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Abstract

We explain how to form a novel dataset of Calabi–Yau threefolds via the Gross–Siebert
algorithm. We expect these to degenerate to Calabi–Yau toric hypersurfaces with cer-
tain Gorenstein (not necessarily isolated) singularities. In particular, we explain how
to ‘smooth the boundary’ of a class of four-dimensional reflexive polytopes to obtain
polarised tropical manifolds. We compute topological invariants of a compactified torus
fibration over each such tropical manifold, expected to be homeomorphic to the gen-
eral fibre of the Gross–Siebert smoothing. We consider a family of examples related to
products of reflexive polygons. Among these we find 14 topological types with b2 = 1
that do not appear in existing lists of known rank-one Calabi–Yau threefolds.

1. Introduction

Calabi–Yau threefolds, three-dimensional compact Kähler manifolds X with trivial canonical
bundle such that h1(X,OX) and h2(X,OX) vanish, are intensively studied objects in both alge-
braic geometry and theoretical physics. Datasets of such objects have been studied since the work
of Candelas, Lütken and Schimmrigk [CLS88] and Candelas, Lynker and Schimmrigk [CLS90]. In
[Bat94] Batyrev described a construction of a Calabi–Yau threefold from any maximal triangula-
tion of a four-dimensional reflexive polytope; this was extended by Batyrev and Borisov [BB96]
to nef partitions of higher- dimensional reflexive polytopes. Together with the classification of
four-dimensional reflexive polytopes by Kreuzer and Skarke [KS00], this construction provides
an enormous number of Calabi–Yau threefolds. By way of illustration, there are 473,800,776
four-dimensional reflexive polytopes, without taking into account the number of triangulations.

Despite the plethora of Calabi–Yau threefolds obtained by the methods above, such lists
do not necessarily imply an abundance of examples of Calabi–Yau threefolds in a particu-
lar class. For example, [Kap15] contains a (then complete) list of 151 known constructions of
Calabi–Yau threefolds of Picard rank one. In fact 20 of these constructions are conjectural, and
we explore the question of the existence of several such examples in § 5, in light of the recent
work of Inoue [Ino19] and Knapp and Sharpe [KS06, § 2.5]. In a different direction, a list of
constructions of Calabi–Yau threefolds with small Hodge numbers was compiled by Candelas,
Constantin and Mishra [CCM18]. In this paper we describe an algorithm to construct a large
new class of Calabi–Yau threefolds, and generate a number of specific examples. In particular,
we give 14 families whose topological invariants do not appear in existing lists of Calabi–Yau
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threefolds with b2 = 1; members of at least seven of these families are simply connected
(see Remark B.1).

The constructions we present in this paper are based on the Gross–Siebert programme. This
is an algebro-geometric approach to the Strominger–Yau–Zaslow (SYZ) conjecture, developed
by Gross and Siebert in [GS06, GS10, GS11]. The main objects of study in this programme are
toric log Calabi–Yau spaces, unions of toric varieties equipped with sections of line bundles which,
by the results of [GS06], determine a log structure. These spaces also determine integral affine
manifolds with singularities, which play a key role in the work of Gross, of Haase and Zharkov,
and of Ruan, on topological versions of the SYZ conjecture; we refer to [Gro01c, Gro05, Gro01b,
Rua07, HZ05] for further details.

In what follows, we fix a lattice N ∼= Z4 and let NR denote the real vector space N ⊗Z R.
Before stating our main result we recall some elementary facts concerning lattice polytopes
to fix notation. Given a four-dimensional reflexive polytope P ⊂ NR, we write Faces(P, k)
for the set of k-dimensional faces of P . This is a set of polytopes contained in NR, each
of which is given by intersecting P with a suitable hyperplane. There is a canonical bijec-
tion F �→ F � between d-dimensional faces of P and (3− d)-dimensional faces of P ◦, the
polar polytope to P . We write �(E) for the lattice length of a one-dimensional lattice poly-
tope E and recall that two lattice polytopes are equivalent if they differ by an affine lattice
isomorphism.

Theorem 1.1. Let P be a four-dimensional reflexive polytope and let D be a function sending

each face F ∈ Faces(P, 2) to a Minkowski decomposition of �(F �)F into polytopes equivalent to

standard simplices, each of which has dimension one or two. The pair (P,D) determines a locally

rigid, positive, toric log Calabi–Yau space X0(P,D). Moreover, the toric log Calabi–Yau space

X0(P,D) admits a polarisation if (P,D) is regular (see Definition 2.6).

Remark 1.2. Elements of the set Faces(P, k) are polytopes contained in the four-dimensional
vector space NR. Each face is contained in a unique k-dimensional affine subspace of NR. Ele-
ments of a Minkowski decomposition of a dilate of a k-dimensional face of P (which are also
contained in NR) are contained in translates of this k-dimensional affine space. The choice of
these translates plays no role in what follows, and we usually describe the Minkowski summands
of dilates of faces of P as polytopes in a k-dimensional affine space. We note, however, that
this is only a convenient shorthand: Minkowski decompositions of dilates of the faces of P occur
in NR.

It follows from [GS11, Theorem 1.30] that, if (P,D) is regular, X0(P,D) is the cen-
tral fibre of a formal degeneration of log Calabi–Yau manifolds. It follows from the
Artin approximation theorem [Art68, Theorem 1.2] that there is a family over an ana-
lytic disc which extends the Gross–Siebert formal family; we refer to recent work of Rud-
dat and Siebert [RS20, Appendix B] for a detailed account of analytic approximation in
this context. In fact Ruddat and Siebert [RS20, Theorem 1.9] show that this approxima-
tion may be made without reparametrisation of the coordinates used in the Gross–Siebert
algorithm.

We note that, in describing X0(P,D) as a toric log Calabi–Yau space, we have fixed both a
reducible scheme with toric components, and a choice of log structure, as described in more detail
in § 3. We note that the underlying scheme of X0(P,D) is related to, but not the same as, the
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toric boundary of the toric varietyXP associated to the face fan of P . To ensure the hypotheses of
Gross and Siebert’s smoothing result [GS11, Theorem 1.30] are met (in particular, the condition
of local rigidity), the underlying scheme of X0(P,D) is the result of a further degeneration of the
toric boundary. However, we expect our construction to be compatible with recent work of Felten,
Filip and Ruddat [FFR19] on the smoothability of toroidal crossing spaces. This work does not
depend on local rigidity, and should apply to a toric log Calabi–Yau space whose underlying
scheme is the toric boundary of XP . If this connection is made precise this would also suggest
a direct link to work of Lee [Lee17, Lee18] on smoothing normal crossings Calabi–Yau varieties.
Indeed, while the spaces we smooth in our construction are typically not normal crossings, it
is likely that there is significant overlap in the sets of Calabi–Yau threefolds obtained by these
methods.

In the second part of this paper we study the topology of the general fibre of
Gross–Siebert families obtained via Theorem 1.1. One general approach to this is to consider the
Kato–Nakayama space XKN of the given toric log Calabi–Yau space X0(P,D). The space XKN

(more precisely, the subspace of XKN obtained by fixing a phase) is homeomorphic to a general
fibre of the Gross–Siebert smoothing, considered as a family over an analytic disc (see [Arg16,
Theorem 3.1] and [NO10, Theorem 5.1]). However, rather than work with this space directly,
we analyse a third space, the topological model introduced by Gross [Gro01c]. Given a four-
dimensional reflexive polytope P and choice of Minkowski decompositions D, as in Theorem 1.1,
we let X(P,D) denote the topological model of X0(P,D). It follows from a long-standing con-
jecture of Gross and Siebert that X(P,D) is homeomorphic to the subspace of XKN with fixed
phase. Moreover, a proof of this conjecture is ongoing work of Ruddat and Zharkov [RZ20].
We note, in particular, that both of these spaces admit maps to X0(P,D) whose general fibre
in a fixed toric stratum of X0(P,D) is a torus of dimension equal to the codimension of the
stratum.

Conjecture 1.3 (See [Gro05, Theorem 0.1] and [RZ20, Theorem 11]). The space X(P,D) is
homeomorphic to the subspace of the Kato–Nakayama space XKN associated to the toric log
Calabi–Yau space X0(P,D) with fixed phase, and hence to a general fibre of the Gross–Siebert
smoothing of X0(P,D).

We note, however, that we can determine the Betti numbers of the general fibre of a
Gross–Siebert smoothing without relying on Conjecture 1.3.

Theorem 1.4 (See [Gro01b, Lemma 2.4] and [GS10, Corollary 3.24]). The Betti numbers

bi(X(P,D)) of Gross’s topological model agree with the Betti numbers of the general fibre of a

Gross–Siebert smoothing.

As described in Remark 4.11, Theorem 1.4 follows from Theorem 4.8 and Lemma 4.10.
We compute the Betti number b2 of the space X(P,D) in Theorem 4.12 and note that
b3 is determined by b2 and the topological Euler number of X(P,D), itself computed in
Proposition 4.9.

We also study the fundamental group of X(P,D). By Lemma 4.10, this group is always
finite and abelian, and in Theorem A.8 we give sufficient conditions for X(P,D) to be simply
connected. While we expect this to be the generic case, there are exceptions. For example, it
was shown by Batyrev and Kreuzer [BK06] (see also work of Doran and Morgan [DM07]) that
there are 16 four-dimensional reflexive polytopes P such that Calabi–Yau toric hypersurfaces
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obtained by applying Batyrev’s construction [Bat94] to P are not simply connected. We show
in Example A.9 that there are choices of reflexive polytope P and Minkowski decompositions D
such that X(P,D) is not simply connected.

While the classification of all possible input data to Theorem 1.1 is expected to be com-
putationally accessible, we defer such a computation to future joint work with T. Coates.
Indeed, following computations performed on the hpc framework at Imperial College, we
find there are slightly in excess of 1.5 million reflexive four-dimensional polytopes P such
that every two-dimensional face of P admits a decomposition of the form required to apply
Theorem 1.1. We also remark that each such polytope may support a number of such
decompositions.

We present a family of examples in § 5. In each of these examples, P is a product of reflexive
polygons, and this family combines a number of new examples with a number of classical cases.
Following observations of Galkin [Gal15], and constructions of Inoue [Ino19] and Knapp–Sharpe
[KS19], many of these examples are related to joins of elliptic curves. In future work we will
also consider products of three-dimensional reflexive polytopes with a length-two line segment,
related to an algebro-geometric version of the suspension of a K3 surface; we expect many of the
Calabi–Yau threefolds constructed by Lee in [Lee17] appear in this way. Among the examples
we consider in § 5, we describe pairs (P,D), where P is the product of two lattice hexagons in
§ 5.1.

Proposition 1.5. Let P6 be the integral hexagon associated with the toric del Pezzo surface

of degree six. Consider the four-dimensional polytope P := P6 × P6. From the toric variety XP

associated to the face fan of P we can form Calabi–Yau threefolds with 14 distinct sets of Betti

numbers, five of which have b2 = 1 and do not appear in the list of Kapustka [Kap15], or among

recent constructions of Lee [Lee17, Lee18].

In a somewhat different language, the toric varietyXP associated to P has 36 ordinary double
point singularities and 12 singularities locally isomorphic to the anti-canonical cone on the del
Pezzo surface of degree six. The latter 12 singularities admit two deformation components:
the archetypal ‘Tom’ and ‘Jerry’ (see Brown, Kerber and Reid [BKR12]). Famous results of
Friedman [Fri91] and Tian [Tia92] show that smoothing varieties with nodal singularities is
generally obstructed. Consonant with this, we must verify a global condition (existence of a
polarisation) before we are able to smooth all 48 singularities of XP . In this language, we expect
the join construction of Knapp and Sharpe [KS19, § 2.5] to be related to the ‘simultaneous Jerry’
smoothing.

Finally, we note that there are geometric transitions between the Calabi–Yau threefolds we
construct, and those obtained via Batyrev’s construction [Bat94]. While these transitions are
more general than conifold transitions (indeed, the singular locus appearing in the middle of the
transition is generally non-isolated), one can view the construction we present as an extension
of the approach taken by Batyrev and Kreuzer in [BK10].

Notation
We present a list of notation used throughout this paper.

1444

https://doi.org/10.1112/S0010437X21007132 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007132


Calabi–Yau threefolds via the Gross–Siebert algorithm

N A lattice isomorphic to Z4.
M The lattice Hom(N,Z) dual to N .
P A four-dimensional reflexive polytope, contained in the vector space NR := N ⊗Z R.
P ◦ The polar polytope to P , contained in the vector space MR := M ⊗Z R.
Faces(P, k) The set of k-dimensional faces of P , each of which is contained in NR.
Edges(P ) The set of edges of P .
F,G Two-dimensional faces of P .
τ, σ, ρ Edges, two-dimensional faces, and facets of P ◦ respectively.
D A standard decomposition for P (see Definition 2.2).
P A polyhedral decomposition of ∂P ◦.
ϕ A polarisation (a multi-valued PL function) on B(P,D) (see § 3.2).
B An integral affine manifold with simple singularities (see § 3.3).
B(P,D) An integral affine structure with singularities on ∂P ◦.
X(B) The total space of a topological semi-stable torus fibration over B (see § 4.1).
X(P,D) The total space of a topological semi-stable torus fibration over B(P,D).

2. Simply decomposable polytopes

We construct Calabi–Yau threefolds from toric hypersurfaces with singularities belonging to a
certain class. The following definition provides a combinatorial description of this class of toric
singularities.

Definition 2.1. Given a reflexive polytope P , we say that P is simply decomposable (s.d.) if
every two-dimensional face of P admits a Minkowski decomposition into lattice polytopes, each
of which is equivalent to a standard simplex.

If P is a reflexive polygon we treat P itself as the (unique) two-dimensional face of P
in Definition 2.1. We assume throughout this paper that P ⊂ NR, where NR := N ⊗Z R and
N ∼= Z4; we let M denote the lattice Hom(N,Z) dual to N .

Definition 2.2. Given a four-dimensional s.d. reflexive polytope P , let D be a function which
sends each face F ∈ Faces(P, 2) to a Minkowski decomposition of �(F �)F . If each summand in
each element of the image of D is equivalent to a standard simplex we say that D is a standard
decomposition. Note that each decomposition D(F ) is itself a multiset.

We fix a four-dimensional s.d. reflexive polytope P and standard decomposition D for the
remainder of this section.

Remark 2.3. Given a lattice polytope R ⊂ Rn, write Lattice(R) for the affine sublattice of Zn

generated by R ∩ Zn. We say that a Minkowski decomposition R = S + T of R into lattice
polytopes S and T is a lattice Minkowski decomposition if Lattice(R) = Lattice(S) + Lattice(T ).
We note that the Minkowski decompositions appearing in Definition 2.2 do not need to be
lattice Minkowski decompositions (see, for example, the Minkowski decomposition illustrated in
Figure 1), although this condition plays a role in the topological analysis made in Appendix A.
We note that all Minkowski summands are required to be lattice polytopes.
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Figure 1. Example of a non-lattice Minkowski decomposition.

Figure 2. List of simply decomposable reflexive polygons.

Example 2.4. Using the definition of s.d. reflexive polygon described above, there are seven s.d.
polygons. These are illustrated in Figure 2. It is easy to verify that taking the product of any
two of these polygons gives a four-dimensional s.d. polytope. We let Pi,j denote the product
Pi × Pj , where Pi is as shown in Figure 2 for each i ∈ {4, . . . , 9} ∪ {8′}. We will treat P9,9, the
product of a pair of lattice triangles, as a running example throughout this paper. We note that
P9,9 contains 9 vertices, 18 edges, 6 triangular faces (each equivalent to a dilate of a standard
triangle by a factor of three), 9 square faces (each with lattice edge length equal to three), and
6 facets (each equivalent to the product of a triangular face with a line segment). Next observe
that there is a unique choice of standard decomposition D for P9,9, sending

(i) each face equivalent to a dilate of the standard triangle to a multiset consisting of three
copies of a standard triangle, and

(ii) each face equivalent to a (3× 3) lattice square to a multiset of six line segments.

The toric variety XP9,9 is a complete intersection of bi-degree (3, 3) in P6. Indeed, letting
x0, . . . , x6 denote homogeneous coordinates on P6, XP9,9 is the vanishing locus of the polynomials

x1x2x3 = x3
0, x4x5x6 = x3

0.

General anti-canonical hypersurfaces in XP9,9 contain 18 curves of transverse A2 singularities,
which intersect in six orbifold singularities C3/G (where G = Z3 × Z3) and nine (isomorphic)
singularities given by the quotient of an ordinary double point by an action of G. Treating this
example from the perspective of Batyrev’s construction [Bat94], one would fix a resolution of this
singular locus. Alternatively, this variety can be smoothed by deforming the cubics cutting out
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Figure 3. Edges(F,m) for a lattice hexagon F (left) and triangular summand m (right).

this Calabi–Yau threefold in P5 to obtain a Calabi–Yau threefold with b2 = 1. It is this variety,
obtained via smoothing a hyperplane section of XP9,9 ⊂ P6, which we expect to reproduce via
our construction.

In § 3 we define an integral affine structure on ∂P ◦. However, before this can be used as
input to the Gross–Siebert algorithm, this integral affine structure must admit a polarisation.
A polarisation is a multi-valued piecewise linear (PL) function on an integral affine manifold, as
described in § 3. This multi-valued PL function is strictly convex on a polyhedral decomposition
P which refines the polyhedral decomposition of ∂P ◦ determined by the faces of P ◦. We will
construct such a polarisation from a convex PL function ϕ on ∂P ◦. We remark that this function
will not be linear on faces of P ◦.

