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SUMMARY

Consider a field experiment laid out in a randomized complete block design in which you study three
types of fertilizers for two winter wheat cultivars. One year, one location – the experiment is not repeated.
You design it and then spend a lot of time and money to conduct it. You cultivate the soil and take care
of the plants; you worry about them; you never know what can happen, so you cannot wait for the crop
to be harvested. And that day finally comes. The crop is harvested, and everything is fine. And here you
are, all went great, you have the data in hands, and now a simple thing to do – analyse them. Well, yes,
the experiment was conducted in one year, and you are aware you cannot be sure the outcome would
be the same next year or elsewhere, but whatever – suffice it to consider the conclusions as preliminary
and get on with the interpretation. Why should you not? It was a properly designed experiment that
took samples from the underlying infinite populations of the two winter wheat cultivars in the three water
regimes studied. Statistics is here to help you out, is not it? Well, it is not. Statistics will not help you
out whether the experiment was poorly designed. Agricultural science literature seldom explains what
populations are studied and what types of samples are taken in designed experiments. To fill this gap, we
discuss various aspects of the sampling process in designed experiments. In doing so, we look at the survey
sampling methodology, a statistical framework for studying finite populations – we do this because survey
sampling has developed into the advanced theory of sampling processes, and this background can help us
understand the intrinsic aspects of sampling in designed experiments.

I N T RO D U C T I O N

Designed experiments are perhaps the most common means for studying biological
phenomena. They come in handy when a researcher needs to control conditions in
order to study how a particular set of treatments affects the biological phenomenon
of interest. Such controlling indeed helps the researcher learn the isolated effects
of the treatments, an approach that is both advantageous and disadvantageous.
Advantageous, because we can learn their isolated effects. Disadvantageous, because
we cannot learn how the treatments behave in reality – in which they do interact with
other factors.
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Developed since the beginning of the twentieth century, the theory of designed
experiments is quite advanced. It focuses mainly on developing appropriate designs
and statistical methods to analyse results of these experiments. Thanks to this
development, researchers can choose from a variety of designs and statistical methods
for analysis.

Given how popular designed experiments are and how advanced their theory is,
however, it is surprising that the topic of defining and understanding populations from
which samples are taken by means of designed experiments is so underdeveloped.
Should not this understanding be an integral part of the design and the interpretation
of experimental data? The rich literature on designed experiments does not offer
much help: textbooks on designed experiments either ignore the subject altogether or
merely mention it somewhere at the beginning, without giving it serious attention (for
an exception, see Mead et al., 2012, Chapter 19). For this reason, the literature does
not give much advice on how to define the population from which samples are to be
taken by means of a designed experiment, nor on how to understand more advanced
aspects of the sampling process, such as randomness of a sample, probabilities of
selection of a particular population element to a sample, what actually constitutes
a sampling element and what actually is and what is not random.

Maybe the authors of these books consider this knowledge as obvious? But is it
obvious indeed? For a particular biological designed experiment, is it obvious how to
define the underlying population? How to understand the sampling process from this
population? How to understand the random character of this process?

Perhaps, then, the best we can do is accept that understanding the sampling
concept underlying designed experiments is actually unnecessary to both conduct
and analyse designed experiments.

We challenge such thinking: in our opinion, understanding this concept, which is a
statistical backbone of designed experiments, is crucial. It is not obvious, however.

Although indeed designed experiments are difficult to explain in terms of the
various faces of the sampling process (like a population from which sampling is
done or selection probabilities of the population elements), this is not so with survey
sampling. In fact, as its name suggests, survey sampling – sometimes termed the
representative method, a name used by Jerzy Neyman back in 1934 (Neyman, 1934) –
is mainly about sampling. To conduct a sample survey, one

1. defines the population;
2. constructs the sampling frame (a list of population elements to sample from);
3. chooses the sampling scheme (in most schemes, each population element has a

known probability of being selected to a sample) ;
4. samples from the population; and
5. makes inferences about the population, using the knowledge of the population and

sampling scheme.

From this simplified outline of a sample survey, it is clear that sampling is essential
in this context. This is why survey statisticians have focused on sampling processes
in survey sampling, while statisticians working on experimental design focused
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on randomization, the backbone of designed experiments. Comparing these two
frameworks for obtaining data and focusing on how they treat the sampling processes
can help us better understand those processes for designed experiments. Hence, this
paper aims to discuss various facets of sampling by means of designed experiments,
which we will do against the background of survey sampling.

