well-mixed, vortical fluid is brought into close proximity
with irrotational fluid and stretched out along the interface, which tends to keep
the interface thin. The shape of the interface is not static, and vorticity distributed
within the turbulent region induces movement of the interface. In general streamlines
only cross the interface where the normal to the interface is parallel to its general
direction of movement, as with a propagating vortex ring (Turner 1973) or a saddle
point in a free shear layer (e.g. Hussain 1986). Where the fluid accelerates away from
the stagnation point in both directions roughly parallel to the interface, vorticity
is advected by the flow into the re-entrant zone R where mixing and diffusion of
vorticity (the final stage of entrainment) occur, and the boundary of vortical fluid
moves outwards. This is analogous to the rear stagnation point of a propagating
turbulent vortex ring.

A spanwise cut through the wake is shown in figure 15(b), with the frame of
reference velocity (directly upwards) chosen to give a zero at the upper edge of the
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ω-surface. Fortuitously, in this view there are two protrusions rising with the same
velocity, so stagnation points (saddles) appear on the tops of both. The protrusions
are clearly the results of motion on a fairly large scale. Several critical points appear
within the turbulent areas of the protrusions, associated with stable and unstable foci
(nodes) and saddles on a smaller scale. As in the (x, y)-plane, streams of rising vortical
fluid and descending irrotational fluid meet at stagnation points and then accelerate
away roughly parallel to the interface. In the centre of the figure there appears to
be a small bridge of older interface material that is being pushed into a deepening
fissure.

In summary, cuts through the wake in both directions show how streams of
vortical and irrotational fluid collide at the interface, stretch out along it, and drive
its convoluted, fissured shape. Large-scale movements (engulfing motions) of the
interface are dominant, driven by inviscid dynamics. If, at the Reynolds numbers of
the simulations, significant ‘nibbling’ (engulfing motions on very small scales) had
been present, the profiles of 〈U〉 and 〈T 〉 would not display the sharp changes that
are observed.

Another way of observing motion of fluid within the interface is to produce
streamlines following the vorticity surface. Velocity vectors at points interpolated
onto the surface are resolved into normal and parallel components, and streamlines
are drawn from the latter. The normal components would represent motion of the
interface itself as it continually changes shape (but not including interface motion
relative to the fluid by outwards diffusion of the vortical surface). Surface streamlines
are shown in figure 16 for a small part of the unforced wake. The left-hand half of
figure 15(b) is a cut through the protrusion in the middle of figure 16, but the velocity
zero is placed on the upstream-facing surface in the latter case. Figure 15 gives a
two-dimensional view of motion above and below the surface, while figure 16 is a
‘three-dimensional’ view of the resulting flow patterns induced along the surface. The
topological pattern here is an unstable node, for which fluid at the level of the surface
spreads out in all directions. The convoluted nature of the surface can also be seen
in this figure.

Other areas of the surface were explored, and various topological features were
found including saddles and bifurcation lines, but unstable nodes seemed to have
the strongest signature. On the downstream side (not shown) of the protrusion in
figure 16 there is a weakly stable node that could indicate a separation point, but the
velocity of the surface normal to itself may be more significant in that area.

3.9. Entrainment

Boundary entrainment may be thought of as an interface moving through a fluid with
a velocity Eb normal to itself. This implies that vorticity (and likewise any passive
scalar) advances into irrotational fluid through molecular diffusion (Corrsin & Kistler
1955). Of course the viscous diffusive action depends on the gradients produced by
the large-scale and turbulent flow fields. As with other processes of turbulence that
depend locally on viscous action (e.g. drag of an obstacle or dissipation rates),
the mean value of Eb, normalized on a characteristic velocity U0, is found to be
approximately independent of the value of the Reynolds number (Townsend 1976).