In the remainder of this section we introduce the combinatorial framework used to describe
such polarisations in § 3.4. We begin by fixing functions over the two-dimensional faces of P ◦

and describe how these glue together along the edges of P ◦. To describe how functions on
two-dimensional faces are glued together we note that, fixing a face F ∈ Faces(P, 2), there is a
canonical matching (or multi-valued function) between the edges of any m ∈ D(F ) and the edges
of F (or, equivalently, of �(F �)F ). For example, the edges of a Minkowski summand of a lattice
hexagon are shown in Figure 3, together with the corresponding edges of the hexagon. We let
Edges(F,m) ⊆ Edges(F ) denote the subset of edges of F matched with some edge of m.

Fixing a two-dimensional face σ ∈ Faces(P ◦, 2) and an edge τ ∈ Edges(σ), we recall that
D(τ�) is a Minkowski decomposition of �(τ)τ� into polygons equivalent to standard triangles and
length-one line segments. This Minkowski decomposition induces a Minkowski decomposition of
the edge σ� of τ� into length-one line segments, an example of which is illustrated in Figure 4.
Indeed, each length-one segment of �(τ)σ� corresponds to a unique element m ∈ D(τ�) such that
σ� ∈ Edges(τ�,m). We define the multiset

S(σ, τ) := {m ∈ D(τ�) : σ� ∈ Edges(τ�,m)}

of summands of �(τ)τ� whose edges ‘contribute’ to �(τ)σ�; in the example shown in Figure 4,
S(σ, τ) is equal to D(τ�). Alternatively, let m be the lattice triangle shown in Figure 3, set
τ := F �, and let σ ∈ Faces(P ◦, 2) a face containing τ . The summand m is contained in S(σ, τ)
if and only if σ� is one the edges of F = τ� labelled 1, 2, or 3.

Since the size of the multiset S(σ, τ) is equal to the lattice length of the one-dimensional
polytope �(τ)σ�, we have the following lemma.
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Figure 4. A Minkowski decomposition induced on the edge �(τ)σ� of a polygon �(τ)τ�.

Lemma 2.5. Fix a four-dimensional s.d. polytope P and standard decomposition D. Given a

face σ ∈ Faces(P ◦, 2) and edge τ of σ, there is a bijection

{length-one segments of �(τ)σ�} ←→ S(σ, τ).

Moreover, such a bijection is fixed by an orientation of the edges of P ◦ and an ordering on D(τ�)
for each τ ∈ Edges(P ◦).

The main ingredient used to construct a polarisation in § 3.4 is a tuple (μσ : σ ∈ Faces(P ◦, 2))
of PL functions on the polygons �(σ�)σ which are strictly convex on a maximal triangulation;
that is, such that the domains of linearity of each function μσ coincide with the cells of a
maximal triangulation of �(σ�)σ. To describe how we glue these functions, let σ1 and σ2 be two-
dimensional faces of P ◦ which intersect in an edge τ ∈ Edges(P ◦). Let a1 and a2 be segments of
�(σ�

1)τ and �(σ�
2)τ , and recall that a1 and a2 are identified with elements of S(σ1, τ) and S(σ2, τ),

respectively. Both S(σ1, τ) and S(σ2, τ) are subsets of D(τ�) and we assume that both a1 and
a2 are identified with the same element in the intersection

S(σ1, τ) ∩ S(σ2, τ) ⊂ D(τ�).

In this case, a1 and a2 correspond to a single Minkowski summand m of τ� such that σ�
i ∈

Edges(τ�,m) for each i ∈ {1, 2}.

Definition 2.6. Fix a tuple (μσ : σ ∈ Faces(P ◦, 2)) of PL functions which, as above, are strictly
convex on a maximal triangulation of each polygon �(σ�)σ. Moreover, let σ1 and σ2 be two-
dimensional faces of P ◦ which intersect along an edge of P ◦ and let a1 and a2 be length-one
segments of �(σ�

1)τ and �(σ�
2)τ which are identified with the same element in S(σ1, τ) ∩ S(σ2, τ).

We say that the tuple (μσ : σ ∈ Faces(P ◦, 2)) is admissible if the slope of μσ1 along a1 coincides
with the slope of μσ2 along a2 for every possible choice of σ1, σ2, a1 and a2. If (P,D) admits an
admissible tuple of PL functions, we say that (P,D) is regular.

Example 2.7. Consider the polytope P9,9 described in Example 2.4. Every face of P ◦
9,9 is equiva-

lent to a standard triangle. Since every edge of P9,9 has lattice length three, �(σ�)σ is equivalent
to the dilate of a standard simplex by a factor of three for any σ ∈ Faces(P ◦, 2). We illustrate
a choice of piecewise linear function μσ on �(σ�)σ in Figure 5. The image on the left shows
the values of μσ on the lattice points of �(σ�)σ; the right-hand image shows the slopes of μσ

along the edges of �(σ�)σ. We note that, since the slopes of μσ are independent of the orienta-
tion of the edge, it follows immediately that these functions form an admissible collection, and
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Figure 5. Describing a piecewise linear function on �(σ�)σ.

Figure 6. Admissible (left) and non-admissible PL functions (right).

hence the pair (P9,9, D) (where D is the unique standard decomposition of P9,9, as described in
Example 2.4) is regular.

Example 2.8. In § 5.1 we give a detailed example of a pair (P,D) (in which P = P6,6, as defined
in Example 2.4) which is not regular. Generally, regularity fails because the conditions imposed
by admissibility on the PL functions (μσ : σ ∈ Faces(P ◦, 2)) force a function μσ to fail to be
strictly convex along an edge of σ. However, regularity can also fail in more subtle ways; for
example, Figure 6 shows a pair of PL functions on a lattice rectangle, described by their slopes
along edges. Both functions restrict to strictly convex functions on their boundary, but only
one extends to a piecewise linear function which is strictly convex with respect to a maximal
triangulation.

We present an algorithm to verify whether an admissible tuple of functions exists for a pair
(P,D), and include an implementation of this in Magma [BCP97] as supplementary material
[Pri19]. To describe this algorithm we introduce the notion of a slope function V for (P,D).
These functions determine the slopes of a PL function along the edges of P ◦.

Fix a four-dimensional reflexive polytope P and a standard decomposition D, as described
in Definition 2.2. Let V be a function taking each factor m in the multiset

∐
F∈Faces(P,2)

D(F )

to an element in Q. We call V a slope function for the pair (P,D). Observe that, having fixed
orientations for all the edges of P ◦, an admissible tuple of PL functions (μσ : σ ∈ Faces(P ◦, 2))
for (P,D) uniquely determines a slope function given by the slopes of the functions μσ along line
segments contained in the boundary of �(σ�)σ. Fixing an orientation of each two-dimensional
face σ of P ◦, we set sgn(σ, τ) := 1 if the orientation of τ� agrees with the clockwise ordering of
the edges of σ, and sgn(σ, τ) := −1 if not.
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Definition 2.9. We call a slope function consistent if, for each σ ∈ Faces(P ◦, 2), we have that∑
τ∈Edges(σ)

∑
m∈D(τ�)

σ�∈Edges(τ�,m)

sgn(σ, τ)V (m) = 0.

Definition 2.10. We call a slope function strictly convex if elements in the multiset {V (m) :
m ∈ D(F )} are pairwise distinct for any F ∈ Faces(P, 2).

We fix a two-dimensional face σ ∈ Faces(P ◦, 2), an edge τ ∈ Edges(σ), and let σ̄ and τ̄ denote
�(σ�)σ and �(σ�)τ , respectively. Given a consistent strictly convex slope function V , we now fix a
piecewise linear function ψ∂

σ on ∂σ̄ with slope equal to V (m), using the bijection between length-
one segments of τ̄ and S(σ, τ). Note that, appropriately ordering D(τ), (V (m) : m ∈ D(τ)) forms
a monotone increasing sequence and ψ∂

σ is convex on τ̄ for any τ ∈ Edges(σ). The piecewise linear
function ψ∂

σ determines a polyhedral decomposition T0(σ̄) of σ̄. Defining Γ to be the lower convex
hull of the set

{(x, ψ∂
σ(x)) : x ∈ ∂(σ̄)} ⊂ σ̄ ×R,

this decomposition is defined by the projection of the two-dimensional faces of Γ to the polygon σ̄.
We note that the decomposition T0(σ̄) is independent of the choice of ψ∂

σ (which is itself uniquely
determined by V up to a constant).

Following common terminology in polyhedral combinatorics (see, for example, [NZ11]), we
say a lattice polytope Q is empty if every integral point in Q is a vertex of Q. We say that Q is
hollow if no integral point of Q is contained in its (relative) interior.

Definition 2.11. We call a consistent strictly convex slope function V on (P,D) regular if,
for any σ ∈ Faces(P ◦, 2), every empty polygon in the polyhedral decomposition T0(σ̄) of σ̄ is
equivalent to a standard triangle.

Note that, for example, the slope function shown in the right-hand image in Figure 6 is
not regular: the decomposition illustrated is precisely T0(σ̄) and the decomposition contains an
empty lattice square. We now verify that the notions of regularity we have described for (P,D)
and for slope functions respectively are compatible.

Lemma 2.12. An admissible tuple of PL functions (μσ : σ ∈ Faces(P ◦, 2)) determines a strictly

convex regular slope function.

Proof. Given an admissible tuple of PL functions, the slopes along the edges define a consistent
and strictly convex slope function V . Suppose that V is not regular; that is, suppose there is a
face σ ∈ Faces(P ◦, 2) such that T0(σ̄) contains an empty polygon Q which is not equivalent to a
standard triangle. This polygon is a domain of linearity of any PL function on σ̄ whose domains
of linearity are lattice polygons and which extends the restriction of μσ to ∂σ̄. In particular, Q
is a domain of linearity for μσ, contradicting admissibility. �

Proposition 2.13. The pair (P,D) is regular if and only if there exists a consistent strictly

convex regular slope function V on (P,D).

Proof. Fix a strictly convex slope function V , a face σ ∈ Faces(P ◦, 2), and a function ψ∂
σ on ∂σ̄

as described above. Moreover, let Γ0 := Γ be the lower convex hull of the points

{(x, ψ∂
σ(x)) : x ∈ ∂(σ̄)}.
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Figure 7. Constructing a PL function on σ̄.

We note that Γ0 is the graph of a PL function on σ̄ determined, up to a constant, by V ; we let
ψ0

σ denote this PL function. Since V is strictly convex, ψ0
σ is strictly convex (in the sense that

this function is not linear in a neighbourhood of any lattice point) on each edge τ̄ of σ̄.
We iteratively modify ψ0

σ to define a PL function ψσ on σ̄ which extends ψ∂
σ and which

is strictly convex on a maximal triangulation. Note that if the relative interior of σ̄ does not
contain a lattice point, then we set ψσ := ψ0

σ and observe that regularity of V ensures that T0(σ̄)
is a maximal triangulation of σ̄. Otherwise, we fix a lattice point y in the relative interior of σ̄.
We define the polyhedral complex Γ1

η to be the lower convex hull of the points

{(x, ψ0
σ(x)) : x ∈ ∂(σ̄)} ∪ {(y, ψ0

σ(y)− η)},
where η is a positive rational number. The polyhedral decomposition of σ̄ determined by the
faces of Γ1

η is constant for sufficiently small values of η. Fixing such a value of η, we set ψ1
σ to be

the PL function with graph equal to Γ1
η. The polyhedral decomposition determined by faces Γ1

η

is a star subdivision at y of the triangulation induced by Γ0.
We repeat this procedure at each of the integral points y1, . . . , yn ∈ σ̄ contained in the relative

interior of σ̄. This produces a sequence of PL functions ψi
σ, and polyhedral decompositions Ti

of σ̄. We let ψσ := ψn
σ , and T := Tn denote the final elements in these sequences. It remains to

check that T corresponds to a maximal triangulation of σ̄. Let Q be a polygon contained in T .
By construction all integral points in σ̄ are vertices of the triangulation T , so Q is an empty
polygon. If Q is a face of T0(σ̄) then Q is a lattice triangle by hypothesis. Otherwise, Q is created
by a star subdivision and is hence a lattice triangle. It follows that the functions ψσ define an
admissible tuple; the converse follows immediately from Lemma 2.12. �

Example 2.14. The triangulation described in Figure 5 can be obtained using the construction
given in the proof of Proposition 2.13. In particular, we first fix a slope function V , as shown
in the right-hand image in Figure 5. The subdivision T0(σ̄) induced by this slope function is
shown in the left-hand image of Figure 7. We modify this triangulation by forming the star
subdivision at the (unique) interior vertex, from which we obtain the triangulation T as shown
in the right-hand image in Figure 7.

The condition that every empty polygon in T0(σ̄) is a standard triangle can only fail in a
small number of situations, which we now classify.

Proposition 2.15. Let T be a polyhedral decomposition of a polygon σ̄ such that the vertex

set of T is equal to the set of integral points in ∂σ̄. If T contains an empty polygon Q, and Q is
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Figure 8. Irregular strictly convex slope function.

not isomorphic to a standard simplex, then Q is equivalent to an empty lattice square and σ̄ is

hollow.

Proof. It is well known that the only empty polygons are those equivalent to the standard triangle
or to an empty lattice square. Let Q ⊂ R2 be an empty lattice square in T (after identifying σ̄
with a lattice polygon in R2) and, without loss of generality, assume that Q is the convex hull
of the points given by the columns of the matrix

0 1 1 0
0 0 1 1.

Suppose that there exists a point (a, b) ∈ σ̄ such that both a and b are negative. Thus we have that
(0, 0) lies in the interior of the convex hull of {(a, b), (0, 1), (1, 0)} ⊂ σ̄. However, we have assumed
that (0, 0) is contained in the boundary of σ̄, and hence no such point (a, b) exists. Repeating
this argument at the point (1, 1), σ̄ is contained in the union of [0, 1]×R and R× [0, 1] and thus
has no lattice points in its interior. �

It is well known that the only hollow polygons are equivalent either to the Cayley sum of two
line segments or to double the standard simplex. Thus the only possible cases in which regularity
may fail are as follows.

(i) If σ̄ is a Cayley sum of two line segments, a triangulation induced by a PL function contains
an empty square face if and only if length-one segments on opposite edges have the same
slope. In particular, note that �(σ�) = 1.

(ii) If σ̄ is a twice a standard triangle, a polyhedral decomposition contains an empty lattice
square if and only if, up to an affine linear transformation, this decomposition is as shown in
Figure 8, in which a, b and c denote the slopes along the edges they label and a+ b+ c = 0.
As above, we note that �(σ�) ∈ {1, 2}.

3. Smoothing the boundary of a reflexive polytope

3.1 A degenerate integral affine structure
The Gross–Siebert algorithm requires both discrete and algebraic input. The discrete data
consists of a triple (B,P, ϕ), where B is an integral affine manifold, P is a polyhedral decom-
position, and ϕ is a multi-valued piecewise linear function (see [GS06, Definition 1.45]). In this
section we show how to assign such discrete data to a four-dimensional s.d. polytope equipped
with choices of Minkowski decompositions of its two-dimensional faces. We also describe the
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algebraic input in § 3.4; in fact, using the main results of [GS06], we can explicitly describe the
possible space of such algebraic data.

Given a reflexive polytope P , and following Gross [Gro05, § 2], there is a construction of an
integral affine structure of on ∂P ◦ without any further input data (this uses the toric degeneration
of a general anti-canonical section of XP to the toric boundary of XP ). We follow the description
given in [Gro05, Definition 2.10].

Construction 3.1. Let Δc denote the union of (zero- and one-dimensional) cells of the first
barycentric subdivision of ∂P ◦ which are disjoint from the interior of each facet of P ◦ and
disjoint from the set of vertices of P ◦. We define an integral affine manifold with singularities
Bc by defining an integral affine structure on Bc \Δc as follows.

(i) For each facet ρ of P ◦, the affine structure on the interior of ρ is determined by the com-
position ρ ↪→ P ◦ ↪→ R4. Identifying the minimal affine linear space containing ρ with R3

identifies the interior of ρ with a domain in R3.
(ii) Given a vertex v of P ◦, let Wv denote the open star of v in the first barycentric subdivision

of ∂P ◦. We define the affine chart

pv : Wv →MR/〈v〉

by projection.

The singular locus of this affine structure is a graph, with vertices located at the barycentres
of the two-dimensional faces and edges of P ◦. Loops around the edges of Δ determine monodromy
operators for this integral affine structure. This monodromy was computed in this case in [Gro05,
Proposition 2.13], and similar calculations have been made by Ruan [Rua07] and Haase and
Zarkov [HZ05].

Fix vertices v and v′ of P ◦ contained in facets ρ1 and ρ2. Choose a loop γ based at v1 which
passes successively into the interior of ρ1, though v2, the interior of ρ2, and back to v1. The
monodromy of the affine structure around γ is given by the linear map

Tγ(m) = m+ 〈n2 − n1,m〉(v1 − v2),

where n1 and n2 are the lattice points at vertices dual to the facets ρ1 and ρ2, respectively.
In particular, assuming that v1 and v2 are contained in an edge τ of a two-dimensional face
σ = ρ1 ∩ ρ2 ⊂ P ◦, the map Tγ(m) is given by the matrix

⎛
⎝1 0 �(σ�)�(τ)

0 1 0
0 0 1

⎞
⎠

in suitable coordinates. In [GS06, GS11], Gross and Siebert show how to form a toric log
Calabi–Yau space from an integral affine manifold with simple singularities (and additional data).
The general definition of simplicity for the singular locus of an affine structure is given in [GS06,
Definition 1.60]. The restriction to the case dimB = 3 is described in detail in [GS06, Example
1.62] and we recall the main points of this description. We first fix an integral affine manifold
B and polyhedral decomposition P, recalling that polyhedral decompositions of integral affine
manifolds with singularities are carefully defined in [GS06, Definition 1.22].
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Lemma 3.2 [GS06, Example 1.62]. If B is a three-dimensional integral affine manifold with

simple singularities, then the singular locus Δ of B satisfies the following conditions.

