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Influence of slip velocity in a two-phase bubbly jet
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The effect of the slip velocity in a bubbly jet (Re = 3000, initial void fraction = 1.1 %) is
studied with various bubble slip ratios (0.07–2.1 times the inlet velocity, 0.01–0.31 m s−1 in
dimension). The governing equations, which are the conservation of mass, momentum and
volume fraction, are solved by direct numerical simulations. A set of ordinary differential
equations was derived by using a conventional one-dimensional integral framework on jets
and by expressing the slip velocity using an exponential function. The one-dimensional
analysis of bubbly jets successfully predicted the jet velocity radius, centreline velocity and
the gas spread rate downstream of the bubbly jet. Second- and third-order statistics were
also analysed to better understand the turbulent characteristics of the bubbly jet. A high slip
ratio results in a rigid, narrower bubbly jet core region, where the turbulent kinetic energy
is conserved along the centreline but does not diffuse towards the ambient region. The
narrow, circular region around the core at high slip ratios decreased the turbulent kinetic
energy. In the rigid bubbly jet core, turbulent diffusion of the gas phase is suppressed
and has low correlations with the velocity fluctuations. Turbulence characteristics such as
turbulence stress were compared with single-phase jet and plume results from existing
literature. The magnitude of the turbulence characteristics at the lowest slip ratio is
comparable with what is found in the literature, but there is a rapid transition from slip
ratios of 0.14 to 0.7. Furthermore, the turbulent kinetic energy budget was analysed for
each case. The production term had the largest contribution, and its magnitude was almost
five times the buoyancy production downstream. High slip ratio cases show a positive peak
of pressure strain and turbulent diffusion along the centreline.

Key words: gas/liquid flow, buoyant jets

1. Introduction

We typically refer to a bubbly plume as a plume that consists of water and air. If there is
an initial momentum at the source of the plume, it can be referred to as a bubbly jet. In
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a bubbly jet and plume, the existence of two different phases can enhance the transport
of mass, momentum and energy without any moving mechanical parts. This advantage
leads to a bubbly jet and plume being used in variety of engineering fields, such as
destratification of a lake or river, wastewater treatment, chemical reactors and metallurgical
processes (Shah et al. 1982; Milgram 1983; Wüest, Brooks & Imboden 1992; Asaeda &
Imberger 1993; Jobehdar et al. 2016).

In the early stage of jet and plume studies, most researchers focused on the integral
model, which was inspired by experimental observation and theory on a thermal plume
by Schmidt (1941) and developed by Morton, Taylor & Turner (1956). The integral
model on the thermal plume of Morton et al. (1956) is given by making several critical
assumptions: (1) the main body of the flow is incompressible but the ambient fluid is
stratified; (2) self-similarity of the plume velocity and buoyancy profiles; and (3) the rate
of entrainment at each height is proportional to the centreline velocity at the same height.
The assumptions have been extended to bubbly flows and the assumptions for the bubbly
flows will be discussed later.

Bubbly plumes have attracted much attention because of their numerous applications,
especially in the fields of offshore and ocean engineering. Early analytical studies on
a bubbly plume were conducted to investigate their ability as a break water and a
conditioning system for melting ice in the Arctic area (Taylor 1955; Ince 1964). Taylor
(1955) and Evans (1955) analysed the velocity potential of an entrained flow and a surface
current result from bubbly plumes. The bubbly plume was assumed to consist of very
fine bubbles under the restriction of relative motion of bubbles. Kobus (1968) showed
that the velocity profile of the bubbly plume satisfied a Gaussian distribution by using an
experimental investigation. Ditmars & Cederwall (1974) recast the conservation equations
of Morton et al. (1956) and proposed an analytical model by applying the assumptions
that bubbles have a constant relative velocity (slip velocity) and spreading ratio between
each phase. The analytical model was verified with the case of a large scale bubbly
plume from Kobus (1968). The proposed model showed that the centreline axial velocity
of the bubble plume was inversely proportional to the slip velocity and the entrainment
coefficient. Milgram (1983) suggested semiempirical functions of an amplification factor
of the momentum and an entrainment coefficient correlated with the local bubble Froude
number, but the slip velocity and spreading ratio between water and bubbles are considered
to be constant.

Lima Neto (2015) refined the results from the experimental study on bubbly jets with
a wide range of Reynolds number and void fraction by Lima Neto, Zhu & Rajaratnam
(2008). The entrainment coefficient, amplification factor of the momentum and spreading
ratio were calculated between each phase by using the least squares approximation. The
slip velocity was predicted as a function of the size of the bubble. The (above) coefficients
derived by Lima Neto (2015) were substituted into bubbly jet conservation equations to
calculate integral parameters such as the axial velocity of each phase and the concentration
of bubbles. However, the limitations of Lima Neto (2015) are as follows. (1) The governing
equation regards the entrainment coefficient as a constant for the entire flow field. In other
words, the variation of the entrainment coefficient as the bubbly jet evolve, which has been
reported by Priestley & Ball (1955), List (1982) and Milgram (1983), is not considered.
(2) The contribution of the bubble slip velocity on the buoyancy flux is included but the
spreading ratio, which can vary with slip velocity, is not considered (Socolofsky & Adams
2005). The limitations listed above should be solved for the engineering application of the
integral approach to bubbly jets.

Detailed flow structures and turbulence characteristics of a bubbly jet and plume have
been investigated by many researchers. Mcdougall (1978) showed, from an experimental
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observation, that the bubble plume consists of a central core with rising bubbles (inner
circular plume) and an outer part with a spreading liquid phase into the surroundings
(outer annular plume). Sun & Faeth (1986) and Bryant, Seol & Socolofsky (2009) used
laser Doppler velocimetry and particle image velocimetry, respectively, to investigate
turbulence properties such as turbulent stresses of bubbly jets and plumes.

Recently, Lai & Socolofsky (2019) used acoustic Doppler velocimetry to calculate the
turbulent kinetic energy (TKE) budget of weak bubble plumes. However, the difference of
refractive index between air and water remains as a difficulty in the experimental study of
a bubbly jet and plume. Morphological irregularity of bubbles in a bubble plume remains
a major obstacle and objective in both experimental and numerical studies (Santarelli,
Roussel & Fröhlich 2016; Reichardt, Tryggvason & Sommerfeld 2017; Du Cluzeau, Bois
& Toutant 2019). Therefore, the exact physical understanding of a bubbly jet and plume is
still in question, and many researchers need to develop turbulent models.

Fabregat et al. (2015, 2016) conducted direct numerical simulations (DNS) of thermal,
bubble and hybrid plumes with an Eulerian–Eulerian approach with the following
assumptions: (1) bubbles are very fine; and (2) bubbles have constant slip velocity. The
results showed that bubbles have an important role in the enhancement of turbulence.

The slip velocity must be assumed for the gas–liquid two-phase flow simulations. But
the slip velocity is one of the important parameters, which can alter the overall structure of
a bubble plume, as reported by Socolofsky & Adams (2005). Therefore, serious errors can
result from an incorrect slip velocity, and slip velocity should be validated for simulations.
Direct numerical simulation has high fidelity and is considered as the true solution of a
flow field in a single-phase flow and is often used as a tool in turbulence model research.
Recently, the application of DNS has been extended to multi-phase flow, especially
solid–fluid two-phase flow (Reddy et al. 2013; Wu, Luo & Fan 2016; Akiki, Moore &
Balachandar 2017) rather than gas–liquid two-phase flow.

