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SUMMARY
In this paper, we consider the problem of rest-to-rest maneu-
ver learning, via iterative learning control (ILC), for single-
degree-of-freedom systems with stick-slip Coulomb friction
and input bounds. The static coefficient of friction is allowed
to be as large as three times the kinetic coefficient of friction.
The input is restricted to be a two-pulse one. The desired
input’s first pulse magnitude is required to be five times the
largest possible kinetic (sliding) friction force. The theory
therefore allows the stiction force to be as large as the desired
second input pulse. Under these conditions, we prove global
convergence of a simple iterative learning controller. To the
best of our knowledge, such a global-convergence proof has
not been presented previously in the literature for the rest-to-
rest problem with stick-slip Coulomb friction.

KEYWORDS: Rest-to-rest maneuver; Iterative learning control
(ILC); Coulomb friction; Convergence theory; Input bounds/limits;
Single-degree-of-freedom system.

1. Introduction
Learning control is a method of control that repetitively feeds
the system inputs for a specific task, and uses the actual on-
line measured response of the system to evaluate the quality
or goodness of the input. The actual responses are used in a
feedback loop in which the inputs are adjusted to reduce the
measured errors in the output. Example applications include
robotics and manufacturing, where a certain output–tracking
task is to be performed repeatedly. Usually the output is the
position or velocity history of the robot’s joints although
sometimes it also includes measured forces at the end–
effector (see Cheah and Wang2).

Learning control has a history dating back to 1984
(see Arimoto et al.1) when it was first applied to robot
motion control. Horowitz8 gives a proper history of the
development and usage of learning controllers for (rigid)
robot manipulators. He compares and contrasts different
learning algorithms and also provides an experimental
demonstration of a robot that learns to make its end–effector
track a circular trajectory. He insightfully points out that an
open area of research is in finding methods for robust optimal
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(e.g., minimum energy, minimum vibration, or minimum
time) trajectory learning, as opposed to only finding a control
history that meets the output requirements. Examples of
works that have empirically investigated approaches to this
problem include works of Gorinevsky and coworkers,5–7 who
consider the use of the Levenberg–Marquardt optimization
method for least squares, and Sadegh and Driessen,10 who
consider the use of gradient-based algorithms for constrained
optimization.

Cheng and Peng3 consider learning control with input
bounds and modeling error. However, the methodology and
convergence theory was restricted to single-input/single-
output systems.

While systems with unknown Coulomb friction [non-
Lipschitz right-hand side (rhs) for the plant’s dynamics]
have been considered and convergence theory developed for
repetitive/adaptive control utilizing linearity in the unknown
coefficient of sliding friction, relatively little convergence
theory has been developed for iterative learning control (ILC)
with Coulomb friction. Longman and Chang9 and Wang and
Longman11 proposed the few ILC theories for systems with
Coulomb friction, and convergence theory was developed
for single-input/single-output systems with one degree of
freedom for the discrete-time trajectory-tracking problem.
The present paper, however, is devoted to the learning of rest-
to-rest maneuvers for single-degree-of-freedom systems.
Longman and coworkers also address the problem case in
which the output is a discontinuous function of the input,
i.e., when the static coefficient of friction µs, is larger than
the sliding coefficient of friction µk. Then, even for inputs
without bounds, there may not exist an input to achieve
zero output error due to the stick-slip/jump and overshoot
property. (This property does not exist if the two coefficients
of friction are the same.) In the present paper, for two-pulse
rest-to-rest learning control, we allow µs ≤ 3µk.

The present paper considers the problem of using ILC
to learn a rest-to-rest maneuver for a single-degree-of-
freedom system with stick-slip Coulomb friction and input
bounds. The static coefficient of friction is allowed to
be three times as large as the kinetic coefficient. The
desired input (and learning iterates) are restricted to be
two-pulse, and we require that the desired first pulse
magnitude be greater or equal to five times the largest
possible kinetic friction force. The theory therefore allows
the stiction force to be as large as the desired second
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input pulse. In Section 2, we present the details of the
problem statement. In Section 3, we present the main
theorem of global convergence and its proof. In Section 4,
we present numerical examples, and in Section 5, we end
with conclusions.