Computed values of the three terms for viscous diffusion of vorticity (ν∇2ωx,
ν∇2ωy and ν∇2ωz) indicate how vorticity levels are changing within fluid elements
irrespective of fluid motion. Diffusion of spanwise vorticity, conditioned on vertically
facing interfaces, is presented in figure 17, inverted so that the curve is positive where
the magnitude of ωz is increasing (ωz is negative here). The interface thickness is
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Figure 16. Streamlines following the vorticity surface enclosing a protrusion (see text).
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Figure 17. Viscous diffusion of spanwise vorticity for vertically facing interfaces,
unforced wake.

delineated by vertical lines as in earlier figures. Figure 17 demonstrates that fluid
right at the outer surface of the interface is undergoing the most rapid increase in
the magnitude of spanwise vorticity by diffusion, and at −0.05b, within the interface
thickness, fluid is losing spanwise vorticity (by diffusion) even more rapidly. Thus
viscous action at the surface is expanding the volume of vortical fluid but also
depleting the vorticity of nearby regions. Flows within the vortical regions (e.g.
figure 15) replenish vorticity near the surface, and consequently the position of
maximum vorticity loss by diffusion coincides very closely with the peak in ∂〈U〉/∂y
(figure 7a). Diffusion of streamwise vorticity is also likely to be significant at vertically
facing interfaces, but cannot be assessed through the present set of detections because
ωx is equally likely to be positive or negative by symmetry.

While it would be interesting to determine whether orientation, height or angle of
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the interface have an effect on entrainment rate directly from the diffusion terms,
there are other cases similar to the above where symmetry precludes a meaningful
result with the present sets of ω-surface detections. However, it is possible instead to
get an indication from results presented earlier. At the outer surface of the interface,
vorticity diffusion is directly related to the curvature of the 〈ω〉 distribution (figures 6,
7, 11, 14). These distributions all behave in a fairly similar manner, so it is possible to
say qualitatively that entrainment rate is not greatly influenced by any of the selection
parameters used so far. None of the regions investigated displays, for example, an
interface where fluid is entrained at a greatly reduced rate. As with all conditional
averages, the properties of the individual realizations that make up the conditional
results may vary considerably.

4. Implications for statistical models

As discussed in the Introduction, the turbulent kinetic energy k = (u2 + v2 + w2)/2
and the energy dissipation rate ε tend to zero at the outer edge of the flow. Therefore
estimates for terms used in models of Eulerian one-point statistics with k or ε in
the denominator, such as the dissipation length scale `ε = k3/2/ε or eddy viscosity
νe = `εk

1/2 = k2/ε, become ill-defined and cause numerical problems for Reynolds-
averaged Navier–Stokes (RANS) computations (e.g. Cazalbou et al. 1994). Since such
methods are steady state as far as the turbulence is concerned, the unsteady convoluted
interface cannot be calculated directly, and therefore the profiles of all mean quantities
are also identically the profiles at the turbulent/non-turbulent interface. One could
choose to try to produce the correct mean profiles with RANS, or the correct
interface, or perhaps a compromise profile, but at least one aspect of flow physics
will be unrealistic. Nevertheless statistical models based on quantities such as k or
ε are widely used for computing moments of the inhomogeneous variables in the
intermittent zone. The solutions are quite uncertain because they depend sensitively
on the numerical approximations involved in evaluating the variables and their
derivatives. The models do not distinguish between the different dynamics on either
side of the random interface or the dynamics of the interface itself. One way of
examining these possible limitations is to calculate, using conditional sampling, the
spatial distribution of the relevant statistical moments relative to the interface and to
compare these with their conventional distribution in fixed coordinates, as shown in
figure 18.

Conventional Eulerian profiles in figure 18 are plotted in terms of the fixed co-
ordinate y/b − h̄, chosen so that the abscissa is offset by the mean height of the
turbulent/non-turbulent interface in order to facilitate comparisons with the con-
ditional profiles. Values of k̄ and ε̄ are calculated directly from the DNS data,
and then turbulent viscosity νt = Cµ(k̄

2/ε̄) and the modelled Reynolds shear stress
(−uv)M = νt(dŪ/dy) are obtained, where Cµ has the standard value of 0.09 (Cazalbou
et al. 1994).