The objective of the present study is the investigation of the influence of the slip velocity
in bubbly jets. Various bubble slip ratios (0.07 to 2.1 times the inlet velocity) are considered
and simulated with DNS. In the present study, particle-unresolved DNS is implemented
such that macro- and mesoscales of the flow are fully resolved without additional closure
models. However, the gas phase is dealt with as an active scalar with a slip velocity. In other
words, additional particle–liquid interactions such as lift and drag are not realised in the
simulation. Based on the DNS result, we derived a set of one-dimensional (1-D) equations
that includes the effect of slip velocity. The effect of the slip velocity in the spreading
ratio between the liquid and gas phases is introduced as an additional 1-D equation. The
variation of the entrainment coefficient as the bubbly jet evolves is considered as Priestley
& Ball (1955) and List (1982) suggested. The behaviour of bubbly jets with different slip
velocities is analysed with turbulent statistics, in detail.

The paper is organised as follows. In § 2, we discuss methods used for the problem
set-up and validation of the simulation. In § 3, we present results regarding instantaneous
flow fields, 1-D analysis and turbulent statistics. In § 4, we discuss the conclusions.

2. Methods

2.1. Problem set-up
In this study, a bubbly jet is supplied with momentum from a round source of diameter D
at the bottom of the computational domain (figure 1a). At the source, the fluid velocity and
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Figure 1. Schematic of the simulation: (a) nomenclature of the simulation; (b) boundary condition and
domain size of the simulation.

gas concentration profiles are specified as hyperbolic tangent functions of radial position r:

Uz(r, 0) = Uz0

[
0.5 tanh

(
0.5D − r

0.05
+ 1

)]
, (2.1)

Φb(r, 0) = Φb0

[
0.5 tanh

(
0.5D − r

0.05
+ 1

)]
, (2.2)

where Uz0 is the centreline velocity at the source and Φb0 is the centreline gas
concentration at the source. In the simulation, the centreline values at the source are used
as the velocity and concentration scaling.

To derive the governing equations, we assume that (1) the bubbles have a constant axial
slip velocity; (2) the flow is isothermal; (3) Boussinesq approximation applied; and (4) the
contribution of the gas phase to the momentum of the flow is negligible. The constant axial
slip velocity implies that bubbles in each simulation are monodispersed and relative lateral
motions of bubbles are neglected. The concept of constant slip velocity is widely used in
many numerical and experimental studies on bubbly jet and plumes and generally reflected
as a drift velocity model in the scalar transport equation (Fabregat et al. 2015, 2016;
Yang et al. 2016). In real bubbly jets, there might be very complex bubble breakup and
coalescence processes, which can result in the change of bubble slip velocity. The bubble
breakup and coalescence processes depend on several flow conditions such as turbulent
dynamics, gas-phase properties and void fraction. In this study, the bubbly flow regime of
the bubbly jet is controlled and physically equivalent to the discrete bubbly flow regime
(very low superficial gas and liquid velocities) where the interactions between bubbles are
negligible (Zhang et al. 1997). Boussinesq approximation implies that the density variation
in the flow only affects the gravity term and appears as buoyancy forces in the momentum
equation. It can be only applied due to the very low void fraction of the simulation in this
study. Furthermore, the contribution of the gas phase to the momentum can be neglected
because the contribution is much lower than buoyancy (Buscaglia, Bombardelli & García
2003), but a model to realise this effect costs too much due to more derivatives regarding
the void fraction in the momentum equation (Sokolichin, Eigenberger & Lapin 2004).
In fact, lift forces on bubbles do not have a negligible effect on the radial distribution
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of bubbles (Fraga & Stoesser 2016). Especially, it is recently reported that the low-void
fraction condition is more vulnerable to the modulation of the bubble population near
the source of the bubbly jet (Seo & Kim 2021). In this study, to secure the appropriate
condition for the proposed assumptions, and to investigate downstream flow characteristics
of the bubbly jet, we keep the low-void fraction condition. The validation for downstream
flow characteristics by comparison with experiment is shown in § 2.3. Governing equations
for DNS are shown as

∇ · u = 0, (2.3)

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + Riφbk̂, (2.4)

∂φb

∂t
+ ∇ · (uφb) = 1

Pe
∇2φb − usr

∂φb

∂z
, (2.5)

where Re = (ρlUz0D)/μl, Ri = (gβΦb0D)/(U2
z0), Pe = (DUz0)/D, usr = uslip/Uz0 and

β = (ρl − ρb)/ρl. Here ρ is the density, μ is the dynamic viscosity, g is the
non-dimensionalised gravitational acceleration (g = g∗D/U2

z0, g∗ is the gravitational
acceleration), D is the diffusion coefficient, uslip is the slip velocity and usr is the slip
ratio. In this study, governing equations of each phase are based on the two-fluid model
with the Eulerian–Eulerian approach. The gas phase velocity is modelled with the drift
velocity and the slip velocity appearing in only the axial component.

The last equation is non-dimensionalised with the inlet void fraction, Φb0, as the void
fraction scale. Therefore, u, p and φb are non-dimensional velocity, pressure and gas
concentration, respectively. Liquid and gas phases are denoted by l and b, respectively.
In the present study, the turbulent Schmidt number (Sct), which is the ratio between the
advective transport and the diffusive transport in turbulent flows, is chosen to be unity
based on the assumptions that the effect of bubbles in the bubbly jet only appears as the
buoyancy and slip velocity, and the gas concentration is regarded as an active scalar with
buoyant force (Tominaga & Stathopoulos 2007; Combest, Ramachandran & Dudukovic
2011; Alméras et al. 2016). Therefore, the Péclet number, which is the product of the
Reynolds number and the Schmidt number, is chosen to be the same as the Reynolds
number. Specific parameters for each case are shown in table 1.

To conduct the grid independence test, the SR007 case was studied with a finer mesh,
which is the SR007F case. Here Re is the Reynolds number, Pe is the Péclet number;
Lx, Ly, Lz are the size of the domain along three directions; and Nx, Ny, Nz are the number
of grid points. Simulation cases with different usr were considered to investigate the effect
of the slip ratio in the bubbly jet: SR007 with usr = 0.07; SR014 with usr = 0.14; SR070
with usr = 0.7; SR140 with usr = 1.4; SR210 with usr = 2.1. This range of slip velocities
is equivalent to 0.01–0.31 m s−1 in dimension. For a comprehensive understanding of the
influence of bubble slip velocities in bubbly jets, we choose the value of 0.7 in the centre
and sufficiently small (0.07 and 0.14) and substantially large (1.4 and 2.1) values. These
slip velocities accord to bubbles which are several hundred micrometres in diameter from
bubble aerators (Terasaka et al. 2011), and a few millimetres in diameter from porous
media or spargers (Seol et al. 2007), and piped under deep springs (Milgram 1983). A
single-phase jet case named ‘Jet’ was simulated as a benchmark.
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Mesh quality Fine Coarse

