
Euro. Jnl of Applied Mathematics (2016), vol. 27, pp. 422–450. c© Cambridge University Press 2016

doi:10.1017/S0956792516000140
422

Personalized crime location prediction

MOHAMMAD A. TAYEBI1, UWE GLÄSSER1, MARTIN ESTER1
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Crime reduction and prevention strategies are vital for policymakers and law enforcement to

face inevitable increases in urban crime rates as a side effect of the projected growth of urban

population by the year 2030. Studies conclude that crime does not occur uniformly across

urban landscapes but concentrates in certain areas. This phenomenon has drawn attention

to spatial crime analysis, primarily focusing on crime hotspots, areas with disproportionally

higher crime density. In this paper, we present CrimeTracer
1, a personalized random walk-

based approach to spatial crime analysis and crime location prediction outside of hotspots.

We propose a probabilistic model of spatial behaviour of known offenders within their activity

spaces. Crime Pattern Theory concludes that offenders, rather than venture into unknown

territory, frequently select targets in or near places they are most familiar with as part of

their activity space. Our experiments on a large real-world crime dataset show that Cri-

meTracer outperforms all other methods used for location recommendation we evaluate here.

Key words: Spatial crime analysis, Random walk model, Activity space, Crime occurrence

space, Co-offending networks.

1 Introduction

The spatial analysis of crime is re-emerging in importance [7, 9, 35, 36, 38, 40, 52]. Studies

find that crime does not occur uniformly or randomly across the urban landscapes

[4,7,27,38,52]. Crime hotspots, areas with high crime intensity, generate a larger percentage

of criminal events [38]. From the criminological perspective, the best known study of

hotspots and coldspots is a 16-year longitudinal study of crime in Seattle, WA in the

United States. It finds that roughly half of the yearly crime incidents occur within only 5%

to 6% of the city’s road segments [52]. Understanding why hotspots emerge in some places

and not in others is a challenging question [5–7, 38]. But the concentration of interest

on hotspots pulls attention away from better understanding areas with more moderate or

low concentration of criminal events. These areas can be referred to as coldspots. Better

1 This work is an extension of a previously published conference paper [44].
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understanding coldspots is of value because these areas account for approximately half

of all urban crimes [52].

In the work reported here, the term “coldspot” refers to any location not included in

any hotspot. Coldspots cover a much wider area than hotspots. Better understanding the

spatial distribution of crime incidents in coldspots is essential. In hotspot analysis, the

focus is on modelling the emergence, evolution and stability of hotspots. Such analysis is

often based on analysis of aggregate crime patterns for all offenders. Coldspot analysis,

as is explored in this paper, requires modelling of individual offenders’ spatial behaviour.

This is fundamentally different from hotspot analysis because the concentration and rate

of offending in hotspots is so high that the patterns of individual offending in these areas

are averaged out since collective spatial behaviour of offenders is rather modelled at an

aggregate level. What is needed are models that are flexible and can be personalized to

individual offenders.

Existing models of crime distribution mostly focus on models for predicting crime loc-

ations for time intervals [15]. These studies rely heavily on modelling hotspot emergence,

bifurcation and diffusion [29, 39] to identify clusters of incidents in crime intensive areas.

These models frequently use concepts of crime attractiveness that pull people towards

locations [10, 18, 39, 40, 42]. There is some research that explores offender spatial decision

making using decision theory [4] and the tendency of offenders to commit offences near

prior offences [26]. But the models tend to use one decision making process for all

potential offenders.

The model presented in this paper focuses on individualized offending and target

selection or target decision making with the decision rules being different for the occasional

offender and the frequent repeat offender and repeat co-offender. The model is derived

from Crime Pattern Theory [9] based on the assumption that offenders, rather than venture

into unknown territory, frequently commit crimes in places they are most familiar with

as part of their activity space [9]. Surrounding an activity space, an individual develops

visually, and through local information, an awareness of the surrounds. An activity space

is a subset of this awareness space. Activity spaces and awareness spaces change over

time with movement to new home locations, new employment, the development of new

shopping and entertainment areas, new friendship networks and the development of new

mass transit and roads. But, as noted before, crime is relatively rare, and acceptable targets

of crime or victims are likely to be found easily within an awareness space. Outside an

activity or awareness space, an offender will have to consciously search for criminal

opportunities and likely face higher uncertain or unforeseeable risks. Crime occurrence

space is more likely a part of an activity space that intersects with the location of suitable

targets preferred by an offender [8, 9].

Human cognition, spatial decision-making and human movements help to describe

the activities of individuals—a way of thinking that has a long history in neurology,

geography and psychology [2, 3, 14, 21, 27, 33, 50]. People do not move randomly across

urban landscapes [22]. For the most part, they commute between a handful of routinely

visited places like home, work, recreational facilities and favourite shopping centres. With

each trip, they will get more familiar with, and gain new knowledge about, these places

and everything along the way. Eventually, a person will be at ease with a place. At

this point, the place becomes part of the person’s activity space. Activity space has two
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main components: Nodes and Paths [9]. Activity nodes are the locations that the person

frequents, such as a work place, residence or recreation. These are the end-points of

the journey. Activity paths connect the nodes and represent the persons path of travel

between them.

The creation of the main attractor nodes and paths are developed through normal

mobility shaped by the urban backcloth or urban environment. Each individual has

normal, routine pathways or commuting/mobility routes that are unique. However, the

environment in which we live influences our actions and movements. Highways, streets and

road networks in general guide us to our destinations like home, work place, recreation

centre and business establishments. For those using public transit, the transportation

routes lead us to our destinations in limited and predictable way.

In the aggregate, these individual routes overlap or intersect in time and space. These

areas of overlap often have rush hours and congestion at intersections or mass transit stops

associated with handling large numbers of people. These high activity locations can be-

come crime attractors and crime generators when there are enough suitable targets in those

locations. Crime attractors and generators affect directionality of offenders’ movement

[10, 16–18, 42]. Offenders develop routine mobility patterns and routine alternate routes.

In many ways, they follow the same process in their mobility as non-offenders in the urban

environment. Their spatial awareness is formed based on their destinations and transport-

ation routes, and potential targets located in frequently visited places may attract them.