D E S I G N E D E X P E R I M E N T S V E R S U S S U RV E Y S A M P L I N G: B A S I C C O M PA R I S O N

In a broad context, there is just one type of statistics, meant here as a branch of
science. This definition includes both Bayesian and frequentist statistics, but we will
deal with the frequentist branch of statistics only. We will start off by comparing the
basics of designed experiments and survey sampling. However, we will not present
details of both methodologies, which the readers can find in numerous textbooks.
For survey sampling, examples are Kish (1967), Cochran (1977), Thompson (2002),
Särndal et al. (2003) and Singh (2003a; 2003b). For designed experiments, examples
are Hinkelmann and Kempthorne (1994), John and Williams (1995), Caliński and
Kageyama (2000), Bailey (2009), Mead et al. (2012) and Welham et al. (2015).

Sample surveys and designed experiments are two different statistical methodolo-
gies to study populations by means of quantitative methods. Most researchers work
either with sample surveys or with designed experiments, but few work with both.
Statistical textbooks and courses usually focus on one of the methodologies, seldom
joining them together. This might seem strange, but we do not think it actually
is. Survey sampling and designed experiments are so complex methodologies that
comprehensible but insightful textbooks on just one of the two topics run for hundreds
of pages. What is perhaps more important, the two methodologies differ so much
not only in statistical methods used, but also in aims that a comprehensive book
covering both survey sampling and designed experiments would likely get overly
complicated, perhaps even confusing. For these reasons, the knowledge of these two
frameworks is seldom joined even though such joining might help us develop them
better.

By and large, statistics aims to help researchers infer about a studied population
based on either a sample from this population or a complete enumeration. The
latter scenario amounts to studying the whole population, a rare occasion in real life,
censuses offering an example. The former scenario, thus, is the essence of statistics to
make inferences about a population based on a finite sample of elements from this
population.

Most of what we wrote till now equally applies to designed experiments and survey
sampling, the only exception being complete enumerations, impossible to conduct
in designed experiments. As we already mentioned, however, there are two different
types of statistical methodology. While they share the aim of analysing a population
based on a sample, they differ in the following crucial aspects:

i. How are populations treated: as finite or infinite?
ii. How are samples taken from populations?
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iii. How is statistical estimation and inference conducted?
iv. How are estimates interpreted and generalized?

We will compare these aspects in designed experiments and survey sampling,
hoping that the clear understanding of the sampling processes in survey sampling
will help us understand these processes in designed experiments.

First, let us brainstorm what connotations survey sampling and designed experiments have
for us.

Survey sampling:

first-thought connotations: random sampling, population parameter, finite populations, official statistics,
statistical offices, census, survey, studying nations and studying citizens.

second-thought connotations: sampling designs, stratified sampling, finite-population factor, quota
sampling, internet panel, questionnaire, CATI (computer-assisted telephone interview), CAPI (computer-
assisted personal interview) and CAWI (computer-assisted web interview).

Designed experiments:

first-thought connotations: randomization, effect sizes (treatment differences), comparative experiments,
infinite populations, statistical analysis, experiments, blocks, random error, biological experiments, medical
experiments, psychological experiments, analysis of variance and factor.

second-thought connotations: nested/hierarchical designs, crossed designs, interaction and linear
model.

These connotations themselves suggest that the two methodologies differ a lot.
Still, they both deal with samples from populations and are analysed with statistical
methods. We will thus compare them with the aim of understanding various sampling
aspects of designed experiments.

Finite versus infinite populations

Perhaps the main intrinsic difference between survey samples and designed
experiments is that the former deals with finite populations, while the latter deals
with infinite populations, an important difference in biology (Kozak, 2008).

The concepts of finite and infinite populations require one to precisely define a
population of interest. Such a definition can be tricky, particularly in the case of
infinite populations. As we discuss further below, the concept of infinite populations
has rather theoretical meaning. This is because common ways of obtaining samples
(like the one in a single designed experiment) do not enable us to draw truly
random samples from infinite populations. This seldom-noted fact has important
consequences: in practice we are usually limited to (i) vaguely defined infinite
populations or (ii) precisely defined infinite populations from which we cannot draw
random and independent samples or (iii) precisely defined infinite populations but
limited to so small a scale that they are uninteresting for researchers. Yet, the
analysis of data from randomized experiments almost invariably makes the implicit
assumption of some infinite population from which observations obtained in an
experiment were sampled (Welham et al., 2015, p.28ff.).
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Let us turn to finite populations. As their name suggests, finite populations have a
finite number of elements. But in practice, each population is unstable over time,
so it should be considered for a particular period, its length depending on the
stability of the population. For example, the (finite) population of agricultural farms
in a particular country can change on a daily basis. Therefore, this population
might be considered for a particular day. This would be impractical, however, for
various reasons, so national statistical agencies usually consider such populations for
a particular year. In our example, it would be the population of agricultural farms in
the country that were registered in this particular year.

