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Effect of surfactant on the stability of film
flow down an inclined plane
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The effect of an insoluble surfactant on the stability of the gravity-driven flow of
a liquid film down an inclined plane is investigated by a normal-mode analysis.
Numerical solutions of the Orr–Sommerfeld equation reveal the occurrence of a
stable Marangoni mode and a possibly unstable Yih mode, and demonstrate that the
primary role of the surfactant is effectively to raise the critical Reynolds number at
which instability is first encountered.

1. Introduction
It has long been recognized that an insoluble surfactant has a stabilizing influence

on the gravity-driven flow of a liquid film down an inclined or vertical wall, by
raising the critical Reynolds number above which the basic Nusselt unidirectional
flow becomes susceptible to infinitesimal perturbations (Benjamin 1964; Whitaker
1964). Supporting theoretical evidence has been provided by several authors based
on a linear stability analysis of the Nusselt unidirectional flow, properly generalized
to accommodate the Marangoni traction due to surfactant surface concentration
variations. Motivation for these studies has been provided by the pervasiveness of
film flows in various branches of modern and traditional technology, and more
specifically, by the opportunity to control these flows by manipulating their surface
properties by the use of surfactants. For example, in precision liquid coating
encountered in the manufacturing of photographic films, stable film flows of solitary
or superposed layers are of paramount importance in ensuring manufactured product
quality, as reviewed by Weinstein & Ruschak (2004).

Whitaker (1964) presented numerical solutions of the Orr–Sommerfeld equation us-
ing approximate boundary conditions, and deduced a critical Reynolds number above
which the film flow becomes unstable. In subsequent work, Whitaker & Jones (1966)
and Lin (1970) developed a long-wave analysis, and derived an asymptotic prediction
for the critical Reynolds number under this restricted framework. Anshus & Acrivos
(1967) confirmed the critical Reynolds number for a vertically falling film, and showed
that the surfactant significantly increases the wavelength of the most rapidly growing
mode. In related work, Ji & Setterwall (1994) demonstrated the existence of an
unstable Marangoni mode for vertical film flow in the presence of a soluble surfactant.

Pozrikidis (2003) recently carried out a linear stability analysis of the film flow in
the presence of an insoluble surfactant in the limit of vanishing Reynolds number, and
demonstrated the occurrence of two normal modes parameterized by the wavenumber.
The first is essentially the classical Yih (1963) mode of the pure film flow, whereas the
second is a Marangoni mode associated with the presence of the surfactant. Physically,
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Figure 1. Schematic illustration of gravity-driven film flow down an plane wall that is
inclined at an angle θ0 with respect to the horizontal.

the Marangoni mode arises from the local variations in the surface tension generated
by the surfactant. These variations induce local Marangoni flows which may either
promote instability by feeding fluid into the troughs and crests of a perturbation
wave, or else ameliorate a disturbance by draining fluid away from the troughs and
crests. In fact, analytical solutions of the Orr–Sommerfeld equation for Stokes flow
have revealed that an insoluble surfactant promotes the decay of the Yih mode.
However, because the rate of decay of the Marangoni mode is lower than that of the
Yih mode, the surfactant can be said to have a destabilizing influence.

These recent results on Stokes flow seem to contradict the earlier results on the
critical Reynolds number for flow instability. To resolve this apparent inconsistency
and demonstrate the precise effect of the surfactant, in this article we present numerical
solutions of the linear stability problem at arbitrary Reynolds numbers. The results
will show that the Marangoni mode remains stable under all conditions considered,
the Yih mode dominates the instability at sufficiently high Reynolds numbers, and
the surfactant has an overall stabilizing influence.

