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This paper considers testing for normality for correlated data+ The proposed test
procedure employs the skewness-kurtosis test statistic, but studentized by stan-
dard error estimators that are consistent under serial dependence of the observa-
tions+ The standard error estimators are sample versions of the asymptotic quantities
that do not incorporate any downweighting, and, hence, no smoothing parameter
is needed+ Therefore, the main feature of our proposed test is its simplicity, because
it does not require the selection of any user-chosen parameter such as a smooth-
ing number or the order of an approximating model+

1. INTRODUCTION

There has been recent interest in testing for normality for economic and finan-
cial data+ For instance, Bai and Ng~2001! test for normality in a set of macro-
economic series, whereas Bontemps and Meddahi~2002! emphasize financial
applications+ Kilian and Demiroglu~2001! present a variety of cases where test-
ing for normality is of interest for econometricians+ These applications include
financial and economic ones where, for instance, assessing whether abnormal
financial profits or economic growth rates are normal is important for the spec-
ification of financial and economic models+ They also present methodological
applications where testing for normality is a previous step for the design of
some tests, such as tests for structural stability or tests of forecast encompassing+

In econometrics, testing for normality is customarily performed by means of
the skewness-kurtosis test+ The main reasons for its widespread use are its
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straightforward implementation and interpretation+ The skewness-kurtosis test
statistic is the sum of the square of the sample skewness and the excess kurto-
sis coefficients properly standardized by their asymptotic variances in the white
noise case, 6 and 24, respectively+ Implementing the skewness-kurtosis test is
very simple because it compares the skewness-kurtosis test statistic against upper
critical values of a chi-squared distribution with two degrees of freedom~x2

2!+
This test is typically applied to the residual series of dynamic econometric mod-
els ~see, e+g+, Lütkepohl, 1991, Sect+ 4+5!+

In many empirical studies with time series data, the application of the
skewness-kurtosis test is questionable, though+ The reason is that the previous
asymptotic variances are correct under the assumption that the model is cor-
rectly specified, implying that the sequence under examination is uncorre-
lated+ However, on many occasions either the researcher might specify the model
incorrectly or might not even be interested in modeling the serial correlation+
In both cases, when the considered data are correlated, the asymptotic vari-
ances are no longer 6 and 24 but some functions of all the autocorrelations+ In
this situation the skewness-kurtosis test is invalid because it does not control
asymptotically the type I error+

In this paper we propose to employ the standard test statistic based on the
sample skewness and sample kurtosis, but studentized by standard error esti-
mators that are consistent under serial dependence of the observations+ The
standard error estimators are sample versions of the asymptotic quantities that
do not incorporate any downweighting, and, hence, no smoothing parameter is
needed+ These standard error estimators are consistent even though the asymp-
totic standard errors involve infinite sums of terms that depend on all autocor-
relations+ The reason is that in the expression of the asymptotic standard errors,
the autocorrelations enter raised to the cubic or fourth powers+ Hence, the pow-
ers of the sample autocorrelations provide stochastic dampening factors, sim-
ilar to the nonstochastic dampening factors that appear in the standard
nonparametric approach+ By contrast, Bai and Ng~2001! and Bontemps and
Meddahi~2002! rely on smoothing with kernel methods+

Our test can employ either frequency or time domain estimators of the asymp-
totic variances of the sample skewness and the sample excess kurtosis+Although
the proposed test is based on a time domain estimator, in the technical part of
the paper in the Appendixes we stress a frequency domain estimator because it
is relatively easier to handle theoretically+ In addition, for conciseness of expo-
sition, we only analyze the univariate case+

The plan of the paper is the following+ Section 2 presents the framework+
Section 3 introduces the proposed test statistic and studies its asymptotic theory+
Section 4 discusses the proposed variance estimators+ Section 5 examines the
case where the considered series are the residuals of regression and time series
models+ Section 6 considers the finite sample performance of the proposed test
in a brief Monte Carlo exercise+ The technical material is included in the
Appendixes+
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2. FRAMEWORK

Notation+ Let xt be an ergodic strictly stationary process with meanm and
centered moments denoted bymk 5 E~xt 2 m!k for k natural, with [mk 5
n21 (t51

n ~xt 2 Sx!k being the corresponding sample moments whereSx is the
sample mean andn is the sample size+ In addition, g~ j ! denotes the population
autocovariance of orderj, g~ j ! 5 E @~x1 2 m!~x11j 2 m!# , and [g~ j ! is the
corresponding sample autocovariance, [g~ j ! 5 n21 (t51

n26 j 6~xt 2 Sx!~xt16 j 6 2 Sx!+
Notice thatm2 5 g~0!+ Let f ~l! be the spectral density function ofxt , defined by

g~ j ! 5E
P

f ~l!exp~ijl! dl j 5 0,1,2, + + + , (1)

where P 5 @2p,p# , and let I ~l! denote the periodogramI ~l! 5 6w~l!62

wherew~l! 5 ~2pn!2102 (t51
n xt exp~itl!+ In addition, kq~ j1, + + + , jq21! denotes

the qth-order cumulant ofx1, x11j1, + + + , x11jq21
, and the marginal cumulant of

orderq is kq 5 kq~0, + + + ,0!+
Null and alternative hypotheses.The null hypothesis of interest is that the