(i) The discriminant locus Δ is a trivalent graph contained in B and such that every vertex is

contained in a cell τ of dimension one or two.

(ii) Loops passing singly around a segment of the discriminant locus induce monodromy

operators on the tangent spaces of B. In a suitable basis, these operators are given

by the matrix

Tg :=

⎛
⎝1 0 1

0 1 0
0 0 1

⎞
⎠ .

(iii) If v is a vertex of Δ contained in an edge, the monodromy matrices induced by loops passing

singly around edges of Δ containing v are simultaneously congruent to the matrices

T1 :=

⎛
⎝1 1 0

0 1 0
0 0 1

⎞
⎠ , T2 :=

⎛
⎝1 0 1

0 1 0
0 0 1

⎞
⎠ , T3 :=

⎛
⎝1 −1 −1

0 1 0
0 0 1

⎞
⎠ . (1)

(iv) If v is a vertex of Δ not contained in an edge, the monodromy matrices induced by loops

passing singly around edges of Δ containing v are simultaneously congruent to the inverse

transposes of the matrices appearing in (1).

Remark 3.3. Vertices of Δ described by item (iii) (respectively, item (iv)) are called positive
(respectively, negative) points of Δ. The names (due to Morrison [Gro01a, footnote on p. 18])
come from the fact that the total spaces of the topological torus fibrations constructed by Gross
over neighbourhoods of these points have Euler numbers +1 and −1, respectively. We refer to
§ 4 (and particularly Remark 4.2) for further details and references.

Fixing a four-dimensional reflexive polytope P , the integral affine manifold Bc does not
generally have simple singularities for any choice of polyhedral decomposition. Indeed, Δc is
not usually trivalent and the monodromy operators around segments of Δc are not usually of
the correct form. In [Gro05, HZ05] the authors construct an affine manifold related to Bc from
triangulations of both ∂P and ∂P ◦. Central to the proof of Theorem 1.1 is the construction of
an alternative perturbation of Δc, in the case where P is an s.d. polytope.

3.2 Constructing a polarisation
We construct a convex PL function ϕr on ∂P ◦, and use its domains of linearity to define a
polyhedral decomposition P. Later, we fix fan structures (see [GS11, Definition 1.1]) at each
vertex of this decomposition to define an integral affine structure. The function ϕr (the super-
script r denotes refined, in contrast to the superscript c in Bc which denotes coarse) determines
a polarisation on this tropical manifold.

Fix an s.d. polytope P and a standard decomposition D, as introduced in Definition 2.2,
such that (P,D) is regular. Let (μσ : σ ∈ Faces(P ◦, 2)) denote a tuple of admissible functions for
the pair (P,D). Moreover, let ϕc be the unique piecewise linear function on MR which evaluates
to 1 at each vertex of P ◦. We define

ϕr := ϕc + εψ,
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where ε ∈ Q>0 is a small rational value (the precise value of ε is unimportant as the domains
of linearity of ϕr are constant for all sufficiently small values). We produce the piecewise linear
(not necessarily convex) ψ function on ∂P ◦ over the next three constructions.

Construction 3.4. Fixing an edge τ ∈ Edges(P ◦), we describe ψ|τ . Let V denote the slope func-
tion corresponding to (μσ : σ ∈ Faces(P ◦, 2)); see Lemma 2.12. We fix orientations for the edges
and two-dimensional faces of P ◦ and order D(F ) so that {V (m) : m ∈ D(F )} is a monotone
increasing sequence.

We subdivide τ into |D(τ�)|+ 2 intervals with rational endpoints. The ordering of D(τ�) and
orientation of τ determine a bijection between the |D(τ�)| rational intervals that do not contain
a vertex of τ , and D(τ�). Let ψ|τ be linear on each segment, with slope V (m) along the segment
corresponding to m ∈ D(τ�). We insist that ψ(v) = 0 at each vertex v of τ ; in particular, ψ|τ is a
non-positive function. These conditions uniquely determine ψ|τ up to a constant (which is fixed
by the value of ψ|τ (x) for any x in the relative interior of τ). We fix this parameter arbitrarily
among values for which ψ|τ is strictly convex.

Construction 3.5. Fixing a two-dimensional face σ ∈ Faces(P ◦, 2), we describe ψ|σ. To this end,
we choose an embedding j : σ̄ → σ, where σ̄ := �(σ�)σ. Specifically, we let j be a composition of
a rational scaling and translation of σ̄ into the relative interior of σ. We let σ′ denote the image
j(σ̄) ⊂ σ. Recall that, fixing an edge τ of σ,

S(σ, τ) = {m ∈ D(τ�) : σ� ∈ Edges(τ�,m)}
is in canonical bijection with the set of (lattice length one) segments of τ̄ = �(σ�)τ by Lemma 2.5.
For each x ∈ σ′, we let ψ(x) be μσ(j−1(x))−K, for a fixed large positive integer K.

We have defined ψ over ∂σ and over σ′ ⊂ σ. To extend ψ between ∂σ and ∂σ′ we take ψ|σ
to be the unique PL function with graph equal to the lower convex hull of the points

{(x, ψ(x)) : x ∈ σ′ ∪ ∂σ}.
Since the slopes of the given segments of τ which do not contain a vertex agree with slopes on
segments of σ′, the function ψ|σ is linear on a number of trapezia between ∂σ and σ′.

Construction 3.6. To complete the construction of ψ, we extend ψ across the facets of P ◦. Fixing
a facet ρ of P ◦, we extend ψ arbitrarily across ρ subject to the conditions that the domains of
linearity are either simplices or polyhedral cones over a trapezium in a two-dimensional face,
and that ψ|ρ is convex. For example, fixing a sufficiently negative value for ψ(bρ), where bρ is
the barycentre of the facet ρ, we can define ψ|ρ to be the PL function whose graph is given by
the lower convex hull of the points

{(bρ, ψ(bρ))} ∪
⋃

σ∈Faces(ρ,2)

{(x, ψ(x)) : x ∈ σ}. (2)

In particular, we may assume that the induced polyhedral decomposition of ρ is a star subdivision
(or the result of repeated star subdivisions) of ρ.

Remark 3.7. The above constructions provide a convex PL function ϕr on P ◦, and we may define
a polyhedral decomposition P of P ◦ via the domains of linearity of ϕr. Moreover, scaling ϕr

appropriately, we may assume that ϕr is integral on the vertex set of P.
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Figure 9. Extending the PL function μσ ◦ j−1 to a two-dimensional face σ of P ◦.

Example 3.8. Considering the polytope P9,9, we note that the polytope P ◦
9,9 can be described

as the convex hull of ray generators of the fan determined by P2 ×P2. We fix ϕc, a convex PL
function which evaluates to 1 at each of these ray generators, representing the anti-canonical
divisor of P2 ×P2 under the usual correspondence between PL functions on a fan and Cartier
divisors.

We also fix the admissible tuple of functions (μσ : σ ∈ Faces(P, 2)) described in Example 2.7.
Following Construction 3.4, we fix four rational points on each edge τ of σ, dividing τ into five
segments, and fix a PL function which has slopes −2, 0, and 2 along the second, third, and
fourth segments of τ , respectively; see Figure 9. Note that in Construction 3.4 we require that
ψ|τ (v) = 0 for each vertex v of τ ; to simplify notation, and to give compatibility with Figure 5,
Figure 9 shows ψ|σ + 11, rather than ψ|σ.

We fix an embedding j of �(σ�)σ into σ, and use μσ to define a PL function on σ′ which
extends over σ, as described in Construction 3.5. We illustrate the function μσ ◦ j−1, and its
extension to σ in Figure 9, in which σ′ is shaded.

We now extend ψ over facets ρ of P ◦. For example, let bρ denote the barycentre of ρ and
fix a value of ψ(bρ) ∈ Z less than −12. We may then take ψ|ρ to be the PL function with graph
equal to the lower convex hull of the set given in (2).

3.3 Tropical manifolds via fan structures
We now define an integral affine structure B, such that the pair (B,P) has simple singularities
along its discriminant locus Δ. Following the description of such structures used in [GS11], we
define the integral affine structure B via fan structures [GS11, Definition 1.2]. We recall that a
fan structure consists of maps from the open stars of the faces of P to Rk (where k denotes the
codimension of the face), together with certain compatibility conditions. We define fan structures
at the vertices of P ◦, and iteratively extend them over the vertices of P. In what follows we let
ξτ denote the minimal face of P ◦ which contains a face τ of P.

Construction 3.9. First, if v = v′ = v̄ ∈ Verts(P ◦), we define a fan structure via the projection
πv : MR →MR/〈v〉 ∼= R3, as in Construction 3.1. Cones in this fan structure are given by the
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images of cells in P. Similarly, if v is contained in the relative interior of a facet of P ◦ the fan
structure is determined by the embedding of this facet in R4. We now inductively extend these
fan structures to other vertices of P.

To define the remaining fan structures we assume that we have defined a fan structure at a
vertex v of P and that τ ∈ Edges(P) has vertices {v, v′} ∈ Verts(P). Let v̄ ∈ Verts(P ◦) be a
vertex of ξτ . We also assume that the fan structure πv on the open star of v ∈ Verts(P) is given
by a composition T ◦ πv̄ for a piecewise linear map T (defined on R3) and that ξv ⊆ ξv′ .

(i) If τ ⊂ σ′ for some σ ∈ Faces(P ◦, 2), v = j(v1) and v′ = j(v2) for some vertices v1 and v2 of
σ̄. We set πv′ = T ◦ πv where

T (x) := x+ min{0, 〈x, u〉}πv(v1 − v2).
(ii) If τ ⊂ τ ′ for some τ ′ ∈ Edges(P ◦), and τ is a segment of τ ′ which corresponds to a summand

m ∈ D(τ ′�), we set πv′ = T ◦ πv where

T (x) := x+ min
w∈Verts(m)

{〈x,w〉}πv(dτ ′),

in which dτ ′ is the primitive direction vector along τ ′ pointing from v to v′.
(iii) In any other case, the fan structure at v′ is given by applying πv to the open star of v′.

In all cases the cones of the fan structure are given by the images of cells in P. Note that
there are various sign choices involved: the choice of orientation of two-dimensional faces and
edges; however, different choices yield equivalent choices of fan structure (choices which differ by
a linear function). We let B(P,D) denote the integral affine manifold with singularities defined
by these fan structures.

As defined, the discriminant locus of B(P,D) is not a trivalent graph. However, following
[GS06, Proposition 1.27] (see also [Gro05, § 4]) we may extend the affine structure over any
branch of the discriminant locus around which monodromy of the lattice Λ is trivial. Comparing
the monodromies around loops of the affine structure defined in Construction 3.9 with those
described in Lemma 3.2, we have the following result.

Proposition 3.10. Extending the affine structure of B(P,D) over the complement of the

minimal discriminant locus defines an integral affine manifold with simple singularities.

Example 3.11. We describe the (minimal) discriminant locus obtained by applying Construc-
tion 3.9 to Example 3.8 (that is, to P9,9 with its unique standard decomposition D). As indicated
in Figure 10, there is non-trivial monodromy around any segment of Δ which intersects an edge
of σ′ = j(σ̄) ⊂ σ. Moreover, since the domains of linearity of μσ define a maximal triangulation
of σ̄ = �(σ�)σ,Δ ∩ σ′ is a trivalent graph and each trivalent point defines a negative vertex (see
Remark 3.3).

We recall from Example 2.4 that P9,9 contains six triangular faces. Fixing an edge τ ∈
Edges(P ◦

9,9) dual to one of these six faces, Figure 11 illustrates the intersection of segments of Δ
and τ . Each of the trivalent points shown in Figure 11 is a positive vertex of Δ.

Remark 3.12. Note that, replacing the lattice Z3 ⊂ R3 in each integral affine chart on B by the
lattice (1/n)Z3 for sufficiently divisible n, we can assume that the vertices P are lattice points,
and (following Remark 3.7) that ϕr is integral on this vertex set. This ensures that P is a
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Figure 10. The discriminant locus in a two-dimensional face σ ∈ Faces(P ◦
9,9, 2).

Figure 11. The discriminant locus along an edge τ of P ◦
9,9.

polyhedral decomposition as defined in [GS06, Definition 1.22] and ϕ is an integral PL function
[GS06, Definition 1.47].

The function ϕr provides local representatives for a strictly convex multi-valued PL function
ϕ on B. Indeed, this follows immediately from the linearity of ϕr on each cell of P (see, for
example, [Gro05, Definition 2.14]).

We next explain how to incorporate the algebraic data required to apply the Gross–Siebert
reconstruction algorithm [GS11, Theorem 1.30] into this construction, from which we deduce the
existence of a Calabi–Yau threefold X obtained as a smoothing.

3.4 Proof of main result
We recall the statement of our main result concerning the construction of smooth Calabi–Yau
threefolds from toric hypersurfaces.
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Theorem 3.13. Let (P,D) be a pair consisting of a four-dimensional s.d. polytope P , and

a standard decomposition D. The pair (P,D) determines a locally rigid, positive, toric log

Calabi–Yau space X0(P,D). Moreover, the toric log Calabi–Yau space X0(P,D) admits a

polarisation if (P,D) is regular.

This result now follows directly from the results and constructions of [GS11], applied to the
polarised tropical manifold (B,P, ϕ).

Proof of Theorem 1.1. As explained in §§ 3.2 and 3.3, we can construct a polarised tropical man-
ifold (B,P, ϕ) from the pair (P,D). Following [GS11, § 1.2] we can form the underlying variety
of a toric log Calabi–Yau space X0(B,P, s) once we have fixed open gluing data s. It suffices for
our purposes to suppress the choice of open gluing data: in the terminology of [GS11], we choose
open gluing data cohomologous to zero (sometimes called vanilla gluing data).

We now need to fix a log structure on X0(B,P, s). This is determined by sections of a sheaf

LS+
pre,X

∼=
⊕

ρ∈Faces(P,2)

Nρ,

where the sheaves Nρ are certain line bundles on toric strata determined by (B,P, s), such
that

(i) the zero locus of the section contains no toric stratum of X0(B,P, s) and
(ii) the section satisfies the compatibility condition [GS11, (1.8)].

Locally, either each two-dimensional toric stratum Xρ of X0(B,P, s) is isomorphic to P2 (and
corresponds to a triangle in a maximal triangulation of σ̄ for some σ ∈ Faces(P ◦, 2)), in which
case Nρ is OP2(1); or Xρ has a map to P1, in which case Nρ is the line bundle associated to a
fibre of this map.

Since B is positive and simple, we can apply the main results of [GS06]. Indeed, by [GS06,
Theorem 5.2], there is a unique normalised section of the bundle LS+

pre,X which induces a log
Calabi–Yau structure on X0(B,P, s). If we allow s to vary, sections of LS+

pre,X which determine
a toric log Calabi–Yau space are in bijection with H1(B, ι�Λ̆⊗Z k

�) by [GS06, Theorem 5.4]. We
compute this dimension using topological methods in § 4.

Finally, we need to verify that this log structure is locally rigid [GS11, Definition 1.26].
However, by [GS11, Remark 1.29], this follows immediately from the simplicity of the pair (B,P).
Hence we may apply [GS11, Theorem 1.30] to obtain a family which smooths X0(B,P, s).
It follows from [GS10, Proposition 2.2] (see also [GS10, p.44]) that the general fibre of such
an family has at worst codimension-four singularities, and is thus smooth if X0(B,P, s) is
three-dimensional. �

Remark 3.14. We note that whileX0(P,D) may not be projective, the obstruction to projectivity
described in [GS06, Theorem 2.34] vanishes if the gluing data s is a coboundary. Hence, as the
homeomorphism type of X0(P,D) is not affected by s, h2(X0(P,D),Q) ≥ 1; we make use of this
fact in § 4.
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4. Topological analysis

Throughout this section we fix an s.d. polytope P and standard decomposition D. In § 3.4 we
have shown how to construct a Gross–Siebert smoothing from (P,D). In a slightly different
direction, given a three-dimensional affine manifold B with simple singularities, one can form
a topological space X(B) introduced by Gross in [Gro01b, Gro01c]. This provides an explicit
topological model of the Gross–Siebert smoothing. In this section we analyse the topological
model, which we denote by X(P,D) or (when there is no ambiguity) by X, associated to the
affine manifold with singularities B := B(P,D), as described in § 3.3.

As described in the introduction, it is still conjectural that the topological model X(P,D) is
homeomorphic to the general fibre of the corresponding Gross–Siebert smoothing, as stated in
[Gro05, Theorem 0.1]. Progress in understanding the structure of the Kato–Nakayama space of
the Gross–Siebert smoothing (which is itself a topological space with a similar structure to the
topological model X(P,D)) has been made by Argüz in [Arg16]. Ruddat and Zharkov have also
recently announced a proof of this conjecture [RZ20] in general (including in dimensions higher
than three).