The method proposed here is designed and optimized for coldspot analysis at the level

of individual offenders and significantly outperforms baseline hotspost methods for the

purpose of crime location prediction in coldspots. While we include information about

crimes linked to individual offenders in hotspot areas in the training process, we exclude

crime location prediction for hotspot areas in the evaluation process to illustrate the

advantage of the proposed method in comparison with the baseline methods.

Our method uses random walk to model how offenders encounter criminal opportunities

at a local level near anchor locations in an activity space [41]. In [41], the authors propose

a random walk-based model for capturing the dynamics of hotspot formation (See [41] for

a Levy Flight model). We present here an extended random walk model, CrimeTracer,

for generating the activity space associated with offenders living in an urban area. In

CrimeTracer, the random walk process is personalized to uncover the spatial behaviour

of all individual offenders.

For the urban layout, we assume a small-scale road network on which an offender moves

about in an urban area. By doing so, we gradually compute an approximation of the

offenders activity space by reflecting the probability of visiting (and possibly committing

crime) for each road segment of the urban area. This result is then used for predicting

crime locations for individual offenders, something not addressed in crime spatial analysis

to the best of our knowledge. Based on our experimental evaluation, personalization is

successful for detecting crime locations in coldspots. The extended random walk model

outperforms the random walk model and the other evaluated methods in terms of the

recall and precision metrics.

The following sections of the paper address related work, key characteristics of crime

data used in the analysis, details of the CrimeTracer model, our experimental model

evaluation and the results.

https://doi.org/10.1017/S0956792516000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000140


Personalized crime location prediction 425

2 Crime location prediction

Criminology theories state that involvement in crime is the result of: (1) an individual’s

crime propensity, and (2) features of the environment to which an individual is exposed.

While propensity towards crime has long been studied, in the past few decades features

of the environment received specific attention, and it is concluded that environmental

criminology plays an essential role in developing crime reduction and prevention tactics

that consider individual offenders [8]. New research areas have emerged, like crime

mapping [25], geographic profiling [36] and crime forecasting [23, 31].

Several studies have explored the activity space of offenders. Rossmo [36] has developed

a widely recognized method of inferring the activity space of an offender to determine

the likely home location based on the person’s crime locations. His approach is most

often used for serious serial offenders and known as Geographic Profiling. He assumes

that offenders will select targets and commit crimes near their home address or another

major activity node or anchor point. Using this assumption, each new crime location is

plotted on a map and a distance-decay function is used to calculate a probability space

around each crime to denote the possible home location (and corresponding probability)

of the offender. Geographic Profiling narrows down the probable home/nodal location of

an offender more accurately with increasing number of crimes associated to the offender.

Canter [13] splits movement patterns of offenders into commuters and marauders.

Marauders use a fixed base location (home, for example) and commit their crimes around

it, making geographic profiling on this type of offender possible. According to Canter, and

consistent with Crime Pattern Theory, marauders derive their offending locations from

spatial patterns of their non-criminal daily activities. Although commuters probably also

have a consistent base location, they travel to other places to commit crimes. Such travel

patterns must be taken into account, making geographic profiling much more difficult.

Frank [19] proposed an approach to infer the activity paths of all offenders in a region

based on their crime and home locations. Assuming the home location as the centre of an

offender’s movements, the orientation of activity paths of each individual offender were

calculated so as to determine the major directions, relative to their home location, into

which they tended to move to commit crimes.

Based on criminological theories, several studies propose mathematical models of

spatial and temporal characteristics of crime to predict future crimes. However, these

models do not predict individual offender behaviour. For instance, in [31], the authors

use a point-pattern-based transition density model for crime space-event prediction. This

model computes the likelihood of a criminal incident occurring at a specified location

based on previous incidents. In [41], the authors model the emergence and dynamics of

crime hotspots. This work uses a two-dimensional lattice model for residential burglary,

where each location is assigned a dynamic attractiveness value, and the behaviour of each

offender is modelled with a random walk process. The authors study the impact of the

model parameters on hotspot formation using a computer simulation.

In our own work, we address investigative problems such as suspect investigation [47],

identifying key players in co-offending networks [43], organized crime group detection

[20] and co-offence prediction [45]. Given partial information about a crime incident,

CrimeWalker [47] is an unsupervised method for top-k suspect recommendation, which
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applies a random walk method to a co-offending network. In [43], we study key player

identification and removal for criminal network disruption. We also propose a framework

for co-offence prediction using supervised learning [45]. In [20], we present a social

network analysis-based approach to identify traces of possible criminal organizations in

operational police records. While the main focus of existing methods is predicting crime

locations at the aggregate level, CrimeTracer models offender activity space to predict

crime locations at the individual level.

Note that all of the above-mentioned methods solve related but different problems

to which the experiments presented here can not be compared. The model presented

in [31] only predicts the time and location of the crime in the aggregate level. For a

different purpose but similar to our work, [41] uses standard random walk to model

offenders’ criminal behaviour. The method proposed in [36] and [13] discover offender

home locations based on his crime locations. And finally, the output of the method

proposed in [19] is locations which are centres of interest for committing crime. To

provide a meaningful comparison, we compare CrimeTracer to different Collaborative

Filtering methods which are used for location recommendation in location-based social

networks [51, 55]. Collaborating filtering (CF) infers the user’s implicit preference form

the explicit opinions of similar users based on the idea that users with similar behaviour

in the past will have similar behaviour in the future [32].

3 Data model and characteristics

In this section, we describe a unified model of crime data [11,20,43,45,46,48] for specifying

in a concise and unambiguous way properties of interest in the analysis of criminal

networks and their constituent entities. This model aims at bridging the conceptual gap

between data level, mining level and interpretation level, and facilitates the separation of

the abstract description of crime data from the details of data mining and analysis.

3.1 Data model

Intuitively, the crime data model is the starting point for the extraction of networks of

offenders who have committed crimes together, called co-offending networks. Connections

between offenders play a central factor in the analysis of crime. We also explain here

the abstract representation of urban environments in terms of graph structures defined

on segmentations of road networks. We then link road segments to known offenders and

their crimes.