2. Problem Statement
We are given a single-degree-of-freedom mechanical system
with Coulomb friction as

mq̈ = u + F (q, q̇, u) (1)

where q ∈ R1 and u ∈ R1, and with initial conditions

q(0) = 0 (2)

q̇(0) = 0 (3)

and with input bounds/limits

−umax ≤ u ≤ umax. (4)

The friction force F is given by

F (q, q̇, u) =

⎧⎪⎨
⎪⎩

−µksign (q̇), q̇ �= 0

−u, q̇ = 0 and |u| ≤ µs ≥ µk

−µssign (u), q̇ = 0 and |u|>µs

⎫⎪⎬
⎪⎭

(5)

where µs is the static coefficient of friction, µk is the kinetic
coefficient of friction, and µs ≥ µk but

µs ≤ 3µk. (6)

A two-pulse input u(t) is to be applied to the system (1)

u(t) = u1, t ∈ [0, T ] (7)

u(t) = u2, t ∈ [T , 2T ] (8)

where u1 ∈ R1 and u2 ∈ R1 are constants. We have a desired
terminal state

q2 ≡ q(2T )
want= q∗

2 (9)

q̇2 ≡ q̇(2T )
want= 0 (10)

where superscript asterisks denote the desired quantity
values. We assume that there exist u∗

1 and u∗
2 such that Eqs. (9)

and (10) are achieved with

−umax ≤ u∗
i ≤ umax, (i = 1, 2) (11)

and where the associated q∗(t) satisfies

q̇∗(t) > 0, ∀t ∈ (0, 2T ) (12)

and where

u∗
1 ≥ 5µk. (13)

Let

ū ≡
(

u1

u2

)
, ū∗ ≡

(
u∗

1
u∗

2

)
(14)

e ≡
(

q2 − q∗
2

q̇2

)
. (15)

A learning controller of the following form is to be used

ūi+1 = boxfcn (ūi − αGei, umax), α > 0 (16)

where superscripts denote learning trial index, and where
boxfcn (û, umax) means

(boxfcn (û, umax)) =

⎧⎪⎨
⎪⎩

û(i), if − umax ≤ û(i) ≤ umax

umax, if û(i) > umax

−umax, if û(i) < −umax

⎫⎪⎬
⎪⎭

(17)

and where G ∈ R2×2 is a constant gain matrix. The objective
is to choose G and provide an associated proof that ū→ ū∗
as i → ∞ for any starting value of ū and ū0, provided the
scalar gain α > 0 is sufficiently small:

lim
i→∞

(ūi)
want= ū∗, ∀ū0 : |ū0(j )| ≤ umax, (j = 1, 2),

small enough α > 0. (18)

3. Global Convergence Proof

Theorem 3.1: For

G = J̄−1 (19)

where

J̄ =
(

1

m̂

)⎡
⎣ 3T 2

2

T 2

2
T T

⎤
⎦ (20)

and m̂> 0 is a finite model-based estimate of the mass m in
Eq. (1), the global convergence condition [Eq. (18)], for the
problem defined in Section 2, is satisfied. [Eq. (18) could be
changed to indicate a small enough m̂α, but since m̂ is finite,
the two statements are equivalent.]

Proof: Let

q1 ≡ q(T ) (21)

q̇1 ≡ q̇(T ). (22)

The q(t) that results from application of (u1, u2) [as in Eqs. (7)
and (8) to system (1)] can be broken up into nine possibilities,
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as indicated in (23)–(31):

q̇ > 0 ∀t ∈ (0, 2T ) (23)

q̇ < 0 ∀t ∈ (0, 2T ) (24)

q̇ > 0 ∀t ∈ (0, ts), ts ∈ (T , 2T ); q̇ < 0 ∀t ∈ (ts, 2T )

(25)

q̇ > 0 ∀t ∈ (0, ts), ts ∈ (T , 2T ); q̇ = 0 ∀t ∈ (ts, 2T )

(26)

q̇ = 0 ∀t ∈ [0, T ]; q̇ > 0 ∀t ∈ (T , 2T ) (27)

q̇ = 0 ∀t ∈ [0, T ]; q̇ < 0 ∀t ∈ (T , 2T ) (28)

q̇ < 0 ∀t ∈ (0, ts), ts ∈ (T , 2T ); q̇ > 0 ∀t ∈ [ts, 2T ]