2. Formulation of the linear stability problem
We consider the gravity-driven flow of a liquid film down a plane wall that is in-

clined at an angle θ0 to the horizontal, as shown in figure 1. The surface of the film is
occupied by an insoluble surfactant with surface concentration Γ , which is convected
and diffuses over the interface, but not into the bulk of the fluids, to locally alter the
surface tension, γ . Since the perturbed film flow is assumed to be two-dimensional,
it is convenient to introduce a streamfunction ψ(x, y, t), defined so that that x and y

velocity components are given by ux = ∂ψ/∂y, uy = −∂ψ/∂x.
In the unperturbed configuration, the surface of the film is flat, and the unperturbed

surfactant concentration is assumed to be uniform and equal to Γ0, corresponding to
the unperturbed surface tension γ0. Accordingly, the shear stress is zero at the free
surface, and the flow is described by the Nusselt solution with velocity, streamfunction,
and free-surface velocity, Us , given by given by

u(0)
x =

ρg sin θ0

2µ
y(2h − y), u(0)

y = 0,

ψ (0) =
ρg sin θ0

2µ
y2

(
h − 1

3
y
)
, Us =

ρgh2 sin θ0

2µ
,

 (2.1)
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Stability of film flow 243

where g is the acceleration due to gravity, ρ is the liquid density, µ is the liquid
viscosity, and h is the film thickness.

Our goal is to assess the linear stability of the film flow with respect to two-
dimensional, spatially periodic perturbations of wavelength L. The perturbed flow
is governed by the Navier–Stokes equation and the continuity equation for incom-
pressible fluids, subject to the no-slip and no-penetration conditions at the wall. At
the free surface, the traction f is required to satisfy the boundary condition

f ≡ σ · n = −(γ κ + pa)n − ∂γ

∂l
t, (2.2)

where σ is the Newtonian stress tensor, n is the unit normal vector pointing into
the film, t is the unit tangent vector pointing in the direction of increasing arclength
l, pa is the atmospheric pressure, and κ is the interfacial curvature in the (x, y)-plane,
reckoned to be positive when the surface is downward parabolic, as indicated in
figure 1.

The surface surfactant concentration, Γ (x, t), evolves according to the transport
equation

dΓ

dt
+ ut

∂Γ

∂l
+ Γ

(
∂ut

∂l
+ κun

)
= Ds

∂2Γ

∂l2
, (2.3)

where ut = u · t and un = u · n are the interfacial velocities in the directions of the
tangential and normal vector, respectively, and Ds is the surface surfactant diffusivity
(e.g. Li & Pozrikidis 1997; Yon & Pozrikidis 1998). The derivative d/dt on the left-
hand side of (2.3) expresses the rate of change of a variable following the motion
of interfacial nodes moving with the component of the fluid velocity normal to the
interface. The second term on the left-hand side of (2.3) represents the effect of
surface convection, while the terms enclosed by the parentheses represent the effect
of surfactant dilatation due to in-plane stretching and expansion due to motion in
the normal direction. In practice, the surfactant diffusivity Ds is typically small, and
the effect of surfactant diffusion is of secondary consideration.

The fluid is subjected to spatially periodic perturbations that displace the otherwise
flat surface to a position described by y = h + η(x, t), where the magnitude of η is
assumed to be small compared to the unperturbed film thickness, h. For a normal-
mode perturbation with wavenumber k = 2π/L, the waveform of the surface distur-
bance is described as η(x, t) = A1 exp(ik[x−ct]), where A1 is a complex amplitude, and
c = cr + ici is the complex wave speed. The streamfunction, pressure, and surfactant
concentration are written in the corresponding forms

ψ = ψ (0)(y) + ψ (1)(y)eik(x−ct), p = p(0)(y) + p(1)(y)eik(x−ct),

Γ = Γ0 + Γ1e
ik(x−ct).