Case name SR007F Jet SR007 SR014 SR070 SR140 SR210

Re 3000 3000 3000 3000 3000 3000 3000
Pe 3000 — 3000 3000 3000 3000 3000
Φb0 0.011 — 0.011 0.011 0.011 0.011 0.011
β 0.999 — 0.999 0.999 0.999 0.999 0.999
usr 0.07 — 0.07 0.14 0.7 1.4 2.1
Lx × Ly × Lz 40 × 40 × 60 40 × 40 × 60 40 × 40 × 60 40 × 40 × 60 40 × 40 × 60 40 × 40 × 60 40 × 40 × 60
Nx × Ny × Nz 441 × 441 × 661 361 × 361 × 541 361 × 361 × 541 361 × 361 × 541 361 × 361 × 541 361 × 361 × 541 361 × 361 × 541

Table 1. Flow parameters and computational domain for simulation.
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2.2. Numerical method
The governing equations were solved using the spectral element code Nek5000, which has
been extensively validated (Fischer, Lottes & Kerkemeier 2008; El Khoury et al. 2013;
Salehipour, Peltier & Mashayek 2015; Tammisola & Juniper 2016). The computational
domain is shown in figure 1(b). The outflow condition at the top is a Neumann boundary
condition with zero gradient of the velocity and active scalar. At the bottom, a Dirichlet
boundary condition with zero velocity and active scalar is applied, except at the inlet. The
computational domain is discretised with 40 × 40 × 60 elements.

The clustered grid extends from the origin toward the boundaries with an expansion
ratio of 1.025, (i.e. Δxi+1/Δxi = 1.025). Within each element are non-uniform
Gauss–Lobatto–Legendre points of polynomial order 9. For the grid convergence test, a
polynomial order of 11 is applied to the case with usr = 0.07 (SR007). The side boundaries
are far enough away from the jet in order to avoid bounding effects on the entrainment
and recirculation regions of the jet. A fully developed bubbly jet is ensured by running
each case at least 28 time units (τ = H/Uz0, where H is the height of the computational
domain), which is equivalent to 700 000 time steps. Turbulent statistics are calculated by
averaging over 400 000 time steps.

At the top boundary there is a sponge region where the viscosity of the fluid is linearly
increased as the fluid reaches the boundary. It is expected that forming a pseudoflow
domain with increasing viscosity can reduce severe disturbances at the boundary. For
downstream of the jet (z/D = 50–60), the viscosity is linearly increased by up to 50 times.
This scheme has a higher computational cost in the sponge region downstream of the
domain, but it can reduce the overall computational cost for treatment on the top side of
the domain via other methods. Furthermore, it ensures the stability of the simulation.

2.3. Validation of simulation
A case without the bubble phase, Jet, was simulated to validate the numerical method
and to quantitatively analyse the effect of the gas phase. This case has a single-phase jet
with a Reynolds number of 3000. The asymptotic decay characteristic and point source are
explicitly expressed as follows (George 1989):

Uz0

Uzc
= 1

Bu

[ z
D

− z0

D

]
, (2.6)

where Uzc is the mean axial centreline velocity, Bu is the decay constant and z0 is the
virtual origin.

Figure 2(a) shows the decay of the jet from several case studies. The jet studied by Taub
et al. (2013) has a decay constant of 5.56, which is in the range of 5.7 to 6.1 where most
decay constants in the literature were observed (Wygnanski & Fiedler 1969; Rodi 1975;
Panchapakesan & Lumley 1993). It is lower than the decay constant of the present jet case,
even though the jet of Taub et al. (2013) has similar numerical conditions to the present
work. The discrepancy occurs due to the inlet velocity profile. The inlet velocity profile of
Taub et al. (2013) is a top-hat profile. On the other hand, smooth inlet profiles were used in
the present study, by Boersma, Brethouwer & Nieuwstadt (1998) and Ferdman, Ötügen &
Kim (2000) (a hyperbolic tangent profile (§ 2.1) with a parabolic profile and a profile from
a fully developed pipe flow, respectively). These result in higher decay constants than the
ordinary decay constant of the jet. In the present study, the value of the virtual origin is
much higher than other jets, and seems to be attributed to the fact that the present study
has no perturbation at the inlet. The effect of an initial turbulence level on the length of
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Figure 2. (a) Normalised centreline velocity with height. (b) Normalised radial turbulent intensity with
non-dimensional radial coordinate η.

the zone of flow establishment (ZFE) is reported by Chen & Nikitopoulos (1979). They
showed that a low initial turbulence level of a jet can make the length of ZFE two to three
times longer than that of jets with a high initial turbulence level.

Figure 2(b) compares the radial variation of the turbulence intensity obtained at a
downstream location in the flow. The radial variation of turbulence intensity is normalised
by the centreline velocity. The present work shows a very similar intensity profile to those
of Boersma et al. (1998) and Panchapakesan & Lumley (1993). Taub et al. (2013) has
a slightly different profile from the others because the turbulence intensity profile was
obtained from a height of z = 15D, which is closer to the virtual origin than in the present
study.

A grid independence test was conducted for the case with usr = 0.07 with two different
qualities of meshes, as shown in table 1. The quality of the mesh is controlled by changing
the polynomial order. A polynomial order 9 is the ‘coarse’ case, which is denoted as
SR007, and a polynomial order 11 is the ‘fine’ case, which is denoted as SR007F.
Figure 3(a) compares the jet velocity radius of bubbly jets. The jet velocity radius is
obtained with a Gaussian-like velocity profile assumption of the radial distribution of the
axial mean velocity. In the near field of the bubbly jet, each case shows a nearly identical
value. In the far field of the bubbly jet, the velocity radius evolves with a slight oscillation
in each case, but each case still shows similar values to each other. Root mean square error
of the velocity radius of each case is 0.0042 where the height is z = 10D–50D. Figure 3(b)
compares the time-averaged volume flux, momentum flux and buoyancy flux to show the
effect of the quality of the mesh on the mean flow characteristics of the bubbly jet. The
time-averaged mean volume flux, momentum flux, buoyancy and buoyancy flux of the
flow are defined as follows:

Q(z) = 2π

∫ ∞

0
Uz(r, z)r dr, (2.7)

M(z) = 2π

∫ ∞

0
U2

z (r, z)r dr, (2.8)

B(z) = 2π

∫ ∞

0
βgΦb(r, z)r dr, (2.9)
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Figure 3. Result of grid independence test for ‘coarse’ and ‘fine’ mesh with usr = 0.07: (a) jet velocity radius
based on the Gaussian-like velocity profile; (b) volume flux, momentum flux and buoyancy flux; (c) TKE at
z = 40D.

F(z) = 2π

∫ ∞

0
βg(Uz(r, z) + usr)Φb(r, z)r dr, (2.10)

where Uz is the time-averaged axial velocity and Φb is the time-averaged gas
concentration. The coarse and fine cases show similar profiles of mean flow characteristics
as functions of height.

Figure 3(c) compares TKE at z = 40D. The coarse mesh shows a lower magnitude of
TKE than the fine mesh. It appears that the lower spatial and temporal resolution could not
resolve the small eddies in the jet. However, the coarse mesh case resolves the distinctive
characteristics of the plume with good accuracy, such as the peak of TKE at the centreline
and the off-centre peak around r/z ∼ 0.34.

