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Abstract

The Rayleigh-Taylor instability is a key process in many fields of Physics ranging from astrophysics to inertial confinement
fusion. It is usually analyzed deriving the linearized fluid equations, but the physics behind the instability is not always
clear. Recent works on this instability allow for an very intuitive understanding of the phenomenon and for a
straightforward calculation of the linear growth rate. In this Letter, it is shown that the same reasoning allows for a
direct derivation of the relativistic expression of the linear growth rate for an incompressible fluid.
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INTRODUCTION

“What I cannot create, I do not understand” was once found
written on Richard Feynman’s blackboard. Albert Einstein
stated that “You do not really understand something unless
you can explain it to your grandmother.” The point made by
these two great minds was that understanding something in
physics means you come to the point when it seems obvious
and you no longer need the equations to derive the result.
Among the physical ideas that have been examined over
the years, the stability/instability concept has been extre-
mely fruitful, although its understanding in a given setting
would not always win Feynman’s or Einstein’s approval.
The stability of a ball inside a bowl is very intuitive, and
its oscillation frequency when removed from its equilibrium
position can be calculated just by looking at a sketch of the
system. The instability of a pencil on its tip is equally ob-
vious and frequently cited when introducing the concept
of an unstable system. In plasma physics, Fried (1959)
could analyze the filamentation instability of two counter-
propagating particle beams from the very understanding
of the physical mechanism at work. Yet, a similar intuitive
derivation for the well-known two-stream instability is still
lacking.
The Rayleigh-Taylor instability (RTI) plays a key role in

many fields of physics, and its behavior in connection with
inertial confinement fusion (ICF) (Pomraning, 1990,

Kawata et al., 1993), z-pinch physics (Douglas et al.,
2001), or metallic hydrogen generation experiments (Piriz
et al., 2006, Lopez Cela et al., 2006), has been the topic of
many recent works. The RTI occurs when a heavy fluids is
accelerated against a light fluid (see Fig. 1). In ICF, a spheri-
cal Deuterium-Tritium target is compressed by a Laser. The
laser ablates the target, creating a low density ablating plasma
outside the pellet. During the early phase of the compression,
the interface between the compressed target (the heavy fluid)
and the low-density ablating plasma (the light fluid) acceler-
ates (Priz et al., 1997). An observer “sitting” on the interface
would then feel a force pushing him from the heavy fluid to
the light one, resulting in the RT unstable configuration
pictured in Figure 1. In astrophysics, the RTI is frequently
invoked to explain the filamentary structure of the Crab
nebula for example (Hester et al., 1996). As the supernova
remnant (the dense fluid) decelerates through the interstellar
medium (the light fluid), the interface between both is again
RT unstable as it experiences an acceleration from the heavy
to the light medium.

A Feynman/Einstein like heuristic approach to the RTI
(Rayleigh, 1900, Taylor, 1950) was recently provided by
Piriz et al. (2006) for an incompressible fluid. In the usual,
normal modes approach, where the fluid equations for both
fluids are linearized, the linear growth rate is derived but
the basic mechanisms at works remain hidden behind the
equations (Chandrasekhar, 1961). In contrast, Piriz et al. pro-
posed a direct derivation of the linear growth rate from the
very description of the physics involved, “short-cutting”
much of the equations.
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NON-RELATIVISTIC APPROACH

Suppose the interface represented in Figure 1 is initially in
equilibrium, both incompressible fluids exerting a pressure
p0 upon it. The system is accelerated downward with an in-
tensity g m/s2. The interface is then displaced by z along a
distance ∼1/k, where k mimics here the wave-number intro-
duced in the normal modes approach. The pressure of the
upper-fluid at the interface increases by an amount ρ1gz,
while the pressure of the lower fluid also increases, but by
a quantity ρ2gz. The upper fluid now pushes the interface
downward with the pressure p0+ ρ1gz, and the lower fluid
pushes upward with the pressure p0+ ρ2gz. It is obvious
that if p0+ ρ1gz> p0+ ρ2gz, i.e., ρ1>ρ2, the pressure bal-
ance amplifies the perturbation. Note that according to a
similar analysis, moving the interface upward equally trig-
gers an instability.
The calculation of the linear growth rate is straightforward

from this stage. Let us consider a transverse direction, say y,
to Figure 1 so as to account for the three-dimensional nature
of the system. The surface of the interface over a depth D
along the y axis is S ∼ D/k. The force acting upon it thus
reads,

F ∼ (ρ1 − ρ2)gzS = (ρ1 − ρ2)gz
D

k
. (1)

As it moves, the interface also moves a layer of fluid on both
sides. The volume of fluid displaced over the surface S
should be proportional to S itself, and the height of the
layer moved on both side is proportional to 1/k (which is
why the normal mode calculation assumes the fluid thickness
is much larger than 1/k). We can thus write the expression of
the mass involved in the displacement,