}
(2.4)

Linearizing the kinematic condition at the interface, D[y − η(x, t)]/Dt =0, we find

ψ (1)(y = h) = −UsζA1, (2.5)

where D/Dt is the material derivative, and we have defined ζ ≡ 1 − c/Us . On eliminat-
ing the pressure from the linearized form of the normal component of the dynamic
surface condition (2.2) using the x-component of the momentum equation, we obtain

µ
d3ψ (1)

dy3
− k[3kµ + iρUsζ ]

dψ (1)

dy
= ik[ρgUs cos θ0 + γ0k

2]A1, (2.6)
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where all terms are evaluated at y = h. Linearizing now the transport equation (2.3)
taking into account that the basic flow experiences zero stress at the free surface, we
obtain

Γ1 = − Γ0

Usζ − ikDs

dψ (1)

dy
, (2.7)

where the derivative on the right-hand side is evaluated at y = h. Substituting this
expression in the linearized tangential component of the dynamic surface condition
(2.2), we find

µ

(
d2ψ (1)

dy2
+ k2ψ (1) + A1

d2u(0)
x

dy2

)
=

ikγ0Ma

Usζ − ikDs

dψ (1)

dy
, (2.8)

where all terms are evaluated at y = h. The Marangoni number on the right-hand
side is defined as Ma= EΓ0/γ0, where E is the surface elasticity defined from the
linearized interface equation of state, γ = γ0 − E(Γ − Γ0). Finally, to satisfy the no-slip
and no-penetration conditions at the wall, we require

ψ (1) =
dψ (1)

dy
= 0 (2.9)

at y = 0.
Substituting (2.4) in the Navier–Stokes equation and linearizing, we arrive at the

standard Orr–Sommerfeld equation (e.g. Pozrikidis 1997),(
d2

dy2
− k2

)2

ψ (1) =
ikρ

µ

[(
u(0)

x − Us[1 − ζ ]
)( d2

dy2
− k2

)
ψ (1) − ψ (1) d

2u(0)
x

dy2

]
, (2.10)

which is to be solved subject to conditions (2.5)–(2.9).
A straightforward dimensional analysis reveals that the complex phase velocity of

the perturbation depends on the reduced wavenumber kh and the Marangoni number
Ma, the Reynolds number, Re, the capillary number, Ca, and a dimensionless property
group α, defined as

Re =
ρUsh

µ
, Ca =

µUs

γ0

, α =
γ0h

µDs

. (2.11)

Note that α is related to the surfactant surface Péclet number by Pe= (L/h) Ca α. The
definitions for Ca and α coincide with those of Ca′ and α′ employed by Pozrikidis
(2003).

Considering the limit of long waves, we may extend the analysis of Benjamin
(1957) and Yih (1963) to the case of a contaminated film, by expressing the perturbed
streamfunction φ(y) and the complex wave speed c as a series expansion in integer
powers of kh, as done by Whitaker & Jones (1966) and Lin (1970). These expansions
are then substituted in the Orr–Sommerfeld equation (2.10) and accompanying
boundary conditions (2.5)–(2.9) to yield a sequence of problems at each order of
the reduced wavenumber. Following this procedure, we find

c = 2Us + ikhUs

(
8
15

Re − 2
3
cot θ0 − Ma

Ca

)
+ · · · , (2.12)

under the restrictive assumption kh � 1. Thus, long waves travel at twice the surface
velocity of the unperturbed flow, and the flow is unstable for all Reynolds numbers
greater than the critical value

R̂ec = 5
4
cot θ0 +

15Ma

8Ca
. (2.13)
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Stability of film flow 245

In the absence of a surfactant, Ma = 0, we recover the classical results of Benjamin
(1957) and Yih (1963), confirmed experimentally by Liu, Paul & Gollub (1993).
According to (2.13), in the absence of surfactant, a vertical film corresponding to
θ0 = π/2 is unstable at all Reynolds numbers. In contrast, when surfactant is present,
the film is stable for sufficiently small Reynolds numbers. The same qualitative conclu-
sion was reached by Benjamin (1964), who modelled the contaminated surface as a
thin viscoelastic membrane assumed to be in equilibrium at any instant. Expression
(2.13) gives a clear indication of the stabilizing influence of the surfactant under
the uncertainty associated with the small-wavenumber expansion. In particular, the
expansion appears to be capable of producing only one normal mode, and it is not
clear that this mode is dominant. In what follows, we verify that (2.12) does indeed
correspond to the mode with the largest growth rate by comparison with numerical
solutions of the unsimplified Orr–Sommerfeld equation.