marginal distribution ofxt is normal+ For the independent case, omnibus tests
for this null hypothesis such as the Shapiro–Wilk test~Shapiro and Wilk, 1965!,
which is based on order statistics, or tests based on the distance between the
empirical distribution function and the normal cumulative distribution function
such as the Kolmogorov–Smirnov, the Cramér–von Mises, or the Anderson–
Darling test have been proposed+ A test based onL2 distance between Gaussian
and empirical characteristic functions has been introduced by Epps and Pulley
~1983! and developed by Henze and others+ For more details see Mardia~1980!,
Henze~1997!, Epps~1999!, and references therein+ For the independent case,
the omnibus tests are consistent, but it has been shown that their finite sample
performance can be very poor~see, e+g+, Shapiro, Wilk , and Chen, 1968!+ For
the weak dependent case, no such analysis exists because inference with these
omnibus test statistics is problematic as a result of the fact that their asymptotic
distributions are nonstandard and case dependent+ Hence, the standard applica-
tion of these tests to weak dependent time series sequences is invalid~see Gleser
and Moore, 1983!+ The only developed test of which we are aware is the one
by Epps~1987! that is based on the characteristic function+ However, Epps’s
procedure is hard to implement because sensing functionsg~xt , v! have to be
selected, a joint spectral density of sensing functions has to be found, a matrix
has to be inverted, and a quadratic form has to be minimized to estimate the
marginal mean and variance+ In addition, there is the disadvantage of having to
choose the parametersv that enterg~{, v!+

In practice, instead of the previous omnibus tests, the common procedure
just tests whether the third and fourth marginal moments coincide with those
of the normal distribution+ Equivalently, in terms of the cumulants, it is tested
that the third and fourth marginal cumulants are zero instead of testing that all

SIMPLE TEST OF NORMALITY FOR TIME SERIES 673

https://doi.org/10.1017/S0266466604204030 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604204030


higher order marginal cumulants are zero+ We follow this practice, and in this
paper we test that the marginal distribution is normal by testing thatm3 5 0
and m4 5 3m2

2+ Of course, the derived tests are not consistent because they
cannot detect deviations from normality that are not reflected in the third or
fourth moments+

The skewness-kurtosis test.This test compares the skewness-kurtosis test
statistic

SK5
n [m3

2

6 [m2
3 1

n~ [m4 2 3 [m2!2

24 [m2
4

against upper critical values of ax2
2 distribution ~see Bowman and Shenton,

1975!+ Apart from the fact that Jarque and Bera~1987! have shown the opti-
mality of this test within the Pearson family of distributions, the popularity of
this approach resides in its simplicity as we mentioned previously+ In fact, now-
adays most econometrics packages customarily report theSKtest, which is called
the Jarque–Bera test+

The SK test procedure is justified on the following grounds+ When the con-
sidered seriesxt is an uncorrelated Gaussian process, the following limiting
result holds:

MnS [m3

[m4 2 3 [m2
2Drd NS6m2

3 0

0 24m2
4D, (2)

whererd denotes convergence in distribution+ However, whenxt is a Gauss-
ian process satisfying the weak dependent condition

(
j50

`

6g~ j !6 , `, (3)

the result~2! is replaced by

MnS [m3

[m4 2 3 [m2
2Drd NS6F ~3! 0

0 24F ~4!D, (4)

where

F ~k! 5 (
i52`

`

g~i !k, (5)

for k 5 3,4 ~see Lomnicki, 1961; Gasser, 1975!+ Notice that condition~3! guar-
antees that allF ~k! are well defined because it entails that(6g~ j !6r , `, for
all naturalr+

Hence, when the series exhibits serial correlation, theSKtest is invalid because
the denominators of its components do not estimate consistently the true asymp-
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totic variances in~4!, implying that asymptotically its rejection probabilities do
not coincide with the desired nominal levels under the null hypothesis+

3. THE GENERALIZED SKEWNESS-KURTOSIS TEST

In the previous section we have seen that theSK test is invalid when the con-
sidered processxt exhibits serial correlation+ One strategy to overcome this prob-
lem is to carry out a two-step test where theSKprocedure is applied after testing
that the considered series is uncorrelated+ However, this solution is not simple
because there is an obvious pretest problem in such a sequential procedure and,
furthermore, testing for uncorrelatedness for non-Gaussian series is rather chal-
lenging~see Lobato, Nankervis, and Savin, 2002!+

Looking at ~4! two natural solutions appear+ The first one consists of modi-
fying theSK test statistic by including consistent estimators ofF ~3! andF ~4! in
the denominators of its components+ This solution is proposed by Gasser~1975,
Sect+ 6!, who suggested truncating the infinite sums that appear in the asymp-
totic variances+ However, he did not provide any formal analysis or any recom-
mendation about the selection of the truncation number+ As we will see, our
proposed procedure overcomes these difficulties because it does not require the
selection of any truncation number+ The second solution estimates the unknown
asymptotic variances with the bootstrap; that is, it employs theSK test statistic
with bootstrap-based critical values+ Implementing the bootstrap in a time series
context is problematic because generally valid bootstrap procedures require the
introduction of an arbitrary user-chosen number, typically a block length~see,
e+g+, Davison and Hinkley, 1997, Ch+ 8!+ Therefore in this paper we follow the
first approach+ Furthermore, in our case the bootstrap does not present a clear
theoretical advantage because theSK statistic is not asymptotically pivotal+

Before introducing our test statistic, let us consider the following estimator
of F ~k! , which is the sample analog of~5!:

ZF ~k! 5 (
j512n

n21

[g~ j !k+ (6)

In the next section we consider alternative versions of this estimator and study
their large sample properties; in particular, Lemma 1 establishes the consis-
tency of ZF ~k! for F ~k! for Gaussian processes that satisfy condition~3!+ Then,
our proposed test statistic, the generalizedSK statistic, is

G 5
n [m3

2

6 ZF ~3! 1
n~ [m4 2 3 [m2!2

24 ZF ~4! +

The G statistic does not require the introduction of any user chosen number,
and, in view of ~4! and Lemma 1 in the next section, the proposed test con-
sists of comparing theG test statistic against upper critical values from ax2