Unlike finite populations, infinite populations have an infinite number of elements
(units). That is what theory says. In practice, however, this theory can become difficult
to apply – defining a population can seem trivial, but eventually can become quite
tricky. Consider a population of plants of a particular wheat cultivar. Agricultural
researchers usually treat such a population as infinite, either implicitly (more often)
or explicitly (less often). In so doing, they do not limit the population to the plants
that grow in a particular period and location when and where the experiment was
conducted. Instead, they include all plants of this cultivar in general, so the population
contains all plants of the cultivar that were grown in the past, plants that are being
grown in the experiment and all possible plants that can be grown in the future. For
laboratory experiments with plants, populations are usually defined in a similar way.

Note how vaguely such populations are defined. Any field experiment with plants
from a population defined this way would have a limited scope, dealing with plants
grown in one particular experiment or in several experiments (for example, conducted
in different locations). A laboratory experiment with plants from a population defined
this way would be equally limited in scope because it would deal with plants grown in
the conditions of this particular laboratory (including its staff, equipment, etc.).

Now the question is: Can we treat plants grown in a single experiment – whether
field or laboratory – as a random sample from an infinite population whose definition
is not limited to plants that can be grown in this particular experimental field and
in these particular weather conditions or in this particular laboratory’s conditions?
Such an approach, common in the interpretation of agricultural and biological
experiments, implies extrapolation: the knowledge gained from the experiment is
extrapolated to the infinite number of possible experiments for the studied population.
Now, does not this extrapolation go too far?

In the above paragraph, we moved from the infinite population of plants to the
infinite population of experiments. Although directly related, these two populations
differ. We discuss this issue in the next section.

Sometimes an assumed infinite population is limited, thanks to which it seems to
be less vague. It seems less vague, but it is not less vague. For example, the population
of wheat plants of a given cultivar is limited to plants that could be grown in a
particular year or location; again, this definition of the population does not refer to the
plants that are grown, but that might be grown. Such limitation of the population does
not change three things. First, such populations will still be infinite, with an infinite
number of possible elements (units). Second, although limited, such populations will
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still be vaguely defined. And third, no experiment will be able to draw random and
independent samples that would be representative of the whole population, regardless
of how it is defined.

From the above discussion, it is clear that while defining underlying populations
in survey sampling is relatively easy, it is not so in designed experiments. We need
to add one more aspect to this difficulty, however. Consider a designed experiment
comparing the efficacy of three herbicides in wheat, with an untreated control. Does
this experiment study one population? Or perhaps more – four (three treatments and
the control), to be precise? Generally put, the one population would relate to all plants
being represented by the experiment. The four populations would relate to all plants
being represented by the combination of the experiment and the four treatments
(the three herbicides and the untreated control).

In this example, some people might see just one population, while others see four.
But the two opposing views can be reconciled. When thinking about a designed
experiment, we can treat it as a way of obtaining samples from one general
population that is divided into subpopulations due to treatments. Hence, in our
example, we would have one general population of wheat plants being represented
by the experiment. This population, however, consists of three subpopulations of
wheat plants treated with one of the three herbicides; again, each subpopulation
covers plants that are represented by the experiment. This is perhaps the easiest
way of looking at the populations being studied in designed experiments, affecting
neither statistical inference nor the generalization of results. Of course, in blocked
experiments, we have additional subdivision of the population due to blocks, so we
should be talking about subpopulations due to blocks and treatments. Such thinking
might make it easier to understand assumptions of statistical methods used to analyse
designed experiments. For example, in a linear model, we assume equal variances and
normality in subpopulations defined by blocks and treatments.

In summary, designed experiments aim to study infinite populations. Such
populations, however, are often difficult to define, unlike in survey sampling. Even
if we do manage to define a population of interest, any experiment – considered
a sample from this population – will unlikely cover it all but will rather cover its
specific subpopulation or subpopulations that result from where and when and how
the experiment is conducted. Such a single experiment cannot even be regarded as a
representative sample from the population.