3.1.1 Crime data

Formally, we represent the logical organization of crime data and information associated

with a crime dataset C as a finite graph structure in the form of an attributed tripartite

hypergraph H(N,E) with a set of nodes N and a set of hyperedges E. The set N
is composed of three disjoint subsets, A = {a1, a2, . . . , aq}, I = {i1, i2, . . . , ir} and R =

{r1, r2, . . . , rs}, respectively representing actors like offenders, suspects, victims, witnesses

and bystanders; incidents referring to reported crime events; and resources used in a

https://doi.org/10.1017/S0956792516000140 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000140


Personalized crime location prediction 427

Figure 1. Hypergraph H (without attributes) for a simple crime data model C.

crime2, such as weapons, tools, mobile phones, vehicles and bank accounts. Generic actors

serve as placeholders if a person’s identity remains unclear, say an unrecognized offender

who evaded apprehension. Whenever no specific resource can be identified or has been

reported, the distinguished element “unknown” is used as a placeholder.

A hyperedge e of E is a non-empty subset of nodes {n1, n2, . . . np} ⊆ N such that the

following three conditions hold: |e ∩ I | = 1, |e ∩ A| � 1 and |e ∩ R| � 1. For any e, e′ ∈ E
with e ∩ I = e′ ∩ I , it follows that e = e′. Intuitively, a hyperedge e of H associates a

set of actors {ai1 , ai2 , . . . , aij } ⊆ A and a set of resources {ri1 , ri2 , . . . , ril} ⊆ R with a crime

incident ik ∈ I , where e = {ik, ai1 , ai2 , . . . , aij , ri1 , ri2 , . . . , ril} as illustrated in Figure 1.

Finally, with each node n ∈ N, we associate some non-empty list of attributes charac-

terizing the entity represented by n. Attributes of actors, for instance, include the name,

address and contact details, and the criminal profile information of known offenders;

while attributes of incidents include the crime type, the time of the incident, longitude

and latitude coordinates of the crime location and the role of each person identified in

connection with the incident, among various other types of data and information.

Co-offending Network. Co-offending networks constitute a widespread form of social

networks that is of considerable interest in crime investigations and in the study of crime.

As Reiss contends in [34], “understanding co-offending is central to understanding the

etiology of crime and the effects of intervention strategies”. We explain the extraction of

a co-offending network from crime data in detail in our previous work [11].

3.1.2 Urban environment

Intuitively, a road network can be decomposed into road segments, each of which starts

and ends at an intersection. We use the dual representation where the role of roads

and intersections is reversed. All physical locations along the same road segment are

mapped to the same node. Formally, a road network is an undirected graph R(L,Q),

where L is a set of nodes, each representing a single road segment. Road segments lj

2 Resources used in a crime do often provide essential clues in criminal investigations. For

uniformity of representation, we assume that R includes a distinguished element nil referring to

situations in which no specific resource can be identified.
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and lk are connected, {lj , lk} ∈ Q, if they have an adjacent intersection in common. Crime

locations within a studied geographic boundary are mapped to the closest road segment.

Henceforth, the term “road” is used to refer to a road segment.

Road features. A vector ȳj denotes the features of the road lj including road length dj ,

and road attractiveness features vector āj . Further, āj is a vector of size m, where the value

of the kth entry of āj corresponds to the total number of crimes of type k committed

previously at lj . Πj denotes the set of neighbours of road lj in the road network. Δ ⊂ L

denotes a set of roads with the highest crime rate, called crime hotspots. Dlj ,lk is the

shortest path distance of road lj from hotspot lk ∈ Δ, and fj denotes the total number of

crimes at road lj .

Anchor locations. Li is the set of roads at which offender ui has been observed, including

all of his known home and crime locations. fi,j and ti,j respectively denote the frequency

and the last time ui was at anchor location lj . Offender trend is given by a vector x̄i of size

m which indicates the crime trend of ui as extracted from his criminal history. That is, the

value of the kth entry of x̄i corresponds to the number of crimes of type k committed by

offender ui.

3.2 Data characteristics

Crime data mining, as an analytic tool, has enormous potential for law enforcement,

criminal intelligence agencies, and beyond, to facilitate crime investigations by increasing

efficiency and reducing mistakes. At the same time, access to and sharing of crime data

is subject to strictly enforced restrictions arising from security and privacy needs because

of the highly sensitive nature and related personal information.

3.2.1 BC crime data

As a result of a research memorandum of understanding between ICURS3 and “E”

Division of Royal Canadian Mounted Police and the Ministry of Public Safety and

Solicitor General, 5 years of real-world crime data for the regions of the Province of

British Columbia policed by the Royal Canadian Mounted Police has been made available

for research purposes.

The British Columbia police arrest dataset used in this study amounts to approx.

4.4 million crime records, each referring to a single incident reported between July 2001

and June 2006. The information provided for each incident includes all persons associated

with a crime, such as offenders, victims, witnesses and bystanders—overall, 39 different

subject (person) groups. In our experiments, for offenders, we consider all subjects in

four main categories: charged, chargeable, charge recommended or suspect. Being in one

of these categories in fact means that the police were serious enough about a subject’s

involvement in a crime as to warrant calling them “offenders”.

For the study presented here, we concentrate on the use a subset of this dataset

which includes all crimes in Metro Vancouver, B.C. (total population: over 2.4 million),

where different regions are connected through a road network composed of 64,108 road

3 The Institute for Canadian Urban Research Studies (ICURS) is a research institute at Simon

Fraser University.
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Table 1. Statistical properties of the dataset used in this study

Property Value

Number of crimes 125,927

Number of offenders 189,675

Number of offenders with more than one crime 25,162

Number of co-offending links 68,577

Number of co-offenders in co-offending network 17,181

Average node degree in co-offending network 4

Number of road segments 64,108

Average crime per road segment 2

segments with an average length 0.2 km. Table 1 shows a statistics for the used crime

dataset.