2

distribution+
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In the next assumption we introduce the class of processes under the alter-
native hypothesis for which bothEF ~k! and ZF ~k! converge to bounded positive
constants, and hence wheneverm3 Þ 0 or m4 Þ 3m2

2, the G test rejects with
probability tending to 1 asn tends to infinity+ Notice that the conditions of
Gasser~1975! that involve summability conditions of cumulants of all orders
are relaxed to cumulants up to order 16 using an extension of Theorem 3 in
Rosenblatt~1985, p+ 58!+

Assumption A+ The processxt satisfiesExt
16 , `, and, for q 5 2,3, + + + ,16,

(
j152`

`

+ + + (
jq2152`

`

6kq~ j1, + + + , jq21!6 , `, (7)

and, for k 5 3,4,

(
j51

`

@E6~E~x0 2 m!k 6I2j ! 2 mk62#102 , `, (8)

whereI2j denotes thes-field generated byxt , t # 2j, and, for k 5 3,4,

E @~x0 2 m!k 2 mk# 2 1 2 (
j51

`

E~ @~x0 2 m!k 2 mk# @~xj 2 m!k 2 mk# ! . 0+ (9)

Assumption A is a weak dependent assumption that implies that the higher
order spectral densities up to the sixteenth order are bounded and continuous+
For the caseq 5 2, expression~7! implies that condition~3! holds+ We require
finite moments up to the sixteenth order because we need to evaluate the vari-
ance of the fourth power of the sample autocovariances+ Notice that condition
~9! assures that the asymptotic variances of estimates are positive+

The following theorem establishes the asymptotic properties of theG test+

THEOREM 1+

(i) Under the null hypothesis and for Gaussian processes that satisfy con-
dition (3), Grd x2

2+
(ii) Under Assumption A, the test statistic G diverges to infinity whenever

m3 Þ 0 or m4 Þ 3m2
2.

The asymptotic null distribution is straightforward to derive given the con-
sistency of ZF ~k! for F ~k! that is proved in Lemma 1 in the next section+ The
proof of ~ii ! is omitted because it follows easily using that under the alternative
hypothesis ZF ~k! converges to a bounded positive constant~by ~7! and ~9!!,
whereas the numerator ofG diverges+
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4. CONSISTENT VARIANCE ESTIMATORS

Following the literature on nonparametric estimation of asymptotic covariance
matrices, the standard approach to estimateF ~k! consistently employs a smoothed
estimator such as

(
j512n

n21

wj [g~ j !k+ (10)

In ~10! the weights$wj % are usually obtained through a lag window$wj 5
w~ j0M !% such that the weight functionw~{! verifies some regularity proper-
ties andM is a smoothing number that grows slowly withn+ Note that the
introduction of the smoothing number leads to estimators whose rate of con-
vergence is usually slower than the parametric rate+ We stress that in this
approach the weights$wj % provide a nonstochastic dampening on the[g~ j !k

for large j+ Because of this dampening, the estimator in~10! is consistent for
~5! as it happens in the casek 5 1, where f ~0! is consistently estimated by
autocorrelation robust estimators~see, e+g+, Robinson and Velasco, 1997!+

As mentioned in the introduction, the main problem with the smoothing
approach is that statistical inference can be very sensitive to the selection of
the user-chosen weights; in our context, the discussion in Section I in Robin-
son ~1998! is especially relevant+ In the absence of a clear and rigorously jus-
tified procedure to select the smoothing number in our testing framework, we
prefer to analyze estimators that do not require any smoothing+

Our first estimator ZF ~k! , introduced in equation~6!, also admits a frequency
domain version~see Appendix A!+ For technical reasons, in this paper we con-
sider a second estimator that can be motivated by writingF ~k! in terms of the
spectral density function of thext process using~1!:

F ~k! 5 (
j52`

`

g~ j !k 5 (
j52`

`

)
h51

k HE
P

f ~vh!exp~ijvh! dvhJ
5 2pE

Pk21
f ~v1 1 {{{ 1 vk21! )

h51

k21

$ f ~vh! dvh%+ (11)

The sample analog of the previous equation renders the following alternative
estimator forF ~k!:

EF ~k! 5
~2p!k

nk21 (
j151

n21

+ + + (
jk2151

n21

I ~l j1! + + + I ~l jk21
! I ~l j1 1 {{{ 1 l jk21

!, (12)

wherel j 5 2pj0n+ The estimator EF ~k! can also be written in the time domain
by plugging

I ~l j ! 5
1

2p (
t512n

n21

exp~itl j ! [g~t !, j Þ 0, modn, (13)
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into equation~12!+ After some algebra, in Appendix A it is shown that

EF ~k! 5 (
t512n

n21

[g~t !$ [g~t ! 1 [g~n 2 6 t 6!%k21+ (14)

Notice that both expressions forEF ~k! are numerically identical, but in the Appen-
dixes, for technical reasons, we stress the frequency domain version~12!+ Expres-
sion ~12! guarantees thatEF ~k! is positive in finite samples+

The next lemma states the consistency ofEF ~k! and ZF ~k! for F ~k! + This lemma
is the substantive technical contribution of the paper+ Its proof is in Appendix B+

LEMMA 1 + Under the null hypothesis, for Gaussian time series that satisfy
condition (3),

(i) EF ~k! 5 F ~k! 1 op~1! and
(ii) ZF ~k! 2 EF ~k! 5 op~1! for k 5 3,4.