Comparison of the radial distribution of the TKE and Reynolds shear stress between the
SR070 case and the bubbly jet, which was experimentally studied by Sun & Faeth (1986),
is shown in figure 4. The SR070 case is chosen for comparison because SR070 case has a
comparable slip velocity in dimension (0.103 m s−1) to the experiment (0.108 m s−1). The
TKE in both cases shows very similar radial distributions and magnitudes downstream,
and distinctive characteristics such as a peak along the centreline and an off-centre peak
around r/b ∼ 0.38. The Reynolds shear stress in both cases shows similar magnitudes and
radial collapse toward the ambient. However, SR070 overestimated the shear stress in the
core region. It is attributed to the fact that the present study does not consider drag forces
that spread the bubbles outward, The absence of the drag force results in higher bubble
concentration around the core region and promotes higher correlations between velocity
fluctuations as analysed in the § 3.3. Based on the validations (figures 2–4), it seems that
the simulation method in the present study can be used to implement DNS of the bubbly
jet.
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Figure 4. Comparison between SR070 case and bubbly jet experiment (Re = 8740, z/D = 60) conducted
by Sun & Faeth (1986). The x-axis of the experimental data is reproduced by normalising with b, which is
obtained with Gaussian-like velocity profile assumption of the radial distribution of the axial mean velocity
of the experiment. (a) The radial distribution of the normalised TKE and (b) the radial distribution of the
normalised Reynolds shear stress.
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Figure 5. Instantaneous velocity magnitude and gas concentration fields of bubbly jets. The left-hand half
and right-hand half of each plot show normalised velocity magnitude and gas concentration, respectively.

3. Results

3.1. Instantaneous flow field
Instantaneous velocity magnitude and gas concentration fields are shown in figure 5. The
instantaneous velocity magnitude is defined as follows:

v =
√

u2
r + u2

θ + u2
z . (3.1)

In the figure, the velocity magnitude and the gas concentration are normalised by the
inlet axial velocity and inlet gas concentration, respectively. At the early stage of the flow
(0 < z/D < 10), all cases accelerate and keep their potential core. But the potential core
eventually collapses at z/D ∼ 10, and both velocity magnitude and gas concentration start
to be dispersed around z/D ∼ 10. One of the salient differences between the cases with
low slip ratio (LSR) and the cases with high slip ratio (HSR) is dispersion of the gas phase.
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Figure 6. Gas concentration fields and isosurfaces of λ2 vortices are shown for two different slip ratios, 0.07
and 2.1 (SR007 and SR210). The gas concentration contours of x–z plane are presented. Vortex structures are
identified by using Lambda2 vortex criterion. Isosurfaces of vortex structures corresponding to λ2 = −0.1 are
presented.

The cases with usr = 0.07 and 0.14 (SR007 and SR014) show the dispersion of lumps of
bubbles after the collapse of the potential core. Therefore, bubbles are discontinuously
observed along the centreline. However, the cases with usr = 0.7, 1.4 and 2.1 (SR070,
SR140 and SR210) show a rigid bubbly jet core region, which meanders with time. It
results in a narrower spreading structure of the bubbly jet.

Figure 6 shows vortex structures and gas concentration of the cases with usr = 0.07
and usr = 2.1. The vortex is identified by using the Lambda2 vortex criterion (Jeong &
Hussain 1995). The identified vortex in figure 6 seems to have more chaotic structures
than those reported in many papers regarding jets (Becker & Massaro 1968; List 1982;
Sarikurt & Hassan 2017) in terms of the presence of coherent structure such as a vortex
ring and a horseshoe vortex. The vortical structures of the SR007 case are bounded around
the interface between bubbles and ambient fluids. On the other hand, the vortical structures
of the SR210 case show dense and narrower distribution. In both cases, vortex breakdown
is universally observed by the collapse of the potential core.
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Figure 7. (a) Centreline velocity plotted as a function of downstream distance. (b) Centreline gas
concentration plotted as a function of downstream distance.

3.2. Integral frameworks with 1-D analysis
In this section, the time averaged axial velocity, jet velocity radius and gas concentration
radius will be defined and utilised as local variants (as functions of axial coordinate,
z) of the 1-D model based on the assumption of Gaussian profiles to predict the
evolution of the bubbly jet. Those local variants are obtained from our three-dimensional
particle-unresolved DNS, where the bubbly jet naturally evolves and spreads with given
viscosity and diffusivity (Reynolds number and Péclet number) in the governing equations
(2.4) and (2.5). To reflect these natures in the 1-D model, two more closure models for the
entrainment coefficient and spreading rate of gas phase are suggested and will be described
in a further text.

The effect of slip velocity on the decaying characteristics of the axial velocity and gas
concentration of the bubbly jet along the centreline are compared in figure 7. Figure 7(a)
shows the centreline velocity normalised by the inlet velocity Uz0, and figure 7(b) shows
centreline gas concentration normalised by the inlet gas concentration Φb0. As shown in
figure 7, the presence of the gas phase accelerates the jet and keeps the gas concentration
without dispersion up to z = 10D. Then, all cases with different slip ratios show a decay
in the velocity. The single-phase jet, however, keeps its potential core up to z = 15D.
Because the present study has no perturbation at the inlet, the presence of the gas phase
results in earlier dispersion of the jet momentum and velocity acceleration until dispersion
occurs farther downstream. It accords to the flow characteristics of buoyant jet (Chen &
Nikitopoulos 1979; Henderson-Sellers 1983). It is reported that a lower Froude number
condition (large difference between a jet initial temperature and an ambient temperature)
of buoyant (thermal) jets results in a higher acceleration of the jet, and the length of the
ZFE generally accords to the end of the acceleration. Also, it is reported that a higher
Froude number results in an earlier acceleration.

Based on the assumption of a Gaussian profile and the ratio of conventional length scales
between velocity and concentration profiles Morton et al. (1956), the jet velocity and gas
concentration can be expressed as

Uz(r, z) = Uzc exp(−r2/b2), (3.2)

Φb(r, z) = Φbc exp(−r2/b2
g), (3.3)

bg = λb, (3.4)
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where Uzc is the time-averaged axial centreline velocity of the liquid, Φbc is the
time-averaged centreline gas concentration, b is the 1/e width of the liquid velocity (jet
velocity radius), bg is the 1/e width of the bubble concentration (jet concentration radius)
and λ is the spreading ratio between the bubble concentration and liquid velocity radius.
These equations imply that integral properties of the bubbly jet are axisymmetric. From the
Gaussian profile assumption, we can derive the volume flux, momentum flux and buoyancy
flux as follows:

Q(z) = 2π

∫ ∞

0
Uzc exp(−r2/b2)r dr = πUzcb2, (3.5)

M(z) = 2π

∫ ∞

0
U2

zc exp(−r2/b2)r dr = πU2
zcb2

2
, (3.6)

B(z) = 2π

∫ ∞

0
βgΦbc exp(−r2/(λb)2)r dr = πg′Φbcλ

2b2, (3.7)

F(z) = 2π

∫ ∞

0
βg(Uzc exp(−r2/b2) + usr)Φbc exp(−r2/(λb)2)r dr

= πg′Φbλ
2b2

(
Uzc

1 + λ2 + usr

)
, (3.8)

where g′ is the reduced gravity (g′ = βg). In figure 8, the DNS results for the bubbly
jets with LSR show good agreement with the Gaussian distributions of the velocity and
concentration profiles at all downstream distances. At the height of transition (z = 10D),
all bubbly jets cases still show discrepancy from the Gaussian profiles regarding the
velocity and gas concentration. However, cases with HSR still show discrepancy from the
Gaussian profiles farther downstream (z = 20D). It is different from the report on buoyant
jets by Chen & Nikitopoulos (1979). In buoyant jets, at the end of ZFE, the potential core of
the jet will be eroded by the shear, and the radial distribution of the velocity and buoyancy
seems to be Gaussian-like profiles. In the present study, the Gaussian-like distribution of
the velocity and gas concentration profile of HSR cases appears around z = 30D.