3.2.2 Characteristics of crime locations

Figures 2(a) and (b) respectively show the average Euclidean distance between home

location to crime location and the average Euclidean distance between crime locations for

all offenders in the dataset. The average home to crime location distance of 80%, 63%

and 40% of all offenders is less than 10 km, 5 km and 2 km, respectively. And the average

crime location distance of 73%, 52% and 26% of all offenders is less than 10 km, 5 km

and 2 km, respectively. One can assume that frequent offenders are generally mobile and

have several home locations identified in their records. In fact, 41% of the offenders who

committed more than one crime have more than one home location.

The dataset differentiates more than 1,000 crime types, with half of them occurring only

a few times. For three well-defined categories of personal crime (like assault), property

crime (like break & enter) and drug crime, as expected, the property crime category has

the largest average home location to crime location distance. For half of repeat offenders,

at least half of their crimes belong to only one category, meaning that half of the repeat

offenders specialize in at least one category, and they keep their crime trend for a while.

4 CRIMETRACER model

In this section, we present CrimeTracer, our proposed crime spatial analysis model,

starting with the problem characterization.

Given a crime dataset C, an offender ui and road network R(L,Q) associated with C,

the goal is to learn the activity space distribution F using the random walk model for ui on

R. That is, for each road lj ∈ L, F(i, j) states the probability that lj is part of the activity

space of ui, and thus the likelihood for offender ui committing a crime at road lj is

F(i, j) −→ [0, 1] with

|L|∑
j=1

F(i, j) = 1. (4.1)
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Figure 2. Avg. distance (a) home-crime locations; (b) crime-crime locations.

By learning the activity space distribution of individual criminal offenders, we obtain a

probabilistic model of offender activity space that can be used for personalized prediction

of future crime locations of the offender. The assumption is that the richer and more

detailed the offender profile is, the more accurate is the probabilistic activity space model,

and also the prediction of future crime locations. This probabilistic view of activity space

means that there is no sharp boundary between activity space and awareness space, which

directly corresponds to the intuitive understanding of the concept of activity space in

criminology.

4.1 Model description

A random walk over a graph is a stochastic process in which the initial state is known and

the next state is decided using a transition probability matrix that identifies the probability

of moving from a node to another node of the graph. Under certain conditions, the random

walk process converges to a stationary distribution [24], which assigns an importance value

to each node of the graph.

The random walk method can be modified in a way that satisfies the locality aspect of

crimes, which states that offenders do not attempt to move far from their anchor locations.

For instance, the random walk method works locally if the likelihood of terminating the

walk increases with the distance from the anchor locations. But it has some shortcomings

that we aim to address in the CrimeTracer model.

The CrimeTracer model consists of three important components: an offender, the road

network, including all locations where the offender committed crime, and the co-offending

network that connects offenders. Starting from an anchor location, the offender explores

the city through the underlying road network. At each road, he decides whether to proceed

to a neighbouring road or return to one of his anchor locations. The random walk process

continues until it converges to the steady state which reflects the probability of visiting

a road by the offender. This probability can be relevant to the offender’s exposure to a

crime opportunity.

For learning the activity space of an offender, we need to understand his daily life and

routines, but in the crime dataset generally we miss the Paths completely and the Nodes
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partially (refer to Section 1), which is a major challenge. To address these challenges,

we improve our incomplete knowledge about offenders with the available information

in the dataset. The set of anchor locations of each offender is extended by adding his

co-offenders’ anchor locations. The extended set is called main anchor locations, denoted

by Li for offender i. This extension is motivated by the assumption that friends in the

co-offending network are likely to share the same location.

For each offender, using a Gaussian model, we define his intermediate anchor locations

as the roads closest to the set of his main anchor locations, denoted by Ii for offender

i. An offender starts his random walk either from a main anchor location or from an

intermediate anchor location.

Given that the actual trajectories in an offender’s journey to crime are not known, the

model guides offender movements in directions with a higher chance of committing a

crime. This is done by taking into account two different aspects that influence offender

movement directionality in computing the transition probabilities in a random walk. The

first aspect refers to road characteristics in terms of road feature values: the number of

crimes committed on this road for each different crime category and the road length.

The second aspect refers to the personal preferences of each offender for certain types of

crime, as stated in the offender profile, as a driving factor in the decision process when

encountering a crime opportunity. Whenever none of the neighbours of the current road

promise any crime opportunities of interest, road length is the single determining factor.

Using the supervised random walks method [1], we learn the importance of these features

and exploit them in computing the transition probability matrix for the random walk.

The second proposed approach for learning the movement directionality of an offender

uses the concept of crime generators and attractors [10]. These are two types of locations

where crimes tend to cluster. Assuming that offenders are drawn in directions leading

toward criminal attractors, we assign a higher probability to roads leading toward crime

hotspots—much like gravity centres affecting the random walk.

The random walk always stops in a road which provides an opportunity for committing

a crime, depending on both road characteristics and offender crime preferences. Below we

describe different elements of the proposed model in detail.

4.2 Random walk process

For each single offender, we perform a series of random walks on the road network

R(L,Q). In each random walk, the offender starts his exploration from one of his anchor

locations, traversing the road network to locate a criminal opportunity.

For offender ui, the random walk process starts from one of his anchor locations with

predefined probabilities as described in Section 4.3. At each step k of the random walk,

the offender is at a certain road lj and makes one of two possible decisions:

• with probability α, he decides to return to an anchor location and not look for a criminal

opportunity this time, choosing an anchor location in one of two ways:

◦ with probability β, he decides to return to a main anchor location l ∈ Li.

◦ with probability 1 − β, he returns to an intermediate anchor location l ∈ Ii.
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• with probability 1 − α, he continues looking for a crime opportunity.

If he continues his random walk, then he has two options in each step of the walk:

• with probability θ(ui, lj , k) stop the random walk, which means the offender commits a

crime at road lj .

• with probability 1−θ(ui, lj , k) continue the random walk, moving to another road which

is a direct neighbour of lj .

To continue the random walk at road lj , we select a direct neighbour road from Πlj .