(29)

q̇ < 0 ∀t ∈ (0, ts), ts ∈ (T , 2T ); q̇ = 0 ∀t ∈ [ts, 2T ]

(30)

q̇ = 0 ∀t ∈ [0, 2T ]. (31)

Let

�ū ≡ −αGe. (32)

For each of the nine cases [Eqs. (23)–(31)], we will show
that

ū �= ū∗ ?⇒ �ūT (ū − ū∗) < 0. (33)

We have, by direction integration using Eqs. (1)–(3), (5), (7),
(8), and (12)

q∗
1 =

(
T 2

2m

)
(u∗

1 − µk) (34)

q̇∗
1 =

(
T

m

)
(u∗

1 − µk) (35)

q̇∗
2 = q̇∗

1 +
(

T

m

)
(u∗

2 − µk) (36)

q∗
2 = q∗

1 + q̇∗
1 T +

(
T 2

2m

)
(u∗

2 − µk) (37)

and since q̇∗
2 = 0

u∗
2 = −u∗

1 + 2µk. (38)

From Eq. (13), let

u∗
1 = (5 + a)µk, a ≥ 0. (39)

From Eqs. (25), (26), (29), and (30), let

�ts = ts − T (40)

and let

�ts = rT , r ∈ [0, 1] (41)

thus defining a and r. Since m̂ �= m does not affect the sign
of �ūT (ū − ū∗), and with absolutely no loss of generality as
we will see, for simplicity we simply set m̂ = m throughout.

For case (23), u1 >µs, and

q1 =
(

T 2

2m

)
(u1 − µk) (42)

q̇1 =
(

T

m

)
(u1 − µk) (43)

q̇2 = q̇1 +
(

T

m

)
(u2 − µk) (44)

q2 = q1 + q̇1T +
(

T 2

2m

)
(u2 −µk). (45)

Combining Eqs. (19), (20), (14), (15), (32), (38), (39), and
(42)–(45), and simplifying gives

�ūT (ū − ū∗) = − 2(17 + 8a + a2)µ2
k − u2

1 − u2
2

+ 2µk(5 + a)u1 − 2µk(3 + a)u2. (46)

Equation (46) is concave in u2. Hence, an absolute worst-
case value of u2 occurs when the derivative on the rhs of
Eq. (46) with respect to u2, is zero, or, at u2 =−µk(3 + a);
and the associated value of �ūT (ū − ū∗) is

�ūT (ū − ū∗) ≤ −(u1 − (5 + a)µk)2. (47)

We conclude that, for case (23)

u1 �= (5 + a)µk ⇒ �ūT (ū − ū∗) < 0. (48)

If u1 =−(5 + a)µk, then u1 = u∗
1 [from Eq. (39)] and (38)

gives u∗
2 = −(3 + a)µk. Therefore, case (23) gives:

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (49)

For case (24), u1 <µs, and

q1 =
(

T 2

2m

)
(u1 + µk) (50)

q̇1 =
(

T

m

)
(u1 + µk) (51)

q̇2 = q̇1 +
(

T

m

)
(u2 + µk) (52)

q2 = q1 + q̇1T +
(

T 2

2m

)
(u2 + µk). (53)
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Combining Eqs. (19), (20), (14), (15), (32), (38), (39), and
(50)–(53), and simplifying gives

�ūT (ū − ū∗) = −2(15 + 8a + a2)µ2
k − u2

1

+ 2(4 + a)µk(u1 − u2) − u2
2. (54)

Equation (54), also concave in u2 has an absolute worst-case
value for u2 of û2

û2 ≡ −(4 + a)µk (55)

with u2 = û2 giving

�ūT (ū − ū∗) ≤ −(14 + 8a + a2)µ2
k + 2(4 + a)µku1 − u2

1,

if u2 = û2. (56)

Since u1 <−µs, we conclude

µs �= 0 or µk �= 0 ⇒ �ūT (ū − ū∗) < 0. (57)

If µs =µk = 0, Eqs. (38) and (39) give u∗
1 = u∗

2 = 0, which
violates hypothesis (12). Thus, case (24) gives:

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (58)