4.1 Topological semi-stable torus fibrations
The space X(P,D) is constructed by compactifying the total space of a canonical torus fibration
over the smooth locus of B = B(P,D). Specifically, given a three-dimensional integral affine
manifoldB with simple singularities along Δ, there is a natural torus fibration f0 : T �B0/Λ̆→ B0,
where Λ̆ is the lattice of integral covectors andB0 := B \Δ. Following Gross [Gro01a, Gro01c], we
compactify this torus fibration using local models called generic, positive, and negative fibrations
(these fibrations are called type I, II, and III in the related work of Ruan [Rua07]). Summaries
of these compactifications can also be found in [ABCD+09, Chapter 6] and in [CM09, § 2]. We
give the statement of a theorem summarising the output of this compactification and give a brief
topological description of each fibre. Note that the positive and negative fibrations compactify
the torus fibration f0 over trivalent points of Δ. In particular, the set of trivalent points of Δ is
necessarily partitioned into two sets, matching the partition described in Remark 3.3.

Theorem 4.1 [Gro01c, Theorem 2.1]. Let B be a 3-manifold and let B0 ⊂ B be a dense open

set such that Δ := B \B0 is a trivalent graph. Assume that the set of vertices of Δ is partitioned

into sets Δ+ of positive and Δ− of negative vertices. Suppose there is a T 3 bundle f0 : X(B0)→ B0

such that the local monodromy of f0 is generated, in a suitable basis, by:

(i) the matrix Tg, as defined in § 3.1, when x ∈ Δ is not a trivalent point;

(ii) the matrices Ti for i ∈ {1, 2, 3} appearing in (1) when x ∈ Δ+;

(iii) the inverse transposes of the matrices Ti, for i ∈ {1, 2, 3}, when x ∈ Δ−.

There is a T 3 fibration f : X → B and the following commutative diagram.

X(B0)

f0

��

� � �� X

f

��
B0

� � �� B
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Over connected components of Δ \ (Δ+ ∪Δ−), (X, f,B) is conjugate to the generic singular

fibration, over points of Δ+ it is conjugate to the positive fibration, and over points of Δ− to

the negative fibration.

Remark 4.2. We describe the topology of each type of singular fibre of f : X(B)→ B, following
[Gro01c, Examples 2.6 and 2.10].

(i) Given a point b ∈ Δ which is not trivalent, the fibre of f : X(B)→ B over b is equal to the
product of a pinched torus with S1.

(ii) Given a point in b ∈ Δ+, f
−1(b) is homeomorphic to a T 3 in which a T 2 has been contracted.

Equivalently, following [Rua07], f−1(b) is the suspension of T 2 with the two poles identified.
(iii) Given a point b ∈ Δ−, and writing T 2 as a quotient of [0, 1]× [0, 1], f−1(b) admits a map to

T 2, defining a circle bundle over (0, 1)× (0, 1) and a one-to-one map over boundary points.

Notation 4.3. Given an integral affine manifold B with simple singularities and singular locus
Δ, we let f : X(B)→ B denote the result of applying Theorem 4.1 to the map f0 : T �B0/Λ̆→
B0, where B0 := B \Δ. In the case where B = B(P,D), we let X(P,D) denote the space
X(B(P,D)).

Following [CM09], we call maps obtained via Theorem 4.1 topological semi-stable compact-
ifications of torus fibrations. The following well-known observation (see Remark 3.3), while
straightforward, is fundamental to topological calculations on X.

Lemma 4.4. Given a topological semi-stable torus fibration f : X → B, the Euler number of X

is equal to the difference between the number of positive and negative vertices.

Proof. It follows from the topological descriptions of the fibres given in Remark 4.2 that the only
fibres which have non-zero Euler number are the fibres over positive and negative vertices; these
fibres have Euler number +1 and −1, respectively. �

We recall some additional results on the topology of the total spaces of topological semi-stable
torus fibrations from [Gro01c, § 2].

Proposition 4.5 [Gro01c, Proposition 2.13]. Given a topological semi-stable torus fibration

f : X → B such that B is homeomorphic to S3, the second Steifel–Whitney class of X vanishes.

That is, X is a spin 6-manifold.

Fixing a topological semi-stable torus fibration f : X → B, we will make considerable use
of the critical locus Crit(f) ⊂ X which, following [Gro01c, Definition 2.14], is a union of (real)
surfaces meeting in finite sets of points. Note that the image of these real surfaces under f is
precisely the discriminant locus Δ. Over non-trivalent points of Δ, the critical locus Crit(f)
restricts to a circle. This circle degenerates to a point over a positive vertex, and degenerates to
the wedge union of two circles over a negative vertex.

Proposition 4.6 [Gro01c, Proposition 2.17 (2)]. Given a topological semi-stable torus fibra-

tion f : X → B such that B is homeomorphic to S3, the first Pontryagin class p1(X) =
−2 Crit(f) ∈ H4(X,Q).

1461

https://doi.org/10.1112/S0010437X21007132 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007132


T. Prince

We recall from [Gro01c, Theorem 0.1] that topological semi-simple torus fibrations admit
dual fibrations. In particular, fix an integral affine manifold B with simple singularities and let
f̆0 : TB0/Λ→ B0 denote the dual fibration to T �B0/Λ̆→ B0. The map f̆0 satisfies the conditions
of Theorem 4.1, and hence admits a topological semi-stable compactification; we let f̆ : X̆(B)→
B denote this (compactified) fibration.

We also recall the following result of [Gro01b], which allows us to describe cohomology groups
of X in terms of sheaf cohomology groups on B.

Proposition 4.7 (See [Gro01b, Lemma 2.4], [ABCD+09, Theorem 6.103]). Let B be an inte-

gral affine manifold with simple singularities. We assume that H0(B,R3f�Q) ∼= Q, and the

fundamental groups of the spaces X(B) and X̆(B) are finite. Under these hypotheses, the

Leray spectral sequence H i(X(B), Rjf�Q)⇒ H i+j(X(B),Q) degenerates at the E2 page.

Consequently, we have that

b2(X(B)) = h1(B, ι�Λ⊗Z Q),

b3(X(B)) = 2h1(B, ι�Λ̆⊗Z Q) + 2,

where ι denotes the inclusion of B0 = B \Δ into B.

Proof. This result follows immediately from [ABCD+09, Theorem 6.103]. The assumptions in
[ABCD+09, Theorem 6.103] are that B has holonomy in R3

� SL3(Z) and that H1(X(B),Q) =
H1(X̆(B),Q) = 0. Since B has simple singularities, R3f�Q ∼=

∧3 ι�Λ⊗Z Q, where ι denotes the
inclusion B \Δ ↪→ B. This sheaf has a non-zero global section if and only if the holonomy of
B is contained in R3

� SL3(Z). The finiteness of π1(X(B)) and π1(X̆(B)) ensures that the first
Betti numbers of X(B) and X̆(B) vanish. �

An important application of Proposition 4.7 is that, in this three-dimensional setting, we can
ensure the Betti numbers of the 6-manifold X(P,D) agree with those of the general fibre of the
Gross–Siebert smoothing.

Theorem 4.8 (See Theorem 1.4). Fix a triple (B,P, ϕ) describing the discrete data for the

Gross–Siebert algorithm, so that there exists a positive pre-polarised locally rigid toric log

Calabi–Yau space X0(B,P, s). Moreover, assume that H0(B,R3f�Q) ∼= Q, and that the groups

π1(X(B)) and π1(X̆(B)) are finite. Under these hypotheses the Betti numbers bi(X(B)) of

Gross’s topological model agree with the Betti numbers of the general fibre of a Gross–Siebert

smoothing of X0(B,P, s).

Proof. By Proposition 4.7, the Leray spectral sequence associated to the map f : X(B)→ B

degenerates at the E2 page. Hence the Betti numbers of X(B) determine the affine Hodge
numbers hi(B,

∧j Λ⊗Z Q). Moreover, as explained in [GS10, Remark 4.3], it follows from [GS10,
Corollary 3.24 and Theorem 4.1] (see also [Rud10]) that the Hodge numbers of the Gross–Siebert
smoothing are equal to the affine Hodge numbers. Note that this relies on conditions on the
pair (B,P) specified in [GS10, Theorem 3.21] which are stronger than simplicity of (B,P)
(see [GS06, Definition 1.60]). However, since B is three-dimensional, these additional conditions
are automatically satisfied (since the classes of elementary and standard simplices coincide in
dimensions less than three). �
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We now turn to an analysis of the topology of the fibration f : X(B)→ B in the special
case where B is equal to B(P,D) and X(B) is equal to X(P,D) for some s.d. polytope P and
standard decomposition D. We first note that the topological Euler number can be deduced from
the structure of topological semi-stable compactifications.

Proposition 4.9. The topological Euler number of X(P,D) is given by the formula

χ(X(P,D)) =
∑

τ∈Edges(P ◦)

(
#{m ∈ D(τ�) : dim(m) = 2})− ∑

σ∈Faces(P ◦,2)

(
�(σ�)2 Vol(σ)

)
,

where Vol(A) is the volume of the polygon A, normalised so that the volume of a standard

simplex is equal to 1.

Proof. By Lemma 4.4, χ(X) is equal to the difference between the number of positive and
negative vertices in B. Positive vertices occur precisely where three segments of Δ meet at a
point contained in an edge of P ◦. Such points are in bijection with triangles appearing in D.
Negative vertices are trivalent points of Δ contained in the relative interior of a two-dimensional
face of P ◦. Fixing a face σ ∈ Faces(P ◦, 2), negative vertices in σ are in bijection with the triangles
in a maximal triangulation of �(σ�)σ. This is precisely Vol(�(σ�)σ) = �(σ�)2 Vol(σ); from which
the result follows. �

We now show that the fundamental group of the spaces X(P,D) and X̆(P,D) is finite and
abelian. While we do not compute these more explicitly here, we give a more detailed account
of these groups in Appendix A. In particular, we make a comparison between the fundamental
group of X(P,D) and the fundamental group of the Calabi–Yau toric hypersurfaces obtained
via Batyrev’s construction, as studied by Batyrev and Kreuzer in [BK06].

Lemma 4.10. Fixing an s.d. polytope P and standard decompositionD, the fundamental groups

of the 6-manifolds X(P,D) and X̆(P,D) are finite and abelian.

Proof. We begin by quoting the beginning of the proof of [Gro01c, Theorem 2.12], setting X :=
X(P,D).

Letting μ : X̃ → X be the universal cover of X, and define B̃ = X̃/ ∼ where x ∼ y if
f(μ(x)) = f(μ(y)) = b and x and y are in the same connected component of (f ◦ μ)−1(b). Then

f ◦ μ factors as X̃
f̃→ B̃

γ→ B.
The proof of [Gro01c, Theorem 2.12] then proves the claim that γ : B̃ → B is a covering and

thus, since B is simply connected, γ is an isomorphism. We note that the hypotheses of [Gro01c,
Theorem 2.12] include the requirement that H0(B,R1f�Zn) = {0} for all n ∈ Z>1; however, this
condition is not used until after the proof of the above claim.

Gross concludes that π1(X) is the Galois group of the covering X̃b → Xb for a non-singular
fibre Xb. Thus π1(X) is an abelian group and, since X is homotopy equivalent to a finite CW
complex, π1(X) is finitely generated. Thus π1(X) is finite if Hom(π1(X),Z) = H1(X,Z) vanishes.
Moreover, using the Leray spectral sequence for f , this follows if H0(B,R1f�Z) vanishes.

To verify that H0(B,R1f�Z) vanishes, we fix a vertex v of P ◦. We fix loops, based at v,
which pass singly around each segment of Δ which intersects an edge τ of P ◦ such that v ⊂ τ . An
element of H0(B,R1f�Z) restricts over the stalk of R1f�Z at v to an element in H1(Xv,Z) which
is monodromy invariant around each of these loops. However, the intersection of the monodromy
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invariant planes obtained from loops around segments which intersect a fixed edge τ is equal
to the subspace of H1(Xv,Z) generated by the tangent direction to τ (recalling that TvB is
canonically identified with H1(Xv,R)). Varying τ , we see that the only element of H1(Xv,Z)
invariant under all the given loops is zero. Replacing f by f̆ , we see that H0(B,R1f̆�Z) is zero
similarly, in this case fixing a base point in a facet of P ◦ and considering loops around segments
of B contained in the two-dimensional faces of this facet. �

Remark 4.11. To prove Theorem 1.4, we must verify that the spaceX(P,D) satisfies the hypothe-
ses of Theorem 4.8. In particular, we must show that the fundamental group of X(P,D) is finite
and that H0(B,R3f�Q) ∼= Q. The first condition is verified in Lemma 4.10, while the second
follows directly from the observation that the restriction of any of the PL maps T defined in
Construction 3.9 to any domain of linearity is orientation preserving.

4.2 Computing b2(X(P, D))
We now consider the computation of the second Betti number of X := X(P,D). This is closely
related to the value γ(P,D); see Definition 4.24.

Theorem 4.12. The second Betti number of X is equal to γ(P,D)− 3.

Remark 4.13. Assuming that X is homotopy equivalent to a Calabi–Yau threefold X, the Picard
rank of X is equal to b2(X). Indeed, it follows immediately from the exponential sequence for X
that the first Chern class Pic(X)→ H2(X,Z) is an isomorphism.

The proof of Theorem 4.12 makes use of a contraction map ξ̄ : X → X0 (recalling that X0 =
X0(P,D) is the toric log Calabi–Yau space obtained from (P,D)). We define the map ξ̄ locally;
and show that the map f factors as π ◦ ξ̄, where π : X0 → B restricts to the moment map on
each toric stratum of X0.

Construction 4.14. Given a point b ∈ B0 = B \Δ such that the minimal stratum σ of P con-
taining b has dimension d, the fibre f−1(b) is equal to T �

b B/Λ̆. There is a canonical inclusion
Tbσ → TbB, inducing a projection T �

b B → T �
b σ. This projection descends to f−1(b), and maps

f−1(b) to a possibly lower-dimensional torus, the quotient of T �
b σ by the restriction of Λ̆. This

determines a map

ξ̄0 : f−1(B0)→ X0(B)

which we now compactify over Δ. Indeed, given a point b′ ∈ Δ, every vanishing cycle of the fibre
f−1(b′) is contained in the kernel of the projection T �

b B → T �
b σ, where b is a general point of B0

close to b′. Thus we can extend ξ̄0 over Δ (we note that this can be realised explicitly by defining
torus actions on the fibres of f , following [Gro01c]).

We describe the possible fibres of ξ̄ over points in X0.

(i) If x ∈ X0 and x /∈ ξ̄(Crit(f)), then ξ̄−1(x) is a torus of dimension 3− d, where d is the
dimension of the minimal stratum of P containing x.

(ii) If x ∈ ξ̄(Crit(f)) and x /∈ Xτ for any edge τ of P, then ξ̄−1(x) is a point.
(iii) If x ∈ ξ̄(Crit(f)) and x ∈ Xτ for some edge τ of P, then ξ̄−1(x) is a point if π(x) is a

positive vertex, while ξ̄−1(x) ∼= S1 if π(x) is not a trivalent point of Δ.
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We compute the Betti numbers of X from a Leray spectral sequence. However, rather than
directly applying the Leray spectral sequence associated to ξ̄, we first compose it with a further
contraction map.

Construction 4.15. Let P ′ be a refinement of P to a simplicial complex such that the vertex set
of P ′ is identical to the vertex set of P. Such a refinement is uniquely determined by a choice
of diagonal in each trapezoid face of P. Let X ′

0 denote the corresponding (reducible) union of
toric varieties and let η : X0 → X ′

0 be the corresponding contraction map. Outside of the strata
of X ′

0 which correspond to new faces of P ′, the map η is a homeomorphism. Over a point x
in the relative interior of a new stratum, η−1(x) ∼= S1. We let ξ denote the composition η ◦ ξ̄.
Let C ∼= S2 denote the restriction of ξ̄(Crit(f)) toXσ, where σ is a trapezoid face of P subdivided
in P ′ into faces σ1 and σ2. The image η(C) is also a sphere, which intersects each of Xσ1 and
Xσ2 in a disc.

Let τ be an edge of P ′ which is not an edge of P, and let σ1 and σ2 be the new two-
dimensional faces of P ′ containing τ . If x /∈ ξ(Crit(f)) then (as in our analysis of the map ξ)
the fibres of ξ−1(x) are tori of dimension 3− d, where d is the dimension of the minimal stratum
of P containing x. Letting

D1 := ξ(Crit(f)) ∩Xσ1 ,

we have that ξ−1(x) is a pinched torus if x is contained in Xτ ∩D1, while ξ−1(x) is a point if x
is contained in (Xσ1 \Xτ ) ∩D1.

We analyse the Leray spectral sequence H i(X ′
0, R

jξ�Q)⇒ H i+j(X,Q) for the map ξ. We
first describe the groups in low degree on the E2 page. To do so, we introduce maps ik for
k ∈ {1, 2, 3}, generalising the maps appearing in the proof of [Gro01c, Theorem 4.1]. Letting Fk

denote the union of toric codimension-k strata of X ′
0, we let ik, for k ∈ {0, . . . , 3}, denote the

canonical inclusion of Fk \ Fk+1 into X ′
0. Note that connected components of the domain are

indexed by two-dimensional faces of P ◦.

Lemma 4.16. We have that

H i(X ′
0, ξ�Q) =

⎧⎨
⎩

Q if i ∈ {0, 2, 3}
0 if i = 1.

Proof. Since every fibre of ξ is connected, we have that

ξ�Q ∼= Q.