Thus, when designing an experiment, one should pay particular attention to
its representativeness. First, the population (of the possible experiments) must be
precisely defined. Second, the experiment should be designed in a way that does not
make the experiment a one-element sample from the underlying population. Third,
whenever possible, the locations (or, in general, the repeats of the single experiment)
should be drawn randomly. Fourth, their number should not be too small – for
instance, an experiment repeated in two subpopulations could not cover the whole
population of such possible experiments, even when they were selected at random;
two is just too small a sample.
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TA K I N G S A M P L E S F RO M A P O P U L AT I O N

Over the centuries, various rigorous methods have been developed to take samples
from finite and infinite populations. These methods differ a lot. Methods for sampling
from finite populations go under the general name of survey sampling. A variety of
methods have been developed for random sampling, from the simplest ones such as
simple random sampling with or without replacement to more advanced ones such as stratified

sampling or unequal probability sampling to complex ones such as sampling according to rotation

patterns with varying overlap of sampling units in the subsequent sampling periods. There are also
non-random sampling designs, the most important being quota sampling. Exploited
by many commercial agencies in market research, non-random designs come in
handy when random sampling is difficult to conduct, which can be for various reasons.
In such instances, quota sampling can be used to take a sample that reflects specified
proportions of particular segments of the population (e.g., proportion of women and
men, employed and unemployed or age groups). Here, however, we should focus on
methods of random sampling, since designed experiments do not – or rather should
not—use non-random sampling.

Methods for taking samples from infinite populations through designed
experiments are different, which does not mean simpler. Designed experiments offer
various ways of taking samples, from the simplest ones such as the completely randomized

design (useful, for example, in some laboratory experiments), to randomized complete block

designs, to randomized incomplete block designs, to complex nested designs repeated in different

conditions.
Since finite populations are relatively easy to define, survey samples are usually

taken with random sampling methods (excluding censuses and non-random sampling
designs). But infinite populations are difficult to define, and so designed experiments
cannot use equally simple measures to sample from them; instead, in designed
experiments, samples are taken mainly based on randomization, a half-measure that is
to substitute random sampling. The only randomness in such experiments is usually
during the allocation of treatments to experimental units; in addition, when the
experiment is repeated in several locations, however, there might be randomness in
the selection of locations. In a single designed experiment – whether in experimental
fields or greenhouses or laboratories or clinical trials – there is no actual random sampling

of elements from the population.
That is an important observation, given that the underlying frequentist theory

seems to assume random samples. Does this affect the inference from designed
experiments in any way? Let us again consider field experiments, in which we are
modelling plots as independent, an approach that seems to imply random sampling.
Note, however, that we are not sampling the plots at random from any larger
population of plots. Instead, we select one single trial area on an experimental station
or a farmer’s field (or several such areas). Given this area, the plots are fixed (so, not
random) and constitute a one-element sample of possible areas/fields (henceforth, we
will call such areas ‘fields’, to follow the standard terminology used in agricultural
experimentation). We see then that our sample is not a random sample of all possible
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plots; it is a one-element sample – usually non-random – from the population of
areas/fields. What is random is just the allocation of treatments to the plots within the
same single field, but this randomness must not be confused with random sampling
of plots from the underlying infinite population of plots.

Note we are using two levels of units and their associated populations. A first level
is one concerned with plots in a particular field or, say, Petri dishes (or any other
experimental unit) in laboratory experiments. We might say this is a basic exper-
imental unit. A second level is one concerned with the repeats of experiments – for
instance, a field experiment can be repeated in various locations and/or various years,
while a laboratory experiment can be repeated in various laboratories or in the same
laboratory but in different runs. Experimental fields may or may not be randomly
sampled. Once we have selected an experimental field, we have also selected all plots
within that field, so there is no random sampling of plots from a larger population of
plots. Instead, we use randomization to allocate treatments to the given plots.

Thus, since a single experiment (which is repeated neither in locations nor in years)
is a one-sample experiment from the infinite population of possible experimental fields
or weather regimes, we cannot assess the between-experiment variance. Instead, we
are stuck with assessing the within-experiment variance, which is of little interest:
it says practically nothing about the variability in the population we want to study.
Likewise, a laboratory experiment conducted in one laboratory is a one-sample
experiment from the infinite population of laboratories.