For case (25), u1 > µs, u2 < −µs, (42), (43), and

q̇s = q̇1 +
(

�ts

m

)
(u2 − µk) (59)

qs = q1 + q̇1 �ts +
(

�t2
s

2m

)
(u2 − µk) (60)

q̇2 = q̇s +
(

T − �ts

m

)
(u2 + µk) (61)

q2 = qs + q̇s(T − �ts) +
(

(T − �ts)2

2m

)
(u2 + µk)

(62)
where

u1 = µk +
(

�ts

T

)
(−u2 + µk) (63)

where Eq. (63) just expresses q̇s = 0.
Combining Eqs. (19), (20), (14), (15), (32), (38), (43), and
(59)–(63), and simplifying gives

�ūT (ū − ū∗)

= − µ2
k(31 + 2a2 − 7r − 7r2 + r3 − 2a(−8 + r + r2))

+ µk(1 + r)(−8 − 2a + r + r2)u2 − (1 + r2)u2
2. (64)

The worst-case value of u2 is û2

û2 ≡ µk(1 + r)(−8 − 2a + r + r2)/2/(1 + r2) (65)

giving

�ūT (ū − ū∗) ≤ µ2
k(−1 + r)2 (−60 − 4a2 + 20r + 21r2

+ 2r3 + r4 + 4a (−8 + r + r2))/4/(1 + r2). (66)

The −60 term dominates all others in Eq. (66). Thus

r �= 1 ⇒ �ūT (ū − ū∗) < 0. (67)

For r = 1, case (25) reduces to case (23), and the proof for
case (23) can be used to conclude that case (25) gives:

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (68)

For case (26), u1 > µs, |u2| ≤ µs, and we have Eqs. (42),
(43), q2 = rhs of Eq. (60), q̇2 = rhs of Eq. (59) and (63).
Combining Eqs. (19), (20), (14), (15), (32), (38)–(41), (42),
and (43), q2 = rhs of Eq. (60), q̇2 = rhs of Eqs. (59) and (63),
and simplifying gives

2�ūT (ū − ū∗)

= −µ2
k(56+4a2 −15r −6r2 + r3 − 2a(−15 + 2r + r2))

−2µk(4 + a − r)(1 + r2)u2 − r(1 + r2)u2
2. (69)

The absolute worst-case value of u2 is û2

û2 ≡ −µk(4 + a − r)

r
< −(3 + a)µk (70)

and u2 = û2 produces �ūT (ū − ū∗) > 0; however, it violates
the condition |u2| ≤ µs. The worst-case valid value of u2 is
then ũ2

ũ2 ≡ −3µk (71)

and u2 = ũ2 gives

2�ūT (ū − ū∗) ≤ −2µ2
k(a2 − 2a(−3 + 2r + r2)

+ 4(2 − 3r + r3)). (72)

The values of r that make zero the derivative of the rhs of
Eq. (72) with respect to r are

r1 = −1, r2 =
(

3 + a

3

)
. (73)

Both values in Eq. (73) are outside [0, 1]. So, we need only
consider r = 0

2�ūT (ū − ū∗) ≤ −2µk(a2 + 6a + 8). (74)

Thus

µk �= 0 ⇒ �ūT (ū − ū∗) < 0. (75)

If µk = 0, Eqs. (38) and (39) give u∗
1 = u∗

2 = 0, which
violates hypothesis (12). Thus, case (26) gives:

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (76)
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For case (27), |u1| ≤ µs, u2 > µs, q1 = 0, q̇1 = 0,
Eqs. (44) and (45).

Combining Eqs. (19), (20), (14), (15), (32), (38), (39),
q1 = 0, q̇1 = 0, and (44) and (45), and simplifying gives

�ūT (ū − ū∗) = −(29 + 15a + 2a2)µ2
k − u2

2

+ µk((4 + a)u1 − 2(3 + a)u2) (77)

from which, since |u1| < µs and u2 > µs

µk �= 0 ⇒ �ūT (ū − ū∗) < 0. (78)

If µk = 0, Eqs. (38) and (39) give u∗
1 = u∗

2 = 0, which
violates hypothesis (12). Thus, case (27) gives:

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (79)

For case (28), |u1| ≤ µs, u2 < −µs, q1 = 0, q̇1 = 0,
Eqs. (52), and (53).