From the Gaussian profile assumption, the jet conservation equations, which satisfy
entrainment assumption of Morton et al. (1956), are derived as follows:

d(πUzcb2)

dz
= 2παUzcb, (3.9)

d(πU2
zcb2)

dz
= πg′Φbc(λb)2. (3.10)

Equation (3.9) represents the entrainment of ambient fluid into the mean flow of the bubbly
jet. Equation (3.10) represents the momentum balance of the bubbly jet. These equations
can be rewritten in terms of the volume flux Q, momentum flux M and buoyancy B,
respectively, as follows:

dQG

dz
= 2παUzcb, (3.11)

dMG

dz
= BG. (3.12)

The subscript G indicates the Gaussian profile assumption. From (3.9) and (3.10), we can
derive the following two ordinary differential equations regarding b and Uzc as functions
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Figure 8. Velocity and gas concentration profile with different height. Velocity profiles at
z = 10D, 20D, 30D, 40D (a,c,e,g) and gas concentration profiles at z = 10D, 20D, 30D, 40D (b,d, f,h).

of z:

d
dz

(Uzc) = −2αUzc

b
+ 2Qgg′

πUzc/(1 + λ2) + usr

1
Uzcb2 , (3.13)

d
dz

(b) = 2α − Qgg′

πUzc/(1 + λ2) + usr

1
Uzcb

; (3.14)
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Figure 9. A curve fitting with an exponential function for each slip ratio case by an assumption that λb is a
linear function of z.

the derivation is shown in appendix A. The bubble concentration radius, λb, can be
expressed as an exponential function, as follows:

d
dz

(λb) = ηg exp(−γλbusr), (3.15)

where ηg is the spread rate of the gas phase without any slip velocity in jets.
In buoyant jet experiments, the spread of scalars such as temperature and passive tracers

is regarded to be proportional to only the spread rate ηg and ranges from 0.101 to 0.156
based on the source condition in previous studies (Fiscehr et al. 1979; Wang & Law 2002).
In other words, there are no reports on the exponential term of the equation (3.15). In the
present study, we considered one more coefficient, γλb, which is a measure of the effect
of the slip ratio of the gas phase. Equation (3.15) shows that the spread of the gas phase
exponentially decreases as the slip ratio increases. In the present work, the rate of spread
of the gas phase with height is plotted with slip ratio as shown figure 9. It is found that
ηg = 0.080, which is smaller than what was found in the literature, and γλb = 2.423.

There is an important parameter in the three ordinary differential equations, the
entrainment coefficient α. It can be defined as a constant or as a function of other
local variables (Morton et al. 1956). There have been several efforts to define the local
entrainment coefficient because it varies significantly as the bubbly plume develops
downstream (Kobus 1968; Ditmars & Cederwall 1974; Milgram 1983). To define the
entrainment coefficient as a local function, Priestley & Ball (1955) and List (1982)
suggested using the local Richardson number to define the local entrainment coefficient as
follows:

α = αj − (
αj − αp

) (
R
Rp

)2

, (3.16)

where α is the local entrainment coefficient, which varies with height, αj is the entrainment
coefficient in the jet-like region, αp is the entrainment coefficient in the plume-like region,
R is the local Richardson number and Rp is the Richardson number in the plume-like
region. The Richardson number represents the ratio between the buoyancy and inertia
forces, which reflects the state of the plume in terms of flow development.
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Figure 10. (a) Local Richardson number profile by Gaussian profile assumption RG = QGBG/M(5/4)
G and

(b) local entrainment coefficient profile by Gaussian profile assumption with height
αG = (dQG/dz)/(2πbUzc).

Figure 10 shows the Richardson number and the entrainment coefficient. They are
calculated based on the Gaussian profile assumption. The Richardson number of the higher
slip ratio cases (SR140 and SR210) barely vary with height. This represents that a bubbly
jet with a higher slip ratio encounters a limitation in the entrainment of ambient fluid
earlier than a bubbly jet with a lower slip ratio. The entrainment coefficient of SR014 does
not vary with height in the overall plume-like region. The entrainment coefficient at a
lower slip ratio increases in the z-direction. In contrast, the entrainment coefficient at a
higher slip ratio decreases in the z-direction.

The two jet characteristics in figure 10 show monotonic behaviour with respect to
the height. Priestley & Ball (1955) and List (1982) related the monotonic behaviour of
the entrainment coefficient and Richardson number by introducing the equation (3.16).
Therefore, we replaced entrainment coefficients in the equations (3.13) and (3.14) with the
equation (3.16) as in the study by Priestley & Ball (1955) and List (1982).

Next, we analysed the bubbly jet after the moment of collapse of the potential core
(z/D > 24), i.e. zone of established flow. Direct numerical simulation results at z/D = 24
were used as the initial conditions of (3.13), (3.14), (3.15) and (3.16). Here αj is assumed
to be the same as the entrainment coefficient at z/D = 24 and αp and Rj are assumed to be
the values at z/D = 50.

Figure 11 shows a comparison between the DNS and the solution of the 1-D analysis.
As shown in figure 11, the overall predictions shown with solid lines match the bubbly jet
DNS results well. As shown in figure 11(c), the gas concentration width of the DNS result
follows a linear exponential function (3.15). Figure 11(d) shows that the spreading ratio of
the bubbly jet varies with height and ranges from 0.3 to 0.8 downstream. The results show
agreement with the results of 0.66–0.69 from a weak bubbly plume experiment by Wang,
Lai & Socolofsky (2019).

3.3. Second-order statistics
In this section, normalised second-order statistics of bubbly jets are presented to analyse
the effect of slip velocity. The statistics are calculated from our three-dimensional
particle-unresolved DNS results with governing equations (2.3), (2.4) and (2.5). Each
velocity component (radial, azimuthal and axial velocities) and the gas concentration are
decomposed into the mean and fluctuation as ur = Ur + u′

r, uθ = Uθ + u′
θ , uz = Uz + u′

z
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Figure 11. Comparison between 1-D analysis and DNS result: (a) centreline velocity; (b) jet velocity radius;
(c) jet concentration width; (d) jet spread rate between gas and liquid (DNS result, symbols; 1-D solution, line).

and φb = Φb + φ′
b. The time-averaged values such as the Reynolds normal and shear

stresses are expressed as 〈u′
ru′

r〉 and 〈u′
ru′

z〉. Figure 12 shows the Reynolds normal stresses
and shear stresses at z = 20D (near field) and z = 40D (far field). Each normal stress is
normalised with the square of the centreline axial mean velocity.