Based on the above discussion, we can conclude that such a non-repeated
experiment interpreted alone will be of little value for interpretation of the underlying
population. If the selection of an experimental area can be considered random (in
other words, if the experimental site has been selected randomly or if the laboratory
has been selected randomly, an unrealistic situation in agricultural and biological
research), then at least this one-sample element is random. But this randomness does
not change anything – because it is still a one-element sample. Even if we grant that
the area or laboratory is selected at random (even though it almost never is), the
sample of plots is a cluster sample with just one cluster. Thus, the assumption that the
experimental area is selected randomly is inconsequential because it does not provide
any basis for statistical inference about the comparison of the treatments studied.
More formally speaking, with a single experiment, all the treatment information is in
the plot (or Petri dish or whatever constitutes an experimental unit in an experiment)
stratum, not in the experimental area stratum.

It is worth recalling what Jerzy Neyman reasoned about single designed
experiments: the population of plants we are sampling from is bounded by the plots
included in the sample. Again, this shows that in a designed experiment, sampling is
not done from the whole population defined that way, but its subpopulation – the one
limited to the plots included in the experiment (Speed, 1991).

Thus, randomization in randomized trials plays a similar role as random sampling
in surveys, but the differences are clear. What are the consequences? We will study
this in the next sections.
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S TAT I S T I C A L I N F E R E N C E

Survey statisticians need to know the probability of drawing each population element
into a sample. Without these probabilities, they cannot make point estimates of the
studied population parameters as well as estimate the estimates’ variance, a crucial
piece of information for national offices and all those who conduct representative
sample surveys. Thus, surveys are usually designed with careful plans so that the
statisticians know these probabilities.

What about designed experiments? As we already mentioned, agricultural
researchers conducting a designed experiment usually treat it as a way of sampling
from the underlying infinite population of plots. But do they need to know the
probability of drawing each population element into the sample? Of course not, for
the simple reason that it is impossible: the number of elements of the population is
infinite, so it is impossible to say anything about the probability of drawing a particular
population element to the sample. This does not mean, however, that we should
ignore this subject altogether. Even though we need not know these probabilities,
we would like them to be equal – and in fact, we assume them to be equal. In other
words, we would like to know that all population elements have the same chance
(probability) to be selected into the sample.

Now the question is: given our discussion of how populations are defined when
designed experiments are conducted, can we assume that all the elements of the
corresponding population indeed have the same probabilities to be included in the
sample? The answer is: not only can we not assume that, but also we know that it is
not true. We know that while conducting a designed experiment, we sample from a
subpopulation of the original population, a subpopulation bounded by the conditions
of the experiment (e.g., plots in the field experiment in a given year or laboratory
conditions in the laboratory experiment).

In survey sampling, inference mainly aims to estimate population parameters of
interest and assess this estimation’s precision. For estimation, we need to know the
above-mentioned selection probabilities, which we usually do know based on the
knowledge of the sampling design used. Estimators of most common parameters—
such as total value, mean and proportion—are intuitive and simple in construction,
but a lot of energy has been spent to derive asymptotically unbiased and more precise
estimators than the classical ones. Basic examples of such estimators are product,
ratio, and regression estimators. Although biased, they can offer much more precise
estimation – and, as mentioned, precise estimation is one of the most important
virtues of a good survey. This precision is represented by either an estimator’s variance
(in the case of unbiased estimators) or an estimator’s mean-square error, MSE
(in the case of biased estimators).

It is estimation and its precision that lie at the heart of survey sampling. All around
– like dealing with missing data or estimating parameters for so-called small areas,
for which we have no or insufficient information – serves the purpose of making
estimation possible or simpler or more precise. Other methodological issues, such
as interval estimation or hypothesis testing, are seldom used in sample surveys. This is
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not to mean that they are totally ignored, but that they are not as interesting as in other
branches of statistics. For instance, even though one can estimate confidence intervals,
they are uncommon in sample surveys – instead, as mentioned above, variance or
MSE is usually used to represent the estimation’s precision. As for hypothesis testing,
some textbooks offer variants of simple tests for particular designs – we have to
remember that because of the complexity of survey designs, classical statistical tests
do not apply and must be tailored to a design’s needs. This might be one reason for
the limited popularity of hypothesis testing in survey sampling. Another one might be
that survey sampling seldom calls for hypothesis testing — this is estimating what is of
crucial importance.