The function φ is used in computing the transition probability from a road segment to

one of its neighbour road segments. The way φ is computed is described in the next

section. The probability of selecting road segment lr in the next step is defined as

P (lj → lr) =
φ(lr)∑

lp∈πlj

φ(lp)
. (4.2)

The probability of being at road lr at step k + 1 given that the offender was at road lj
at step k is

P (Xui,k+1 = lr|Xui,k = lj) =

(1 − α)(1 − θlj ,k) × P (lj → lr) =

(1 − α)(1 − θlj ,k) × φ(lr)∑
ls∈Πlj

φ(ls)
. (4.3)

Xui,k is the random variable for ui being at road lr in step k.

We terminate the random walks when ||Fm+1|| − ||Fm|| � ε, where Fm =

⎛
⎜⎝

F(ui, l1)
...

F(ui, l|L|)

⎞
⎟⎠

is the results for ui after m random walks. For some offenders, the random walks do not

converge, in which case we terminate the overall process at m > 10, 000.

4.3 Starting probabilities

CrimeTracer distinguishes two different types of starting nodes:

• Main anchor locations are all anchor locations of a single offender and his co-offenders:

Li = Li ∪ {lj : lj ∈ Lv, v ∈ Γu}. Co-offending links are important since they are the

reasons for many spatial effects related to crime [37]. It is concluded that offenders who

are socially close, are spatially close too [46]. The rationale is that offenders who have

collaborated in the past likely may have shared information on anchor locations in their

activity space, an aspect that possibly affects their choice of future crime locations. In

computing the starting probability of each anchor location, the two primary factors are
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the frequency and the last time an offender visited an anchor location. The probability

that offender ui starts his random walk from lj thus is

S(i, j) =
fi,j × e

−(t−ti,j)
ρ

∑
lk∈Li

fi,k × e
−(t−ti,k )

ρ

, (4.4)

where t is the current time, and ρ is the parameter controlling the effect of the timing.

• Intermediate anchor locations are the closest locations to main anchor locations. Human

mobility models use Gaussian distribution to analyse human movement around a

particular point such as home or work location [12, 22]. We assume that offender

movement around his main anchor locations follows a Gaussian distribution. Each

main anchor location of offender ui is used as the centre, and the probability of ui being

located in a road is modelled with a Gaussian distribution. Given road l the probability

of ui residing at l is computed as follows:

S(i, l) =
∑
lj∈Li

fi,j∑
lk∈Li

fi,k

N(l|μlj , Σlj )∑
lk∈Li

N(l|μlk , Σlk )
. (4.5)

Here, l is a road which does not belong to the set of main anchor locations. N(l|μlj , Σlj )

is a Gaussian distribution for visiting a road when ui is at anchor location lj , with

μlj and Σlj as mean and covariance. We consider the normalized activity frequency

of ui at lj , meaning that a main anchor location with higher activity frequency has

higher importance. For offender ui, the roads with the highest probability of being an

intermediate anchor location are added to the set Ii as additional starting nodes besides

the main anchor locations.

4.4 Movement directionality

As discussed in Section 1, directionality of offender movement plays an important role

in activity space formation. We propose here two approaches to determining movement

directionality. The first approach learns the weights of the features that determine the

probability of selecting a road among all neighbour roads in a random walk process.

The second approach leads an offender in the direction that gets him closer to the crime

hotspots.

4.4.1 Hotspots influence

In this approach, the transition probability is computed based on proximity of a road

to the crime hotspots and the importance of each crime hotspot, which is proportional

to the number of crimes committed there. The function φ(lj) is used in computing the
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transition probability (refer to Section 4.2) of moving offender ui from lk to lj:

φ(lj) =

|Δ|∑
n=1

fn × 1

Dj,n

, (4.6)

where fn is the number of crimes committed at ln. Dj,n is the distance of road lj from the

hotspot ln ∈ Δ, which is equal to the length of shortest path between two roads on the

road network.

4.4.2 Learning road feature weights

Road feature weights w̄ are used to compute the transition probabilities. The function

φw̄(lj) is computed based on the road features

φw̄(lj) =

m+1∑
k=1

wk × yj,k, (4.7)

where ȳj,k is the value of kth feature of the road lj , and wk is the corresponding weight of

the feature k.

We use the same idea used in the supervised random walks method [1] for link

prediction in social networks. This method guides the random walk toward the preferred

target nodes by utilizing node and edge attributes.

Each offender in a random walk starting from his home location reaches a crime

location. In the training data for each offender, we have a series of crime journeys,

meaning that for a source node s we have a set of destination nodes D = {d1, d2, . . . , dn},
and a set of non-destination nodes Z = {z1, z2, . . . , zm}. The probability of visiting a node

pd is influenced by the road transition probabilities. And the transition probabilities are

dependent on the road features weight. Now, we sway an offender starting from node s

so as to visit destination nodes di ∈ D more often than non-destination nodes zi ∈ Z by

formulating the following optimization problem:

min
w̄

F(w̄) = ‖w̄‖2 + λ
∑

d∈D,z∈Z
loss(pz − pd), (4.8)

where λ is the regularization parameter, and loss is a predefined loss function for penalizing

the cases in which the stationary probability of a non-destination node pz is higher than

the stationary probability of a destination node pd. In our experiments, we use the

Wilcoxon–Mann–Whitney loss function [54].

4.5 Stopping criteria

The probability of stopping the random walk for an offender at a given road corresponds

to the probability of this offender committing a crime in that road segment. Two factors

influence the stopping probability of offender ui in the road lj . The first one relates to

the similarity of the crime trend of offender ui and the criminal attractiveness of road

lj , where higher similarity means a higher chance that ui’s random walk stops at lj . The
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second factor is the distance of lj from the starting point measured in the number of

steps from the starting point. To satisfy the locality aspect of crimes, the probability of

continuing the random walk should decrease while getting farther from the starting point:

θ(ui, lj , k) = Sim(i, j) × 1

1 + e
−k
2

. (4.9)

The stopping probability is inversely proportional to the step number k. Sim(i, j) denotes

the cosine similarity of crime trend of ui and the road attractiveness of the road lj . Cosine

similarity defines the similarity between two vectors as the angle between these vectors:

Sim(i, j) =
x̄i.āj

|x̄i||āj |
. (4.10)

5 Experimental evaluation

In this section, we present our experimental design, the comparison partners, and the

results.