That is, these cohomology groups are nothing other than the ordinary rational cohomology
groups of X ′

0. Following the proof of [Gro01c, Theorem 4.1], we use the spectral sequence associ-
ated to the decomposition of X ′

0 into its maximal toric strata. Recall that the underlying complex
of the decomposition of B is homeomorphic to S3, and that H0(Y,Q) ∼= H2(Y,Q) ∼= Q for each
three-dimensional toric stratum Y of X ′

0.
The bottom row of the E1 page of the spectral sequence associated to the decomposition of

X ′
0 consists of the exact sequence associated to the C̆ech complex of the intersection graph of
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X ′
0 (see [Gro01c, p.47]), which has the form

Qn3
d3 �� Qn2

d2 �� Qn1
d1 �� Qn0 , (3)

where ni records the numbers of i-dimensional cells of P for each i ∈ {0, 1, 2, 3}. The odd-
numbered rows of the E1 page vanish, while the row E•,2

1 is the truncation of (3) to its first
three terms. Indeed, for each face σ of P ′, the toric variety Xσ is a weighted projective
space, and H2(Xσ,Q) ∼= Q. The cohomology groups of (3) are Q, 0, 0, and Q, respectively
(since they compute the cohomology of S3), and hence H2(X ′

0) and H3(X ′
0) are determined

by the differential d3 : E3
0,2 → E3

3,0 Since X0 is projective, X ′
0 is projective and, similarly to

[Gro01c, p. 47], H2(X ′
0,Q) cannot vanish. It follows that

H2(X ′
0,Q) ∼= H3(X ′

0,Q) ∼= Q. �

Proposition 4.17. The E2 page of the Leray spectral sequence associated to ξ consists of the

following groups in low degree.

⊕
v∈Verts(P ◦) Q

0 �

0 H1(R1ξ�Q) d

���������������� �

Q 0 Q Q

Consequently, b2(X) is equal to 1 + dim(ker d).

Proof. We follow the proof of [Gro01c, Theorem 4.1], noting that a similar calculation was
made in [Pri18, Proposition 7.9]. First observe that R3ξ�Q =

⊕
v∈Verts(P ◦)Qv, the direct sum of

skyscraper sheaves over the zero-dimensional strata of P ◦. Thus,

H0(X ′
0, R

3ξ�Q) ∼=
⊕

v∈Verts(P ◦)

Q.

Second, we consider the map

R2ξ�Q→ i2�i
�
2R

2ξ�Q.

Following the argument used in [Gro01c], this map is monomorphic and there is an inclusion

H0(R2ξ�Q) ↪→ H0(i2�i
�
2R

2ξ�Q).

The sheaf i2�i
�
2R

2ξ�Q is nothing but the direct sum of its restrictions to the one-dimensional
toric strata of X ′

0 (corresponding to edges τ of P ′). Each such stratum Xτ is isomorphic to P1.
The restriction of i2�i

�
2R

2ξ�Q of Xτ is isomorphic to the constant sheaf Q away from either a
finite set of points, or a circle of points, which have trivial stalks. The first case applies to edges
τ ∈P, the second to edges introduced in P ′. Fix a tuple of sections

s := (sτ : τ ∈ Edges(P ′)) ∈ H0(i2�i
�
2R

2ξ�Q).

Each component sτ of s can be identified with an element of H2(ξ−1(x),Q) for a point x ∈ Xτ .
This vector space is canonically isomorphic to T �

v τ for any v ∈ Verts(τ). Note that sτ = 0 for
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any τ such that τ ∩Δ �= ∅. Now assume that s defines a section of H0(R2ξ�Q). Thus, for any
vertex v of P, the elements sτ for edges τ incident to v are all obtained by projections

T �
vB → T �

v τ.

Let R denote the restriction of ξ(Crit(f)) to Xτ . We have that H0(Xτ ,QXτ\R) ∼= H0
c (Xτ \

R,Q) ∼= {0}. Hence, letting v be a vertex of P ◦, all such projections vanish (since sτ = 0 for
any τ such that τ ∩Δ �= ∅); hence the section s of R2ξ�Q vanishes at every vertex of P ◦. This
implies that s vanishes at every vertex of P, and hence s = 0. A similar argument, applied to
the map

R1ξ�Q→ i1�i
�
1R

1ξ�Q,

shows that H0(X ′
0, i1�i

�
1R

1ξ�Q) vanishes. Indeed, letting C denote the restriction to Xσ for a
face σ ∈P ′, we have that Xσ is a weighted projective plane and C is either a sphere or a disc.
In either case, H0

c (Xσ \ C,Q) = {0}.
The groups appearing in the bottom row of the spectral sequence are given by Lemma 4.16,

from which the result follows. �

Lemma 4.18. Writing X ′
0 for the topological space obtained by degenerating X0(P,D) as above,

the map

d : H1(X ′
0, R

1ξ�Q)→ H3(X ′
0, ξ�Q),

which appears in the statement of Proposition 4.17, vanishes. Hence, by Proposition 4.17,

b2(X) = h1(B,R1ξ�Q) + 1.

Proof. This follows from the argument used in [Gro01b, Lemma 2.4] to prove that the Leray
spectral sequence associated to f degenerates at the E2 page. In particular, we recall that d fits
into an exact sequence

H1(X ′
0, R

1ξ�Q) d→ H3(X ′
0, ξ�Q)→ H3(X,Q).

Moreover, the second map is the pullback ξ� : H3(X ′
0, ξ�Q)→ H3(X,Q). The topological torus

fibration f factors through ξ; indeed, f = π̄ ◦ ξ, where π̄ is the collection of moment maps of
maximal toric strata of X ′

0. The map f admits a section which factors through ξ. Hence the
image of ξ� has positive dimension, and the image of d is trivial. �

To compute h1(X ′
0, R

1ξ�Q) we consider the inclusion of the disjoint union of two-dimensional
toric strata i1�i

�
1R

1ξ�Q. Let F denote the cokernel of the monomorphism

R1ξ�Q→ i1�i
�
1R

1ξ�Q.

In particular, F fits into a short exact sequence; analysing the corresponding long exact sequence,
we obtain a relation between H0(X ′

0,F) and H1(X ′
0, R

1ξ�Q). To state this, we define t(P,D) to
be the number of two-dimensional faces of P ′ disjoint from Δ.

Lemma 4.19. The space H0(X ′
0, i1�i

�
1R

1ξ�Q) has dimension t(P,D). Moreover, there is an

equality

h0(X ′
0,F) = h1(X ′

0, R
1ξ�Q) + t(P,D).
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Proof. Recall the equality of sheaves

i1�i
�
1R

1ξ�Q =
⊕

σ∈Faces(P′,2)

Q|Xσ\C ,

where C := ξ(Crit(f)) ∩Xσ. First assume that σ ∩Δ �= ∅; this case separates into two
sub-cases.

(i) Xσ
∼= P2 and C is a sphere in the class of a complex projective line. In this case

H i(Xσ,QXσ\C) = H i
c(Xσ \ C,Q). By Poincaré duality this is isomorphic to the group

H4−i(Xσ \ C,Q), which vanishes for each i ∈ {0, 1}.
(ii) Xσ is a weighted projective plane, and C is a disc. In this case the complement retracts

onto a projective line, and again H i vanishes for i ∈ {0, 1}.
Next assume that σ ∩Δ = ∅. In this case Xσ is a weighted projective plane, and H0(Xσ,Q) ∼= Q
and H1(Xσ,Q) ∼= {0}. To prove the final equality in the statement of Lemma 4.19, we study the
following exact sequence:

H0(X ′
0, R

1ξ�Q)→ H0(X ′
0, i1�i

�
1R

1ξ�Q)→ H0(X ′
0,F)→

→H1(X ′
0, R

1ξ�Q)→ H1(X ′
0, i1�i

�
1R

1ξ�Q).

By Proposition 4.17, H0(X ′
0, R

1ξ�Q) vanishes. Moreover, the above analysis of QXσ\C for each
face σ ∈ Faces(P ◦, 2) shows that H1(X ′

0, i1�i
�
1R

1ξ�Q) = {0}, from which the result follows. �

Our first step to compute H0(X ′
0,F) is to compute the stalks of the sheaf F , which is

supported on the one-dimensional toric strata of X ′
0. To this end we fix an edge τ of P ′, a point

b ∈ τ \Δ, and let σ1, . . . , σk ∈ Faces(P ′, 2) denote the faces of P ′ meeting τ . We divide the
computation of the stalk Fq, where q is a point in the projective line corresponding to τ , into
three cases. These depend on whether π̄(q) ∈ Δ, and, if so, whether π̄(q) is a trivalent point of
Δ or not, where π̄ : X ′

0 → B is the map introduced in the proof of Lemma 4.18. Given a face ζ
of P ◦ containing b, we let Tbζ denote the linear span in TbB of vectors tangent to ζ.

Lemma 4.20. Fix a point q ∈ Xτ such that π̄(q) /∈ Δ. The stalk Fq is canonically isomorphic to

the cokernel of the map

TbB/Tbτ →
k⊕

j=1

TbB/Tbσj .

Proof. The stalk Fq is the cokernel of the map

H1(ξ−1(q),Q) ∼= Q2 →
⊕

1≤j≤k

H1(ξ−1(qj),Q) ∼= Qk,

where qj ∈ Xσj \Xτ are points close to q for each j ∈ {1, . . . , k}. �

In the case in which q lies over a trivalent point of Δ, let j1, j2, and j3 in {1, . . . , k} be the
indices of the faces whose relative interiors intersect Δ, and let Iq := {1, . . . , k} \ {j1, j2, j3}.
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Lemma 4.21. Fix a point q ∈ Xτ such that π̄(q) is a trivalent point in Δ. The stalk Fq is

canonically isomorphic to the vector space⊕
j∈Iq

TbB/Tbσj .

Proof. In this case q is the image under ξ of the unique singular point in the fibre of f lying over
a positive node of B. The stalk Fq is the cokernel of the map

H1(ξ−1(q),Q) ∼= {0} →
⊕
j∈Iq

H1(ξ−1(qj),Q) ∼= Qk−3,

where qj ∈ Xσj \Xτ are points close to q for each j ∈ Iq. �

In the final case (in which π̄(q) ∈ Δ is not a trivalent point), let j1 and j2 in {1, . . . , k} be
the indices of the faces whose relative interiors intersect Δ, and let Iq := {1, . . . , k} \ {j1, j2}.

Lemma 4.22. Fix a point q ∈ Xτ such that π̄(q) ∈ Δ is not a trivalent point. The stalk Fq is

canonically isomorphic to the cokernel of the map

Tbσj1/Tbτ →
⊕
i∈Iq

TbB/Tbσi.

Proof. The stalk Fq is the cokernel of the specialisation map

H1(ξ−1(q),Q) ∼= Q1 →
⊕
j∈Iq

H1(ξ−1(qj),Q) ∼= Qk−2.

We note there is a factorisation,

Q1 → H1(ξ−1(q′),Q)→
⊕
j∈Iq

H1(ξ−1(qj),Q) ∼= Qk−2, (4)

where q′ ∈ Xτ is a nearby point not contained in ξ(Crit(f)), lying over b ∈ τ \Δ. The second map
is given by TbB/Tbτ →

⊕
j∈Iq

TbB/Tbσj , as in Lemma 4.20. To describe the first map, consider
the family obtained by moving along a path from q′ to q in Xτ . The image of such a path in B
takes b to π̄(q) ∈ Δ. The induced map of cohomology groups H1(f−1(π̄(q)),Q)→ H1(f−1(b),Q)
is given by the inclusion Π→ TbB of the monodromy invariant plane Π (for loops based at b
around the segment of Δ which contains π̄(q)). The inclusion of the fibres of ξ into fibres of f
gives the following commuting square of cohomology groups.

Π ∼= H1(f−1(π̄(q)),Q) ��

��

H1(f−1(b),Q) ∼= TbB

��

Π/Tbτ ∼= H1(ξ−1(q),Q) �� H1(ξ−1(q′),Q) ∼= TbB/Tbτ

Since it follows from the definition of ξ that the vertical maps are quotient maps by Tbτ , and
the monodromy invariant plane Π is equal to Tbσj1 (and Tbσj2), the result follows. �

Remark 4.23. Note that the analysis set out in Lemma 4.22 holds for q ∈ Xτ , independently of
whether τ ∈ Edges(P), although if τ /∈ Edges(P) there is a circle of points q ∈ Xτ ∩ ξ(Crit(f)).

1469

https://doi.org/10.1112/S0010437X21007132 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007132


T. Prince

Note that Ann(Tbτ) ⊂ T �
b B is the monodromy invariant plane in H1(f−1(b),Q) for loops around

the given segment of Δ if and only if τ ∈ Edges(P).

To compute the dimension of H0(X ′
0,F), we make use of an inverse limit of a system of

vector spaces associated to (P,D), defined as follows. Note that, for any polytope ρ in NR, we
can define a subspace Tρ ⊂ NR by translating ρ so that ρ contains the origin and taking the
linear span. Equivalently, Tρ is the minimal vector subspace of NR containing some translate
of ρ.

(i) Observe that the set

Edges(P )
∐ ∐

ρ∈Faces(P,2)

D(ρ)

is partially ordered by inclusion (using the canonical matching of edges of each m ∈ D(ρ)
and edges of ρ).

(ii) To each edge E of P we associate the vector space (TE ∩NQ)�.
(iii) To each m ∈ D(ρ) we associate the vector space (Tm ∩NQ)�.
(iv) We define an inverse system by associating the map dual to the inclusion TE → Tm if

E ≤ m in this partially ordered set.

Definition 4.24. The inverse limit of the above system is a Q-vector space Γ(P,D). We let
γ(P,D) denote the dimension of Γ(P,D).

Remark 4.25. Note that an element of Γ(P,D) is determined by its projection to vector spaces
associated to the edges of P . Equivalently, we may consider these to be vectors associated to
elements of Faces(P ◦, 2), and the condition of lying in the inverse limit imposes conditions on
these vectors. In other words, we may identify Γ(P,D) with a subspace of

⊕
σ∈Faces(P ◦,2)TvB/Tvσ,

where v is a vertex of each face σ. Note that we may drop the dependence on v since

TvB/Tvσ ∼= MR/〈σ〉 ∼= (Tσ�)�,

where 〈σ〉 denotes the linear span of (the cone over) σ.

To compute h0(X ′
0,F), we make use of an additional sheaf G on X ′

0. This is defined to be
such that Gq = MQ/〈σ〉, where σ is the minimal face of P ′ such that q ∈ Xσ. We note that
G is defined only using the structure of P, and hence has a purely combinatorial character.
However, we note that there is a canonical map R1ξ�Q→ G. This map is an isomorphism away
from ξ(Crit(f)), while if q ∈ ξ(Crit(f)) the map

(R1ξ�Q)q → Gq

is identified with the canonical map H1(ξ−1(q),Q)→ H1(ξ−1(q′),Q), where q′ is a point near
q, not contained in ξ(Crit(f)), and contained in the same toric stratum as q. This map fits into
the following diagram of sheaves.

R1ξ�Q ��

��

i1�i
�
1R

1ξ�Q ��

��

F

��
G �� i1�i

�
1G �� F̄
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where F̄ is defined to be the cokernel of the canonical map G → i1�i
�
1G. The proof of Theorem 4.12

rests on an analysis, similar to that pursued in [Pri18, § 7], of the induced maps between long exact
sequences of cohomology groups (see (9)). To carry out this analysis, we describe the induced
morphism between stalks of Fq and F̄q. These maps are defined by the following diagram.

H1(ξ−1(q),Q) ��

��

⊕
j∈Iq

H1(ξ−1(qj),Q) ��

��

Fq

��

H1(ξ−1(q′),Q) ��
⊕

1≤j≤k H
1(ξ−1(qj),Q) �� F̄q

(5)

Following the proof of Lemma 4.21, diagram (5) becomes

{0} ��

��

Qk−3 ��

��

Fq

��

Q2 �� Qk �� F̄q

(6)

when q lies over a positive node in Δ (corresponding to a two-dimensional factor in D(τ�)). That
is, a vector in Qk represents an element in the image of Fq → F̄q if its components corresponding
to cells σj for which σ�

j ∈ Edges(τ�,m) are determined by a single element of TbB/Tbτ ∼= Q2.
Assuming instead that dimm = 1, and applying Lemma 4.22, the diagram (5) becomes

Q ��

��

Qk−2 ��

��

Fq

��

Q2 �� Qk �� F̄q

(7)

In other words, for a vector in Qk to represent an element in the image of F , the two components
corresponding to faces σ which intersect Δ near q must sum (up to a sign which depends on the
choice of basis in each of the spaces H1(ξ−1(qj),Q) ∼= Q) to zero. The left-hand vertical map in
(7) is the left-hand map appearing in (4).

Lemma 4.26. The canonical map θ : F → F̄ is a monomorphism.

Proof. This follows directly from our analysis of the commutative diagram (5). If q is not in
ξ(Crit(f)), then Fq → F̄q is an isomorphism by Lemma 4.20, and hence injective. If q ∈ ξ(Crit(f))
lies over a positive node of Δ, then the morphism Fq → F̄q is described in (6). An element in
the kernel of this map lifts to an element of Qk−3 whose image in Qk lies in the image of Q2.
However, the images of Qk−3 and Q2 intersect trivially. Similarly, if q ∈ ξ(Crit(f)) lies over a
general point in Δ, then an element in the kernel of Fq → F̄q lies in the intersection of both
Qk−2 and Q2. However these intersect in a one-dimensional space, the image of Q→ Qk−2. �

Lemma 4.27. Given the sheaf G on X ′
0 as above, we have that

H0(X ′
0,G) ∼= MQ and H1(X ′

0,G) = {0}.
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Proof. There is a C̆ech-to-derived spectral sequence associated to the decomposition of X ′
0 into

toric varieties given by the maximal cells of P ′. The bottom row of this complex has the form

0→
⊕

v∈Verts(P′)

MQ/〈v〉 →
⊕

τ∈Edges(P′)

MQ/〈τ〉 →
⊕

σ∈Faces(P′,2)

MQ/〈σ〉. (8)

Moreover, since H1(Xσ,Q) = {0} for all faces σ of P ′, we have that H1(X ′
0,G) is isomorphic to

the first cohomology group of (8).
Taking cones over the faces of P ′ defines a simplicial fan Σ, and a corresponding toric variety

XΣ. There is a spectral sequence [CLS11, § 12.3],

Ep,q
1 = Hp+q

c (Xp, Xp−1,Q)⇒ Hp+q
c (XΣ,Q),

whereXp denotes the union of the p-dimensional toric strata ofXΣ. Moreover, the row (Ep,•
1 , d) of

this sequence is dual to (8) (after replacing the leftmost zero of (8) with MQ). Applying [CLS11,
Proposition 12.3.10], this spectral sequence degenerates at the E2 page and hence H1(X ′

0,G) is
dual to a graded piece of H3(XΣ,Q). However, the latter group vanishes by [CLS11, Theorem
12.3.11(a)]. Similarly, E3,1

2 is dual to the quotient of the first cohomology group of (8) by the
image of the canonical map

MQ →
⊕

v∈Verts(P′)

MQ/〈v〉.