In figure 18(a) the kinetic energy of the fluctuations 〈k〉 relative to the conditional
mean velocity 〈U〉 (see the discussion of 〈u2〉 curves in figure 8) is plotted as a function
of (y − yI ), i.e. relative to the interface position, and shown as a dashed line. In the
non-turbulent region (y > yI ) these fluctuations are irrotational and do not produce
any Reynolds stress (i.e. 〈−uv〉 ≈ 0). Even in the turbulent region (y < yI ) additional
irrotational fluctuations are induced by the presence of the interface, to ensure that
the normal velocity and pressure are continuous across the interface (Carruthers &
Hunt 1986). The contribution of these fluctuations 〈k̃〉 needs to be subtracted from
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Figure 18. One-point statistics based on Eulerian (−·−) and conditional averaging, unforced wake.
(a) Kinetic energy. −−−−, 〈k〉; ———, ‘purely turbulent’ 〈k〉t. (b) Dissipation rate. (c) Turbulent
viscosity. (d ) Shear stress; interface position shown by vertical lines.

〈k〉 in order to estimate the dynamically significant, rotationally driven component
〈k〉t in the turbulent region. Thus

〈k〉t = 〈k〉 − 〈k̃〉 (4.1)

where, following Carruthers & Hunt (1986), 〈k̃〉 = 〈k〉 for y > yI , and

〈k̃〉(yI − y) ≈ 〈k̃〉(y − yI ) (4.2)

for at least the thickness of the interface below yI . The curve of 〈k〉t is also plotted
on figure 18(a). The conditionally sampled curve of local dissipation rate 〈ε〉, plotted
in figure 18(b), shows a sharp cutoff at the interface. The curve continues to rise for
a little distance inside the interface, unlike that of 〈ω〉 which immediately levels off.
This is the region where ∂〈U〉/∂y makes a large contribution to 〈ω〉 (figure 7).

A model for the conditional eddy viscosity 〈νt〉 can be estimated as in fully
developed turbulent flow, i.e.

〈νt〉M = Cµ
〈k〉2t
〈ε〉 . (4.3)

The result, plotted in figure 18(c), shows that 〈νt〉M is zero for y > yI , because 〈k〉t is,
by definition, zero in the non-turbulent region. In the turbulent region 〈νt〉M increases
fairly sharply below y = yI over a distance of about 0.2b, similarly to 〈k〉t but less
sharply than 〈ε〉. If 〈νt〉 is estimated in terms of an integral length scale of the normal
component Ly and the normal velocity 〈v2〉, i.e. 〈νt〉M = 〈v2〉1/2Ly , a similar result
would be expected since both these quantities are approximately constant in the
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turbulent region. The modelled Reynolds shear stress 〈−uv〉M for the turbulent region
computed from this estimate of eddy viscosity 〈νt〉M , i.e. 〈−uv〉M = 〈νt〉M∂〈U〉/∂y, is
plotted in figure 18(d ), showing the expected sharp increase across the interface.

Thus the statistical models do not completely represent the dominant dynamical
features for the outer edges of turbulent flows. Diffusive modelling describes the
turbulent transfer of momentum or scalars towards the interface, but the processes at
the interface, where an intense convoluted and randomly moving vortex sheet causes
the interface to move into the quiescent fluid outside it, are not described well by such
models. Computationally they are unsatisfactory because the results for Eb depend
on the numerical scheme and the grid size (Large et al. 1994; Hunt et al. 2001). With
regard to the interface itself, Cazalbou et al. (1994) investigated certain statistical
methods at free-shear edges with various combinations of values for the coefficients
taken from the literature. They found results that (qualitatively) span the full range
given by figure 18, from a sharp cutoff or discontinuity to a smooth decay. Thus
with appropriately chosen coefficients such statistical models might indeed reproduce
the sharp interface properties described here. However the models cannot represent
satisfactorily the statistics of the fluctuations, or the mean field where there are
gradients of scalars in the external quiescent fluid (e.g. Durbin, Hunt & Firth 1982).