5.1 Experimental design

For each offender, we order his crime events chronologically based on their time. Then,

we split these events into a training set and a test set. The first 80% of the crimes are

used for training the model which predicts the offender activity space. The remaining

20% of crimes are used for testing the model. We consider only offenders with at least

two different crimes which includes about 10% of the offenders in the crime dataset. We

note that the training data used for learning road features as described in Section 4.4.2 is

not included in the evaluation to prevent biasing CrimeTracer.

After learning the offender activity space in the training phase, the trained model is

applied in the test phase to predict future crime locations. To do so, the top-N roads

with the highest probability are suggested as the most probable places for an offender to

commit future crimes.

As discussed above, the focus of this work is modeling offenders’ spatial behaviour in

the coldspots. Thus, in our experiments, we exclude the top 100 roads with the highest

crime numbers, the hotspots. The number of crimes in these hotspot roads is 100 to

1,100 times greater than the average number of crimes in a road. In the evaluation,

we distinguish two groups of offenders: repeat offenders with 10 or more crimes and

non-repeat offenders with less than 10 crimes.

To evaluate the accuracy of activity space prediction, we measure the number of crimes

committed by an offender in his testing dataset among the top-N predicted locations. If a

crime location in an offender’s test set is also among the top-N predicted locations, that

crime location is considered to be correctly predicted. Three accuracy measures, precision,

recall and utility, are used as evaluation metrics:

• Recall computes the ratio of the number of correctly predicted crime locations (true

positives) to the number of crime locations of the offender in the test set (true positives

+ false negatives).
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• Precision computes the ratio of the number of correctly predicted crime locations (true

positives) to the number of all predictions N (true positives + false positives).

• Utility computes the percentage of offenders with at least one correctly predicted crime

location.

Recall and precision are averaged across all offenders to determine the overall perform-

ance for different values of N. In computing the precision value for an offender, if the

activity space contains M < N roads, we use M instead of N.

5.2 Comparison partners

In this section, we introduce different versions of CrimeTracer and the comparison

partners methods used in our performance evaluation.

For evaluating the CrimeTracer performance, we test the two different movement

directionality approaches and the following types of locations included in the activ-

ity space of offenders. For every offender locations are categorized into three groups:

(a) Known locations that includes home and crime locations of the offender. (b) De-

rived locations which are locations shared with co-offenders and intermediate anchor

locations. These locations are derived from observed information in the crime data-

set. (c) Unknown locations that includes any location which is not a known or derived

location.

For a deeper understanding of CrimeTracer performance and the role of each of

above-mentioned location types, we consider three approaches: (1) In the first approach

(denoted by U), we include only unknown locations in the activity space of an offender

and consequently in the crime location prediction. (2) In the second approach (denoted by

D), we include only unknown and derived locations in the activity space of an offender.

(3) In the last approach (denoted by A), all locations are considered.

Two different movement directionality methods are introduced in Section 4.4: hot-

spot influence (denoted by H) and learning road feature weights (denoted by F). For

each of these CrimeTracer versions, we consider the three above-mentioned evaluation

approaches. For instance, CrimeTracer-HU denotes CrimeTracer using the hotspot in-

fluence method (H) for movement directionality that includes only unknown locations

(U) in the predicted locations.

As discussed in Section 2, there is no related work that solves the problem of per-

sonalized crime location prediction. However, we use the following methods which are

equivalent to state-of-the-art methods for location recommendation [51]:

Random Walk. This is the standard random walk with restart method (RWR) [49].

Hotspots. Using the basic hotspot approach (HS), roads are ranked based on the number

of crimes in that road.

Proximity. In the proximity approach (DS), we rank the roads based on their distance

from the offender’s anchor locations. Here, distance denotes the length of the shortest

path between two roads on the road network.

Offender-based CF. The intuition behind the offender-based CF approach is that of-

fenders who had similar behaviour in the past will have similar behaviour in the future.
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Let bij = 1 if lj ∈ Li, and bij = 0 if lj � Li. Now, F(i, j) is the probability of a crime

committed in road lj by ui:

F(i, j) =

∑
uk∈V∧ k�i

S im(i, k).bk,j

∑
uk∈V∧ k�i

S im(i, k)
, (5.1)

where Sim(i, k) denotes the cosine similarity measure between offenders ui and uk:

Sim(i, k) =

∑
lj∈L

bi,j .bk,j

√ ∑
lj∈L

b2
i,j

√ ∑
lj∈L

b2
k,j

. (5.2)

Location-based CF. In location-based CF, we consider the similarity of locations instead

of the similarity of offenders:

F(i, j) =

∑
lk∈L∧ k�j

S im(j, k).bi,k

∑
lk∈L∧ k�j

S im(j, k)
, (5.3)

where Sim(j, k) is the cosine similarity measure between roads lj and lk:

Sim(j, k) =

∑
ui∈V

bi,j .bi,k

√ ∑
ui∈V

b2
i,j

√ ∑
ui∈V

b2
i,k

. (5.4)

Co-offending-based CF. Co-offenders can share their information about criminal oppor-

tunities and take advantage of this information in committing a new crime. Co-offending-

based CF (SCF) computes the probability of a crime being committed in road lj by ui as

follows:

F(i, j) =

∑
uk∈Γi

Sim(i, k).bk,j

∑
uk∈Γi

Sim(i, k)
. (5.5)

Sim(i, k) denotes the geo-social influence between ui and uk and is defined as follows:

Sim(i, k) =
|Γi ∩ Γk|
|Γi ∪ Γk| +

|Li ∩ Lk|
|Li ∪ Lk| . (5.6)

5.3 Results

5.3.1 CrimeTracer scenarios

Figures 3–5 show performance of six different versions of CrimeTracer in-

cluding CrimeTracer-HU CrimeTracer-HD, CrimeTracer-HA, CrimeTracer-FU,

CrimeTracer-FD and CrimeTracer-FA in terms of recall, precision and utility measures.