In survey sampling, thus, statistical inference aims to estimate parameters and the
precision of these estimates. In designed experiments, statistical inference is much
richer. It still aims to estimate parameters and the precision of the estimates, but
this is just the first step of a bigger plan. Designed experiments are comparative,
which means they aim to compare. They can compare treatments, times, experiments,
conditions, etc. So, unlike in survey sampling, in designed experiments often it is
hypothesis testing that plays a crucial role: in most situations, it is considered the main
statistical tool for making comparisons, although many statisticians have emphasized
the importance of other statistical tools for comparisons, such as simultaneous
confidence intervals (e.g., Gardner and Altman, 1986; Läärä, 2009; Wasserstein and
Lazar, 2016; Greenland et al., 2016; Kitsche and Schaarschmidt, 2015).

For statistical tests to work, various assumptions should be fulfilled. For example,
the t-test for comparing means of two variables assumes the normality of the
variables, the independence of observations and, depending on which version of the
test we choose, equal or unequal variances of the variables. The test for Pearson’s
correlation coefficient between two variables assumes not only that the variables
are normally distributed, but also that they come from the same population. Each
statistical test assumes something. Even the jackknife and the bootstrap (Efron
and Tibshirani, 1993), supposedly free of distributional assumptions, do make two
important assumptions: that the observations are identically and independently
distributed and that the estimators being used for the comparison of parameters
are random variables and have their own probability distributions (but we do not
have to know these distributions: it suffices to be aware that they exist). These
probability distributions of estimators must result from something. In survey sampling,
for example, they result from the randomness of samples. Although estimators based
on non-random samples vary from sample to sample, their distribution is in fact non-
random: in the frequentist (i.e., non-Bayesian) world, there is no statistical sampling
distribution for a statistic we compute from a non-random sample, so, in other words,
such a sample statistic would have no stochastic properties. These only come with
random sampling, which generates this stochastic distribution. Thus, non-random
samples violate the main assumption of statistical inference – the one of randomness.

Taking the randomization distribution as the point of departure and deriving the
appropriate null distribution for an F- or t-statistic, it turns out, however, that that
distribution is pretty close to the one which holds for a linear model with fixed
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treatment effects and independent error effects. This lucky coincidence makes it
possible to apply standard statistical techniques, such as linear modelling, to designed
experiments (Hinkelmann and Kempthorne, 1994, Sections 5.4 and 6 in particular).

Till now, we have stressed that assumptions underlying designed experiments are
crucial. They are indeed more important than assumptions related to statistical
analysis, such as the assumptions of normality and variance homogeneity in ANOVA.
This is because, while you can often do something to deal with violations of these
statistical assumptions (one way is to transform the data, another is to use a different
method of data analysis), usually you can do nothing about violated assumptions at
the design level.

To summarize

i. designed experiments do not offer random samples from underlying infinite
populations;

ii. the only randomness in designed experiments is due to the randomized allocation
of treatments to experimental units (plots, pots, Petri dishes, etc.); in multi-
environment experiments, additional randomness can be due to random sampling
of fields/areas to repeat the experiment;

iii. a single experiment is actually a one-element, non-random sample from the
underlying population of such experiments;

iv. only a repeated experiment (in various conditions, such as fields) offers a sample
of size over 1; within-experiment replications cannot be considered a source of
randomness to use in analysis on a large (experiment-wise) scale;

v. only a repeated experiment with random selection of these conditions (e.g.,
locations) can be used for generalization of the phenomena studied over a larger
population.

G E N E R A L I Z AT I O N O F T H E E S T I M AT E S A N D I N T E R P R E TAT I O N S

Above we have discussed various statistical aspects of taking samples by designed
experiments and sample surveys as well as making inferences based on these samples.
The next step in any study – whether a sample survey or a designed experiment –
is interpretation. This step shows another big difference between survey sampling
and designed experiments. Finite populations are studied through survey sampling
in the historical context: we study a finite population in a particular period and later
interpret what was happening back then. That is what all national statistical offices do;
for instance, they study some economical phenomena in 2017 to report and interpret
it after the survey. While prediction is also of interest for governments, it is seldom
done in national agencies – usually, prediction is done by someone else based on data
published by the agencies. The point is, however, that prediction is not considered an
aim when designing most surveys – estimation for this particular period is.