The Orr–Sommerfeld equation (2.10) accompanied by the boundary conditions
(2.5)–(2.9) was solved numerically using a Chebyshev tau method (e.g. Orszag 1971;
Dongarra, Straughan & Walker 1996). To implement the method, we map the film
domain 0 � y � h onto the canonical interval −1 � ŷ � 1, writing ŷ = (2y − h)/h.
Next, we expand the perturbed streamfunction in a truncated series of Chebyshev
polynomials, Ti(ŷ), writing

ψ (1)(ŷ) =

N∑
i=0

aiTi(ŷ), (2.14)

where the ai are unknown coefficients, and N is a specified truncation level. Sub-
stituting (2.14) in (2.10), and projecting the resulting equation onto Tm(ŷ), for
m = 0, . . . N − 4, under the Chebyshev inner product,

〈Tm(ŷ), f (ŷ)〉 =

∫ 1

−1

1√
1 − ŷ2

Tm(ŷ)f (ŷ) dŷ, (2.15)

we derive a system of N − 3 equations for the N + 2 coefficients ai . All integrals
involving Chebyshev polynomials and their derivatives in the projection may be
computed exactly using known identities and recursive relations (e.g. Gottlieb &
Orszag 1977, pp. 159–161). A further set of five equations are obtained by substituting
(2.14) in the boundary conditions (2.5)–(2.9). The complete set of equations is
ultimately compiled into the linear system

A · w = ζB · w, (2.16)

where w = (a0, . . . , aN, A1)
T , and A, B are square matrices of size N + 2. The genera-

lized eigenvalue problem (2.16) was solved using a NAG routine based on the
QZ algorithm to obtain ζ , and hence the complex phase velocity, c, from which the
dimensionless growth rate, s = khci/Us , is extracted. To filter out spurious eigenmodes,
the truncation level N is increased until genuine modes are clearly identified. Typically,
N = 25 terms are sufficient to obtain a good level of accuracy at small and moderate
Reynolds numbers. However, larger values of N are required to accurately resolve
the eigenfunctions at high Reynolds numbers.

To test the reliability of the code, computations were carried out for Stokes flow,
Re = 0, and the results were compared with the exact growth rates derived by Yih
(1963) in the absence of surfactant, Ma = 0, given by

s = − τ

2k̂

sinh(2k̂) − 2k̂

cosh2 k̂ + k̂2
, (2.17)
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Figure 2. Growth rates for Stokes flow, Re= 0, for Ca = 2.0, θ0 = π/4. The lines correspond to
the present results. (a) Ma =0; the circles indicate the predictions of Yih (1963). (b) Ma = 1.0,
α = 10.0; the solid line corresponds to the Yih mode, the broken line to the Marangoni mode,
and the circles indicate the predictions of Pozrikidis (2003).

where τ = cot θ0 + k̂2/(2Ca) and k̂ = kh. Further comparisons were made with
Pozrikidis’s (2003) analytical predictions in the presence of surfactants, wherein the
eigenvalues ζ satisfy a quadratic equation whose roots correspond to a pair of normal
modes. Results obtained by the present numerical method for Re= 0 and Ma = 0 or
Ma= 1 are in excellent agreement with the corresponding theoretical predictions, as
shown figure 2.

The solid line in figure 2(a) represents the present results for Ma =0, and the circles
represent Yih’s prediction (2.17). Because the growth rates are negative, the flow is
stable for all reduced wavenumbers, kh. Results in the presence of surfactant shown
in figure 2(b) reveal the occurrence of two normal modes, drawn with the solid and
broken lines. The mode corresponding to the solid line is referred to as the Yih mode,
and the mode corresponding to the broken line is referred to as the Marangoni mode.
The growth rates computed by Pozrikidis (2003) by analytical methods are indicated
by circles. Because the growth rates of both normal modes are negative, the flow is
stable for any wavenumber. If the Marangoni number is continuously reduced to
zero, the growth rate of the Yih mode collapses onto Yih’s prediction (2.17) for a
clean interface.