Combining Eqs. (19), (20), (14), (15), (32), (38), (39), (52)
and (53), and simplifying gives

�ūT (ū − ū∗) = −(35 + 17a + 2a2)µ2
k

+ (4 + a)µk(u1 − 2u2) − u2
2 (80)

but since

(u2 + (4 + a)µk)2 = u2
2 + 2(4 + a)µku2 + (4 + a)2µ2

k

(81)

Eq. (80) can be written as

�ūT (ū − ū∗) = −(35 + 17a + 2a2)µ2
k + (4 + a)2µ2

k

+ (4 + a)µku1 − (u2 + (4 + a)µk)2 (82)

or

�ūT (ū − ū∗) = −(19 + 9a + a2)µ2
k + (4 + a)µku1

− (u2 + (4 + a)µk)2 (83)

but with Eq. (6)

|u1| ≤ µs ⇒ (4 + a)µku1 ≤ (12 + 3a)µ2
k (84)

so that

�ūT (ū − ū∗) ≤ (−7 − 6a − a2)µ2
k − (u2 + (4 + a)µk)2.

(85)

Thus

µk �= 0 ⇒ �ūT (ū − ū∗) < 0. (86)

If µk = 0, u∗
1 = u∗

2 = 0 and Eq. (12) is violated. Thus,
case (28) gives:

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (87)

For case (29), u1 < −µs, u2 >µs, Eqs. (50) and (51), and

q̇s = q̇1 +
(

�ts

m

)
(u2 + µk) (88)

qs = q1 + q̇1�ts +
(

�t2
s

2m

)
(u2 + µk) (89)

q̇2 = q̇s +
(

T − �ts

m

)
(u2 −µk) (90)

q2 = qs + q̇s(T −�ts) +
(

(T − �ts)2

2m

)
(u2 − µk) (91)

where

u1 = −µk + (−u2 − µk)

(
�ts

T

)
(92)

where Eq. (92) simply expresses q̇s = 0.
Combining Eqs. (19), (20), (14), (15), (32), (38)–(41), (50),

(51), and (88)–(92), and simplifying gives

�ūT (ū − ū∗) = −µ2
k(33 + 2a2 + 7r + 9r2 + r3

+ 2a(8 + r + r2)) − µk(6 + 11r + 2r2

+ r3 + 2a(1 + r))u2 − (1 + r2)u2
2. (93)

Since r ∈ [0, 1], the first term on the rhs of Eq. (93) is less
than or equal to −µ2

k(33 + 2a2 + 16a). By r ∈ [0, 1] and
u2 > µs, the second term on the rhs is less than or equal to
−(6 + 2a)µkµs. The last term is less than or equal to −µ2

s .
Thus

�ūT (ū − ū∗) ≤ −µ2
k(33 + 2a2 + 16a)

− (6 + 2a)µkµs − µ2
s . (94)

Thus

µk �= 0 or µs �= 0 ⇒ �ūT (ū − ū∗) < 0. (95)

If µk =µs = 0, Eqs. (38) and (39) give u∗
1 = u∗

2 = 0, which
violates Eq. (12). Thus, case (29) gives:

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (96)

For case (30), u1 < −µs, |u2| ≤ µs, (50), (51), q̇2 = rhs of
Eq. (88), q2 = rhs of Eq. (89), and (92).
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Combining Eqs. (19), (20), (14), (15), (32), (38)–(41), (50),
(51), q̇2 = rhs of Eq. (88), q2 = rhs of Eq. (89), and (92), and
simplifying gives

2�ūT (ū − ū∗) = −µ2
k(72 + 4a2 + 17r + 10r2 + r3

+ 2a(17 + 2r + r27r2))

− 2µk(1 + r2) (4 + a + r)u2

− r(1 + r2)u2
2. (97)

The absolute worst-case value of u2 is û2

û2 ≡
(−µk(4 + a + r)

r

)
< −4µk < −µs (98)

and u2 = û2 gives �ūT (ū − ū∗) > 0; however, u2 = û2

violates the condition |u2| ≤ µs. So, the worst-case valid
value of u2 is ũ2

ũ2 ≡ −3µk (99)

with u2 = ũ2 giving

�ūT (ū − ū∗) ≤ −2µ2
k(12 + a2 − 7r − 2r2

+ r3 − a(−7 + 2r + r2)). (100)