At first look, consistency of ZF ~k! and EF ~k! could be surprising because no
smoothing parameter has been introduced+ Robinson~1998! analyzes a special
regression model where smoothing is not necessary for establishing consis-
tency of asymptotic covariance matrix estimators+ The reason is that the spe-
cific form of the covariance matrix that he considers~see his equation~1+2!!
allows for a stochastic dampening of some sample autocovariances by other
sample autocovariances+ The time domain versions~6! and~14! provide a sim-
ilar intuition where the powers of the sample autocovariances provide the sto-
chastic dampening factors+

In the frequency domain, ~11! provides a complementary explanation+ Recall
that in time series the standard problem is that the relevant asymptotic variance
depends on the spectral density function evaluated at a unique point, typically
the zero frequency, f ~0!+ However, in our case~11! shows that the asymptotic
variance, F ~k!, is a convolution of the spectral density function, instead of a
single value+ Intuitively, in the first case a user-chosen smoothing number is
required to estimate the local quantity, f ~0!, whereas in our case no such num-
ber is needed because we are estimating a global quantity+

5. RESIDUAL TESTING

The previous sections analyze the case where raw data are under examination+
However, in practice the test is commonly applied to the residuals of regres-
sion or time series models+ Again, two approaches can be used: first, theG test
that we propose and, second, employing theSK statistic with bootstrap-based
critical values+ The bootstrap has been employed by Kilian and Demiroglu
~2000!+ However, as mentioned in Section 3, application of the bootstrap is not
an obvious task in a time series context+ Kilian and Demiroglu perform a para-
metric bootstrap that could be justified if the model were correctly specified,
although in this case theSK test would also be asymptotically valid+ However,
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in the absence of the knowledge of the true data generating process, a paramet-
ric bootstrap is invalid; that is, there is no guarantee that the type I error is
controlled properly asymptotically+ As mentioned previously, bootstrap proce-
dures valid for time series require the introduction of a user-chosen number,
typically a block number, complicating statistical inference in finite samples+

Next, we introduce a general assumption that validates the use of theG sta-
tistic applied to the residuals of many dynamic econometric models where the
correlation structure is not correctly specified or it is not specified at all+ In this
section, [xt denotes the residuals of the regression or time series model, andxt

denotes the true disturbances+

Assumption B+ Let the Gaussian processxt satisfy ~3! and letet 5 xt 2 [xt

satisfy

(
t51

n

et
2 5 Op~1! and (

t51

n

et
4 5 op~n2104!+ (15)

The first condition in~15! guarantees the consistency of the estimates ofF ~k!

based on residuals, whereas the second guarantees that the residualSK test has
the same asymptotic distribution as the originalSK test+ Assumption B is very
general and covers many interesting cases such as linear regressions with pos-
sible trending stochastic and deterministic regressors that satisfy Grenander’s
conditions and weakly dependent errors+ In this caseet 5 ~ Zb 2 b!'Zt , where
Zt is a p-dimensional sequence of regressors, so ~15! implies that(t51

n et
2 5

~ Zb 2 b!'Z 'Z~ Zb 2 b! 5 Op~1!, allowing for the components ofZb to have
different convergence rates+ A leading example with stochasticZt is a regres-
sion between cointegrated variables+ For stationaryZt , another interesting
application is when[xt are the residuals obtained through possibly misspecified
AR~ p! regressions; that is, [xt 5 yt 2 Zb 'Zt with Zt 5 ~ yt21, + + + , yt2p!',
andMn~ Zb 2 b! 5 Op~1! for some vectorb such that the polynomialb~v! 5
1 2 (j51

p bj v
j has no roots on or inside the unit circle+ For this case, if

Assumption B holds foryt , the limit processxt 5 yt 2 b 'Zt 5 b~L!yt inherits
the weak dependence properties ofyt , but notice thatxt is autocorrelated unless
yt follows an AR~q! process withq # p+

In Appendix C we prove the following lemma, which shows that the use of
residuals does not affect the consistent studentization that we propose in this
paper+

LEMMA 2 + Under the null hypothesis and Assumption B, for k5 3,4,

(
12n

n21

[g [x~ j !k 5 (
12n

n21

[gx~ j !k 1 op~1!+

Finally, using the previous lemma and Hölder’s inequality, it is straight-
forward to prove the next theorem, which establishes that the asymptotic null
distribution of theG test statistic applied to the residuals of many dynamic
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econometric models whose correlation structure is ignored or misspecified is
still x2

2 and that wheneverm3 Þ 0 or m4 Þ 3m2
2 the G test rejects with prob-

ability tending to 1 asn tends to infinity+

THEOREM 2+ Let ZG be the test statistic G calculated from residuals[xt +

(i) Under the null hypothesis and Assumption B,ZG rd x2
2+

(ii) If m3 Þ 0 or m4 Þ 3m2
2 and Assumptions A and B hold, then the test

statistic ZG diverges to infinity.

6. FINITE SAMPLE PERFORMANCE

This section compares briefly the finite sample behavior of the previous tests
with the Epps~1987! test+ Under the null hypothesis we generate data from an
AR~1! processxt 5 fxt21 1 «t , where«t is independent and identically distrib-
utedN~0,1! and the autoregressive parameterf takes eight values: 20+9,20+5,
0, 0+5, 0+6, 0+7, 0+8, and 0+9+We report the results for a detailed grid of positive
values off because positive autocorrelation is particularly relevant for many
empirical applications+

Along with the null hypothesis, we consider also testing the null that the
skewness is zero by using the first components of theSK and G statistics+
Namely, we compute the skewness test statisticS 5 n [m3

206 [m2
3 and the gener-

alized skewness test statisticGS5 n [m3
206 ZF ~3! and compare them with upper

critical values from ax1
2+ We have not reported the results of a kurtosis test

because of the well-known slow convergence of the sample kurtosis to the
normal asymptotic distribution even in the white noise case~see, e+g+, Bow-
man and Shenton, 1975, p+ 243!+ In Tables 1A and 1B we report the empirical
rejection probabilities for the tests for three sample sizes, n 5 100, 500, and
1,000, and three nominal levels, a 5 0+10, 0+05, and 0+01+ In these experi-
ments 5,000 replications are carried out+