This quotient vanishes by [CLS11, Theorem 12.3.11(b)]. �

Lemma 4.28. Given X ′
0 and F as above, we have an equality

h0(X ′
0,F) = γ(P,D) + t(P,D)− 4.

Proof. We first compare the global sections of the sheaves F and F̄ . We recall that F̄ is the
cokernel of the canonical map

G → i1�i
�
1G.

We form the commutative diagram

0 ��

��

H0(X ′
0, i1�i

�
1R

1ξ�Q) ��

��

H0(X ′
0,F) ��

θ
��

H1(X ′
0, R

1ξ�Q) ��

��

0

H0(X ′
0,G) �� H0(X ′

0, i1�i
�
1G) �� H0(X ′

0, F̄) �� 0

(9)

noting that H1(X ′
0,G), H0(X ′

0, R
1ξ�Q) and H1(X ′

0, i1�i
�
1R

1ξ�Q) vanish by Lemma 4.27, Propo-
sition 4.17 and Lemma 4.19, respectively. By Lemma 4.26 and left exactness of H0, θ is injective.
Thus, applying Lemma 4.27, H0(X ′

0,F) may be viewed as a subspace of V/MQ, where

V :=
⊕

σ∈Faces(P′,2)

TvB/Tvσ

is canonically isomorphic to H0(X ′
0, i1�i

�
1G). Note that the inclusion MQ → V is defined by

sending u ∈MQ to the tuple of equivalence classes [πv(u)] ∈ TvB/Tvσ, where πv is the map
defining the fan structure at v ∈ Verts(P ′) = Verts(P).
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All that remains is to show that the subspace of V which maps onto the image of θ has dimen-
sion t(P,D) + γ(P,D). Any element in V determines a section of F away from ξ(Crit(f)). Thus,
the conditions on V which express H0(X ′

0,F) as a subspace of V/MQ appear from extending
this section over ξ(Crit(f)).

The result now follows from the analysis of the stalks of F and F̄ made above Lemma 4.26.
Indeed, any element in H0(X ′

0, F̄) determines a section of F away from the singular locus. Fixing
a face σ ∈ Faces(P ◦, 2), the condition imposed by (7) implies that if x ∈ V determines an element
of H0(X ′

0,F), coordinates of x corresponding to every face σ̄ ⊂ σ of P such that σ̄ ∩Δ �= ∅

coincide; let yσ denote this value. Moreover, the equations defining the inverse limit Γ(P,D), are
precisely those imposed by positive vertices (see (6)), and non-trivalent points (see (7)) contained
in the 1-skeleton of P ◦. In other words, the subspace of V which maps onto the image of θ is
generated by the direct sum of a subspace of dimension t(P,D) (corresponding to faces which
do not meet Δ) and a subspace of dimension γ(P,D) (corresponding to the subspace Γ(P,D) of
{yσ : yσ ∈ Q, σ ∈ Faces(P ◦, 2)}). �

Combining the above lemmas, we complete our combinatorial description of the second Betti
number of X.

Proof of Theorem 4.12. From the analysis of the Leray spectral sequence carried out in
Proposition 4.17,

h2(X,Q) = h1(X ′
0, R

1ξ�Q) + 1.

By Lemma 4.19,

h1(X ′
0, R

1ξ�Q) = h0(X ′
0,F)− t(P,D);

while, by Lemma 4.28, h0(X ′
0,F) = γ(P,D) + t(P,D)− 4. Thus, combining these results,

b2(X) = γ(P,D)− 3. �

We now consider the above arguments in the context of two examples, beginning with the
continuation of Example 3.11, based on the product of a pair of lattice triangles.

Example 4.29. We recall from Example 2.4 that the toric variety XP9,9 is given by a pair of
cubic equations in P6. A general anti-canonical (hyperplane) section is thus a (3, 3) complete
intersection in P5. We note that such a complete intersectionX has b2(X) = 1 and χ(X) = −144.
We verify the compatibility of these statements with the results of § 4.

We first note that the value χ(X) is given in Proposition 4.9. There are a total of 18 standard
simplices in the standard decompositions D(F ) for F ∈ Faces(P9,9, 2). The number of negative
vertices in B(P9,9, D) is equal to 9×# Edges(P9,9) = 9× 18 = 162. Hence observe that −144 =
18− 162, as expected.

To compute b2(X), we assign variables to the elements of Edges(P9,9), and compute γ(P9,9, D)
by imposing conditions associated to each two-dimensional face of P9,9. Index the edges and
vertices of P9 clockwise, let xi,j be the variable corresponding to the product of the ith edge
and jth vertex, and let xi,j be the variable corresponding to the product of the jth vertex and
ith edge. The conditions imposed by the Minkowski factors of each element of Faces(P9,9, 2)
depend on an orientation of the edges of P9,9. We fix a cyclic orientation of the edges of P9;
this induces an orientation of every edge of P9,9. The conditions imposed along square faces of
P9 take the form xi,j = xi,j+1 and xi,j = xi,j+1, interpreting the indices cyclically (so that, for
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example, x1,3+1 = x1,1). Writing xi := xi,j for all j ∈ {1, 2, 3} and xi := xi,j for all j ∈ {1, 2, 3},
the conditions imposed at triangular faces of P9,9 take the form

x1 + x2 + x3 = 0, x1 + x2 + x3 = 0.

This results in a four-dimensional space of solutions Γ(P9,9, D), and, applying Theorem 4.12, we
conclude that b2(X) = 1.

Example 4.30. By way of a further computation of b2(X(P,D)) using Theorem 4.12, we let P
be the polytope in NR be such that the toric variety XP determined by the spanning fan of P
is isomorphic to P2 ×P2. To fix notation, let P3 the convex hull of (1, 0), (0, 1) and (−1,−1);
we identify P with the convex hull of P 1

3 := P3 × {0} and P 2
3 := {0} × P3. In this case there is

a unique choice of standard decomposition D, as every two-dimensional face of P is isomorphic
to the standard triangle, and we write X := X(P,D). Note that we expect that b2(X) = 2, and
hence that γ(P,D) = 5.

Fixing orientations of the edges of P determines an isomorphism Γ(P,D) ∼= Qγ(P,D). We fix
specific orientations for the edges of P as follows.

(i) Orient the edges in the polygons P 1
3 and P 2

3 clockwise.
(ii) Orient every other edge from its vertex in P 1

3 to its vertex in P 2
3 .

Number the edges and vertices of P 1
3 and P 2

3 clockwise, such that the ith edge contains the ith
and (i− 1)th vertices. Let xi and xi denote the coordinates on H ′ corresponding to edges of P 1

3

and P 2
3 , respectively. Let yi,j denote the coordinate on H ′ corresponding to the edge between

the ith vertex of P 1
3 and the jth vertex of P 2

3 . There are 15 variables, and 18 equations of the
form

yi,j = yi−1,j − xi, yi,j = yi,j−1 + xj ,

for i, j ∈ {1, 2, 3}. First, eliminate the variables xi = yi−1,i − yi,i and xi = yi,i − yi,i−1. The
remaining 12 equations are equivalent to a subset of six equations. Solutions to these are given
by 3× 3 matrices (yi,j) for which the difference yi1,j − yi2,j between elements in different rows
and the same column is independent of j. Such matrices are uniquely determined by fixing all
the elements in a single row and column. Hence we obtain a five- dimensional space of solutions,
and it follows that γ(P,D) = 5 and b2(X) = 2.

5. Products of polygons

As described in Example 2.4, there are seven s.d. reflexive polygons, which give rise to a total of
28 four-dimensional s.d. by taking products of these seven polygons. We recall that Pi,j denotes
the product Pi × Pj , where Pi is as illustrated in Figure 2 for each i ∈ {4, . . . , 9} ∪ {8′}.

We recall from Example 4.29 that the polytope P9,9, together with its unique choice of
standard decomposition D, corresponds via Theorem 1.1 to a Calabi–Yau threefold with the
same topological invariants as a codimension-two complete intersection in P5 with bidegree
(3, 3). This calculation may be generalised to a number of other products of s.d.

(i) The toric varieties determined by the face fans of P8,9 and P8′,9 are (2, 2, 3) complete
intersections in P6.

(ii) The toric varieties determined by the face fans of P8,8, P8,8′ , and P8′,8′ are (2, 2, 2, 2) complete
intersections in P8.
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Table 1. Number of G orbits in D for each 0 ≤ n1 ≤ n2 ≤ 6.
0 1 2 3 4 5 6

0 1 1 3 3 3 1 1
1 1 3 3 3 1 1
2 6 9 9 3 3
3 6 9 3 3
4 6 3 3
5 1 1
6 1

(iii) The toric variety determined by the face fan of P7,9 smooths to a (1, 3) complete intersection
in Gr(2, 5).

(iv) The toric variety determined by the face fan of P7,8 smooths to a (2, 2) complete intersection
in Gr(2, 5).

In these cases we may verify that Proposition 4.9 and Theorem 4.12 reproduce the Betti numbers
of anti-canonical hypersurfaces in these Fano 4-folds. In the tables contained in Appendix B we
analyse all possible examples of the form (Pk1,k2 , D). While still a small subclass of s.d. polytopes,
this class contains a significant number of new examples. We recall that, to apply Theorem 1.1,
we must determine which pairs (Pk1,k2 , D) are regular. To this end we have included source files
for an implementation of the method described in § 2 in the computer algebra system Magma
[BCP97] as supplementary material [Pri19]. We note that pairs of the form (P4,k, D) do not give
locally torsion-free (see Definition A.3) topological models X(P4,k, D).

5.1 Smoothing a product of hexagons
We now consider the polytope P := P6,6 in greater detail. We first observe that a general anti-
canonical hypersurface in the toric variety XP determined by the face fan of P has 48 singular
points. Of these, 36 are ordinary double points, while 12 are given by the anti-canonical cone
on the (rigid) del Pezzo surface dP6. The latter 12 singularities are known to admit a pair of
smoothings (which correspond to embedding dP6 in either P2 ×P2 or P1 ×P1 ×P1). We note
that it is not known when such singularities may be simultaneously smoothed and it would be
interesting to describe the notion of regularity given in Definition 2.6 in this case in terms similar
to the homological conditions of Friedman [Fri91] and Tian [Tia92].

Notation 5.1. Throughout the rest of this section we use the notation [k] to represent the set
{1, . . . , k}.

Since each hexagonal face of P admits a pair of possible Minkowski decompositions, there
are 212 possible choices of Minkowski decompositions D, and we let D denote this set of possible
decompositions. The automorphism group of P is isomorphic to the wreath product G := D12 �
C2, a group of order 288. The group G acts on D, resulting in a set of 91 orbits; to describe
these orbits we let vi denote the (cyclically ordered) vertices of P6 for i ∈ [6] := {1, . . . , 6}. Each
hexagonal face of P6,6 is either equal to {vi} × P6 or P6 × {vi} for some i ∈ [6]. We record D ∈ D
as a pair (A1, A2) of subsets of [6]. The first of these contains indices i such that D assigns
{vi} × P6 its Minkowski decomposition into a pair of triangles. The second contains indices i
such that D assigns P6 × {vi} its Minkowski decomposition into a pair of triangles.
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Table 2. Invariants (b2, χ) of X(P,D) for each D ∈ D.
0 1 2 3 4 5 6

0 (3,−72) (2,−70) (2,−68) (2,−66) (2,−64) (2,−62) (4,−60)
1 (1,−68) (1,−66) (1,−64) (1,−62) (1,−60) (3,−58)
2 (1,−64) (1,−62) (1,−60) (1,−58) (3,−56)
3 (1,−60) (1,−58) (1,−56) (3,−54)
4 (1,−56) (1,−54) (3,−52)
5 (1,−52) (3,−50)
6 (5,−48)

Writing ni for the number of elements in Ai for each i ∈ {1, 2}, note that G acts on the subsets
of D with fixed values of n1 and n2. We tabulate the number of orbits in each case, where n1

and n2 are given by the row and column index respectively in Table 1. We now consider the
topological invariants of the spaces X(P,D) as D ranges over the possible sets of Minkowski
decompositions in D.

Proposition 5.2. Let P := P6,6, and let D ∈ D be determined by a pair (A1, A2) of subsets

of [6]. Writing n1 and n2 for the size of A1 and A2 respectively, we have that χ(X(P,D)) =
2n1 + 2n2 − 72. The second Betti number admits the following possibilities:

(i) b2 = 5 if n1 = n2 = 6;

(ii) b2 = 4 if {n1, n2} = {0, 6};
(iii) b2 = 3 if {n1, n2} = {0, 0} or {k, 6} for k /∈ {0, 6};
(iv) b2 = 2 if {n1, n2} = {0, k} for k /∈ {0, 6};
(v) b2 = 1 in all other cases.

Thus we obtain 22 topological types of X(P,D); the invariants of these types are displayed

in Table 2.

Proof. The calculation of χ(X(P,D)) is a direct application of Proposition 4.9, similar to that
appearing in Example 4.29. We also compute the second Betti number of X(P,D) using the
approach taken in Example 4.29.

Assign variables xi,j and xi,j (the product of the ith edge and jth vertex, or jth vertex and
ith edge) to each of 72 edges for i, j ∈ [6]. We observe that relations obtained from square faces
of P imply that xi,j = xi,k for all i, k ∈ [6]. Hence we have a 12-dimensional space of solutions,
generated by variables xi and xi for i ∈ [6], before applying relations coming from hexagonal
faces. We divide the possible relations imposed by hexagonal faces between three cases.

(i) If D assigns every face P6 × {vi} for i ∈ [6] to the Minkowski decomposition into a triple of
line segments, the relations imposed on variables xi have the form

x1 + x4 = 0, x2 + x5 = 0, x3 + x6 = 0.

(ii) If D assigns every face P6 × {vi} for i ∈ [6] to the Minkowski decomposition into a pair of
triangles, the relations imposed on variables xi have the form

x1 + x3 + x5 = 0, x2 + x4 + x6 = 0.
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Figure 12. Orienting edges of P ◦
6,6.

(iii) If D assigns at least one face P6 × {vi} for i ∈ [6] to each possible Minkowski decomposition
we impose all five of the above equations on {xi : i ∈ [6]}. Note that these five equations
are not independent, and the subspace of solutions to these equations has codimension 4.

Applying similar conditions to the variables xi for i ∈ [6], we obtain the list presented in the
statement of Proposition 5.2. Note that this calculation is easy to generalise to any (Pk1,k2 , D),
a calculation used to compute entries in the columns titled b2 in Appendix B. �

So far our analysis has only concerned the topology of the space X(P6,6, D), which can be
performed irrespective of the regularity of (P6,6, D), as introduced in Definition 2.6. We now
determine which of these topological types can be realised with a regular pair (P6,6, D).

Proposition 5.3. The pair (P6,6, D) is regular unless either n1 or n2 belongs to {1, 5}.

In order to prove Proposition 5.3, we introduce notation for the faces of P ◦
6,6 and the slopes

of candidate PL functions (μσ : σ ∈ Faces(P ◦, 2)).
We first recall that P ◦

6,6 is the convex hull of the union of P ◦
6 × {0} and {0} × P ◦

6 in MR.
Noting that P ◦

6 is equivalent to P6, we let vi (respectively, vi) denote the vertices of P ◦
6 × {0}

(respectively, {0} × P ◦
6 ) for i ∈ [6]. We cyclically orient the edges of P ◦

6,6 contained in P ◦
6 × {0}

and {0} × P ◦
6 . Moreover, noting that any other edge of P ◦

6,6 contains vertices vi and vj for some
i, j ∈ [6], we orient these edges from vi to vj (see Figure 12). We fix notation for the edges and
two-dimensional faces of P ◦

6,6 as follows.

(i) We let τ j
i denote the edge of P ◦

6,6 with vertices vi and vj .
(ii) We let τi (respectively, τ j) denote the edge of P ◦

6,6 with vertices vi and vi+1 (respectively,
vj and vj+1) where addition is interpreted cyclically (thus, for example, v6+1 = v1).

(iii) We let σj
i,i+1 (respectively, σj,j+1

i ) denote the two-dimensional face of P ◦
6,6 with vertices

vi, vi+1 and vj (respectively, vi, v
j and vj+1).