Using r ∈ [0,1], we conclude

�ūT (ū − ū∗) ≤ −2µ2
k(3 + a2 + 4a). (101)

Therefore

µk �= 0 ⇒ �ūT (ū − ū∗) < 0. (102)

If µk = 0, Eqs. (38) and (39) give u∗
1 = u∗

2 = 0, which
violates Eq. (12). Thus, case (30)

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (103)

For case (31), |u1| < µs, |u2| < µs, q2 = 0, and q̇2 = 0.
Combining Eqs. (19), (20), (14), (15), (32), (38), and (39),
q2 = 0, q̇2 = 0, and simplifying gives

�ūT (ū − ū∗) = −(4 + a)µk(2(4 + a)µk − u1 + u2).
(104)

Since −u1 + u2 ≥ −6µk

�ūT (ū − ū∗) ≤ −(4 + a)µ2
k(2 + 2a) (105)

so that

µk �= 0 ⇒ �ūT (ū − ū∗) < 0. (106)

If µk = 0, Eqs. (38) and (39) give u∗
1 = u∗

2 = 0, which
violates Eq. (12). Thus, case (31)

ū �= ū∗ ⇒ �ūT (ū − ū∗) < 0. (107)

Thus, the direction

�ū = −αGe (108)

is a descent direction on z ≡ 1/2(ū − ū∗)T (ū − ū∗), which
is clearly a smooth function of ū. Therfore, if umax = ∞,
then for small enough α > 0, the learning controller
[Eq. (16)] produces lim

i→∞
(ūi − ū∗) = 0. Finally, appli-

cation of the boxfcn(·) in controller [Eq. (16)] cannot decrease
the magnitude of the reduction in ‖ū − ū∗‖ from one learning
trial to the next, since |ū∗(i)| ≤ umax, i = 1, 2, (see Driessen
et al.4). Thus, we have

lim
i→∞

(
ūi

) = ū∗, ∀ū0 :
∣∣ū0(j )

∣∣ ≤ umax, (j = 1, 2),

small enough α > 0. (109)

That is, the objective [Eq. (18)] of Section 2 is met. Hence,
the proof of Theorem 3.1 is complete.

Remark: The above results do not extend, to our knowledge,
to point-to-point rest-to-rest maneuver problems of a
revolute-jointed direct-drive robot arm. However, they do
apply to a multi-degree-of-freedom prismatic-jointed robot;
and, possibly for a very highly geared revolute-jointed robot,
for which the joints become very close to decoupled second-
order systems with stiction, the results may also have some
relevance.

4. Numerical Example
In this section, we present an ILC example for the problem
described in Sections 2 and 3. The parameters in the example
are from Eqs. (1), (4), (5), (7), (8), (20), (32), (18), and (9),
respectively

m = 1.0 (110)

umax = 5.5 (111)

µk = 1 (112)

µs = 2 (113)

T = 1.0 s (114)

m̂ = 1.5 (115)

α = 0.3 (116)

ū0 = (0, 0)T (117)

q∗
2 = 4. (118)

Equations (110), (112), (114), (118), and (32)–(38) imply
u∗

1 = 5 and u∗
2 = −3. Figures 1 and 2 show plots of the

input learning error ‖ū − ū∗‖2 [from Eq. (14)] and the
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Fig. 1. Input learning error ‖ū − ū∗‖2 vs. learning iteration number.
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Fig. 2. Output learning error ||e||2 vs. learning iteration number.

output learning error ‖e‖2 [from Eq. (15)] versus learning
iterate number, respectively. Iterations were stopped when
the output error ‖e‖2 was less than or equal to 10−4, giving a
total of 38 iterations.

5. Conclusion
In this paper, we presented a global convergence proof for a
simple iterative learning controller for learning a rest-to-rest
maneuver of a single-degree-of-freedom system with stick-
slip Coulomb friction. The input is restricted to be a two-
pulse one. The sufficient conditions for global convergence
included a static friction coefficient not larger than three times
the kinetic coefficient of friction, and a desired first-pulse
magnitude greater than or equal to five times the largest pos-
sible kinetic friction force. The theory, therefore, allows the
stiction force to be as large as the desired second input pulse.
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