In large-eddy simulations (LES) the large-scale fluctuations of the interface are
computed together with an approximation of the small-scale turbulence, so the broad
features of the interface are represented as well as the mean statistics. However the
local dynamics at the interface at scales smaller than the grid size (or filter size)
are not represented in LES, which may be a source of error in the calculations of
entrainment, mixing and reaction rates at these interfaces. Better resolution may be
required at interfaces than is sometimes assumed in LES applications.

5. Concluding remarks
The detailed study using DNS of the ensemble statistics of the mean and fluctuating

flow variables near the interface of the outer edge of turbulent wakes has provided
new evidence for the characteristic features of the flow that have been inferred from
previous experimental research. It is clear that the interface is thin and generally
continuous, and separates rotational motions that are rather homogeneous from
irrotational motions that are very inhomogeneous; there is a significant jump in mean
velocity ∆U and temperature ∆T across the thickness of the interface `I (< 0.1b); the
vorticity jump across the interface is of the same order as the modulus of vorticity in
the bulk of the turbulent region. Inspection of the conditional flow structure around
the interface suggests that the large-scale engulfing motions mainly determine the
mean entrainment rate, even though small-scale mixing of vorticity plays an essential
part in the whole process. Since the large-scale motions are not locally determined, this
explains why entrainment rates are sensitive to external forcing and to the structure of
large-scale eddy motion. Conversely it means that local statistical models, e.g. those
based on the diffusion approximation, do not represent the physical processes.

The first aspect of the interface that emerged from this study is that the interface
remains thin both as a result of the kinematic vorticity advection around the nodal
stagnation points and the enfolding saddle points where any vorticity that diffuses
from the interface is re-entrained, and as a result of bulging and stretching of the
interface. Secondly, vorticity components are amplified at the interface as the turbulent
eddies move outwards into the non-turbulent flow. This amplification is greater where
the mean vorticity is non-zero as in these wakes, and where there is a net outward
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movement of the interface (i.e. Eb > 0). The third point is that the properties of the
interface (including the direct effects of mean shear) are largely independent of the
direction in which the interface is facing and its distance from the centreplane.

In all flows the irrotational velocity fluctuations in the external non-turbulent
region are described by the theory of Phillips (1955). But the turbulence structure
within the turbulent region near the interface is affected by the mean vorticity in
the flow and by the mean movement of the interface. This is why the idealized
theory of Carruthers & Hunt (1986) for homogeneous unsheared turbulence near a
non-entraining interface does not provide a quantitative description of the turbulence
in this flow. But it does show qualitatively how the velocity fluctuations within the
turbulent region are affected by the fluctuating vortex sheet on the interface and the
irrotational fluctuations outside it.

A more specific theory is needed to account for the inhomogeneous production of
turbulent energy in the turbulent region near the interface. Also the highly indented
form of the interface leads to straining motions that anisotropically distort the small-
scale turbulence. Both these effects could perhaps be modelled using rapid distortion
theory applied to the conditional flow field in the turbulent region. Also there are
similarities in these mechanisms with the energy production ‘balances’ derived from
conditional sampling measurements in the large eddies of mixing layers, wakes etc.
(Hussain 1986; Antonia et al. 1987a).

An interesting conclusion to be drawn from the present results is that the intermit-
tent zone between turbulent and non-turbulent motion is likely to be less energetic
and more diffuse for flows with lower mean shear across the interface. Such a case
occurs in the diffusion of turbulent puffs or plumes with no internal mean motion
(e.g. Townsend 1976). However, large-scale turbulent motions are likely to produce
locally sheared regions in which a typical interface exists for a finite time; this may
provide the basis for analysis of turbulent entrainment in the absence of mean shear.

Further analyses of flow dynamics around the interface will be presented in a future
paper. They include an assessment of Prandtl mixing length theory in relation to the
interface, results for turbulent Prandtl number, and a relation between Reynolds shear
stress 〈−uv〉 and the product of ∆〈U〉 and Eb.

Note added in proof: Results from experiments by Westerwed et al. (2001) are in good
agreement with the present work.
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