We also fix notation for the slopes of a tuple of functions (μσ : σ ∈ Faces(P ◦
6,6, 2)), as described

in § 2. Noting that �(σ�) = 1 for all σ ∈ Faces(P ◦
6,6, 2), each function μσ is an affine linear function

on an empty triangle. Such functions are described, up to a constant, by the triple of the slopes
of these functions along their edges. Fixing a two-dimensional face σj

i,i+1 we let:

(i) xj
i,0 (respectively, xj

i,1) denote the slope of μ
σj

i,i+1
along the edge τ j

i (respectively, along the

edge τ j
i+1);
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(ii) xj,0
i (respectively, xj,1

i ) denote the slope of μ
σj,j+1

i
along the edge τ j

i (respectively, along the

edge τ j+1
i ).

(iii) yj
i (respectively, zj

i ) denote the slope of μ
σj

i,i+1
along the edge τi (respectively, τ j).

Lemma 5.4. We have that

xj
i,1 = yj

i + xj
i,0, xj,1

i = zj
i + xj,0

i ,

for all i, j ∈ [6].

Proof. These equations follow from the fact that the slopes of the functions in (μσ : σ ∈
Faces(P ◦

6,6, 2)) must sum to zero (orienting edges cyclically). Using the orientations of the edges
given above, the result follows. �

Lemma 5.5. We have that

xj
i,1 = xj

i+1,0, xj,1
i = xj+1,0

i ,

for all i, j ∈ [6].

Proof. These equations follow directly from the requirement that the tuple of functions (μσ :
σ ∈ Faces(P ◦

6,6, 2)) is admissible along τ j
i+1. Indeed, we note that the two-dimensional faces

σj
i,i+1, σ

j
i+1,i+2 contain the edge τ j

i+1, and that these two faces are dual to opposite edges of
the lattice square (τ j

i+1)
�. It follows from the definition of admissibility that slopes xj

i,1 and
xj

i+1,0 are equal; a similar observation identifies xj,1
i and xj+1,0

i . �

Combining the equations in Lemmas 5.4 and 5.5, the values xj
i,0 and xj

i,1 are determined
uniquely by xj

1,0 and yj
i for all i, j ∈ [6]. Similarly, the values xj,0 and xj,1

i are determined uniquely
by x1,0

i and zj
i for all i, j ∈ [6]. We now describe the constraints imposed on the slopes of the

functions in (μσ : σ ∈ Faces(P ◦
6,6, 2)) by the admissibility of this tuple of functions along the

edges τi and τ j for i, j ∈ [6].

Lemma 5.6. If the tuple (μσ : σ ∈ Faces(P ◦
6,6, 2)) is admissible, the slopes yj

i satisfy the following

system of linear equations:

6∑
i=1

yj
i = 0 for all j ∈ [6],

y1
i = y3

i = y5
i , y

2
i = y4

i = y6
i if D(τ�

i ) contains a pair of triangles,

y1
i = y4

i , y
2
i = y5

i , y
3
i = y6

i if D(τ�
i ) contains three line segments,

(10)

Proof. The first six equations follow from Lemmas 5.4 and 5.5 since these imply that

xj
1,0 = xj

6,1 = xj
6,0 + yj

6 =

= xj
5,0 + yj

6 + yj
5 = · · · = xj

1,0 +
6∑

i=1

yj
i .

The remaining equations follows directly from the definition of admissibility. Note that yj
i records

the slope of a function on the two-dimensional face σj
i,i+1. This face is dual to an edge of the
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lattice hexagon dual to τi. In the case where D(τ�
i ) contains a pair of triangles, the edges of the

lattice hexagon P6 which correspond to a triangular summand are shown in Figure 3. �

Proof of Proposition 5.3. We recall that n1 (respectively, n2) denotes the number of faces of
P6,6 of the form {v} × P6 (respectively, P6 × {v}) which are decomposed into a pair of triangles.
First suppose that n1 = 1. Suppose, without loss of generality, that τ�

1 decomposes into a pair of
triangles. By Lemma 5.6, we have that y1

1 = −∑6
i=2 y

j
i and y4

1 = −∑6
i=2 y

4
i . However, we have

that y1
i = y4

i for all i ∈ {2, . . . , 6} (as n1 = 1). Hence y1
1 = y4

1, contradicting strict convexity,
which requires that the slopes y1

1 = y3
1 = y5

1 and y2
1 = y4

1 = y6
1 are distinct. We note that exactly

analogous arguments treat the cases n1 = 5, n2 = 1, and n2 = 5.
All that remains is to show that strict convexity can be realised in the remaining cases. Each

case now follows from a straightforward computation; we present the case n1 = 4 and assume
that the faces τ�

1 and τ�
2 decompose into a triple of line segments. Set yj

i to be the (i, j) value in
the matrix

0 1 −1 0 1 −1
0 −1 1 0 −1 1
0 a3 0 a3 0 a3

0 a4 0 a4 0 a4

0 a5 0 a5 0 a5

0 a6 0 a6 0 a6

where (a3, a4, a5, a6) is a tuple of four integers, all different from zero, whose sum is zero. We
need to verify that we can make choices of the slopes xj

i,k and xj,k
i for i, j ∈ [6] and k ∈ {0, 1}

which correspond to strictly convex tuple of functions. We are free to set the values xj
1,0 to zero,

thereby fixing all the slopes xj
i,k. Fixing sufficiently large values of x1,0

i for i ∈ [6], and noting that

by Lemma 5.4 these determine all the slopes xj,k
i , we can ensure that xj

i,0 and xj,0
i are distinct

for all choices of i, j ∈ [6], from which the result follows. �

Proposition 5.3 suggests a conjecture on the existence (and non-existence) of certain smooth-
ing components for anti-canonical sections of the toric variety XP6,6 . Recall that, as well as 36
nodes, anti-canonical sections of XP6,6 have 12 additional singularities which we label

{p1, . . . p6, p
1, . . . , p6}.

Each such singularity is isomorphic to the cone on the toric del Pezzo surface dP6. We can choose
one of two smoothing components for each of these 12 singularities. Indeed, following Altmann
[Alt97], these are in canonical bijection with the Minkowski decompositions of the lattice hexagon
P6.

Conjecture 5.7. Fix local smoothing components for the 12 singularities of a general anti-
canonical hypersurface X ⊂ XP locally isomorphic to the cone on dP6. These choices determine
a smoothing of X, simultaneously smoothing each of these 12 singularities in the chosen com-
ponent, unless precisely five of the six smoothing components chosen for the singularities
{p1, . . . , p6} or {p1, . . . , p6} coincide.

5.2 Candidate mirror pairs
One important feature of Batyrev’s construction [Bat94] is that it gives Calabi–Yau threefolds in
mirror pairs. We note that the construction given by Theorem 1.1 does not provide mirror-dual
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families of Calabi–Yau threefolds in general, and in this concluding section we propose mirrors
to two of the examples we have considered in this paper. Moreover, we relate these to the
work of Almkvist, van Enckevort, van Straten and Zudilin [AESZ05] on Calabi–Yau differential
operators.

We first recall that rank-one Calabi–Yau threefolds are expected to be mirror-dual to a
family of Calabi–Yau manifolds with a one-dimensional complex moduli space. The middle-
dimensional cohomology of this family determines a variation on Hodge structure over a (rational)
curve, which in turn determines a Picard–Fuchs operator of Calabi–Yau type [AZ06, AESZ05,
vEvS06]. Such equations can be used to predict the existence of Calabi–Yau threefolds; in par-
ticular, Almkvist et al. exhibit a list of Calabi–Yau differential equations in [vStr]. Moreover, van
Enckevort and van Straten give a list of candidate operators for (mirrors to) rank-one Calabi–Yau
threefolds in [vEvS06], based on an analysis of the monodromy of known operators of Calabi–Yau
type. We provide candidate mirrors in the following pair of examples:

(i) the threefold obtained from Theorem 1.1 from the polytope P9,9, together with its unique
standard decomposition;

(ii) the threefold obtained from P6,6 in which D is taken to be the function which takes each
two-dimensional face to its decomposition into line segments.

In each case we describe the mirror family as a polynomial f : (C�)4 → C, with coordinates
x1, . . . , x4 on (C�)4, and recall that the period

πf (z) =
∫

Γ

1
1− zf

4∧
i=1

dxi

xi
, (11)

where the cycle Γ is a compact torus in the complex torus SpecC[N ], gives a solution of the
Picard–Fuchs equation associated to (the relative middle-dimensional cohomology of) the family
defined by f . While the Laurent polynomials we describe are particular to these examples, they
are related to the mirror construction of Batyrev and Kreuzer [BK10] for conifold transitions,
and can be regarded as a version of the Minkowski ansatz of Coates, Corti, Galkin, Golyshev
and Kasprzyk [CCGGK14].

Example 5.8. Let P be the polytope P9,9 = P9 × P9, and let D be its unique standard decom-
position. Recalling that P9 ⊂ R2 is given by a translate of a dilate of a standard triangle, we
associate the polynomial

(1 + x+ y)3

xy

to P9. The period determined by this Laurent polynomial via (11) satisfies a Picard–Fuchs
equation, mirror to the anti-canonical linear system in a cubic surface. A series solution for this
second-order equation is given by

∞∑
n=0

(3n)!
n!3

zn. (12)

Recalling that P9,9 = P9 × P9, we consider the polynomial

f =
(1 + x1 + x2)3(1 + x3 + x4)3

x1x2x3x4
,
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where xi, for i ∈ {1, . . . , 4}, are coordinates on (C�)4. The period of f has the series solution

∞∑
n=0

{
(3n)!
n!3

}2

zn. (13)

Note that, by construction, the series (13) is the Hadamard square
∑∞

n=0 a
2
nz

n of the series
solution

∑∞
n=0 anz

n given in (12). We refer to [AESZ05] for more details on, and properties of,
Hadamard products. Letting θ = z(d/dz), this period satisfies the differential equation

θ4 − 36z
(
θ + 1

3

)2(
θ + 1

3

)2
.

This differential equation is #4 in [vStr]. This is indeed the Picard–Fuchs operator of the mirror-
dual Calabi–Yau to a (3, 3) complete intersection in P5, as shown by Libgober and Teitelbaum
[LT93].

We conclude with a second example related to Hadamard products, related to the polytope
P6,6 studied in § 5.1.

Example 5.9. We consider the pair (P6,6, D), where D is the function sending each two-
dimensional face of P6,6 to its unique Minkowski decomposition into length-one line segments.
It follows from Proposition 5.3 that (P6,6, D) is regular, and it follows from Proposition 5.2 that
χ(X(P6,6, D)) = −72 and b2 = 3. Since the Picard rank of the corresponding Calabi–Yau three-
fold is higher than one, we do not necessarily expect this example to correspond to a Calabi–Yau
operator obtained in [vEvS06]. However, fixing the polynomial

(1 + xy)(1 + x)(1 + y)
xy

with Newton polytope P6 (associated to the decomposition of P6 into a triple of line segments),
we fix the Laurent polynomial

f =
(1 + x1x2)(1 + x1)(1 + x2)(1 + x3x4)(1 + x3)(1 + x4)

x1x2x3x4
.

The period of the Laurent polynomial f is given by the series

∞∑
n=0

{ n∑
k=0

(
n

k

)}2

zn.

This series is also a Hadamard square, and is annihilated by the operator

L := θ4 − t(73θ4 + 98θ3 + 77θ2 + 28θ + 4) + t2(520θ4 − 1040θ3 − 2904θ2 − 2048θ − 480)

+ 26t3(65θ4 + 390θ3 + 417θ2 + 180θ + 28)− 29t4(73θ4 + 194θ3 + 221θ2 + 124θ + 28)

+ 215t5(θ + 1)4, (14)

where θ = z(d/dz). We note that L is operator #100 in the tables [vStr].

Knapp and Sharpe describe a family of (rank-one) Calabi–Yau threefolds in [KS19] corre-
sponding to the Picard–Fuchs operator (14). We suggest the following conjecture, relating the
family obtained in [KS19] to that described in Example 5.9
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Conjecture 5.10. The differential operator L is associated to the invariant part of the rank-
three Calabi–Yau threefold X (with χ = −72) obtained from the pair (P6,6, D) with respect to
a Z2 subgroup of Aut(X). This Z2 action is free, and the quotient of X by this action is the
rank-one Calabi–Yau threefold with h1,2 = 19 obtained in [KS19, § 2.5].
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Appendix A. The fundamental group of X(P, D)

In this appendix we extend the analysis of the fundamental group of the 6-manifold X(P,D) (see
Notation 4.3) begun in § 4. In particular, we fix a four-dimensional s.d. polytope P and standard
decomposition D throughout this appendix.

Our analysis involves two distinct parts. First, since the space X(P,D) is expected to be
a (topological) smoothing of an anti-canonical hypersurface in XP , we describe a condition,
locally torsion-free, analogous to the condition that the Milnor fibres of a smoothing have no
torsion in H1. Second, assuming this condition, we show in Theorem A.8 that π1(X(P,D)) is
isomorphic to the fundamental group of a toric hypersurface obtained via Batyrev’s construction
[Bat94], applied to the reflexive polytope P . Moreover, we recall that the fundamental groups
of such Calabi–Yau toric hypersurfaces were calculated by Batyrev and Kreuzer in [BK06]. In
particular, aside from 16 possible cases for P , we have that X(P,D) is simply connected if it is
locally torsion-free.

Our first step is to study open subsets of X(P,D) given by preimages of neighbourhoods
of edges of P ◦ under the map f : X(P,D)→ B(P,D) ∼= ∂P ◦ described in § 4.1. To do this,
we fix an edge τ of P ◦ and a small neighbourhood Uτ of τ which retracts onto τ . We also
fix a basepoint u ∈ Uτ \Δ and let s1, . . . , sk denote the segments of Δ which intersect Uτ .
Each segment si determines a monodromy invariant plane in TuB, the fixed point set of the
monodromy operator induced by any loop γs in Uτ \Δ based at u which passes singly around
si (see Figure A.1). More precisely, we require that (the class of) γs generates the fundamental
group of the complement (in Uτ ) of the connected component of Uτ ∩Δ which contains s and
vanishes in the fundamental group of the complement in Uτ of any other connected component
of Uτ ∩Δ. Let a1, . . . , ak ∈ Λ̆u ⊂ T �

b B denote primitive integral generators of the annihilators of
these planes. The vectors a1, . . . , ak are independent of the choice of curves γs.

Proposition A.1. Let τ and Uτ be as above. We have that H0(Uτ , R
1f�Z) ∼= Z and

H0(Uτ , R
1f�Zn) ∼= Zn ⊕ T,

for a cyclic Zn-module T . Moreover, if the set {a1, . . . , ak} spans τ⊥ ⊂ Λ̆, then T is trivial.

Proof. Given a constant sheaf of abelian groups G on f−1(Uτ ), H0(Uτ , R
1f�G) is the intersec-

tion of the planes annihilated by the vectors in {a1, . . . , ak} in Λb ⊗Z Gb. Note that 〈ai, dτ 〉 = 0
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Figure A.1. The neighbourhood Uτ of an edge τ ∈ Edges(P ◦).

for all i ∈ {1, . . . , k}. Hence H0(Uτ , R
1f�G)/〈dτ 〉 is equal to the intersection of k rank-one free

submodules in G⊕2. Since there are at least two (distinct) monodromy invariant planes in TbB,
this intersection is trivial if G = Z. If G = Zn, this intersection is also trivial unless the vec-
tors in {a1, . . . , ak} coincide after reduction modulo n. In this case, T is a cyclic module over
Zn. Moreover, T �= 0 implies that the vectors {a1, . . . , ak} are contained in a proper sublattice
of Λ̆. �

Remark A.2. We note that, while Proposition A.1 suffices to establish our results on
π1(X(P,D)), it is not difficult to identify the homotopy type of f−1(Uτ ). Fixing a basepoint
b ∈ Uτ \Δ, we note that the three-dimensional torus f−1(b) contains a canonical 2-torus S ⊂ T ,
given by the annihilator in T �

b B of the line generated by τ . Fixing paths from b to each point
in Δ ∩ τ , one can show that the homotopy type of f−1(Uτ ) is given by attaching a cone on a
two-dimensional torus to S for each trivalent point in Δ ∩ τ , and attaching a solid torus to S for
each bivalent point in Δ ∩ τ .

We note that the direction vector along τ provides a non-zero class in Hom(H1(f−1(Uτ )),Z),
and hence we have that H1(f−1(Uτ ),Z) contains a torsion-free element. Proposition A.1 allows
us to characterise precisely when H1(f−1(Uτ ),Z) ∼= Z.

Definition A.3. We say that X(P,D) is locally torsion-free if, for all F ∈ Faces(P, 2), either
D(F ) contains a two-dimensional summand or, regarding the Minkowski summands in D(F ) as
subsets of a two-dimensional affine space, the direction vectors of the segments in D(F ) form a
spanning set for the lattice of integral points in this affine space.

Remark A.4. Definition A.3 can be expressed using the notion of lattice Minkowski decompo-
sition (see Remark 2.3). In particular, the space X(P,D) is locally torsion-free if and only
if the Minkowski decompositions D(F ) of the polygons �(F �)F (regarded as polygons in a
two-dimensional affine space) are lattice Minkowski decompositions for all F ∈ Faces(P, 2).

We now show that, if X(P,D) is locally torsion-free, π1(X(P,D)) is isomorphic to the fun-
damental group of a crepant toric resolution of a general anti-canonical hypersurface in the
four-dimensional Fano toric variety XP determined by the face fan of P . In particular, we
compare H0(B,R1f�Zn) with the combinatorial description of the fundamental group given
by Batyrev and Kreuzer in [BK06]. Following [BK06], we let N ′

P denote the sublattice of N
generated by points in P ∩N in faces of codimension greater than one, and let M ′′

P ◦ denote the

1483

https://doi.org/10.1112/S0010437X21007132 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X21007132


T. Prince

sublattice of M spanned by the set of integral points M ∩ P ◦ which are contained in faces of P ◦

of codimension greater than two. We recall the following result from [BK06].