With regard to the type of locations included in the prediction process, as expected
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Figure 3. Recall of different versions of CrimeTracer for different values of N.

CrimeTracer-HA and CrimeTracer-FA have the best performance, and CrimeTracer-

HU and CrimeTracer-FU have the worst performance. The recall of CrimeTracer-HA,

CrimeTracer-HD and CrimeTracer-HU for N = 20 is 23.4%, 10.2% and 5.9%, respect-

ively. Derived and known locations increase the recall by 4.3% and 13.1%, respectively.

We observe a similar result when comparing the performance of CrimeTracer-FA,

CrimeTracer-FD and CrimeTracer-FU.

An important question is which of these scenarios should be used in a real-world ap-

plication of CrimeTracer. According to criminological theories such as exact-repeat/near

repeat event [28] and broken window theory [53], known locations of offenders are always

likely places to commit a new crime. The results presented in this section also support

this idea. In a real-world application, known locations may be included in the predicted

locations automatically. One may conclude that CrimeTracer-HD and CrimeTracer-FD

are more appropriate versions of CrimeTracer for a real-world application.

Considering the two movement directionality approaches, both versions of Cri-

meTracer achieve higher performance compared to the standard random walk approach.

CrimeTracer-HD compared to CrimeTracer-FD and CrimeTracer-HU compared to

CrimeTracer-FU have higher recall, precision and utility. CrimeTracer-HA compared

to CrimeTracer-FA has higher recall and utility for all values of N, but their pre-

cision values are almost identical for N � 6. We conclude that the hotspot influence

approach outperforms the other method, showing the great impact of crime attractors

and generators in committing a new crime by an offender.
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Figure 4. Precision of different versions of CrimeTracer for different values of N.

5.3.2 Comparison partners

Figures 6–8 show the overall performance of the different evaluated methods in terms

of recall, precision and utility. To compare CrimeTracer against the baseline methods,

we use only the best performing versions CrimeTracer-HD and CrimeTracer-HU. Both

of these methods consistently outperform all baseline methods for all values of N with

regard to all evaluation metrics. The baseline methods use the same experimental design

as CrimeTracer-HD, but we also test CrimeTracer-HU in the comparison to show that

even in this case of a more restricted scenario, CrimeTracer still outperforms the baseline

methods.

DS (Proximity) obtains the lowest precision and recall values. Despite the well-studied

theory of the relationship between crime commitment and distance from anchor loca-

tions, this result shows that this approach is not effective for personalized crime predic-

tion. Among the CF-based approaches, Offender-based CF has the poorest performance.

Location-based CF achieves better recall, but SCF (Co-offending-based CF) achieves

higher precision. It is interesting to observe that location similarity contributes more to

the accuracy of crime location prediction than offender similarity. One can conclude that

SCF uses more reliable but limited information for predicting the offenders activity space.

The recall of HS (Hotspots) improves with increasing N, but this method naturally is

strong in predicting crimes in hotspots and not in coldspots.
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Figure 5. Utility of different versions of CrimeTracer for different values of N.

Predicting even one crime location of each offender is very important for the crit-

ical task of crime prevention. As for the other two evaluation metrics, both versions

of CrimeTracer outperform the baseline methods in terms of utility. The utility of

CrimeTracer-HU and CrimeTracer-HD is 1.3% and 1.5%, respectively larger than

their recall (N = 20), making no significant difference. One reason for this effect is that

half of the offenders committed only two crimes, and we can predict only one crime

location for them, meaning that for these offenders the recall and utility values are the

same.

There has long been interest in the behaviour of repeat offenders since controlling these

groups of offenders can reduce the overall crime level significantly. Figures 9–11 depict

the performance of the different methods for offenders with different numbers of crimes.

We expect more successful activity space learning for offenders who have committed

more crimes, and for whom we have more information. We observe such a trend for

CrimeTracer-FU, where the average recall for offenders who committed only two crimes

is about 4% while this value increases by 3% for offenders who committed 10 or more

crimes, as well as for RWR (Random walk) and SCF (Co-offending-based CF).

Interestingly, the hotspot influence approach causes a significant increase in recall of

non-repeat offenders (the biggest group of offenders). Comparing CrimeTracer-HU to

CrimeTracer-FU, the recall increases by 2% for this group of offenders, while the recall

for repeat offenders is almost equal for these two methods. On the other hand, while
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Figure 6. Recall for different values of N for the methods DS (Proximity), HS (Hotspots), OCF

(Offender-based CF), LCF (Location-based CF), SCF (Co-offending-based CF), RWR (Random

Walk), CrimeTracer-HU and CrimeTracer-HD.

for CrimeTracer-FU the recall of repeat offenders is 3% higher than the recall of non-

repeat offenders, this difference is only 1% for CrimeTracer-HU. Thus, the directionality

movement approach influenced by hotspot locations contributes more to the recall of

non-repeat offenders than to the recall of repeat offenders.

While we do not observe a significant increase in recall of repeat offenders compared to

non-repeat offenders for either of the CrimeTracer versions, we observe such a trend in

the precision measure. Another interesting observation is that for SCF using co-offending

information causes a significant performance gain for repeat offenders who have higher

co-offending rates.

Non-repeat offenders are the majority of offenders, and in this study half of the offend-

ers used for the evaluation committed only two crimes. As shown in Figures 9–11,

for non-repeat offenders CrimeTracer-HU and CrimeTracer-HD outperform the

baseline methods by large margins. We notice that location-based CF also works well

for offenders who committed only two crimes. This interesting result shows that beginner

offenders tend to commit crimes in common locations. On the other hand, while SCF

is not accurate for beginners, with increasing crime numbers its performance increases

significantly. This means that being more experienced in crime boosts the number of

co-offenders and consequently the chance of sharing criminal opportunities.
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Figure 7. Precision for different values of N for the methods DS (Proximity), HS (Hotspots), OCF

(Offender-based CF), LCF (Location-based CF), SCF (Co-offending-based CF), RWR (Random

Walk), CrimeTracer-HU and CrimeTracer-HD.

5.3.3 CrimeTracer elements

We studied the contribution of different components of CrimeTracer to its performance.