In figures 12(b) and 12( f ), the SR007 case shows that the magnitude of the radial and
axial normal stresses reached 0.038 and 0.061, respectively. They are comparable with
those of other jet cases: 0.04 and 0.053 (Boersma et al. (1998), round jet DNS); 0.036
and 0.067 (Wang & Law (2002), round buoyant jet experiment); and 0.034 and 0.058
(Panchapakesan & Lumley (1993), round jet experiment). This result shows that a very
small slip velocity does not affect the magnitude of the TKE. But as the slip velocity
increases, there are significant differences in the turbulence stress distribution.

It is observed that HSR cases (SR070, SR140 and SR210) have a steep collapse of
normal stresses with the radial direction. However, LSR cases (SR007 and SR014) have
more Gaussian-like distributions. In the far field, it seems that a HSR promotes rapid
collapse, which is consistent with the collapse of the mean axial velocity profile in § 3.2.
The radial normal stresses show a peak along the centreline.

An inflection point of the radial normal stress profile is universally observed in the
bubbly jet core region. However, steepness around the inflection point varies with slip
ratio. Particularly, LSR cases have much flatter and gentle profiles in the bubbly jet core
region. The azimuthal and axial normal stresses show similar radial variation, which
consists of a peak along the centreline and an off-centre peak. The radial variation of
the azimuthal and axial normal stresses varies with the slip ratio in the same way as the
variation of the radial normal stress varies.
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Figure 12. Reynolds normal stresses and shear stresses of bubbly jet with different slip ratios: (a) radial normal
stress at z = 20D; (b) radial normal stress at z = 40D; (c) azimuthal normal stress at z = 20D; (d) azimuthal
normal stress at z = 40D; (e) axial normal stress at z = 20D; ( f ) axial normal stress at z = 40D; (g) shear
stresses at z = 20D; (h) shear stresses at z = 40D.

Figure 12(g) shows the Reynolds shear stress at z = 20D. The off-centre peak with the
highest slip ratio (SR210) reached a value of 0.018, which is regularly observed in the far
field of the jet in the literature (Panchapakesan & Lumley 1993; Boersma et al. 1998).
Low slip ratio cases, however, have off-centre peaks at 0.015 at z = 20D yet. In the far
field (z = 40D), the HSR cases keep the magnitude of their Reynolds shear stress, but
they skew to the centreline more (figure 12h). Although the peaks of SR007 and SR070
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Figure 13. Turbulent transportation of gas concentration toward each direction: (a) radial direction at
z = 20D; (b) radial direction at z = 40D; (c) azimuthal direction at z = 20D; (d) azimuthal direction at

z = 40D.

reach 0.018 as well, the peak of SR014 exceeds 0.018. This implies that there is a transition
between the slip ratios of 0.14 and 0.7.

Figure 13(a) and 13(b) show the correlations between the gas concentration fluctuation
and the radial velocity fluctuation. All cases have an off-centreline peak, and the smaller
slip ratio shows a higher magnitude of the peak. This tendency is unlike those with other
second-order turbulent characteristics in the present study, which shows that the magnitude
of the second-order turbulent characteristics of SR014 is similar to that of SR007 or higher.
Cases with HSR have a magnitude that is one order smaller than in the LSR cases. Also,
SR007 has a peak value of 0.027, which is comparable with those of other buoyant plume
cases: 0.031 (Wang & Law 2002); 0.028 (Shabbir & George 1994); and 0.02 to 0.025
(Papanicolaou & List 1988).

All cases have an off-centre peak in the near field regarding the correlation between
the gas concentration fluctuation and the axial velocity fluctuation (figure 13c). In the far
field (figure 13d), HSR cases still have a peak in the bubbly jet core region, but LSR cases
have a flat profile in the core region. Also, SR007 shows a centreline value of 0.05 for
the correlation between the gas concentration and axial velocity fluctuation, which agrees
with other buoyant plume and jet results (0.05 Wang & Law 2002, 0.05 Papanicolaou &
List 1988, and 0.056 Shabbir & George 1994).

Figure 14 shows the turbulent gas concentration fluctuation. Low slip ratio cases show
a centre peak and collapse in the radial variation of the turbulent gas concentration
fluctuation. High slip ratio cases have an off-centre peak of the gas concentration
fluctuation in the bubbly jet core region. The location of the peak with HSR almost did not
vary with height (r/D ∼ 0.445), which is consistent with the location of the peak of the
correlation between the gas concentration fluctuation and the velocity fluctuations.

Additionally, it is notable that the location of the peak of the turbulent shear stress
is observed at r/D ∼ 0.55, which is outside of the location of the peak of the gas
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Figure 14. Turbulent gas concentration fluctuation: (a) turbulent gas concentration fluctuation at z = 20D;
(b) turbulent gas concentration fluctuation at z = 40D.

concentration fluctuation. Now SR014 shows a higher magnitude of the turbulent gas
concentration fluctuation than SR007. This implies that the transitional behaviour observed
in second-order turbulent statistics between the slip ratios of 0.14 and 0.7 is due to the gas
concentration fluctuation.

3.4. Third-order statistics
Third-order statistics regarding the velocity are important in terms of the contribution
to the turbulent diffusion of TKE. Furthermore, third-order statistics regarding the gas
concentration play a role in redistributing the gas phase with slip velocity in the flow field.
Despite the long time for averaging statistics, third-order statistics do not converge in the
bubbly jet core region. In the near field, all slip-ratio cases have a similar magnitude in
both the radial and axial turbulent transport. But the radial variation of radial and axial
turbulent transports varies with the slip ratio ( figures 15a, 15c, 15e, 16a, 16c and 16e).
Peaks of radial and axial turbulent transport are located at 0.04 r/z–0.07 r/z. The peak
with the highest slip ratio (SR210) is located at 0.04 r/z, and the peak with the lowest slip
ratio (SR007) is located at 0.07 r/z. This range is the outer region of locations for peaks
of turbulent stresses (0.025 r/z and 0.042 r/z for the peaks of the axial normal stress and
shear stress of SR210 and SR007, respectively; 0.034 r/z and 0.04 r/z for the peaks of the
radial and azimuthal normal stresses of SR210 and SR007, respectively).