The main conclusions derived from Table 1A are the following+ For the case
of testing symmetry, the S test is not reliable since it severely underrejects for
the cases whenf , 0 and substantially overrejects for the cases whenf . 0+
This result could be expected because whenf is negative, (j51

` gj
3 is negative,

leading to overestimation of the asymptotic variance and then to underrejection
of the S test, whereas whenf is positive the opposite effect occurs+ The most
interesting evidence is the magnitude of these distortions, which are very large
for negative values off and all sample sizes, whereas for positivef the dis-
tortions are increasing steadily with the sample size+ On the contrary, for the
GS test the empirical rejection probabilities are very close to the nominal lev-
els for all the parameter values and all sample sizes~the only exception is when
n 5 100 andf 5 0+9!+

Table 1B reports the results for testing normality for the three tests, SK, G,
and Epps test+ The SK test, which is the sum of the skewness test and the kur-
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Table 1. Empirical rejection probabilities for 3 sample sizes and 3 nominal
levels

n 100 500 1,000

f 0+10 0+05 0+01 0+10 0+05 0+01 0+10 0+05 0+01

A+ S andGS tests
20+9 S 0+001 0+000 0+000 0+000 0+000 0+000 0+000 0+000 0+000

GS 0+083 0+038 0+008 0+097 0+047 0+012 0+091 0+045 0+010
20+5 S 0+056 0+025 0+005 0+063 0+027 0+005 0+064 0+026 0+005

GS 0+093 0+047 0+011 0+103 0+052 0+010 0+101 0+051 0+009
0 S 0+092 0+047 0+011 0+105 0+056 0+009 0+104 0+053 0+012

GS 0+097 0+051 0+012 0+105 0+056 0+010 0+104 0+054 0+013
0+5 S 0+117 0+064 0+019 0+146 0+080 0+023 0+152 0+090 0+025

GS 0+095 0+048 0+012 0+100 0+052 0+011 0+105 0+054 0+012
0+6 S 0+140 0+081 0+026 0+175 0+107 0+037 0+181 0+109 0+039

GS 0+094 0+046 0+011 0+097 0+050 0+009 0+098 0+052 0+009
0+7 S 0+176 0+109 0+039 0+233 0+158 0+061 0+231 0+157 0+069

GS 0+091 0+046 0+010 0+099 0+049 0+011 0+097 0+049 0+009
0+8 S 0+228 0+153 0+065 0+315 0+231 0+116 0+321 0+238 0+123

GS 0+089 0+045 0+009 0+098 0+049 0+011 0+092 0+049 0+012
0+9 S 0+278 0+196 0+090 0+442 0+361 0+238 0+467 0+389 0+261

GS 0+067 0+029 0+005 0+090 0+047 0+013 0+096 0+049 0+010

B+ SK, G, and Epps tests
20+9 SK 0+078 0+034 0+009 0+229 0+157 0+072 0+261 0+195 0+106

G 0+031 0+014 0+004 0+062 0+038 0+013 0+067 0+038 0+012
E 0+172 0+109 0+046 0+121 0+072 0+018 0+126 0+068 0+015

20+5 SK 0+051 0+032 0+015 0+079 0+043 0+016 0+082 0+044 0+010
G 0+065 0+039 0+014 0+090 0+047 0+014 0+095 0+047 0+011
E 0+118 0+063 0+020 0+109 0+059 0+013 0+104 0+055 0+011

0 SK 0+069 0+045 0+021 0+094 0+048 0+014 0+095 0+047 0+014
G 0+070 0+045 0+021 0+094 0+048 0+014 0+095 0+048 0+014
E 0+123 0+067 0+020 0+099 0+055 0+013 0+106 0+055 0+010

0+5 SK 0+080 0+050 0+023 0+120 0+071 0+025 0+138 0+082 0+026
G 0+063 0+040 0+015 0+084 0+045 0+014 0+094 0+053 0+014
E 0+130 0+069 0+021 0+113 0+061 0+017 0+101 0+054 0+014

0+6 SK 0+093 0+058 0+025 0+157 0+095 0+036 0+170 0+104 0+039
G 0+056 0+035 0+015 0+079 0+045 0+017 0+088 0+047 0+013
E 0+139 0+079 0+022 0+128 0+070 0+017 0+110 0+060 0+014

0+7 SK 0+114 0+075 0+036 0+221 0+142 0+063 0+238 0+158 0+067
G 0+054 0+033 0+012 0+076 0+043 0+017 0+081 0+046 0+015
E 0+158 0+087 0+026 0+134 0+078 0+019 0+121 0+064 0+011

0+8 SK 0+168 0+103 0+047 0+329 0+236 0+114 0+356 0+266 0+132
G 0+045 0+026 0+009 0+064 0+042 0+018 0+075 0+041 0+016
E 0+185 0+115 0+036 0+141 0+081 0+024 0+120 0+060 0+016

0+9 SK 0+267 0+154 0+062 0+549 0+440 0+265 0+585 0+489 0+323
G 0+027 0+015 0+006 0+056 0+036 0+013 0+067 0+043 0+013
E 0+236 0+155 0+064 0+180 0+110 0+033 0+149 0+084 0+026