Compared to the standard RWR, CrimeTracer incorporates additional anchor locations

(co-offending information and intermediate anchor locations), movement directionality

and stopping criteria. We added these components separately to RWR to determine

their individual contribution. Table 2 shows the results. The strongest component is the

stopping criteria and the weakest is the learning of road feature weights. The main idea

behind the stopping criteria is to stop the random walk of an offender in a road where the

crime history is similar to the offender crime trend. However, combining all components

in CrimeTracer-HD achieves the best result and improves the performance of RWR

significantly in terms of all evaluation metrics. We include the performance of other

versions of CrimeTracer in Table 2 to be able to compare the performance of different

versions of CrimeTracer more exactly.

We note that the overall performance of CrimeTracer is comparable to the performance

of state-of-the-art methods for location recommendation [30, 51], where the information

about users’ spatial patterns is much denser than the available information about offenders.

One may criticize that in location recommendation the exact locations are predicted while

in CrimeTracer only roads are predicted as offender activity space. However, as discussed

in [15], roads are the natural domain for many policing activities, and a more realistic
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Figure 8. Utility for different values of N for the methods DS (Proximity), HS (Hotspots), OCF

(Offender-based CF), LCF (Location-based CF), SCF (Co-offending-based CF), RWR (Random

Walk), CrimeTracer-HU and CrimeTracer-HD.

Table 2. Contribution of different elements of CrimeTracer to its performance (N = 20)

Method Recall Precision Utility

RWR 0.011 0.004 0.014

RWR + Road features weight 0.013 0.003 0.017

RWR + Hotspot influence 0.015 0.003 0.016

RWR + Additional anchor locations 0.019 0.001 0.024

RWR + Stopping criteria 0.036 0.003 0.045

CrimeTracer-HU 0.059 0.006 0.073

CrimeTracer-FU 0.043 0.004 0.054

CrimeTracer-HD 0.102 0.007 0.118

CrimeTracer-FD 0.084 0.006 0.010

CrimeTracer-HA 0.23 0.008 0.30

CrimeTracer-FA 0.22 0.008 0.28

urban element for predicting a crime than the exact latitude and longitude. In addition,

the road network we use in our study is in the micro scale with the average road length

of 0.2 km.
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Figure 9. Recall for the offenders with different number of crimes (N = 20).

Random walk restart probabilities α and β are two important parameters that can

influence the CrimeTracer performance significantly. Small values of α let an offender

move to farther locations to find criminal opportunities, while the higher values of α

restricts the offenders movements around his anchor locations. On the other hand, higher

values of β mean a higher chance that the offender starts his random walk from one of

his intermediate anchor locations. We run a series of experiments to find the parameter

values that maximize the CrimeTracer performance. We experimentally vary values of

α and β between zero and one to determine the optimal parameter values. The results

presented in this paper are based on α = 0.3 and β = 0.3, meaning that the offender

will restart with probability of 0.3 the random walk and get back to one his anchor

locations, and with probability of 0.7 he will move to the next road segment. In many

applications of the random walk method, it is common to assign a higher value for the

restart probability. However, here α = 0.3 shows that restricting the offender to traverse

only locations around his anchor locations does not result in the best CrimeTracer

performance. β = 0.3 means, that when the offender restarts the random walk, with

probability of 0.3 he will return to one of his main anchor locations, and with probability

of 0.7 he will return to one of his intermediate anchor locations. Although it would be

great to learn the parameters that optimize the performance of the method, instead of

providing them as input, this is not feasible because random walk methods are typically
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Figure 10. Precision for the offenders with different number of crimes (N = 20).

fully unsupervised and do not learn their parameters. However, parameter learning for

restart probablity is beyond the scope of the paper, but we consider it as a future

work.

Another important parameter on where an offender commits crime in the future is

the temporal distribution of crimes he committed in the past. Intuitively, the time of

crimes which have been committed more recently impact the prediction of future crime

locations more strongly. However, we are not aware of any criminological theories which

establish this concept in a tangible way. Ultimately, one would have to consider both

spatial and temporal distributions of these crimes to find the right balance in determining

the importance of these offences for predicting future crime locations. What’s more, an

exact model to solve this problem in a real-world setting should consider these aspects

not only at the level of individual offences but also at the aggregate level. This is a

complex question which to answer needs deeper research that is beyond the scope of this

paper. In this paper, we refer to this control parameter in Equation (4.4) as ρ. In our

experiments, we split the time into one-month intervals. Then, we use the month in which

a crime incident occurred as input. In our experimental setting, we use ρ = 25 which

regulates the time effect in Equation (4.4) by assigning values between 0.1 and 1 to this

factor.
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Figure 11. Utility for the offenders with different number of crimes (N = 20).

6 Conclusions

Through linking data mining algorithms with social network analysis, advanced crime

data analysis methods can provide a scientific foundation for analysing spatsial decision-

making of criminal offenders and their social standing as is necessary for developing

effective crime reduction and prevention strategies.

Modeling activity space of individual offenders is one of the most difficult problems in

human mobility modeling because of limited available information on offenders and their

dynamically changing complex behavioural patterns. CrimeTracer uses a personalized

random walk to derive a probabilistic activity space model for known offenders based on

facts from their criminal history as documented in an offender profile. We evaluate our

algorithm by data mining operational police records from crimes in Metro Vancouver

within a 5-year time period. We are not aware of any similar work for modeling offender

activity space and, hence, compare the proposed approach with location recommendation

methods. CrimeTracer outperforms all other evaluated methods tested here. It boosts

the prediction performance of the repeat offenders, compared to the non-repeat offenders,

by using co-offending information. As expected, the chance of having co-offending links

is higher for repeat offenders.
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All elements used in CrimeTracer, which are additional to the standard random walk

model, contribute to the performance of this method. Still, there is room for further

improvement. Given the importance of anchor locations to start the random walk, we

take into account the frequency of visiting and time spent at these locations. Exploring

this aspect in more depth remains future work.

We believe that the ideas presented here can inspire new research trends in social

network analysis and data mining with useful applications for criminal investigations and

criminal intelligence in the endeavor to combat crime.
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