Theorem A.5 [BK06, § 4]. For any four-dimensional reflexive polytope P ⊂ NR the abelian

groups N/N ′
P and ∧2M/(M ∧M ′′

P ◦) are isomorphic. There are 16 polytopes for which these

groups are non-trivial, and in each such case both groups are isomorphic to Zp and M/M ′′
P ◦ ∼=

Zp ⊕ Zp for some p ∈ {2, 3, 5}.

Fixing a vertex v ∈ P ◦, we recall (as described in § 3.3) that an affine chart for B(P,D) in a
neighbourhood of v is given by the projection prv : MR →MR/〈v〉.

Lemma A.6. Let L denote the sublattice of MR/〈v〉 generated by the images of primitive

integral direction vectors along the edges of P ◦; we have that L = prv(M ′′
P ◦).

Proof. First note that, by definition, L ⊆ prv(M ′′
P ◦). Next observe that prv(v) = 0 is trivially an

element of L. Since any vertex v′ of P ◦ connected to v by an edge τ can be written as v′ = v + kdτ ,
where dτ is a primitive integral vector along τ , we have that v′ ∈ L and (continuing by induction)
the image of all vertices of P ◦ is contained in L. Hence L contains every element in a spanning
set of prv(M ′′

P ◦) and the result follows. �

To study H0(B,R1f�Zn), we fix a neighbourhood Uτ of each edge τ of P ◦, as in Proposi-
tion A.1 (see Figure A.1). Fixing an edge τ of P ◦ and vertex u of τ , we recall from Proposition A.1
that

Γ(Uτ , R
1f�Z) ∼= 〈dτ 〉 ⊂ Λu,

where dτ denotes a primitive tangent vector along τ and Λu denotes the lattice of integral tangent
vectors at u. We now describe the effect of parallel transport on these tangent vectors. Given
an edge τ with vertices u and v and a path γτ from u to v contained in Uτ \Δ, we can identify
vectors in Λu ⊂ TuB with vectors in Λv ⊂ TvB via parallel transport along γτ . Hence we fix a
linear isomorphism

M/〈u〉 ∼= Λu
Γu,v−→ Λv

∼= M/〈v〉.
Note that this isomorphism depends on the (homotopy class of the) path γτ in Uτ \Δ. Fixing a
vertex v of P ◦, consider an edge τ of P ◦, a vertex u of τ , and a path of edges from u to v. We
define

Γu,v := Γuk−1,v ◦ Γuk−2,uk−1
◦ · · · ◦ Γu,u1

where u = u0, u1, . . . uk = v denote the vertices which appear in a path of edges from u to v of
minimal length. Let L′ denote the lattice in Λv

∼= M/〈v〉 generated by vectors in the set
⋃

u∈Verts(P ◦)

{
Γu,v(dτ ) : τ ∈ Edges(P ◦), u ∈ Verts(τ)

}
, (A.1)

where dτ ∈ Λu is a primitive lattice vector along τ .

Lemma A.7. The lattice L′ ⊆ Λv is equal to L and hence equal to prv(M ′′
P ◦).
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Proof. Fix an edge τ ∈ Edges(P ◦) with vertices u and w. It follows from the description of the
integral affine charts of B which cover the open set Uτ that the map Γu,w has the form

Γu,w : pru(x) �→ prw(x) + k prw(u) (A.2)

for each x ∈M , where k ∈ Z is an integer which depends on the choice of path γτ . Note that
prw(u) is a multiple of prw(dτ ), the image of a primitive direction vector dτ along τ . It follows
immediately that L′ ⊆ L; indeed, composing the maps Γui,ui+1 along the fixed path of edges
τ1, . . . , τk from u to the fixed vertex v (with vertices u = u0, u1, . . . uk = v), we see that each
pru(dτ ) is mapped to prv(dτ ) + y, where y is a linear combination of vectors prv(dτi) for i ∈
{1, . . . , k}.

All that remains is to verify that L′ contains a generating set of the lattice L. By Lemma A.6
it suffices to show that prv(dτ ) ∈ L′ for all edges τ of P ◦. Let τ be an edge of P ◦ containing a ver-
tex u, and let τ1, . . . , τk be a path of edges from u to v of minimal length. Let u = u0, u1, . . . uk = v

denote the vertices contained in this path of edges. We proceed by induction on the minimal
length of a path from u to v; we use the hypothesis that Γu,v(pru(x)) is the sum of prv(x) and
a linear combination of vectors prv(dτi) for i ∈ {1, . . . , k}.

We first note that L′ contains prv(dτ ) if u is equal to v, that is, when the length of the shortest
path of edges from u to v is zero. By (A.2), we have that Γu,u1(pru(dτ )) is the sum of pru1

(dτ )
and an integer multiple of pru1

(dτ1). By hypothesis, Γu1,v(pru1
(dτ1)) is a linear combination of

the vectors prv(dτi) for i ∈ {1, . . . , k}. Similarly, Γu1,v(pru1
(dτ )) is the sum of prv(dτ ) and a linear

combination of the vectors prv(dτi) for i ∈ {1, . . . , k}. Hence prv(dτ ) is contained in L′ for any
τ ∈ Edges(P ◦). �

We use the lattice L′ to describe the global sections of H0(B,R1f�Zn) for n ∈ Z>1. Indeed,
an element of Λv ⊗Z Zn in the span of Γu,v(dτ ) determines an element of Γ(Uτ , R

1f�Zn). Fixing
sections Γ(Uτ , R

1f�Zn) for all τ ∈ Edges(P ◦) which agree over the intersections of the open sets
Uτ , one can uniquely extend the induced element of Γ(

⋃
τ∈Edges(P ◦)Uτ , R

1f�Zn) over B. Hence
H0(B,R1f�Zn) is given by the intersections of the submodules of Λv ⊗Z Zn generated by vectors
Γu,v(dτ ).

Theorem A.8. If X(P,D) is locally torsion-free, π1(X(P,D)) is isomorphic to

∧2M/(M ∧M ′′
P ◦) ∼= N/N ′

P .

Proof. The lattice L′ ⊂M/〈v〉 ∼= Z3 describes the image under parallel transport of the sections
Γ(Uτ , R

1f�Z) to TvB for each τ ∈ Edges(P ◦). We fix a basis {e1, e2, e3} of Λv such that L′ has
basis e1, c2e2, c3e3 and c2|c3. Letting E denote the set (A.1), we verify that the intersection of
submodules generated by elements of E is isomorphic to Zd, where d := hcf(c2, n).

First note that, in this basis, we can assume that e1 ∈ E. We consider the intersection of
a submodule 〈[a, b, c]〉 ⊂ Z3

n, where (a, b, c) is an element of E and [a, b, c] denotes the class of
this element in Z3

n, with the submodule generated by e1. Clearly such a submodule is cyclic.
Since elements of E are primitive, the order of this intersection is equal to hcf(b, c, n), which
is divisible by d = hcf(c2, n); hence Zd is contained in the intersection of all submodules of the
form 〈[a, b, c]〉 ⊂ Z3

n. Letting (ai, bi, ci), for i ∈ {1, . . . , |E|}, denote the elements of E, we recall
that E spans L′. In particular, the intersection of submodules generated by elements [ai, bi, ci] is
contained in the subgroup of {(a, 0, 0) : a ∈ Zn} ⊂ Z3

n given by the intersection of the subgroups
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of order hcf(bi, n). Since this group has order hcf(c2, n), the intersection of submodules generated
by [ai, bi, ci] is contained in Zd.

We now have that H0(B,R1f�Zn) = Hom(π1(X(B,P )),Zn) = Zd, where d = hcf(c2, n).
Since π1(X(B,P )) is finite and abelian by Lemma 4.10, it is determined by the groups

Hom(π1(X(B,P )),Zn)

for n ∈ Z>1. In particular, the result follows if

∧2M/(M ∧M ′′
P ◦) = Zc2 . (A.3)

However, applying Lemmas A.6 and A.7, we can find a basis {f0, f1, f2, f3} of M such that M ′′
P ◦

has basis {f0, f1, c2f2, c3f3}. The identity (A.3) now follows, as described in [BK06, § 4]. �

Example A.9. The best-known non-simply connected Calabi–Yau threefolds are quotients of a
quintic in P4 and a degree-(3, 3) hypersurface in P2 ×P2 by a finite group respectively (see
[BK06, § 2]). In the first case we let μ5 = 〈ξ〉 act by (1, ξ, ξ2, ξ3, ξ4) on P4; in the second we let
μ3 = 〈ζ〉 act by (1, ζ, ζ2) on each P2 factor. Both threefolds are hypersurfaces in toric varieties
with isolated singularities. On the one hand, the corresponding polytopes P are s.d. polytopes
(all two-dimensional faces are empty triangles) with unique standard decompositions D. On the
other hand, the affine manifolds B(P,D) coincide with those constructed by Gross [Gro05] and
Haase and Zharkov [HZ05] when XP has isolated singularities and we cannot expect Theorem 1.1
to (re)produce anything other than a hypersurface in XP .

Appendix B. Tables of Calabi–Yau threefolds

In this appendix we describe collections of pairs (P,D), where P = Pk1,k2 and k1, k2 range over
{4, 5, 6, 7, 8, 9}. Note that we ignore the value 8′, since we do not expect it to provide Calabi–Yau
threefolds we cannot obtain from polytopes of the form Pk1,8. Noting that D is unique if both k1

and k2 are different from six, we record the topological invariants of the Calabi–Yau threefolds
corresponding to such regular pairs in Table B.1.

The value Vol(P ◦) is recorded as a proxy for H3, where H is a hyperplane section. In
rank-one cases Vol(P ◦) is the cube of a generator of H2(X,Z), if this value is cube-free. The
columns titled ‘configuration’ record how different Minkowski decompositions are chosen, while
the columns titled ‘orbits’ contain the number of orbits for each specified configuration. We
describe how to read the column ‘configuration’ in each case.

(i) In Table B.2 ‘configuration’ records the number n of hexagonal faces decomposed into a
pair of triangles; hence k − n two-dimensional faces are decomposed into a triple of line
segments.

(ii) In Table B.3 ‘configuration’ records pairs (n1, n2). We assume n1 faces of the form {�} × P6,
and n2 faces of the form P6 × {�}, are decomposed into a pair of triangles. This case is
discussed in greater detail in § 5.

(iii) In Table B.4 ‘configuration’ records pairs (n1, n2) together with values m ∈ {0, 1, 2, 3}. The
edge of P ◦

5,6 dual to two of the five hexagonal facets has length two; hence we must choose
one of three possible Minkowski decompositions of 2× P6 for each of these two faces. These
decompositions are stored as n1 and n2, respectively. The value m stores the number of the
remaining three hexagonal faces which are decomposed into a pair of triangles.
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Table B.1. Calabi–Yau threefolds from regular pairs (Pk1,k2 , D), k1, k2 �= 6.

(k1, k2) χ b2 Vol(P ◦) Note

(4, 4) −64 1 64
(4, 5) −60 2 56
(4, 7) −100 1 40
(4, 8) −144 1 23 · 4 X4,4 ⊂ P(14, 22)
(4, 9) −204 1 23 · 3 X6 ⊂ P(14, 2)
(5, 5) −56 3 49
(5, 7) −90 2 35
(5, 8) −128 2 28
(5, 9) −180 2 21
(7, 7) −100 1 25 Gr(2, 5) ∩Gr(2, 5)
(7, 8) −120 1 20 X(1, 2, 2) ⊂ Gr(2, 5)
(7, 9) −150 1 15 X(1, 1, 3) ⊂ Gr(2, 5)
(8, 8) −128 1 16 X2,2,2,2 ⊂ P7

(8, 9) −144 1 12 X2,2,3 ⊂ P6

(9, 9) −144 1 9 X3,3 ⊂ P5

Table B.2. Calabi–Yau threefolds from regular pairs (P6,k, D), k ∈ {7, 8, 9}.
(k1, k2) χ b2 Vol(P ◦) #Orbits Configuration

(6, 7) −90 2 30 1 (0)
(6, 7) −86 1 30 6 (2)
(6, 7) −84 1 30 6 (3)
(6, 7) −80 3 30 1 (5)
(6, 8) −120 2 24 1 (0)
(6, 8) −116 1 24 2 (2)
(6, 8) −112 3 24 1 (4)
(6, 9) −162 2 18 1 (0)
(6, 9) −156 3 18 1 (3)

(iv) In Table B.5 ‘configuration’ records tuples (n1, n2, n3, n4). All four hexagonal faces of P4,6 are
dual to edges of length two. Hence we must choose one of three Minkowski decompositions
of 2× P6 for each such hexagonal face. These are stored in ni for each i, where the vertices
of P4 are labelled in a clockwise direction.

Entries ni, i ∈ {1, 2, 3, 4} in Tables B.4 and B.5 label each hexagonal face dual to a length-two
line segment with a value in {0, 1, 2}. The value 0 corresponds to the Minkowski decomposition
of 2× P6 into six line segments; the value 1 corresponds to the decomposition into three line
segments and two triangles; and the value 2 corresponds to the decomposition into four triangles.

Remark B.1. With the exception of the entry in Table B.2 with (k1, k2) = (6, 8) and χ = −116,
all entries with b2 = 1 correspond to Calabi–Yau threefolds with invariants which do not appear
in the tables given in work of Kapustka [Kap15] or Lee [Lee17]. There are 14 distinct such entries
(we note that there are entries with duplicate invariants in Tables B.3 and B.5). Note that if s
Vol(P ◦) is not cube-free we check the various possible values of H3 in lists of known Calabi–Yau
threefolds. We also note that X(Pk1,k2 , D) is locally torsion-free (see Definition A.3) if and only
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Table B.3. Calabi–Yau threefolds from regular pairs (P6,6, D).

(k1, k2) χ b2 Vol(P ◦) #Orbits Configuration

(6, 6) −64 1 36 6 (2, 2)
(6, 6) −62 1 36 6 (2, 3)
(6, 6) −60 1 36 9 (2, 4)
(6, 6) −60 1 36 6 (3, 3)
(6, 6) −58 1 36 9 (3, 4)
(6, 6) −56 1 36 6 (4, 4)
(6, 6) −68 2 36 3 (0, 2)
(6, 6) −66 2 36 3 (0, 3)
(6, 6) −64 2 36 3 (0, 4)
(6, 6) −72 3 36 1 (0, 0)
(6, 6) −56 3 36 3 (2, 6)
(6, 6) −54 3 36 3 (3, 6)
(6, 6) −52 3 36 3 (4, 6)
(6, 6) −60 4 36 1 (0, 6)
(6, 6) −48 5 36 1 (6, 6)

Table B.4. Calabi–Yau threefolds from regular pairs (P5,6, D).

(k1, k2) χ b2 Vol(P ◦) #Orbits Configuration

(6, 5) −90 3 42 1 (0, 0), 0
(6, 5) −86 2 42 2 (0, 0), 2
(6, 5) −84 2 42 1 (0, 0), 3
(6, 5) −86 2 42 3 (0, 1), 1
(6, 5) −84 2 42 3 (0, 1), 2
(6, 5) −82 2 42 1 (0, 1), 3
(6, 5) −86 2 42 1 (1, 1), 0
(6, 5) −84 2 42 2 (1, 1), 1
(6, 5) −82 2 42 2 (1, 1), 2
(6, 5) −80 2 42 1 (1, 1), 3
(6, 5) −86 2 42 1 (0, 2), 0
(6, 5) −84 2 42 3 (0, 2), 1
(6, 5) −82 2 42 3 (0, 2), 2
(6, 5) −80 2 42 1 (0, 2), 3
(6, 5) −84 2 42 1 (1, 2), 0
(6, 5) −82 2 42 3 (1, 2), 1
(6, 5) −80 2 42 3 (1, 2), 2
(6, 5) −78 2 42 1 (1, 2), 3
(6, 5) −82 2 42 1 (2, 2), 0
(6, 5) −80 2 42 2 (2, 2), 1
(6, 5) −76 4 42 1 (2, 2), 3

if k1 �= 4 and k2 �= 4, which is the case in seven of the 14 cases. In these seven cases it follows
from Theorem A.8 that X(P,D) is simply connected.

Remark B.2. We conclude with a remark on the completeness of the tables. The table rows
correspond to collections of orbits. The presence of a row means we found some representative
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Table B.5. Calabi–Yau threefolds from regular pairs (P4,6, D).

(k1, k2) χ b2 Vol(P ◦) #Orbits Configuration

(6, 4) −72 2 48 1 (0, 0, 0, 0)
(6, 4) −68 1 48 2 (0, 0, 1, 1)
(6, 4) −66 1 48 1 (0, 1, 1, 1)
(6, 4) −64 1 48 1 (1, 1, 1, 1)
(6, 4) −68 1 48 1 (0, 0, 0, 2)
(6, 4) −64 1 48 2 (0, 0, 2, 2)
(6, 4) −60 1 48 1 (0, 2, 2, 2)
(6, 4) −56 3 48 1 (2, 2, 2, 2)
(6, 4) −66 1 48 2 (0, 0, 1, 2)
(6, 4) −64 1 48 2 (0, 1, 1, 2)
(6, 4) −62 1 48 1 (1, 1, 1, 2)
(6, 4) −62 1 48 2 (0, 1, 2, 2)
(6, 4) −60 1 48 2 (1, 1, 2, 2)

D in at least one such orbit such that (P,D) is regular. Moreover, the absence of a configuration
in a table means there is at least one pair (P,D) of the given configuration for which regularity
is not satisfied. We have not checked every orbit in every class, so it remains possible that our
tables are incomplete.
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