Note: Data follow a Gaussian AR~1! process with parameterf+ Sample size is denoted byn+
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tosis test, inherits their characteristics+ Notice that for the cases wheref , 0,
there is a fair amount of compensation between the skewness and kurtosis, mak-
ing the distortions of theSK test much smaller than those of its components+
TheG test inherits the slow convergence from the kurtosis, but using the white
noise case as benchmark, it appears to be robust to the presence of moderate
serial correlation+ When 6f6 5 0+9, the G test is severely affected by its kurto-
sis component+ In fact, even forn 5 1,000 theG test appears to be very con-
servative+ For the casesf 5 0+7 andf 5 0+8, a similar pattern can be observed+
Similar to theG test, the Epps test is also insensitive to moderate serial corre-
lation+ However, for the casef 5 20+9, and also for the most interesting cases
wheref $ 0+7, the Epps test appears to be too liberal+

We also conducted power experiments for data generated by the previous
AR~1! model for six different distributions: standard log-normal, student’st
with 10 degrees of freedom, x1

2, x10
2 , beta with parameters~1,1!, and beta with

parameters~2,1!+ Although distributions with bounded support are not that pop-
ular in econometrics, it is well known that in the independent and identically
distributed~i+i+d! setting theSK test performs very poorly against such alterna-
tives+ Hence, it is of interest to examine the performance of theG test in these
difficult cases+ Table 2 reports the power results for theG and the Epps tests
for three sample sizes, n 5 100, 500, and 1,000, respectively, and for a 5%
nominal level+ In these experiments 2,000 replications are carried out+ The main
conclusions from these tables are the following+ For both tests it appears that
the sign of the autocorrelation has little relevance in terms of power~although
generally the empirical power is slightly greater for positivef!+ Using the white
noise as the reference case, higher values for6f6 lead to a decrease in the empir-
ical power that in some cases is very exacerbated+ The empirical rejection prob-
abilities for theG test are particularly high for heavily skewed distributions
such as the lognormal or thex1

2+ For these cases theG test is clearly preferable
to the Epps test+ When the distribution is symmetric or slightly skewed, both
tests are comparable+ For thet10 and thex10

2 distributions, the G test presents
higher empirical power, especially for a moderate degree of serial correlation+
For these cases and when6f65 0+9, the tests present very low empirical power
even forn 5 1,000+ Notice that whenn 5 1,000 andf 5 0+7 or 0+8, for thex10

2

case, the empirical powers of both the Epps test and, especially, the G test are
moderately high, but the power deteriorates suddenly forf 5 0+9+ For the beta
distributions, both tests~and especially theG test! appear to be very sensitive
to a high degree of serial correlation+ In fact, when 6f6 5 0+9, the power of
both tests is very low even whenn 5 1,000+ Here again, there is a sudden
decrease in the empirical power whenf increases from 0+6 to 0+7 for n 5 500
and whenf increases from 0+7 to 0+8 for n 5 1,000+

We end with a suggestion on further research+ In this section we have seen
that for small sample sizes, because of the slow convergence of the sample
kurtosis coefficient, the G test presents significant size distortions even in the
white noise case+ One potential way of improving the finite sample perfor-
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mance is by using the bootstrap+ Because theG test statistic is asymptotically
pivotal, it can be expected that application of the bootstrap will deliver an asymp-
totic refinement+ Hence, it would be interesting to study the implementation of
the G statistic with bootstrap-based critical values+

Table 2. Empirical rejection probabilities at the 0+05 nominal levels for theG
and Epps~E! tests for 3 sample sizes

f Log N t10 x1
2 x10

2 Beta~1,1! Beta~2,1!

n 5 100
20+9 G 0+291 0+045 0+175 0+048 0+006 0+035

E 0+041 0+115 0+052 0+115 0+120 0+128
20+5 G 0+999 0+187 0+998 0+437 0+002 0+121

E 0+673 0+043 0+843 0+200 0+557 0+484
0 G 1 0+299 1 0+798 0+511 0+740

E 0+971 0+079 0+996 0+537 0+993 0+978
0+5 G 1 0+177 1 0+435 0+001 0+114

E 0+865 0+059 0+953 0+215 0+532 0+544
0+6 G 0+992 0+122 0+985 0+312 0+001 0+064

E 0+612 0+057 0+782 0+121 0+257 0+270
0+7 G 0+936 0+080 0+899 0+188 0+004 0+040

E 0+318 0+062 0+392 0+060 0+099 0+080
0+8 G 0+742 0+045 0+591 0+104 0+007 0+034

E 0+146 0+083 0+120 0+017 0+025 0+008
0+9 G 0+371 0+042 0+187 0+055 0+013 0+028

E 0+111 0+144 0+054 0+006 0+010 0+003

n 5 500
20+9 G 0+959 0+080 0+734 0+126 0+023 0+078

E 0+400 0+064 0+226 0+075 0+101 0+097
20+5 G 1 0+484 1 0+995 0+971 0+995

E 1 0+132 1 0+756 0+992 0+987
0 G 1 0+773 1 1 1 1

E 1 0+320 1 0+996 1 1
0+5 G 1 0+471 1 0+998 0+964 1

E 1 0+139 1 0+857 0+992 0+998
0+6 G 1 0+323 1 0+960 0+465 0+914

E 0+999 0+113 1 0+701 0+785 0+901
0+7 G 1 0+194 1 0+773 0+059 0+430

E 0+999 0+085 1 0+473 0+326 0+551
0+8 G 1 0+105 1 0+403 0+037 0+116

E 0+980 0+077 0+950 0+249 0+105 0+217
0+9 G 0+947 0+075 0+737 0+133 0+030 0+062

E 0+572 0+090 0+382 0+059 0+032 0+027

continued
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APPENDIX A

This Appendix provides the alternative versions ofZF ~k! and EF ~k! + First, the ZF ~k! estima-
tor can be written in the frequency domain as follows:

ZF ~k! 5 (
j512n

n21

[g~ j !k 5 (
j512n

n21

)
h51

k HE
P

I ~vh!exp~ijvh! dvhJ
5 )

h51

k HE
P

I ~vh! dvhJ (
j512n

n21

exp$ij ~v1 1 {{{ 1 vk!%

5E
Pk

Ix2 Sx~v1! + + + Ix2 Sx~vk!Dn~v1 1 {{{ 1 vk! dv1 + + +dvk,

whereDn~v! 5 (j512n
n21 exp~ijv! satisfies*P Dn~v! dv5 2p andDn~v! r 2pd~v5 0! as

n r `, whered represents the Dirac’s delta function+ Hence, for largen we obtain the
following approximate expression forZF ~k! in the frequency domain:

ZF ~k! ' 2pE
Pk21

Ix2 Sx~l1! + + + Ix2 Sx~lk21! Ix2 Sx~l1 1 {{{ 1 lk21! dl1 + + +dlk21+ (A.1)

Equation~12! is the natural discrete approximation of~A+1!+
Second, to obtain the time domain expression ofEF ~k! we just plug~13! into equation

~12! to get

EF ~k! 5
1

nk21 (
t1512n

n21

[g~t1! + + + (
tk21512n

n21

[g~tk21! (
tk512n

n21

[g~tk!

3 (
j151

n

+ + + (
jk2151

n

exp$i ~t1l j1 1 {{{ 1 tk21l jk21
1 tk~l j1 1 {{{ 1 l jk21

!!%

5
1

nk21 (
t1512n

n21

[g~t1! + + + (
tk21512n

n21

[g~tk21! (
tk512n

n21

[g~tk!fn~lt1 1 ltk! + + +fn~ltk21
1 ltk!,
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wherefn~l! 5 (t51
n exp~itl!+ Finally, using thatfn~l j ! 5 0 if l j 5 2pj0n, j Þ 0 modn,

andfn~0! 5 n, and denoting the indicator function by 1, we obtain forj 5 1, + + + , k 2 1,

1

n (
tj512n

n21

[g~tj !fn~ltj 1 ltk! 5 [g~2tk! 1 [g~n 2 tk!1$tk.0% 1 [g~2n 2 tk!1$tk,0%

5 [g~tk! 1 [g~n 2 6 tk6!,

where we have used that[g is even+ Then~14! follows immediately+

APPENDIX B

Proof of Lemma 1(i). We just report the analysis forEF ~3! because the analysis for
EF ~4! is similar but notationally more involved+ We prove consistency by checking the

sufficient conditions that EF ~3! is asymptotically unbiased and that its variance goes to
zero asn r `+

First, we consider the expectation ofEF ~3! ,

E @ EF ~3! # 5
~2p!3

n2 (
j151

n21

(
j251

n21

E @I ~l j1! I ~l j2! I ~l j1 1 l j2!# +

Using the definition ofI ~l!,

E @I ~l j1! I ~l j2! I ~l j1 1 l j2!#

5 E @w~l j1!w~2l j1!w~l j2!w~2l j2!w~l j1 1 l j2!w~2l j1 2 l j2!# (B.1)

5 (
n

cum~n1!{{{cum~nq!,

where the summation inn runs for all possible partitionsn 5 n1ø{{{ønq, q 5 1,2,3 of
the 6-tuple

$ j1,2j1, j2,2j2, j1 1 j2,2j1 2 j2% (B.2)

such thatni 5 $ni ~1!, + + + ,ni ~ pi !% and (i51
q pi 5 6 and where cum~ni ! stands for

cum~w~lni ~1! !, + + + ,w~lni ~ pi ! !! ~See Brillinger, 1981, pp+ 20–21!+
To evaluate the expectation~B+1!, by Gaussianity the only cumulants different from

zero are second-order cumulants, k2, with q 5 3+ Hence

E @ EF ~3! # 5
1

n5 (
j151

n21

(
j251

n21H(
k2

3

E
P3

)
i51,2,3

@ f ~m i !fn~m i 1 lni ~1! !fn~lni ~2! 2 m i ! dm i #J ,
(B.3)

where the sum ink2
3 is for all the different 3-tuplesn1øn2øn3 of pairs ni 5

~ni ~1!,ni ~2!! formed with all the permutations of the coefficients in~B+2!+ In fact, fol-
lowing Brillinger ~1981, Theorem 4+3+1!, the only relevant combinations in the sum in
k2

3 are those for whichni ~1! 1 ni ~2! 5 0 modn, i 5 1,2,3+ Therefore, using that
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6fn~m!6 # 2 min$6m621, n% ~see Zygmund, 1977, pp+ 49–51!, and the continuity off ~l!
implied by ~3!, we obtain that~B+3! is

E @ EF ~3! # 5
~2p!3

n2 (
j151

n21

(
j251

n21H(
k2

3

E
P3

)
i51,2,3

@ f ~m i !Fn
~2!~m i 2 lni

! dm i #J 1 o~1!

5
~2p!3

n2 (
j151

n21

(
j251

n21

f ~l j1! f ~l j2! f ~l j11j2! 1 o~1!

5 2pE
P2

f ~l! f ~l! f ~l 1 m! dldm 1 o~1!