Each directional transport of radial and azimuthal normal stresses has a similar shape
of the distribution, but the azimuthal normal stresses always show a lower magnitude
of turbulent transport. Taub et al. (2013) reported that the radial turbulent transport of
azimuthal normal stresses achieved 60 % of the triple moment of the radial velocity
fluctuation in their turbulent jet case. Other studies did not quantitatively specify them
but reported similar tendencies; that is, the turbulent transport of the azimuthal normal
stresses had a lower magnitude than the radial normal stresses (〈u′2

θ u′
r〉/〈u′3

r 〉 ∼ 51 % and
〈u′2

θ u′
z〉/〈u′2

r u′
z〉 ∼ 69 % with an experiment on a heated air jet (Darisse, Lemay & Benaïssa

2015); 〈u′2
θ u′

r〉/〈u′3
r 〉 ∼ 54 % and 〈u′2

θ u′
z〉/〈u′2

r u′
z〉 ∼ 65 % with DNS on a forced plume Taub

et al. 2015). The present study also shows 〈u′2
θ u′

r〉/〈u′3
r 〉 ∼ 55 % and 〈u′2

θ u′
z〉/〈u′2

r u′
z〉 ∼

66 % in the far field (z = 40D).
It is notable that the radial and azimuthal normal stresses in figure 12 have similar

magnitude and distribution, but the transport of the azimuthal normal stresses is lower
than the radial normal stresses. On the other hand, the turbulent transport of the axial
normal stress in the radial direction (figure 15f ) is similar to the turbulent transport of the
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Figure 15. Turbulent radial transportation of Reynolds normal stresses: (a) radial normal stress at z = 20D;
(b) radial normal stress at z = 40D; (c) azimuthal normal stress at z = 20D; (d) azimuthal normal stress at
z = 40D; (e) axial normal stress at z = 20D; ( f ) axial normal stress at z = 40D.

radial normal stress (figure 15b), but the turbulent transport of the axial normal stress in
the axial direction (figure 16f ) is much higher (2.5–6 times) than the other components.
This fact is contrasted with the axial normal stress being just 1.5 times higher than the
other components (figure 12).

Regarding the radial transport of the axial normal stress (figures 15e, 15f ), all cases have
a negative peak next to the centreline. The negative peak reflects that the axial Reynolds
normal stress does not diffuse towards the ambient area, but the bubbly jet tends to keep
its turbulent energy along the core. A preserved tendency of the TKE is also observed in
the turbulent axial transport in figure 16 as negative peaks.

Correlations between the gas concentration fluctuation and Reynolds stresses are shown
in figure 17. Most of the correlations near the centreline show negative values or values
close to zero. This is consistent with the tendency observed in figures 15 and 16 as
negative peaks in the bubbly jet core region. Correlations including the radial and
azimuthal velocity components with HSRs have a very small magnitude. Meanwhile,
LSR cases have a positive off-centre peak around the core region. It seems that turbulent
diffusion toward the ambient area in HSR cases scarcely takes place, but prevails in LSR
cases.
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Figure 16. Turbulent axial transportation of Reynolds normal stresses: (a) radial normal stress at z = 20D;
(b) radial normal stress at z = 40D; (c) azimuthal normal stress at z = 20D; (d) azimuthal normal stress at
z = 40D; (e) axial normal stress at z = 20D; ( f ) axial normal stress at z = 40D.

The correlation between the gas concentration fluctuation and the Reynolds shear stress
regularly shows a negative peak in the bubble core region and a positive peak around
the bubble core for all cases (figures 17g, 17h). The magnitude of the positive peak with
very HSR is not comparable to the magnitude of the LSR cases. On the other hand,
the magnitude of the negative peak is comparable to the magnitude of the LSR cases.
Also, the peak is located in the innermost position (r/z − 0.008), where the negative
peak of the radial transport of the axial normal stress occurs (in other words, the axial
transport of Reynolds shear stress). This implies that the fluctuation of the concentration
has strong relation with the axial fluctuations in regards to the correlation with Reynolds
shear stresses.

3.5. TKE budget
We plotted the TKE budget of the bubbly jet in the near field and far field to investigate
how the bubbles contribute to the turbulent process in the bubbly jet. The transport
equation of the TKE is arranged from the momentum equation and the assumption on
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Figure 17. Correlation between gas concentration fluctuation and each Reynolds stress: (a) radial normal stress
at z = 20D; (b) radial normal stress at z = 40D; (c) azimuthal normal stress at z = 20D; (d) azimuthal normal
stress at z = 40D; (e) axial normal stress at z = 20D; ( f ) axial normal stress at z = 40D; (g) shear stress at
z = 20D; (h) shear stress at z = 40D.

the axisymmetric jet flow and written as follows:
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Figure 18. Turbulent kinetic energy budget terms at different height: (a) advection at z = 20D; (b) advection
at z = 40D; (c) pressure strain at z = 20D; (d) pressure strain at z = 40D.
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where,

k = 1
2

(
u′2

r + u′2
θ + u′2

z

)
. (3.18)

By using the axisymmetric assumption, terms including the azimuthal differentiation,
odd number of azimuthal elements and mean azimuthal velocity elements are eliminated.
The terms separated by square brackets in (3.17) represent the transport of TKE by the
mean flow (advection term), the transport of TKE by pressure (pressure strain term), the
production by the mean shear and mean flow (production term), the transport of TKE by
Reynolds stress (turbulent transport term), the transport of TKE by viscous stress (viscous
transport term), the rate of dissipation (dissipation term) and the production by buoyancy
(buoyancy production term). The dissipation term is obtained as a closing term of the
budget. Each term is plotted in figures 18, 19 and 20. The terms are normalised by U3

zc/z.
Advection and pressure strain in the bubbly jet seem to be the most unstable terms

among the TKE budget terms in the present study. The advection term has a positive peak
along the centreline and a negative peak around the bubbly jet core region (figure 18a).
The negative peak persists in the far field. The positive peak along the centreline comes
from the mean axial advection of the TKE, and the negative peak comes from entrainment
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Figure 19. Turbulent kinetic energy budget terms at different height: (a) production at z = 20D;
(b) production at z = 40D; (c) buoyancy production at z = 20D; (d) buoyancy production at z = 40D.

of the ambient fluid in the shear layer of the bubbly jet. But oscillations of the centreline
value along the centreline are observed in figure 18(b). For example, SR007 and SR014,
which have similar jet structure in the present study, show inconsistency in the magnitude
of centreline value. Also SR210 has a negative peak in the centre of the jet, while SR070
and SR140 have a positive peak in the centre of the jet. This might come from very large
spatial and temporal motion such as plume meandering (Simiano & Lakehal 2012).

As shown in figures 18(c) and 18(d), the pressure strain term of HSR cases has an
off-centre peak, but the peak of the LSR cases oscillates in the far field (e.g. SR007 of
figure 18d). The magnitude of the pressure strain in the near field is not more significant
than the advection. In the far field, however, it is more dominant than the advection in HSR
cases. The magnitude of the pressure strain has a distinctive peak along the centreline in
the far field.

Figure 19 shows the production and buoyancy production terms. In the near field, the
production is almost one order of magnitude higher than the buoyancy production. In the
far field, this difference is reduced by five times. Generally, the peak of the production is
observed around the bubbly jet core region and shows an accordance with the location of
the peak of the buoyancy production. This is in contrast with the experimental result from
a weak bubble plume, which shows a very high contribution of bubbles to the production
of TKE but negligible contribution of water (Lai & Socolofsky 2019). The experiment
was buoyancy dominated flow, so it resulted in low mean kinetic energy and mean
shear. Therefore, its TKE production probably depends on bubble induced turbulence.
Furthermore, interfacial characteristics and deformation of the bubbles can be attributed
to buoyancy production in terms of pressure fluctuation and viscous forces (Nguyen et al.
2012; Santarelli et al. 2016).