Designed experiments, on the other hand, aim to study infinite populations in
the future context: we study an infinite population in order to know it better
and recommend something for it. Agricultural experiments provide us with good
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examples: We really don’t care what was happening with a population when a
particular study was conducted – instead, when designing and conducting such
experiments, we think about the future, or rather about what seems to be the best
choice in similar situations in the future. For instance, an agrotechnical experiment
aims to choose the best agrotechnical treatment (from among the studied ones) for a
given situation (a combination of cultivar, environmental conditions, and given other –
those not studied in the experiment – aspects of agronomic management). A breeding
experiment aims to choose the best cultivars, also for a given situation.

In other words, a common practice in survey sampling is to interpret estimates
for a finite population as characteristics of this population for here and now, so, for
example, the estimations are not generalized for the same population in the future
(because this population will actually not be the same in the future: it will change, so
it will be a different population). For an infinite population, a frequent (though not
the only) practice is to generalize estimations and analyses for the whole population,
which is not bounded by time and, often, space.

Let us focus on designed experiments. As we just said, they aim to generalize
estimations and analyses for the whole population, which is not bounded by time
and, often, space. From our discussion in the previous section, it follows that far too
many agricultural experiments fail to offer such a generalization opportunity. This
is because most of agricultural experiments are bounded in time and space, and what is
more, by conditions. Conducted in one year, in one location, and with a particular set
of agrotechnical measures, such an experiment offers no way of generalization of its
results. Its replications enable us to draw conclusions about within-field variability, a
piece of information that cannot be generalized beyond this single particular field and
year – and so, is seldom interesting. It can be treated as a source of useful preliminary
information for further experiments.

It does not mean that single controlled experiments have no role in scientific
discovery. Experimentation under very controlled conditions is often the only means
to establish cause-and-effect relations between two factors of interest. But once such
a relationship has been established under very controlled conditions, it becomes both
necessary and interesting to check if the same relations hold under a broader range of
conditions, and at this stage, replication of the experiment in space and time comes
into play. The bottom line is single controlled experiments do have their role in
scientific method, but they are usually the first step.

One exception when a single experiment would be valuable in itself is when indeed
a researcher is interested in learning the phenomena studied in a narrowly defined
population, one that this single experiment can cover. In such instances, to increase
the experimental variability, one can add an additional environmental factor to the
experiment, such as that representing additional agrotechnical measures, or a noise
factor (in whose main effects we are not interested altogether) (Mead et al., 2012,
Chapter 19).

A single experiment is limited in scope, but almost invariably we wish to extrapolate
beyond this scope to other locations, seasons, etc. Such extrapolation is always risky
and almost never based on firm grounds because interaction of treatments with
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locations, seasons, etc. is likely to occur and cannot be ruled out on a priori grounds.
Agricultural trials use few replications. Contrast two or three or four replications, a
typical situation in agricultural field experimentation, with thousands or even tens of
thousands of elements in survey samples. And yet, estimations and inference based
on these few replications from block designs often appear to be very sound from
a statistical point of view even though they represent an infinite population. Why
is that? For the simple reason that they do not cover the whole population, but its
small subpopulation – that related to the experimental field. And if so, the variation
observed in such single experiments represents the within-field variation only, not the
variation in the whole population. It is like looking in a mirror and finding a little
variation in human hair colour. Generalizing the conclusion beyond this particular
reflection in the mirror (to human hair of any larger population) does not make much
sense, does it? Yet this is what generalizing over single experiments actually does.

Conducting such an experiment, are we indeed interested in this particular field?
Not at all – we want to say something more about the underlying population. For
instance, we are never interested in learning which particular cultivar will be the best
yielder in a particular field. We might be interested in finding out which (say) barley
cultivar will be the best yielder in varying conditions of fields on a given soil in a
particular region of Germany – or in the whole country, given a set of agrotechnical
measures recommended for barley. Or, we might be interested in finding out which
corn cultivar will be the least susceptible to drought – not in a particular field, but
in varying conditions of fields and weather in Poland. Such experiments should thus
be carried out in numerous fields offering such variable conditions and several years,
giving a chance to study the phenomena of interest in varying weather conditions and
capture any treatment-by-environment interaction.

Mead et al. (2012) argued that the only situation when one particular experimental
field can be considered sufficient is when it represents the corresponding local
environment and when local farmers do believe in the results. Unlike most scientific
experiments, such an experiment would fail to offer a wider view, being focused on
practical aspects of plant production in a narrowly defined environment. In most
situations, a single field experiment should rather be considered one stanza of a long
poem.