M ∝ ρ1S/k + ρ2S/k =
ρ1 + ρ2

k2
D. (2)

Since this amount of fluid is displaced by a distance z, we can
write Newton’s law F=Ma from Eqs. (1) and (2) as,

(ρ1 − ρ2)gz
D

k
= ρ1 + ρ2

k2
D
d2z

dt2
⇔ δ2z = d2z

dt2
, (3)

where,

δ2 = ρ1 − ρ2
ρ1 + ρ2

gk, (4)

and a proportionality coefficient equal to unity has been
assumed for the mass in Eq. (2). Eq. (3) has exponentially
growing solutions if δ2> 0, and δ is exactly the linear
growth rate of the RTI (Rayleigh, 1900) where the Atwood
number At= (ρ1− ρ2)/(ρ1+ ρ2) is immediately identified.
It is clear now that the sum of the densities relates to the
total amount of fluid involved in the motion, while the differ-
ence relates to the pressure shift generated by the displace-
ment. Note that a mass factor different from unity in Eq.
(2) would yield a slightly different denominator for the
linear growth rate. Indeed, such intuitive calculations fre-
quently yield the correct scalings with some pre-factor
close to unity. In the present case, the result is exact.

RELATIVISTIC VERSION

The relativistic version of the RTI is especially relevant to
supernova and Gamma-Ray-Bursts physics (Waxman &
Piran, 1994, Levinsona, 2010), where ultra-relativistic
inhomogeneous flows are involved. Adapting the normal
modes method to such settings, Allen and Hugues (1984)
found the relativistic counterpart of Eq. (4),

δ2 = ρ1 − ρ2
8p0/c2 + ρ1 + ρ2

gk. (5)

Let us now analyze the problem from the intuitive stand-
point explained above. Starting from Eq. (4), where exactly
shall we have to introduce relativistic expressions? The dis-
placement itself is not relativistic. The interface corrugation
is a still, initial condition. The only relativistic modification
will have to do with the inertia of the fluid displaced. A
volume of fluid dV has the mass ρdV in the non-relativistic
limit. If the particles it is made of have relativistic motion,
for example, a temperature T such as kBT ∼mc2, the
energy pdV adds up to the mass within an amount ∝
pdV/c2. Relativistic fluid theory shows indeed that the
correct factor is 3 so that the relativistic mass density is
ρ+ 3p/c2 (Landau & Lifschitz, 1987b). The density term
in Eq. (2) needs therefore to account for this extra inertia.
While the interface has not been displaced, the pressure is
the same on both side and the correction per unit of
volume reads 3p0/c

2 for both fluids. Updating the pressure
here for the corrugated interface would introduce a second
order term in z, which is neglected in the present linear
regime. The relativistic counterpart of Eq. (2) is thus readily
obtained replacing ρ1+ ρ2 by ρ1+ 3p0 /c2+ ρ2+ 3p0/c

2,
and the new linear growth rate is,

δ2 = ρ1 − ρ2
6p0/c2 + ρ1 + ρ2

gk. (6)

Fig. 1. (Color online) The Rayleigh-Taylor instability. At equilibrium, the
pressure on both side of the interface is p0. The pressure variation when
moving the interface shows the perturbation is unstable if ρ1> ρ2.
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The calculation starting from the linearized relativistic fluid
equations (Allen & Hughes, 1984) yields the same
expression with a term 8p0/c

2 instead of 6p0/c
2.

DISCUSSION

Eq. (6) thus give, up to a numerical factor, the correct value
of the RTI linear growth rate. We now discuss the discre-
pancy between the factors 6 and 8. To do so, we can start
from the relativistic Euler equation in the absence of gravita-
tional field (Landau & Lifschitz, 1987a),

(p+ ε)uk
∂ui
∂xk

= ∂p
∂xi

− uiu
k ∂p
∂xk

, (7)

where p is the pressure, ε is the energy density, xi= (ct, r),
and ui= (γ, γv/c). As previously said, our problem is relati-
vistic in the sense that the energy density can be so, not by
virtue of some relativistic velocity of the fluid elements. Set-
ting thus γ= 1, one can check that the temporal component
(i= 0) of the equation above yields v · ∇p= 0. The spatial
part (i= 1, 2, 3) then gives

v
c2

∂p
∂t

+∇p = − p+ ε

c2
∂
∂t

+ v ·∇
( )

v. (8)

Neglecting v · ∇v as a second order quantity and adding the
acceleration gives the premise of Allen & Hugues’ Eq. (3),

v
c2

∂p
∂t

+∇p = − p+ ε

c2
∂v
∂t

− g(p+ ε). (9)

Eqs. (7) and (9) show that that the correct relativistic inertia is
not simply the energy density ε, but the energy density plus
the pressure, ε+ p. Setting then ε= ρc2+ 3p gives p+ ε=
ρc2+ 4p for both fluids, from which the factor 8 eventually
arises.
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