Regarding the buoyancy production, LSR cases show flat radial distribution in the
bubbly jet core region, and HSR cases show a peak with a non-zero centreline value.

935 A4-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

99
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.995


H. Seo, G. Marjanovic, S. Balachandar and K.C. Kim

0.24

0.12

T
u
rb

u
le

n
t 

d
if

fu
si

o
n

V
is

co
u
s 

d
is

si
p
at

io
n

0

–0.12

–0.24

0.24

0.12

0

–0.12

–0.24

0 0

–0.2

–0.1

0

–0.3

–0.4

–0.2

–0.1

0

–0.3

–0.4
0 00.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

0.05 0.10 0.15 0.20 0.05 0.10 0.15 0.20

r/z (z/D = 20) r/z (z/D = 40)

(a)

(c)

(b)

(d )

SR007

SR210
SR140
SR070
SR014

Figure 20. Turbulent kinetic energy budget terms at different height: (a) turbulent diffusion at z = 20D;
(b) turbulent diffusion at z = 40D; (c) dissipation at z = 20D; (d) dissipation at z = 40D.

In the near field, all cases show similar magnitude of the buoyancy production, but LSR
cases have a wider radial distribution. In the far field, the buoyancy production has two
to three times higher magnitude than the magnitude in the near field. The location of
the peak of SR140 and SR210 is almost in accordance with the jet concentration radius
(figure 11c). This result shows the formation of a rigid jet core in HSR cases, and the
buoyancy production takes place around the bubbly jet core interface.

Figure 20 shows the turbulent diffusion and dissipation terms. The turbulent diffusion
profile typically consists of a positive peak along the centreline, a negative off-centre peak,
and a very small positive peak around the shear layer of the bubbly jet. In the near field,
the magnitude of the turbulent diffusion is bounded between +0.12 and −0.12. In the far
field, there is a negative peak of around −0.24 for the HSR cases. Like the pressure strain
term, LSR cases have an irregular peak along the centreline, but HSR cases regularly have
a positive peak along the centreline. The distribution of the dissipation of the TKE is
similar to the TKE in figure 12. Most of the dissipation occurs in the bubble core region
and rapidly decreases in the outer region of the bubble core.

4. Conclusion

Bubbly jets with five different slip ratios were simulated using DNS. We chose bubble
slip velocities that vary from a very small value (7 % of the inlet velocity) to a very high
value (210 % of the inlet velocity). The effect of the slip velocity on the bubbly jet was
studied with three different perspectives: (1) a comparison on instantaneous flow fields
between HSR cases and LSR cases; (2) an integral framework with 1-D analysis; and (3)
a statistical analysis with higher-order terms and the turbulent kinetic energy budget.

First of all, the single-phase jet case is validated by comparing with the literature data.
After adding the gas concentration at the inlet of the bubbly jet, we found that a transition
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point where the breakdown of the potential core occurs with the gas phase is observed
earlier than without the gas phase. There was a negligible effect of the slip ratio on the
position of the transition point, but various structural differences were observed after the
transition point. High slip ratio cases keep their rigid bubbly jet core, but a gas phase with
LSRs is dispersed into ambient in the form of a bubble swarm or lump.

The time-averaged spread of the gas phase was assumed to follow an exponential
function that includes the slip ratio as an exponent. Ordinary differential equations
regarding the axial velocity and spread of the velocity radius were derived from
conservation equations with a conventional assumption about the round jets and plumes
(Morton et al. 1956). The local entrainment coefficient was obtained from the relationship
with the local Richardson number (Priestley & Ball 1955; List 1982). The axial velocity,
velocity radius and gas concentration radius were predicted very well downstream of the
bubbly jets.

From the analysis of the second-order statistics, it was observed that a HSR results in
the prevention of diffusion of the gas phase and forms a rigid bubbly jet core along the
centreline. Correlations including the gas concentration fluctuation show a peak inside
the location of the peak of turbulent stresses. The normalised magnitudes of the turbulent
stresses were similar in each case and comparable with those of a single-phase jet and
plume in the literature. However, the distribution was narrower in HSR cases. Furthermore,
the correlation between the radial velocity fluctuation and gas concentration fluctuation
was severely suppressed in HSR cases. But the autocorrelation of the gas concentration
fluctuation or correlations between the axial velocity fluctuation and gas concentration
fluctuation were strong in the bubbly jet core region with a HSR.

From the analysis of the third-order statistics, the smallest turbulence structure of the
HSR case was observed at r/z ∼ 0.008 in the form of a negative peak of the axial transport
of Reynolds shear stresses and the correlation between the Reynolds shear stress and
gas concentration fluctuation. In the analysis of the TKE budget, the advection and the
production terms showed similar distributions to what was observed in conventional jets
and plumes. However, turbulent diffusion and pressure strain terms showed a positive
peak along the centreline, which was not reported for single-phase jets and plumes. The
buoyancy production generated by bubbles is two to three times more dominant in the far
field than in the near field.
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Appendix A

In this appendix, we derive the ordinary differential equations for the jet centreline velocity
and jet velocity radius. These properties are derived from conservation equations for round
jets and plumes regarding the volume flux, momentum flux and buoyancy flux. In fully
developed flows, the buoyancy flux FG is constant under the Boussinesq approximation
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and can be expressed with the inlet buoyancy flux FG0 as

FG0 = Qg0g′. (A1)

Here, Qg0 is the volume flux of the gas phase at the source. The general form of the
buoyancy flux with the Gaussian profile assumption is expressed in (3.8). You can find
overlapped expressions (πg′Φbc(λb)2) in (3.8) and (3.10). The right-hand side of (3.10)
can replace the same expression in (3.8), i.e.

F(z) = FG0 = Qg0g′

= π

2
d
dz

(U2
zcb2)

(
Uzc

1 + λ2 + usr

)
. (A2)

This equation can be rearranged by putting the derivative term on the left-hand side, i.e.

d
dz

(U2
zcb2) = 2

π

Qg0g′

Uzc/(1 + λ2) + usr
. (A3)

For further derivation, we should recall continuity equation (3.9), namely

d(πUzcb2)

dz
= 2παUzcb. (A4)

By the product rule of the derivative, (A3) can be separated into two parts of the
derivatives, as follows:

d
dz

(U2
zcb2) = d

dz
(Uzc)(Uzcb2) + d

dz
(Uzcb2)(Uzc), (A5)

where d(Uzcb2)/dz is already known as (A4). Then, the equation can be rearranged for
d(Uzc)/d(z) as follows:

d
dz

(Uzc) =
[
−Uzc

d
dz

(Uzcb2) + d
dz

(U2
zcb2)

]
/(Uzcb2). (A6)

This equation is the same as (3.13). In the same way, d(b)/dz can be expressed as follows:

d
dz

(b) =
[

d
dz

(Uzcb2) − d
dz

(Uzcb)b
]

/(Uzcb)

=
[

d
dz

(Uzcb2) − d
dz

(U2
zcb2)/(2Uzcb)

]
/(Uzcb)

= 2α − Qg0g′

πU2
zcb(Uzc/(1 + λ2) + usr

. (A7)
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