To test the reliability of the code for non-zero Reynolds numbers, the numerical
results were compared with those reported by Chin, Abernathy & Bertschy (1986)
for a clean film flow. Figure 3 shows the growth rate of the most dangerous mode,
referred to as the gravity-mode by Chin et al., for Re =2500, Ca = 0.017716 and θ = 4◦.
These conditions correspond to γcab = 4280, where γcab is Chin et al.’s dimensionless
parameter, related to our parameters by γcab = Re2/3(sin θ0)

1/3/Ca. Our numerical
results faithfully reproduce the growth rates presented by Chin et al. in their figure 5.

3. Results
The effect of inertia on the growth rates of the Yih and Marangoni modes is

demonstrated in figure 4(a) for Ca = 2.0, α = 100, Ma = 1.0, θ0 = π/4, and kh = 0.5.
The growth rate for a clean interface is shown as a bold line originating from the Yih
value given in (2.17) for Re= 0. The thin solid and broken lines represent, respectively,
the growth rates for the Yih and Marangoni modes in the presence of surfactant,
originating from values predicted by Pozrikidis (2003) for Re= 0. At small Reynolds
numbers, the effect of the surfactant is twofold. First, the rate of decay of the Yih
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Figure 3. Dominant growth rate plotted against the reduced wavenumber for Re= 2500,
Ca = 0.017716, Ma = 0, and θ0 = 4◦.
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Figure 4. (a) Effect of inertia on the growth rates for a clean interface (bold line) and
a contaminated interface with Ma =1, for Ca = 2.0, α = 100, θ0 = π/4, kh = 0.5. The thin
solid line and broken line correspond to the Yih and Marangoni growth rates, respectively.
(b) Eigenfunctions for Ma = 1 and Re= 8.0, with the real and imaginary parts shown as solid
and broken lines respectively for the Yih mode (thin lines) and Marangoni mode (thick lines).

mode is increased, promoting the stability of the film flow. At the same time, a new
normal mode is introduced with rate of decay significantly lower than that of the
Yih mode prevailing at a clean interface. In this sense, the effect of the surfactant is
destabilizing, though the film flow is in fact stable, as discussed by Pozrikidis (2003)
and briefly summarized in § 1.

Figure 4(a) shows that the Marangoni mode dominates only when the Reynolds
number is sufficiently small. As the Reynolds number is raised, inertia causes an
increase in the growth rate of the Yih mode until, ultimately, an exchange of stability
occurs wherein the Yih mode claims the dominant role. During this exchange, the
growth rate of the Marangoni mode hardly changes at all, and the corresponding
perturbations remain stable. As the Reynolds number is further increased, the growth
rate of the Yih mode eventually passes through zero, producing an unstable flow.
With surfactant present, the onset of instability is delayed, as the thin solid line passes
through zero well after the thick solid line. Thus, the primary role of the surfactant
is to effectively raise the critical Reynolds number where instability first occurs, in
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0.5
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Figure 5. Ca = 2.0, α =1, θ0 = π/4: (a) Neutral stability curves for Ma = 0 and 1.0; the
small-wavenumber critical Reynolds numbers Rec = 1.25 and R̂ec = 2.1875 are shown as broken
and dotted lines respectively. (b) Ma = 1.0: Contours of the growth rate s, with the neutral
curve shown as a heavy solid line and the mode-crossing shown as a heavy broken line.

agreement with the findings of previous authors. The eigenfunctions of the unstable
Yih mode and the stable Marangoni mode at Re = 8.0 are shown in figure 4(b),
normalized by their maximum moduli.