5 F ~3! 1 o~1!, asn r `, (B.4)

whereFn
~2!~m! 5 ~2pn!216fn~m!62 and*P Fn

~2!~m! dm 5 1+
Second, we study the variance ofEF ~3! ,

Var@ EF ~3! # 5 cum~ EF ~3!, EF ~3! ! 5 (
n

cum~n1!{{{cum~nq!+

Now, we need to consider all the indecomposable partitionsn 5 n1ø{{{ønq, q 5 1, + + + ,6
of the following array with 12 elements:

j1 2j1 j2 2j2 j1 1 j2 2j1 2 j2,

j1
' 2j1

' j2
' 2j2

' j1
'1 j2

' 2j1
'2 j2

' +
(B.5)

By Gaussianity, the relevant partitions only involve six second-order cumulants, that is,

Var@ EF ~3! # 5
1

n10 (
j151

n21

(
j251

n21

(
j1
'5 1

n21

(
j2
'5 1

n21 H(
k2

6

E
P6

)
i51

6

$ f ~m i !fn~m i 1 lni ~1! !

3 fn~lni ~2! 2 m i ! dm i %J (B.6)

where the sum ink2
6 is for all the different 6-tuplesn 5 n1ø{{{øn6 of pairs ni 5

~ni ~1!,ni ~2!! constructed in such a way that at least oneni in n has elements in each of
the rows of the array~B+5! to guarantee an indecomposable partition+ Following the
same arguments, the only terms that contribute to the leading term of the variance of
EF ~3! are those in~B+6! characterized by a restrictionni ~1! 1 ni ~2! 5 0 modn, for just

one i [ $1, + + + ,6% ~e+g+, j1 5 2j1
' !+ Then, taking into account all the possible partitions

~6 3 3! and using the continuity off, the variance of EF ~3! is

Var@ EF ~3! # 5
~2p!6

n4 18 (
j151

n21

(
j251

n21

(
j351

n21

f 2~l j1! f ~l j2! f ~l j3! f ~l j1 1 l j2! f ~l j1 1 l j3! 1 o~n21!

5 O~n21! 5 o~1! (B.7)

asn r `+ Hence, from ~B+4! and~B+7! we conclude that EF ~3! 5 F ~3! 1 op~1!+ n
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Proof of Lemma 1(ii). Notice that

ZF ~k! 2 EF ~k! 5 (
t512n

n21

[g~t !k21 [g~n 2 6 t 6! 1 {{{ 1 (
t512n

n21

[g~t ! [g~n 2 6 t 6!k21

5 2 (
t51

n21

[g~t !k21 [g~n 2 6 t 6! 1 {{{ 1 2 (
t51

n21

[g~t ! [g~n 2 6 t 6!k21, (B.8)

because [g~n! 5 0+ Then, settingM 5 n102, the first element in~B+8! is equal to

2 (
t51

M

[g~t !k21 [g~n 2 t ! 1 2 (
t5M11

n21

[g~t !k21 [g~n 2 t !+ (B.9)

Now, E [g~n 2 t !2 5 O~M 2n22! for 0 , t # M, and using the same methods of the proof
of Lemma 1~i!, it is easy to see that forp 5 2,4,6,

E [g~t ! p 5 O~g~t ! p 1 n2p02!+

Hence, we obtain that fork 5 3,4,

E*(
t51

M

[g~t !k21 [g~n 2 t !* # S(
t51

M

E [g~t !2~k21! (
t51

M

E [g~n 2 t !2D102

5 OSS(
t51

n

$g~t !2~k21! 1 n122~k21! %M 3n22D102D
5 O~M 302n21! 5 o~1!+

Next,

E* (
t5M11

n21

[g~t !k21 [g~n 2 t !* # S (
t5M11

n21

E [g~t !2~k21! (
t5M11

n21

E [g~n 2 t !2D102

,

where(t5M11
n21 E [g~t !2~k21! 5 O~(t5M11

n21 $g~t !2~k21! 1 n12k%! 5 o~1! asn r ` for k 5
3,4 and(t5M11

n21 E [g~n 2 t !2 5 O~(t51
n21$g~t !2 1 n21%! 5 O~1 1 (t50

` 6g~t !6! 5 O~1!+
Hence, both terms on the right-hand side of~B+9! areop~1!+ Similar reasoning can be

used to show that the remaining terms in~B+8! are also asymptotically negligible and
conclude that ZF ~k! 2 EF ~k! 5 op~1!+ n

APPENDIX C

Proof of Lemma 2. Write

[g [x~ j ! 2 [gx~ j ! 5
1

n (
t51

n26 j 6

et et26 j 61
1

n (
t51

n26 j 6

et xt26 j 61
1

n (
t51

n26 j 6

et26 j 6 xt ,

5 A~ j ! 1 B~ j ! 1 C~ j !,
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say+ Thus,

(
j512n

n21

[g [x~ j !4 5 (
j512n

n21

$ [gx~ j !4 1 4 [gx~ j !3A~ j ! 1 {{{ 1 A4~ j ! 1 B4~ j ! 1 C4~ j !%+

Hence, using from Appendix B that(12n
n21 [gx~ j !4 5 Op~1! and the Cauchy–Schwartz

inequality, we only need to show that

(
j512n

n21

A4~ j ! 1 (
j512n

n21

B4~ j ! 1 (
j512n

n21

C4~ j ! 5 op~1!+

First,

(
j512n

n21

A4~ j ! 5
1

n4 (
j512n

n21 S (
t51

n26 j 6

et et26 j 6D4

# 2n23S(
t51

n

et
2D4

5 Op~n23! 5 op~1!,

where we have used Assumption B+
Second,

(
12n

n21

B4~ j ! 5
1

n4 (
j512n

n21 F (
t51

n26 j 6

et xt26 j 6G4

#
1

n4 (
j512n

n21 F (
t51

n26 j 6

et
2 (

t51

n26 j 6

xt26 j 6
2 G2

# 2n21F [gx~0! (
t51

n

et
2G2

5 Op~n21! 5 op~1!,

where we have employed the Cauchy–Schwartz inequality+ The analysis of(12n
n21 C4~ j !

is omitted because it is similar to that of(12n
n21 B4~ j !+ n
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