From what we have discussed in the above section, it follows that to design and
conduct a series of experiments, it does not suffice to just take a number of fields
and conduct an experiment there. First, we do have to define the target population
of environments (so-called TPE; Comstock 1977; Cooper et al., 1997; Fox and
Rosielle, 1982) about which we want to make inferences. Second, having defined the
population, we need to be able to conduct experiments in all the environments the
population covers. Third, we should construct a sampling frame of many fields and
randomly choose a number of them in which we would conduct the experiment. Only
such an approach would give us a chance to generalize the results obtained from such
a multi-environment experiment.

As we already mentioned, a truly random selection of trial locations is usually
difficult (Mead et al., 2012) – yet most analyses of series of experiments essentially
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make that very assumption, starting from the seminal paper by Yates and Cochran
(1938); this assumption continues to be an important part of such analyses
(e.g., Caliński et al., 2009; Damesa et al., 2017; Hu, 2015). Without this assumption,
series of experiments cannot be interpreted as we would like to, which is to mean they
can be interpreted solely in the context of the studied locations, without generalizing
the conclusions to a wider population of locations. If so, it is clear that we should
always strive for the random selection of environments from a target population of
environments, no matter how hard such a task may seem.

If indeed environments have not been randomly selected, then we should not treat
the environment factor as random in a linear model. Instead, we should treat it as a
fixed factor. Note that if no other factor in the experiment is random, then the use
of linear mixed effects models is illegitimate (unless the experimental design involved
random effects, as, for example, split-plot does). This shows that one should always
ponder how to apply a linear mixed effects model for a particular experiment. While
doing so, one should pay special attention to which (if any) factor should be treated
as random. In many situations, the most common approach to analysing multi-
environment series of experiments—that is, using a linear mixed effects model with
environments considered a random factor—may turn out to be incorrect.

When conducted at a large scale, designed experiments offer wide interpretational
opportunities. Dealing with adaptation data from various subregions, for instance,
we can obtain precise estimates for the whole region. Piepho and Möhring (2005)
proposed a method of such estimation, which uses a concept directly taken
from survey sampling – stratified sampling. Such large-scale experiments fulfil the
requirements we discussed above. The experiments for each subregion do too,
although their scales are smaller, and so the populations they deal with are smaller.
These experiments use single-location experiments – and single-location experiments
do not fulfil these requirements: they are just one piece of the puzzle, in itself
uninformative, like one page of a hundred-page book or one verse of a poem. While
one page and one verse can be interesting, they will not say much about the book or
about the poem. In the very same way, one single-location experiment in a single year
will not say much about any wider population, while agricultural scientists are almost
never interested in just one location and year, rather wishing to have a wider scope.

C O N C LU S I O N

Only a few statisticians have made substantive methodological contributions to both
survey sampling and designed experiments, eminent examples were Jerzy Neyman,
Frank Yates and William G. Cochran. Most others focus on one of these two
frameworks. We do not claim it is a bad thing, however. Survey sampling and designed
experiments differ so much and are used in so different situations for so different
problems that probing into both of them poses a difficult task. But this does not mean
we should avoid joining the knowledge of these two frameworks, at least from time to
time.
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As we have shown, such an approach might shed light on unresolved (or hidden)
problems, just as looking at randomness in survey sampling helped us better
understand the topic of randomness in designed experiments. From the above
discussion, the following conclusions follow.

First of all, when designing an experiment, we should always define (i) what
biological population and (ii) what population of environments we want to study.
Without this, we will not be able to design an experiment which would help us respond
the question we ask about the population (i).

Second, we must be aware that the only randomness associated with a designed
experiment is that in random allocation of treatments to plots and in random allocation
of experiments to locations.

Third, a single experiment (repeated in neither locations nor years) cannot be
generalized to any population that might be of interest for a scientist. Even when
treated as preliminary results, single experiments should be interpreted with great
caution.

Fourth, a single field experiment refers to a narrowly defined population, and thus
can be interesting only to offer practical advice about plant production in a confined
region, if local farmers believe in the results (Mead et al., 2012).

Fifth, only series of experiments (in multiple environments) can provide a solid
basis for broadly based – both biologically and methodologically sound – inference,
interpretation and conclusions. This, however, requires that the environments be
randomly selected from a well-defined population of environments that well represent
the physical and biological target population we aim to study.
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