Neutral stability curves are shown in figure 5(a) for Ca=2.0, α=1.0, θ0 =π/4, Ma=0
or 1.0. The area to the left of each curve corresponds to stable modes, and the area
to the right to unstable modes. When surfactant is introduced, the critical Reynolds
number nearly doubles, and the neutral curve is shifted to the right. Also shown
with broken lines in figure 5(a) are the predictions of the long-wave approximation
expressed by (2.13); for a clean interface, Rec = 5/4. In the limit kh → 0, the numerical
results are in excellent agreement with the theoretical predictions in the presence and
absence of surfactants. It should be emphasized that the long-wave analysis does
not preclude the possibility that the neutral curve doubles back on itself at larger
wavenumbers, leading to a lower critical Reynolds number than that given by (2.13).
However, we have not been able to find any examples where this occurs. Contours
of the dimensionless growth rate s for Ca = 2.0, α =1.0, θ0 = π/4, and Ma = 1.0 are
shown in figure 5(b), where the neutral curve is indicated by a bold solid line. The
area underneath this curve corresponds to instability. Also shown as a bold broken
line are the points where the mode-crossing highlighted in figure 4 occurs, for different
parameters. The maximum growth rate, s = 0.052, occurs at (Re, kh) = (15.44, 0.33).

The effect of the inclination angle, θ0, on the neutral curve is illustrated in figure 6(a)
for Ca =2.0, Ma = 1.0 and α = 1.0, where the region underneath each curve corres-
ponds to instability. As the inclination angle is raised and the film tends to become
vertical, the neutral curve is shifted upwards, widening the range of unstable wave-
numbers at any given Reynolds number. The effect of the dimensionless parameter α

is shown in figure 6(b) for Ca = 2.0, Ma = 1.0 and θ = π/4. Increasing α amounts to de-
creasing surfactant diffusivity. The results show that the stability characteristics of the
film are insensitive to the surfactant diffusivity up to about Re ∼ 10. Beyond this thres-
hold, marked differences are observed in the neutral curves for different values of α.

We have seen that, at sufficiently large Reynolds numbers, the Yih mode dominates
and is responsible for flow instability. However, additional ‘shear’ modes associated
with the underlying half-plane Poiseuille base flow are also present (Chin et al. 1986).
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Figure 6. Neutral stability curves for Ca = 2.0, Ma = 1.0: (a) α =1.0 and for the three inclina-
tion angles θ = π/2, π/4, π/8. (b) θ = π/4 and α = 1.0 (upper solid line), α = 2.5 (dashed-dotted
line), α =5.0 (dashed line), α = 10.0 (dotted line) and α = 100.0 (lower solid line).
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Figure 7. Neutral stability curves for γcab = 4280, and θ = 4◦. The two curves for Ma = 0
and 1 are indistinguishable.

The critical Reynolds number associated with the most unstable shear mode is ap-
proximately Rec =5676, which is close to that for plane Poiseuille flow, Rec = 5772.2
(e.g. Orzsag 1971). In figure 7, we present the neutral curve for the most unstable
shear mode, together with the corresponding curve for a contaminated surface with
Ma = 1.0. The results reveal that the surfactant has little effect on the shear modes,
which are described well by the channel-flow solution.

4. Discussion
We have solved the linear stability problem for a liquid film flowing down an in-

clined plane at arbitrary Reynolds numbers, and quantified the simultaneous effect of
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inertia and Marangoni tractions due to an insoluble surfactant. The numerical method
was validated by successful comparison with previous results available in the literature.

We have shown that the effect of an insoluble surfactant is predominantly benign, as
it tends to calm the film surface. At zero Reynolds number, two normal modes arise.
The first, the Yih mode, is associated with the disturbance wave superimposed on the
film surface, and the second, the Marangoni mode, is associated with the periodic
spatial variation in the surfactant concentration. The rate of decay of the Marangoni
mode is significantly lower than that for the Yih mode. However, as the Reynolds
number is increased from zero, the growth rate of the Yih mode increases, while that
for the Marangoni mode remains virtually constant. Eventually, while both growth
rates are still negative, the Yih mode overtakes the Marangoni mode, before becoming
unstable.

In the absence of surfactant, only the Yih mode is present. Its growth rate rises with
increasing inertia, producing instability at a critical value of the Reynolds number.
When surfactant is introduced onto the film’s surface, this critical Reynolds number
increases. Thus, overall, the surfactant has a stabilizing effect on the film dynamics.
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